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Introduction 1

1 Introduction

1.1 Background and motivation

In recent years, automating knowledge work has become a rising technology trend.

Transferring the dull and repetitive tasks of knowledge work from humans to software

robots is an intriguing opportunity to save costs for a variety of organizations, whether big

or small. There are also numerous vendors offering Robotic Process Automation (RPA)

services and the pace does not seem to be slowing any time soon as an increasing number

of organizations handling processes in areas such as finance, public service and human

resources are seeing the potential of RPA as a quick and inexpensive option for enhancing

the effectiveness of business processes (Aguirre & Rodriguez, 2017). This has also created

demand for research on how to make RPA projects as effective as possible.

The target organization for this research, The Finnish Tax Administration, is a large

organization currently taking the first steps in their RPA journey having a few processes

automated so far and several automations in development. The number of potential

candidate processes to be automated is at least in hundreds. They are currently utilizing

external RPA consultants to speed up the development of automations and support the

advancement of their own RPA department. The plan is to match the development pace

with the high automation demand and improve their own RPA capability to a point where

they can run RPA as much in-house as possible.

To achieve these goals, redundant development work must be minimized, and the RPA

implementations need to run as effectively as possible. This means that the RPA solutions

must be made both flexible and effective at the same time. In addition, consistency in the

RPA component development policies is required to avoid pointless frictions between the

different implementation projects. Applying modularity to any kind of product system has

a potential to empower scalability, consistency, reusability, and flexibility, but still

preserve the valuable connections of the components and functions in them (Baldwin &

Clark, 2000). Furthermore, there have been indications in the past research on for example

software development by Subramanyam et al. (2012) that the flexibility and efficiency in

modular development can be simultaneously achieved with scrupulous design choices
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regarding the components and refactoring the component designs when necessary. The

case organization is currently launching an RPA implementation project to automate part

of their employee data management. This leads us to the focus of this study which is

finding out how modularity can be applied to RPA solutions and what effects it has to the

implementations in terms of efficiency.

1.2 Research questions, objectives, and scope

Modularity and its effects on different systems and environments have been widely studied

in the past research. Some of the past studies include for example the works of Baldwin

and Clark (1997), Schilling (2000), Salvador (2007), and Gamba and Fusari (2009).

However, the principles and effects of modularity are yet to be comprehensively examined

with RPA systems. Based on this research gap, the outlined motivation, and the known

challenges in maximizing the effectiveness of RPA development projects mentioned by for

example Rutaganda et al. (2017) and Boulton (2017), the thesis aims to answer the

following questions:

1) How is modularity applied in RPA solutions?

2) What are the benefits of modularity in RPA implementations?

The goal of the research is to study the resonation between modularity and RPA. This

happens by creating a modular RPA solution for managing employee data in the case

organization that provides an understanding on how modularity can be used to add

efficiency to RPA implementations. The impact on efficiency is examined not only from

the viewpoint of the current project but also the potential future RPA projects in mind as

the aim is for the future automations in the organization to be able to utilize as many parts

of this solution as possible. The Finnish Tax Administration already had one automated

process in action in the beginning of this project, in which a certain level of modularity

could be seen. However, the concept of modularity has not been highlighted in the

 both its nature and significance might vary a lot in the

minds of the RPA team members. The larger theoretical aim in this research is, on the hand

to expand the existing literature on modularity by studying its effects on RPA, and on the

other hand widen the spectrum of the relatively novel RPA-related research by connecting

modularity to it.
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The objective for the research is to be able to create a modular RPA solution by defining

and analyzing a set of tasks related to the employee data management process in detail, and

then, with the help of the analysis, automating those tasks with modular automation

components. This will be done by organizing discussions and workshops with the business

process experts, in other words, subject-matter experts (SMEs) of the employee data

management to gather all the details related to it. The SMEs here are employees in the case

organization who have profound knowledge of all the tasks related to the part of the

employee data management that is being automated. Based on the information gathered

from the SMEs, the automation logic is first designed and reviewed with the RPA experts.

This is followed by cycles of developing, testing, and validating the RPA solution. Finally,

the solution is launched into the production environment of the organization to run on its

own. The final version will be a result of collaboration between the SMEs, different

systems experts, and RPA experts.

The scope and results of the research help The Finnish Tax Administration and other

organizations implementing RPA to calibrate their RPA journey and steer their automation

implementations to the right direction. The principles of how modularity was used in this

RPA solution and what benefits it produced can be used as practical examples for future

implementations. In addition, many of the modular components created in this project have

the potential to be utilized in other RPA automation solutions in the case organization as

well. The organization has hundreds of business processes suitable for RPA and a potential

to save huge amounts in costs. The benefits of streamlining the development projects right

from the beginning can be remarkable.

1.3 Structure of the thesis

The case study in this research paper utilizes the Action Design Research (ADR) method

which supports executing a practical empirical research inspired by a real-life situation

(Sein et al., 2011). The outcome of this research is a modular RPA solution for automating

a set of tasks related to employee data management in The Finnish Tax Administration.

The thesis begins with a literature review that first describes the nature of RPA including

its benefits and challenges, then conceptualizes modularity and studies its impact on

complex systems, and finally links RPA to complex systems as the relationship between

modularity and RPA is assessed.
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The next part of the thesis presents the chosen research method and explains in more

details why the method is suitable for this situation. In addition, the action steps taken

during the project and the schedule of the project are discussed. The final topic in the

method part includes evaluating the trustworthiness of the research.

After discussing the method, the study dives into the empirical part. First, the collection of

data is described and the most important events during the project listed. This is followed

by the first three of the four stages used in the ADR method. These stages are problem

formulation, building, intervention and evaluation, and reflection and learning (Sein et al.,

2011). The final part of the thesis is discussion where the fourth stage of the ADR method,

formalization of learning, is presented in the form of design principles, theoretical

contributions, and practical utility. Lastly, limitations of the study and future research

suggestions are presented.
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2 Literature review

2.1 Modularity

Modularity is a relatively old concept that has been studied by several researchers in the

last decades. the building of a complex product or process from

smaller subsystems that can be designed independently yet function together as a whole

(Baldwin & Clark, 1997). It is as a general property of a system as well as a strategy for

organizing complex products and processes efficiently (Baldwin & Clark, 1997; Schilling,

2000). It can also be viewed as a technical or organizational characteristic, therefore being

able to characterize both technological architectures and organizational structures (Tiwana

& Konsynski, 2010). As a versatile concept, modularity can be used to solve many kinds

of design problems and it has been proven useful in designing, coordinating, and managing

complex systems (Baldwin & Clark, 2000; Ethiraj & Levinthal, 2004).

2.1.1 Hierarchical and complex system

Simon (1991) defines a a system that is composed of interrelated

subsystems, each of the latter being, in turn, hierarchic in structure until we reach some

lowest level of elementary subsystem Almost all entities, whether they are biological,

technological, or otherwise, can be viewed as hierarchically nested systems (Schilling,

2000). Schilling (2000) uses the term component

similarly that each component of a system can be viewed as system of its own consisting

of even finer components and so forth until we reach a point where the components are just

limits the possibility to decompose any further.

Many of the systems around us are complex (Bar-Yam, 2019). A complex system can be

for example a product or an organization (Ethiraj & Levinthal, 2004). Simon (1991)

Roughly, by a complex system I mean one made

up of a large number of parts that interact in a nonsimple way. In such systems, the whole

is more than the sum of the parts, not in an ultimate, metaphysical sense, but in the

important pragmatic sense that, given the properties of the parts and the laws of their

interaction, it is not a trivial matter to infer the properties of the whole.  Thus, the

complexity in this case originates primarily from the usually unknown nature and

magnitude of interactions between different parts of the system and the system

performance implications deriving from that (Ethiraj & Levinthal, 2004). Thus, to
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understand the how a complex system works, we must have knowledge of not only how

each part behaves but also how they act together to form the whole functionality of the

system. The properties of a complex system can be viewed in for example the human

nervous system (Bar-Yam, 2019).

2.1.2 Modular system

Baldwin and Clark Modularity is a structural fact:

its existence can be determined by inspecting the structure of some particular thing. If the

structure has the form of a nested hierarchy, is built on units that are highly interconnected

in themselves, but largely independent of other units; if the whole system functions in a

coordinated way, and each unit has a well-defined role in the system, then, by our

definition, the thing is modular. This is true whether we are speaking of a brain, a

computer, or a city.

are designed independently but function as an integrated whole (Baldwin & Clark, 1997).

The benefits of modularity have been used for example in car production as the example

below shows.

Carmakers, for example, routinely manufacture the components of an automobile at

different sites and then bring them together for final assembly. They can do so because

they have precisely and completely specified the design of each part. In this context, the

engineering design of a part (its dimensions and tolerances) serves as the visible

information in the manufacturing system, allowing a complicated process to be split up

among many factories and even outsourced to other suppliers.

more strongly linked to each other and the whole structure can be seen as a single-module

project where it is hard to change even a single parameter without having on effect on the

others (Gamba & Fusari, 2009).

2.1.3 Modules and interfaces

A modular system component,  module a unit whose structural

elements are powerfully connected among themselves and relatively weakly connected to

elements in other units  (Baldwin & Clark, 2000). In other words, a module can be defined

a cluster of strongly interconnected parameters that are almost independent from the
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parameters of other modules  At the very minimum, a module is

a portion of at least one product variant within a set of products (Salvador, 2007). Even

though modules are structurally independent units, they work together in a larger system.

Modules are linked together by a

preestablished way to resolve potential conflicts between interacting parts of a design

Interfaces are elaborate descriptions of how modules fit together, communicate, and so

forth, in other words, how they interact with each other. They are common information for

the designers of the system to adopt. In order to minimize conflict, there must be

specifications, meaning inputs and outputs, set for the interfaces. Together the interface

specifications and modules form the architecture of the system. The architecture specifies

what modules are part of the system and what their functions are (Baldwin & Clark, 1997).

It enables both independence of structure and integration of function for the modules

(Baldwin & Clark, 2000). In the carmaker example, a module can be viewed as one part of

the car that is manufactured in a separate site. The possibility to manufacture the car in

parts and assemble it in the end is enabled by the specified design of each part and how it

fits together with other parts. This represents a concept of standardized interface that will

be further explained later in this thesis. The system architecture in this example is formed

by all the different parts and their functionalities.

A design can be defined as detailed description of a product. It is entirely determined by a

number of parameters in it and their interconnections. The parameters are associated to one

another when there is a physical or a logical connection or dependence between them.  A

modular design

imperative principles of composition that

each module must respect to maintain the compatibility with the other modules and the

entire project

designates them different structural functions based on their position (Gamba & Fusari,

2009) ll be assessed further later in this

thesis.

2.1.4 Information visibility

Modularity can be achieved by dividing information into visible design rules and hidden

design parameters. Modularity is beneficial only if this division is precise, unambiguous,

and complete (Baldwin & Clark, 1997). The modules that are placed at the highest level of
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the system can be called

 The

visible information are decisions that affect subsequent decisions and concern the whole

system. Ideally, the visible design rules are settled early in a design process and

communicated widely to the involved parties (Baldwin & Clark, 1997). Visible

information includes the interfaces of the modules, the system architecture, and standards

(Baldwin & Clark, 2000). Standards are for testing if a module conforms to the design

rules and how well it performs in comparison to other modules (Baldwin & Clark, 1997).

Hidden informa they

are hidden in. The hidden elements can be chosen late and changed often. They also do not

have to be communicated to anyone beyond the designers of the module (Baldwin &

Clark, 1997). Information can be hidden by creating separate abstractions  that hide the

complexities of elements in the system. In other words, when the complexity of an element

reaches a certain threshold, the system is broken apart into smaller blocks that have their

own interfaces and design parameters. These design parameters become hidden

information within those blocks and only affect that part of the system. Breaking the

system into parts, in other words, , is one of the six modular operators described

later in this thesis. The goal in this division is to find the points where it is most natural to

have a separation (Baldwin & Clark, 2000). On the one hand, the aim is to conserve the

most productive interdependencies and connections, in other words, the functions, in the

system. On the other hand, the goal is to enable innovative cycling and creativity,

contained within the modules (Baldwin & Clark, 2000). In other words, the goal is to find

the modularization where interdependencies between modules are minimized and the

system is most cleanly decomposed (Langlois, 2002), which can be achieved by grouping

strongly interacting elements or parts together and separate weakly interacting ones

(Simon, 1991). This steers the system towards the optimal level of the unison of its

flexibility and efficiency (Subramanyam et al., 2012). From project viewpoint, this logical

division can be conducted for example by splitting a project based on different tasks or

activities for individuals or groups which enables appropriate resources, technologies

and/or coordination techniques to be applied on each task or activity. It also allows

standardized service definitions, resource requirements, and choreographies for the
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activities to be stored and reused during planning and analyzing phases of the future

projects (Keith et al., 2013).

Hiding part of the information helps manage the complexity of the system because it splits

the system into a set of independent smaller-sized elements while the design rules tie up

the modules into a hierarchical structure, and thus prevents the progression towards the

goal to be overwhelmed (Gamba & Fusari, 2009; Baldwin & Clark, 2000). In the end, if a

significant amount of information relevant to subparts of the design is hidden within them,

the system has been modularized and the system is represented in a less complex form to

our mind (Baldwin & Clark, 2000). Considering for example a car, it could be natural to

have a split between the production of the motor and the body. The motor experts would

then work on the motor while the body designers construct the body. Each group has the

detailed knowledge about their part to efficiently finish it, but do not need many details on

ized interface specifications of the parts, known by

both groups, would allow the smooth assembly in the end.

2.1.5 Modularity assessment perspectives

There are several different and overlapping viewpoints on how to assess modularity.

Salvador (2007) gathers five common definitional perspectives  of modularity from

earlier studies. Those are component commonality, component combinability, function

binding, interface standardization and loose coupling. In addition, a supportive aspect

named component separability  is discussed.

Salvador (2007) investigates modularity through a concept of product system building

regarded as modular, such as computers, industrial machinery, Lego blocks, space stations,

etc., we see that their common feature is that they can be easily configured in different

ways. At the same time, to modify any of these products you do not generally have to

change it completely, as you may just have to change a limited number of components.

Accordingly, the goal of product modularity is to have different products while minimizing

 In relation to that example, Salvador (2007) defines

y defining and empirically assessing product

modularity implies that we know or hypothesize the variety of possible configurations as

well as the way they are obtained. In other words, you cannot determine how easily you
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can reconfigure something, if you do not know what the desired new configurations are. A

single product, therefore, is not the appropriate unit of analysis for product modularity.

The first perspective, component commonality, can be measured by the number of

standard components in a system, in other words, how many times a component is used in

different designs. Shaftel (1972) defines it as

or modules to be produced, how many of each part is to be included in each of the various

. From

the viewpoint of the second perspective, component combinability, modularity is at a high

degree when a variety of design configurations can be achieved by mixing and matching

components from a given selection. In other words, the aim is to maximize the number of

different possible configurations from a given number of parts. Furthermore, to allow the

modules to be combinable with each other and achieve different product configurations,

the modules must be separable. Separability indicates that a product variant can be built by

first building its modules and then assembling them into a final product configuration. The

separability of a component can be assessed by product disassembly as well because a

separable component also must be easily detachable from the final product configuration

where it was previously included. (Salvador, 2007)

The third perspective relates modularity to functions. From this viewpoint modularity

entails a design of different components that execute a variety of overall functions through

the combination of distinct building blocks or modules. Since the various design-specific

functions are fulfilled by a combination of modules, the modules transform

designs. Thus, a module can be defined as any distinct

portion of a design (Salvador, 2007). From the fourth perspective, interface

standardization, modularity in a system can be increased by creating a high independence

between component designs enabled by standardizing the interface specifications, that is,

inputs and outputs of components (Sanchez & Mahoney, 1996).

Interface standardization, shortly discussed before, is closely linked to both component

combinability and the fifth perspective, loose coupling, and can practically be viewed as an

enabler for them. In modular design, the standardized interfaces between components are

determined for allowing a range of variations in components to be substituted into a system
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architecture. Modules are components whose interface characteristics are within the range

of variations allowed by the architecture. The modular architecture is flexible as design

variations can be leveraged by substituting different components into the architecture

without having to redesign other components. In other words, standardizing the interface

specifications  enables components to become both

combinable and loosely coupled, since they can be effectively coordinated simply by

demanding all the components to comply with the design rules, in this case, the

standardized component interface specifications. This loose coupling of component

designs in a modular architecture enables the mixing and matching of modules to produce

a potentially high number of variations to the overall design with different distinctive

functionalities, features, and/or performance levels. (Sanchez & Mahoney, 1996)

As we can see, all the dimensions overlap with each other to a certain degree. Schilling

(2000) effectively links together all the perspectives defining

ightness of coupling between components

and the degree to which the "rules" of the system architecture enable (or prohibit) the

the components in a design depends on how

requires compensating changes in the designs of other components (Sanchez & Mahoney,

1996). Whether it is loose or tight, all systems include a certain degree of coupling

between components and only few systems have completely inseparable components that

cannot be recombined. Thus, almost all systems have some degree of modularity

(Schilling, 2000).

2.1.6 Modular operators

Increasing modularity of a design widens the scale of different modification possibilities

hey

illustrate the changes that can be envisioned in a modular design to modify the existing

structures into new structures in defined ways. These operators include splitting,

substituting, augmenting, excluding, inverting, and porting. They go hand in hand with the

assessment perspectives discussed in the previous chapter.
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Splitting is a central option for a modular design because it allows a set of independent

modules to be formed from an interconnected design or module by breaking it apart. In the

case of splitting an interconnected design, the dependencies among the parameters must

first be investigated to find the rational points where to conduct the splitting (Gamba &

Fusari, 2009). An example of splitting presented by Gamba and Fusari (2009) provides an

illustration to the matter.

A bank is considering specializing its business activity. One way to achieve this result is

to split its business, currently interconnected as a single module, into a set of main

functions (private investments, retail, small businesses, large businesses, etc.). That

requires the choice of the target market and the creation of a set of independent

modules/divisions based on the main functions. These modules are linked to a central

decisional unit, which dictates the global business plan (design rules). The benefit of this

structure is that each business unit is free to evolve, within the design rules, independently

of what happens to the rest of the system. This can be made formal and effective by

creating a pyramidal group, where the parent company (the central decision unit) controls

the subsidiaries (divisions).

The substitution operator, in turn, enables an existing module or an interconnected design

to be changed with a new one. When a module in the higher level in hierarchy is replaced,

 level modules connected to it are affected by

the design rules it poses on them. In other words, a new interface must be defined for these

lower level modules. On the other hand, if a module in the lower level of that structure

would be replaced, the internal differences in the new module would not require

modifications in other components at the same level. This leads to design editing being

more favorable in the lower levels as substitutions there have a limited impact on the

design structure and a slower rate of change for higher-level modules. The flexibility to

enhance an existing module without having to redesign the entire structure is one of the

most important motivations to modularize a system (Gamba & Fusari, 2009). An example

of substitution is presented below by Gamba and Fusari (2009).

The CPU is a hierarchical module: when it is changed, we usually also have to change

the motherboard, which is a lower-connected module. On the other hand, it is possible to

improve (applying the substitution operator) the video performance of a computer using a
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new graphics card, without affecting the global design structure. Hence, the graphics card

can be considered a hidden module in the broad computer structure.

The augmenting operator is applied to either create a new level of hierarchy or increment

an existing layer of modules. It improves a design by adding one or more modules to it

without changing the existing design rules. The possibility to improve a design this way

without the need of changes in the rest of the structure is another important motivation for

modularization. Augmenting is often used together with the excluding operator that allows

creating a minimal design with the opportunity of incrementing and increasing its size,

scope, and depth later. The exclusion operator can provide both strategic and financial

benefits. Strategically, the initial exclusion of a module mitigates the effects of potential

failure of the whole design. Financially, the initial exclusion of a module from the system

may allow to finance the subsequent expansion with the cash flows generated by the

minimized initial design already operating. An illustrative example is shown below.

(Gamba & Fusari, 2009)

An electricity company is planning to expand its production capacity by building a new

nuclear power plant. It can follows two alternative approaches: in the first, one large

production unit is built; the second approach is modular, because it comprises the

construction of a series of lower-size power production units over time. Assume that the

electricity price is the main driver of the decision. When the electricity price is highly

volatile, the modular approach allows us to reduce risk and to shorten the time of the

initial investment. This approach corresponds to applying the exclusion operator to the

initial design and then using the augmenting operator within the design rules set at the

beginning. An initial power plant of reduced size is constructed, with the option to expand

(i.e., to augment) its capacity later should the economic conditions turn favorable.

Inversion means creating a new source of visible information by isolating the common

properties embedded in different modules. It usually happens in three phases where the

similarities in the modules are first detected, then the modules containing the similarities

are split to single out the similar components, and finally a new module for the similar

components is created and placed at a higher level in hierarchy (Gamba & Fusari, 2009).

An example of inverting is presented below (see also Figure 1) by Gamba and Fusari

(2009).
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As an illustrative example, we can think of a merger between two auto manufacturers.

Because the two companies belong to the same business area, their internal structures can

potentially have some similar functional units or modules (e.g., the administrative

department, the research department, or the production line of some common part of the

vehicles). In the left part of Figure 7, Module 1 and Module 2 represent the production

systems of the two companies involved in the merger. They have a common unit so the

owner can apply the inversion operator to benefit from scale economies. First she has to

isolate (i.e., split, as in the second step in Figure 7) the common components I in each

firm, say, two lines that produce the same part for the vehicles of the merged companies,

production line) is designed, which can work with both original systems. Finally, the new

module is placed on top of them by inverting its ranking in the hierarchy of the original

design, as in the third step of Figure 7. The resulting company has only one production

module that provides its services to the remaining modules of the two merged companies

(i.e., Module 1 and Module 2 specific components).

Figure 1. Inversion operator (Gamba & Fusari, 2009).
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The sixth operator, porting, enables the creation of a module component that is compatible

with other designs and structures, meaning that the module has an independent set of

parameters that can serve well also out of the current design rules, and can thus be linked

to other designs (Gamba & Fusari, 2009). In other words, porting is like inversion, but with

the difference that portable modules are not trapped by the design rules of a particular

system. Instead, they are free to drift from a system to system (Baldwin & Clark, 2000).

Of all the operators, splitting and substituting can be applied to both modular and

nonmodular designs, the other four can only be used in a modular design. After creating a

modular system, it can be improved upon by the six operators. Furthermore, all the

operators can be applied locally to the system without interfering the other parts of the

structure. The usage of the operators can be described The life of a modular

design can be divided into two typical phases: in the first phase, an interconnected design

is turned into a modular one by splitting it; in the second phase, the design can be

improved upon by further splitting, augmenting, replacing, porting, and excluding the

existing modules. However, additional changes can be made to increase the value of the

system. Among these, there is the possibility to improve the design by grouping similar or

common functions that are spread across the structure into a single module. This module is

then connected to all the other modules where the common function was present  (Gamba

& Fusari, 2009)

2.1.7 Benefits of modularity

Enhancing modularity offers a variety of benefits related to the design. Due to the

increased number of possible configurations that can be achieved with the given set of

inputs, the flexibility of a system is improved (Schilling, 2000). This can be molded into

markets and technologies by quickly producing product variations with new combinations

of new or existing modular components is improved. With the help of the enhanced ability

to produce new product variations, they can conduct continuous change more efficiently

(Sanchez & Mahoney, 1996).  Modularity also generates scale advantages in production. If

there are common parts used in a variety of items, economies in part sourcing may

 to mass

production (Baldwin & Clark, 2000).
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One of the key advantages in modularization is the increased manageability of complexity.

When the number of steps rises in an interconnected design, the difficulty to successfully

complete the project increases. Furthermore, the project takes an increasing amount of time

and the quality of the output may suffer. Limiting the scope of interaction between

elements or tasks, and thus reducing the amount and range of potentially unproductive

cycling occurring in a design or production process leads to better manageability of the

process, less time spent on the process, increased probability of success, and enhanced

quality of the final output (Baldwin & Clark, 2000). By enabling a structured

representation of interdependencies through standardized interfaces, modularity also

reduces the need for close coordination and makes workload more predictable (Susarla et

al., 2010). Another modularity aspect that leads to saved time is the ability to work on

different parts of a design concurrently as the independent blocks if a modular structure

can all be developed simultaneously. In a situation where creating the design rules and

conducting integration and testing do not require a massive amount of time, a modular task

division cuts the time of completing a process. Combining the effects of concurrent

development and reduced time in the cycles, the saved time might be substantial (Baldwin

& Clark, 2000). In addition, modularity also improves specialization in the design process.

As each module may evolve independently of the other modules within given design rules,

each module can be worked with no worry of damaging the whole project (Gamba &

Fusari, 2009).

Another benefit of modularity is enhanced risk mitigation and controllability of resources.

The encapsulation feature of modularity enabling the information hiding helps prevent

sensitive information being leaked and overexposed at an unwanted scale (Xue et al.,

2013). This property to hide information also accommodates uncertainty in a design

because the hidden parameters are isolated from other parts in the design. These

parameters can vary, making them uncertain, but they only impact the block they have

been isolated in, in other words, a module. This leads, again, to modular structures also

being flexible as potential new knowledge being applied to a hidden module does not

require much changes to the rest of the system. A new solution, having possibly various

new components substituted, can thus be relatively simply incorporated with little loss of

functionality (Baldwin & Clark, 2000; Schilling, 2000).
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From a managerial viewpoint, the biggest advantage of modularity is decentralization,

meaning that each module can be designed, made, and eventually implemented by a

specific unit (Gamba & Fusari, 2009). This enables loosely coupled, flexible, 'modular'

organizational structures. Enabling coordination with fully specified and standardized

component interfaces potentially reduces the need for conducting managerial authority

across the interfaces of organizational units developing components, which reduces the

intensity and complexity of a firm's managerial job in product development, allowing a

greater flexibility to launch a greater number and variety of product creation projects

(Sanzhez & Mahoney, 1996).

2.1.8 The tradeoff of modularity

The effect of increasing modularity is to enable heterogeneous inputs to be recombined

into various heterogeneous configurations. The pressure of a system to become more

modular stems from how separable the components of the system are and the need to

produce multiple configurations from diverse potential inputs. In other words, in systems

where recombination is possible, there may be some combinations of particular

components that work better together than others. By optimizing the components that work

in a particular configuration, these valuable combinations achieve a functionality not

achievable through combination of more independent components. The level of achieving

this greater functionality with specific relations of components to one another can be called

synergistic specificity of the system. In other words, the  combination of

components obtains synergy through the specificity of individual components to a certain

configuration. Systems with a high level of synergistic specificity have a potential to

accomplish things that more modular systems have cannot, but, with the price of

decreasing level of recombinability (Schilling. 2000). However, this tradeoff is not always

linear from development viewpoint. Results have been presented in for example a mass-

customization software development research by Subramanyam et al. (2012) that threshold

levels of modularity can be achieved where the benefits of lower customization effort

might not be neutralized by the loss of efficiency (increased defects and development

effort) This is enabled by careful design choices and complementary measures such as

refactoring (Subramanyam et al., 2012).

As mentioned before, the aim of modularity is to enable heterogeneous inputs to be

recombined into various heterogeneous configurations. The more heterogeneous the inputs,
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the more possible configurations are achieved through the recombinability. Furthermore,

the more heterogeneous the demands made of the system, the more valued that

recombinability is. A higher number of potential configurations of a system has a better

potential to match the heterogeneous demands made of the system. The modularity of the

system increases, decomposing the system into a group of modular components at ever-

finer levels, until a balance is found between the pressure to become more modular and the

functionality achieved through synergistic specificity. Because systems are typically nested

hierarchies, each of these components is often a system of other components, facing its

own balance between modularity and synergistic specificity. This trajectory might continue

until we a level is reached at which the system is relatively inseparable, is composed of

relatively homogeneous inputs, or faces relatively homogeneous demands, or some

(Schilling. 2000). In other words, the circumstances determine that

the benefits of modularization are not worth the cost. This might be the case for example

for a system whose environment rarely changes (Langlois, 2002).

2.2 Robotic Process Automation

Robotic Process Automation as a term covers all tools operating on the user interface of

other computer systems mimicking human activity (van der Aalst et al., 2018). The goal is

-

manner accessing the information systems through the presentation layer which means that

their programming logic remains untouched (van der Aalst et al., 2018; Willcocks &

Lacity, 201

technology infrastructure rather than inside it (Institute for Robotic Process Automation,

2015). form [if, then, else] statements on

structured data, typically using a combination of user interface interactions, or by

connecting to APIs to drive client servers, mainframes or HTML code. An RPA tool

operates by mapping a process in the RPA tool language for the software robot to follow,

Because the software robots, configured with the RPA tools, can communicate across IT

systems via front-end instead of back-end like traditional software, it becomes possible for

RPA to be integrated with basically any software used by a human, regardless of whether it

is open to a third party integration (Asatiani & Penttinen, 2016). However, there are some

characteristics that are required from the processes for RPA implementation to be
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successful. For example, they usually need to be clearly defined, include rules-based

routine tasks without subjective human judgement required, have structured data and

deterministic outcomes (Aguirre & Rodriguez, 2017; Asatiani & Penttinen, 2016). The

most suitable processes for RPA usually also have high transaction volumes (Lacity et al.,

2015). However, the volume does not always need to be high if the process is otherwise

business critical (Slaby, 2012). The tasks in automatable processes often include tipping,

coping, pasting, extracting, merging, and moving data from one system to another (Aguirre

& Rodriguez, 2017). Some examples of processes where RPA has been utilized are

validating the sale of insurance premiums, generating utility bills, paying health care

insurance claims, keeping employee records up to date (Lacity & Willcocks, 2017).

Some typical pitfalls in RPA implementations include for example not planning the RPA

development project well. This might lead to the automations working too slow, being too

expensive, and/or present too much complexity. In some cases, the robots have not been

taken to use at all. (Rutaganda et al., 2017) An implementation might fail also because of

poor managing of design and change. Rush to get robots deployed, companies sometimes

overlook communication exchanges between the bots, which can break a business process.

(Boulton, 2017)

2.2.1 RPA vs BPM

RPA can sometimes be confused with Business Process Management (BPM). There are,

however, distinct differences between the two. RPA is for example easier to configure

compared to BPM solutions as developers do not need any programming skills to set it up.

hat does not interfere with the

underlying computer systems and it can be applied more outside the IT department control

than BPM tools (Lacity et al., 2015). Lightweight IT is typically considered cheap and easy

to use. It often characterizes as a mobile technology that can generally be deployed without

IT specialists (Bygstad, 2017). BPM solutions, in turn, suit better for heavyweight IT

projects driven by IT professionals that include software engineering and adding code to a

system (Bygstad, 2017; Willcocks et al., 2017). RPA also does not create a new

application or a platform and does not store any transactional data which means a data

model or database is not required unlike with BPM systems (Willcocks & Lacity, 2016).

All in all, RPA can be viewed as a complementary option to BPM rather than a replacing

one as each suit for different types of processes. BPM solutions should be used with IT-
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owned processes that require IT expertise on high-valued investments such as Enterprise

Resource Planning (ERP) or Customer Relationship Management (CRM) systems while

automated with the help of operations personnel using their business and process expertise

(Lacity et al., 2015). Many of these swivel chair processes are back office processes such

as accounts payable, accounts receivable, billing, travel and expenses, fixed assets, and

human resource administration (Aguirre & Rodriguez, 2017).

2.2.2 Benefits of RPA

In the past few years, RPA solutions have seen a steep rise in demand which has naturally

also resulted in increasing amount RPA vendors. The promise of RPA to quickly cut costs,

link legacy applications together and achieve fast return on investment is appealing to

many organizations (van der Aalst et al., 2018). In opposition to for example the long

implementations and fuzzy business cases usually attached to business process

management (Le Clair, 2017), achieving quick wins with little investment makes RPA an

increasingly popular development option (van der Aalst et al., 2018). RPA is also very

flexible and versatile compared to traditional software development. While major coding

knowledge is usually required to make any major modifications to the operating logic of

traditional software, the instructions for software robots can be modified through fairly

simple logical statements, screen capture of the process executed by a human, or graphical

process charts (Asatiani & Penttinen, 2016).

From employee viewpoint the core benefit of RPA is that it reduces the burden of doing

repetitive and simple tasks day in, day out (Aguirre & Rodriguez, 2017). Hence,

employees can practice more creativity, emotional intelligence and problem solving, and

shift their focus from the dull tasks to more interesting, strategic, and productive projects

(Willcocks et al., 2017; Asatiani & Penttinen, 2016). Many of those routine, non-core tasks

have traditionally been good candidates for offshore outsourcing, especially the ones with

a high full-time equivalent (FTE) value. Nowadays, RPA provides an alternative to gain

the same benefits such as reducing staff costs and keeping focus on core operations. Not

only can software robots work 24 hours a day for free pushing the cost savings even

further, the traditional outsourcing challenges such as hidden cost of management,

communication problems and complicated service level agreements can also be avoided.

Tasks like invoice processing and data entry are now automated in increasing numbers
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rather than outsourced to low-cost destinations, thus avoiding the possible backlash of

from sending jobs abroad. In fact, RPA itself has a potential to create jobs as the

automation projects often require management of robots, consulting, and analytics

(Asatiani & Penttinen, 2016).

As previously mentioned, software robots can operate fully through the graphical user

interface (GUI) leaving IT systems unaltered, which creates flexibility and speed to the

implementation. This is a notable advantage compared to automation via back-end

integration that usually calls for frequent and substantial redesigning of the existing

system, making it slower. However, RPA is considered as more of a temporary solution

fills the gap between manual processes based on legacy IT systems and redesigned

processes running on fully automated systems

cost reduction that is mainly based on productivity improvement, RPA implementations

produce instant process-related benefits such as increasing process speed, error reduction

(Aguirre & Rodriguez, 2017). They also help exposing the potential inefficient parts of the

processes which can then be streamlined (Institute for Robotic Process Automation, 2015).

Some indirect benefits have also been linked to using RPA like for example increased

customer satisfaction, better regulatory compliance, increased consistency, getting

products and services faster to market and increased employee skills and recognition

(Willcocks et al., 2018).
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3 Research method

The opportunity for a research was noticed by one the researchers during the first stages of

the automation project in the target organization. The details of the research were then

discussed with managers in the organization and the relevance of the study was agreed

upon. The automation project started in June 2019 and carried on until May 2020 when the

automation solution was deemed ready by the RPA team and scheduled to run on its own

3.1 Background for choosing the research method

The project in this study was aimed at creating an RPA solution that can be used as an

example for future RPA implementations in the organization on how to apply modularity

in RPA. The target organization had only automated one business process at the time of

launching this project and lacked experience on using modularity in RPA components.

Each developer in the case organization had received a quick overview of the best

practices for RPA development in short RPA courses, where some of the modularity

principles are addressed, but in-depth explanations and understanding of the effects of

those best practices were lacking. There was an agreed need for practical examples to

support the knowledge gained through the initial RPA training and guide the automation

endeavors to the right direction from the beginning.

The Finnish Tax Administration is planning to get full potential out of RPA during the next

years. They have currently over 5000 employees and an endless amount of repetitive and

rules-based processes that can be transferred from humans to robots to enhance process

speed, reduce costs and release employees to more meaningful tasks. The aim is to build

their own in-house RPA capability to answer this need for automation. This aim is to be

supported by creating automations of quality in the beginning of the RPA journey and

learn the best ways to develop RPA solutions in practice with the help of external RPA

consultants. These first automations can then be leveraged by using them as model

examples for future RPA implementations and by utilizing their modular parts in other

automations. This is seen as a vital part of practical learning and getting the full-scale

benefits out of RPA in the early stages by the organization.
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This topic is tightly connected to the Information Systems (IS) field and the organizational

context has a significant role in shaping the automation solution being produced.

Implementing RPA is also a highly iterative process, combining observations, information,

and knowledge from the several participants. It was also logical to divide the project into

two parts, first mapping the tasks to be automated, and then applying this detailed

knowledge about the tasks in creating an automation solution. This led to choosing the

ADR methodology for this study which combines the principles from Design Research

(DR) and Action Research (AR) (Sein et al., 2011).

method for generating prescriptive design knowledge through building and evaluating

offers a chance to solve a real-life problem and emphasizes the value of organizational

relevance over technological rigor (Rogerson & Scott, 2014). The nature of ADR suits well

with the situation in the case organization as an RPA implementation is a very design-

centered activity and creating an RPA related artifact supports the goal of creating in-house

RPA knowledge in the organization. ADR method also supports the way that the

automation solution, the final artifact, was produced, as a contribution between several

different experts in the target organization and external RPA consultants.

3.2 Action Design Research

The research method in this study, ADR, is relatively new in the IS area.

the research process as containing the inseparable and inherently interwoven activities of

(Sein et al., 2011). The method can be divided into two main challenges. The first

addressing a problem situation encountered in a specific organizational

setting by intervening and evaluating Sein et al., 2011). In this case it was the need to

create an automation solution of which parts can be utilized in future projects as much as

possible and that can be used as an example of how modularity is applied to RPA

constructing and evaluating an IT artifact that

addresses the class of problems typified by the encountered situation Sein et al., 2011).

The final artifact that in this case is the automation solution, is produced by examining,

evaluating, and building design knowledge in an organizational context. It reflects both the

theoretical precursors and the aim of the researchers, and the influence of users and

ongoing use in the organizational context (Sein et al., 2011). In addition, four design
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principles were formed as a result of the project, adhering the ADR schema. These

principles were formed from notations made while reviewing and improving the artefact.

The ADR is conducted in four different stages that have seven principles divided between

them. These are presented in Figure 2 below. The first stage is problem formulation that

presents the research problem in an organizational context. The second stage includes

building, intervention, and evaluation, where the artefact goes through a number of

intervention cycles. These cycles involve all the teams and participants of the ADR study

as the artefact is constructed, reviewed, and improved towards its final version. The third

stage presents points of reflection and learning from the project. Finally, the fourth stage,

formalization of learning, presents generalized outcomes of the study in the form of design

principles, practical utility, and theoretical contributions (Sein et al., 2011). The empirical

research of this case study bases on these stages and principles and is documented to

follow this structure with the exception that the formalization of learning is placed in the

discussion chapter.

Figure 2. The ADR method: Stages and principles (Sein et al., 2011).
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3.3 Trustworthiness of the study

To ensure the trustworthiness of the study, all the stages and principles of the ADR were

closely pursued. The clear guidance and steps in ADR make it easy to follow also from the

empirical viewpoint (Rogerson & Scott, 2014). The ADR method supported the solving of

a real-life problem that had emerged in an organizational setting. The organization found

the research valuable considering their future projects and arranged all the necessary

material and access rights for the researchers enabling a thorough study on the matter. In

addition to the full time of the researchers, the project utilized the time and effort of several

system-, process- and RPA experts that formed the practitioner and end-user groups. The

result, stemming from generalized learnings that were enabled by several participants,

project cycles and iteration rounds, was quickly taken into use as the automation solution

was scheduled to operate on its own partially already during the final testing phase. Hence,

the trustworthiness of the study was built up by wide participation of different experts with

dense iteration periods.
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4 Empirical study

4.1 Collection of data

There are three different participating groups in ADR that collaborate to the result. They

are researchers, practitioners, and end-users (Sein et al., 2011). This research project

included two researchers who work as external RPA consultants for the organization. The

researchers were also responsible for practical implementation of the automation solution.

Four -

user group consisted of the SMEs, different system experts and other type of potential end

users of the process automations being designed. Empirical data in this study was collected

throughout the project in meetings with workers from the case organization and a third-

party organization who gave input on the artifact under production based on their areas of

expertise. The meetings were held mainly in Skype with a couple of exceptions when a

face-to-face meeting was possible.

The first phase of the study consisted of gathering data on the tasks being automated. First,

the SMEs, in other words, manual process experts for the employee data management were

identified and contacted. The SMEs at this point included one employee from the target

organization and one employee from a third-party organization. The data was gathered in

several workshops and meetings between the researchers, two members from the

 and the SMEs. The SME informants chosen in this phase were

one process owner  and one group manager in

the third-  During the workshops there was also a need

to arrange meetings with system experts who had more insights on the logic of the

applications used in the process to be automated. The system expert informants were

membe

Having gathered data from the first workshops and meetings, follow-up meetings where

held between the researchers, SMEs, and an external RPA consultant where we first

decided to divide the structure of employee data management into seven separate processes

as there were seven different modifications that could be separately ordered for any

employee  accounts. Each of these modifications had their own form to be ordered

with which created a service request ticket to one of the applications in use. Because all the
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processes were triggered by the service request tickets in one application, we then decided

to add another process into the solution that only screened tickets in that one application,

made certain validations to them, and issued them to the other seven processes based on

which kind of request was ordered. The process also included screening a comment section

of tickets, which was a part of almost all the request types. In addition, the starting and

terminating the applications used in the solution was decided to perform via a standardized

application controlling processes. During this stage, eight process definition documents

(PDDs) were also created to describe the steps included in each process in detail.

After the processes had been defined and documented, and the initial development of the

automation solution had begun, we arranged meetings between the researchers, the SMEs

and system experts. The agenda in these follow-up meetings was to present and review the

initial design of the automation solution. The meetings produced valuable improvement

ideas as all the participants viewed the project as an important benchmark for the future

RPA implementations in the organization and saw its potential in significantly speeding up

the processes of employee data management.

With the feedback gathered, we started to improve the solution. It was noticed that the

RPA solution would allow some parts of the processes to be handled differently than in the

manual version of the processes handled by human. In other words, there were shortcuts to

be taken as a result of transferring the execution of the processes from humans to robots.

The biggest shortcuts involved three old user interfaces, or tools, in three of the processes

built several years before to help the employees make the requested changes for an

employee account located in an active directory (AD). The data in AD could be edited by

sending Windows Powershell commands or by using the AD interface, both of which took

a significant amount of time for an employee to execute. The tools provided an easier

option. With the RPA solution, these three supportive tools could now be bypassed as there

was already a component integrated in the RPA software that could execute Powershell

commands even without opening the Powershell  interface. In other words, all the

processes could use the same Powershell component to manage any modifications or

queries in AD by just adding the commands to the RPA solution.

We also had meetings with the product owner and

who had been developing the first automation solution of the organization. In those
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meetings we searched for touchpoints between the first automated process and the eight

that were now in development. These touchpoints could include applications used in both

solutions of otherwise similar parts of automation logic that could be re-used as such or

with little modification both in the solution in question and various other processes

potentially developed in the future. An improvement measure at this stage was to modify

and split some previously created RPA components into smaller components to enhance

their reusability to several different processes.

After the improvements were made, the testing of the solution was accepted by the

business unit in the organization to be moved from test environment to production

environment meaning that the robot would now start to handle real cases instead of mock

cases. At this stage, several testing sessions were held. The participants in these sessions

were one researcher, members , two SMEs from the

third-party organization and one systems specialist in the case organization. The systems

specialist had comprehensive knowledge of both the applications and the business

processes being automated and coordinated the final testing phase. The final improvement

ideas that arose in this stage included creating a master process, another hierarchical

process layer, to control all the eight processes. The master process was designed to send

customized orders for the other processes when to start executing and when to stop based

on for example the current time and the if there were any cases to handle. This helped

manage the running schedules of the processes in the solution. Another improvement at

this point was that part the process screening the tickets and comments in one of the

applications was modified and made into a separate standard component to the component

library to be able to serve other potential future processes that might require screening of

any kind of tickets. This was seen as an important step as the ticket system had a central

 The last major change in the solution was adding one

more process to it that created a daily report of the statuses of all the ticket cases that had

been handled by the robots.

Around 50 meetings were held during the whole project with a variety of stakeholders,

assessing several different aspects. Comprehensive notes were gathered in all the meetings.

A summary of the data collection process is presented in Table 1 below. It includes the

cycles in the second stage of ADR study that is called Building, Intervention and

Evaluation (BIE) (Sein et al., 2011), and the key events with the data collected in them.
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Table 1: Summary of data collection process.

Time period and intervention
cycle (if applicable)

Event Data gathered

June 2019  July 2019 Meetings with SMEs and
system experts

Mapping of the tasks in
employee data management.

August 2019 (first BIE cycle) Meetings with an RPA
expert

The decision to divide the tasks
into eight automated processes
and create standard
components for controlling
applications.

September 2019  January 2020
(second BIE cycle)

Meetings with the head of
the RPA team, system
experts and SMEs

The decision to bypass three
old tools by replacing them
with a single component
executing different Powershell
commands in the automation
solutions. Another decision to
divide some previously created
RPA components into smaller
components to make them
more reusable.

February 2020  April 2020 (third
BIE cycle)

Meetings with SMEs and
members of the

The decision to create a master
process to control all the
processes in the solution and
enhance the reusability of the
ticket system section. Another
decision to add a reporting
process in the solution.

May 2020 Scheduling of the RPA
solution to fully run on its
own

Acceptance of the artifact.

4.2 Problem formulation

Evoking the idea for a research was the situation in the target organization concerning

RPA. The organization was at the beginning of their RPA journey and needed help to get

things moving to the right direction. Like many other large organizations, they had

acknowledged a great potential to reduce costs, minimize errors and speed up processes

with RPA as the nature of work in such organization included endless amount of repetitive

and rules-based tasks that could be automated. The plan was to start with a decent pace by

using both external RPA experts and beginner level in-house RPA developers in the first

projects and then gradually develop their own RPA capability towards running RPA as

much in-house as possible. In other words, they not only wanted to implement RPA as

efficiently as possible from the start but also invested heavily in training their own

employees to form an RPA expert team. Also, to maintain decent funding for the RPA
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department, the first implementations needed to show fast and calculable benefits as is the

promise of RPA. This further amplified the pressure maximizing the quality of the first

implementations and building a solid fundament for future automations. It was also clear

that the first automated processes needed to be the most potential ones in terms of showing

the quick savings and other benefits.

The RPA team in the organization was divided into two separate units. One unit searched

for candidate processes for automation by gathering ideas from the employees, evaluating

the potential benefits and obstacles of applying RPA to them. This unit was also

responsible for mapping all the steps of a process that was deemed suitable for RPA and

creating a PDD document that included every detail needed in developing the RPA

solution for the process. The other unit focused on developing the RPA solutions for the

processes based on the PDD documents.

The first unit had screened a process managing the user accounts of the employees in the

organization that had a great automation potential and seemed suitable with the situation. It

was decided that the researchers take responsibility of mapping the steps of the process

with the help of SMEs and create the PDD. After that the researchers would also be

responsible for developing the RPA solution. At this point, the researchers discovered that

the process of managing the employee  accounts was relatively large and would

possibly be divided into several processes. Also, the process interfered with two of the

most central applications used in the organization and AD that contained all employee

data. This combined with the fact that the organization was planning on implementing

countless other processes in the future that would most likely be using the same

applications and systems introduced the challenge of creating automation components that

could not only be scaled and reused within the RPA solution in question but also in other

several automations just by managing the inputs and outputs of the components.

The project was seen as an important benchmark on how the principles of modularity

worked with RPA in different scenarios. This required studying the factors affecting the

degree of modularity in different situations. In other words, the effects of modularity

would be assessed and adapted to the research setting in this context. Thus, finding the way

to increase modularity in the components here would not only enhance the effectiveness of
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this implementation but also future implementations in the organization through providing

reusable components and educational value.

4.3 Building, intervention, and evaluation

Once the problem was formulated, the ADR team proceeded towards the first version of

the automation solution and engaged in the BIE cycles of ADR study presented by Sein et

al. (2011). The purpose in this phase is to build, review, and improve the solution in

intervention cycles involving all the teams of the ADR study. This research ran through

three intervention cycles as shown in Figure 3 below. The first cycle aimed at breaking the

structure of employee data management into separate automation processes and creating

detailed PDD documents for each process describing the tasks included in them in great

detail. The first cycle also included sketching the initial design for the solution. The goal in

the second cycle was to design and develop the automation solution

testing environment based on the PDD document data and improvement ideas in the first

cycle. In the third cycle the RPA solution was tested and

production environment by handling real cases and final modifications were made.

Figure 3. Intervention cycles for the artefact for The Finnish Tax Administration.

The goal was to produce an artifact that in practice would execute all the requests made for

user accounts of the employees in the case organization. The artifact had another, perhaps

more important requirement as well. Because the organization was in the beginning of the
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RPA journey and aimed for a steady start with RPA utilization, the artifact needed to be

versatile and work as a vanguard RPA solution in the organization in terms of how

modularity was applied in RPA components and what benefits it had.

The RPA technology used in the project was based -

tasks can be stored and reused in an automation component library. An RPA component

library allows each task only to be defined once and then being able to be pulled from the

library and applied to as many different automations as needed. The value of this

component reusability can be exponential. The more processes are automated, the more

components are built in the library. Thus, the more re-use conducted, the more economics

can be achieved in assembling and delivering those components into new processes. The

components in the bottom layer of the RPA component hierarchy in the RPA software

used in the project are called objects .

perform a simple function. The processes, that can also be called RPA components,

typically consist of several other RPA components. These components can be objects or

other processes as subprocesses. The subprocesses, in turn, may consist of several other

components. Thus, an RPA solution forms a hierarchical component structure where

different commands or conditions can be forwarded downwards through inputs of

components. Objects usually just include a simple function such as writing something to a

text field or clicking a button in a page. Every RPA component, whether located in process

layer or object layer in a solution, has a certain mission. The components interact with each

other by the rules configured in each process and the specifications of their inputs and

outputs. The processes are executed by runtime resources, robots. When a process is run,

the robot executes one process step, often an object or subprocess, at a time until all the

steps in the chosen process path have been gone through. If there is a need to speed up the

case handling in a process, more robots can be set to execute it simultaneously. However,

the number of robots is limited by the license purchased. There might be several process

layers in a solution, depending on the business process being automated, but usually only

one object layer. An illustration of the process structure created in this project will be

presented in the next chapters.

4.3.1 Mapping the manual process execution

Before starting the designing of the automation, the employee data management process

had to be mapped from a manual process execution perspective. This meant going through
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the whole process with the designated SMEs. The process starts with screening service

request tickets related to  accounts in the ticket application called

One ticket here equals one case and the cases are handled one at a time.

After picking the first ticket from the ticket system, the following measures depend on

what kind of request has been made with the ticket. The requests include adding a new user

account, removing a user account, activating a user account, passivating a user account,

changing the name of the user account, changing the expiry date of a user account, and

changing the organizational department of a user account. All the measures, however,

require editing information in AD that can be done with a separate tool or directly in AD

interface depending on the request type. Information in another application, going by the

 that also stores some employee information is edited in all of the cases as

well. After that, the manual process executor goes back to the Piste application to create

notices to different parties in and outside the organization about the modifications that

have been performed. Some of the request types have similar policies concerning the

notices that are made but there are variations. The notices are followed by marking the

ticket as solved or partially solved in Piste and moving on to handle the next ticket. For a

partially solved ticket, it is required to make a check later whether a third-party

organization has sent a comment to the ticket in Piste, confirming that measurements on

the case have been completed on their side. Only after that can the case be marked fully

completed. The abstract of the initial employee data management process mapping is seen

in Figure 4 below.

Figure 4. The employee data management process from manual viewpoint.

Towards the end of the process mapping workshops, an additional meeting was held

between the researchers and the SMEs to look at the process from automation viewpoint.

The large size and complexity of the mapped process produced challenges from both

development and control viewpoint. For example, the management of the different service

level agreements (SLAs) that the request types had was clumsy with one automation
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process. Some of request types also had a significantly larger number of cases per week

than the others and their automation was thus potentially more valuable. The result of the

meeting was that instead of one process it would be beneficial to divide the employee data

management into seven automated processes based on the seven different requests that

could be made for the user accounts. This division made sense because the requests were

always made in separate tickets and handled independently. Having all the request types

and their measurements handled in one automated process would make it very complex as

the process would have a massive number of different paths and steps included in it.

The division enhanced the controlling of the automation as the execution times and the

number of robots executing different requests could now be independently set for each

one. Thus, the different SLAs that the request types had and the unevenness in the numbers

of different requests at different times could be managed better. If there were for example

excessive amounts of certain kinds of tickets, the process handling those kinds of tickets

could be assigned more robots or set longer running times to balance the situation.

Furthermore, if there were enough licenses, the processes could now be simultaneously run

to handle the user account requests faster as a whole. Now it was also more convenient to

develop the solution because the developers could each start designing their chosen

independent part, a process, in the solution concurrently, instead of trying to coordinate the

development of one and same process. Another benefit was that the solution could now be

gradually put into action, generating the RPA benefits faster, as each process could be

independently finished and scheduled to run, the most valuable ones first. The potential

bugs and other general attributes concerning the automation of the applications could also

be exposed when testing the first automated processes which could then be taken into

account in the development of the other processes in the solution, thus smoothening the

development project. One more benefit of this division was that the effects of potential

errors emerging in the execution of the automation were now isolated into one of the seven

parts. A process in error state could be fixed while other six still ran normally. With the

decisions made at this point, the initial automation flow of the RPA solution was designed

(see Figure 5).
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Figure 5. The employee data management process for automation (RPA solution v. 1).

4.3.2 The first BIE cycle

After breaking the process apart into seven processes another meeting was held between

the researchers and an RPA expert to review the initial design of the automation and

produce potential ideas on how the solution could be made even more controllable and/or

resilient. Basing on the ideas in that meeting it was decided that the solution would be

divided further into total of eight processes. Because all the inputs for executing the user

account modifications came from the tickets in Piste, we saw it beneficial to dedicate one

process solely for the ticket handling. The purpose of this process was to screen the tickets

related to employee data management, make quick request-related validations, categorize

them, and distribute them to the other processes based on the request types. Another

purpose for it was to check the comments from the third-party organization mentioned

before and mark those cases fully completed. This additional process had multiple benefits.

Firstly, unnecessary identical copies of the component structure handling the ticket

screening and comment checking parts in the seven processes were removed as the object

components interacting in those parts were now centralized into one process component

that would be executed in the beginning of each day. This made the automation of that part

faster to edit as only one process needed accessing instead of seven. Secondly, the

controlling of the solution was further enhanced as the ticket screening and comment

checking could now be scheduled to run independently and executed by separate robots, as

many, as the situation needed. Also, if the ticket screening process would not find certain

types of requests in its execution, the processes handling those request types would not

have to be needlessly started that day. Gathering all the tickets for the processes

simultaneously instead of each process opening the ticket system separately and searching

for certain tickets also minimized the  navigation actions in the ticket application,

speeding up the process and reducing the risk of potential system related errors. The

filtering options in the ticket system also allowed showing all commented tickets listed in

one view. This speeded up the comment screening part of the process and reduced needless
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navigation in Piste even more because the robot did not have to search for each previously

handled ticket separately in Piste to check if it has been commented. Instead, it could just

directly view all the tickets that had been commented and mark them fully solved.

Like the ticket and comment screening process, both the launching and terminating of the

two applications used in the solution were also separated into their own processes. The

difference to the ticket process was that the application controlling processes were placed

lower in hierarchy in the solution as they were placed as subprocesses in the other

processes. They could be given orders as inputs by the other processes on whether to start,

restart, or terminate, depending on the situation. Another difference was that the

application controlling processes could also serve any other processes outside the current

solution that were using the applications in question, while the ticket screening process

was configured in a more customized manner for the use of the current solution. The

applications were central to the organization so having standard components for

controlling them made perfect sense. Instead of wasting time figuring out and battling with

the extra functionalities related to starting or terminating the applications, the developers

could now just pick the ready-made application control process bricks from the repository

and place them in their solutions. The only thing needed to do was setting the control order

as an input in each scenario where the component was used. Stemming from these

decisions, the second version of the RPA solution was then designed. It is shown in Figure

6 below.

Figure 6. The employee data management from automation viewpoint (Solution v. 2).
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4.3.3 The second BIE cycle

The second version of the solution was gone through in several meetings with the head of

the RPA team, system experts and SMEs. There were two significant improvements ideas

presented at this stage. The first one was related to old tools included in three of the

processes. In three of the processes a tool was used to perform the requested changes in

AD. One tool was for adding a new user, another was for removing a user, and the third

was for editing names in the user account. These tools, launching Windows Powershell

commands, were initially made to help the employees make the changes in AD and speed

up their work. In practice, the information from the service request ticket was filled to the

fields of a supportive tool and by pressing an ok button the tool executed Powershell

command to make the requested changes in AD. The RPA software had shown some

difficulties attaching to and interfering with the elements of the tools which brought up

concerns about the increased risk for system related errors. At the same time, the

implementation team was battling with the high number of other AD-related tasks in the

processes that required navigating in different parts of AD user interface. An idea was

proposed that both the tools and AD navigation could be bypassed because robots would

not have any problem directly opening the Powershell interface and executing the

corresponding Powershell commands with just varying the parameters for each situation.

Furthermore, an RPA object component was discovered that could execute Powershell

commands directly in the RPA software where it was integrated. As, in fact, all the seven

processes handling the requests were making modifications and/or queries in the

Powershell-commanded AD, they could all utilize that same component by just feeding it

different commands as inputs. This improvement speeded up the execution and

development times of both the processes in the current solution and potential future

solutions by saving a lot of unnecessary clicking and field-filling from the robots.

Automating the editing of AD information was now quicker in any scenario because any

detail in AD was modifiable through one component, instead of configuring the robot to

navigate in different parts of AD or in the supportive tools for each individual

modification. The Powershell component, or object, also mitigated the complexity in the

automation processes by replacing the instructions for robots concerning clicking buttons

and filling fields with direct commands enabled by coding that was hidden inside the

component.
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The second discovery in the meetings at this stage was that there were some objects used

in the processes that included almost identical functionalities. An example of this was two

object components configured to perform functions in the same page of the Piste

application when editing the status of a ticket. The first one was configured to empty one

field and fill three fields with values given as inputs to the component while the second

one was otherwise identical but filled only two of those fields. Both the components also

had a function of pressing an ok button after all the other functions were performed. The

components were used in different scenarios among the first automated process and the

eight under development. The discovery was made because in one of the processes under

development a need emerged to perform a different combination of actions than what the

most likely be other occasions in the future as well where different sets of functions needed

to be performed in the page. Therefore, the automation solution for the page needed to be

more versatile, enabling all the different combinations of functions to be executed.

Because the page was designed to allow any number of fields to be filled with any values

independent of one another, the functions in it were designed to be very weakly connected.

The configurations in two object components in the RPA software, however, linked the

functions strongly together, which created an imbalance. A decision was made to break

apart the components and create one component per one functionality in the page. This

transformed the initial components, whose usage was tied to certain business process

scenarios, to several components that could be used independently in any process and any

scenario that interfered with that page. The components could also now be mixed and

matched freely, whatever was the number of fields needed to be filled in that page.

Another modification was to transform the component that emptied a field into a similar

component with the others, meaning that instead of always emptying the field it would be

given the value to fill to the field as an input. This increased the number of variations that

could be made with the automation components performing the functions and matched that

number with the number of functional  In other

words, the relations between the functions were now at the same level from the

 This modification

also erased the needless overlapping of functionalities in the initial two components. With

these improvements in mind, version 3 of the solution was then developed (see Figure 6).
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Figure 7. The employee data management from automation viewpoint (Solution v. 3).

4.3.4 The third BIE cycle

After creating the third version, the RPA solution was moved for further validation in the

 while

testing under surveillance. This production validation period took three months and

generated valuable improvements. The involved parties were the researchers, the SMEs,

 consulting RPA expert.

After this stage, the solution was considered ready and scheduled to run on its own in the

production environment.

There were three major modifications performed to the solution based on the ideas that

were put forward in the meetings and testing sessions during the final validation period.

The first idea was to isolate a section of the ticket and comment screening process into a

process of its own to be placed in the component library, and thus enhance its reusability

and scalability . This meant creating a

standard process component that could be used in any other solution screening tickets as

well. In practice, the ticket screening in this solution began with opening the Piste

application and navigating to the ticket list. This was followed by opening the filter

property next to the list, setting values to the chosen filters, and clicking the search button

which updates the list to match the chosen details. The robot would then read the whole list

of ticket numbers into its memory and start accessing the tickets one by one filling a ticket

number from its memory to a general ticket search field in the application.
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The sequences of actions starting from opening the ticket list and ending with reading the

ticket numbers into the memory of the robot was considered a very common phase in the

beginning of business processes in the organization. In other words, several automations in

the future would most likely be configured to go through that same procedure. Thus, we

decided to isolate the object components performing these actions into an additional

process with standard input and output specifications and publish it to the RPA component

repository. This process could then be spotted and retrieved from the repository to be used

in other solutions that needed to filter certain tickets from the system. Before publishing

the new process, a modification was needed to enhance its functionality and suitability for

different purposes. Instead of only including the filters needed in the employee data

management solution, all the rest of the filtering options provided by the  filter tab

were added into the functionality features of the process. In other words, more objects

were created and added to the process, each object handling one filter. After adding the

objects, the new process had the same standard amount of filtering options that could be

fed as inputs, as the filter tab in the ticket application had, and it would return the list of

ticket numbers as outputs in a solution for further processing. The automation options were

once again matched with the options pr  Having a

separate component for the ticket system had similar benefits to the standard application

control components. It streamlined the usage of the ticket system section to processes

outside of the current solution, speeding up the future RPA development projects that

would include ticket system actions. It also simplified the structure of the main process

layer in the current solution as a new component brick in the form of a subprocess was

introduced to replace a set of object component bricks, hiding a significant amount of

information in, formed by the newly replaced ticket system objects and their relations.

The second major improvement in the solution added a new level of process hierarchy into

it. It was noticed editing the running schedules and regulations for all the processes in the

solution was a clumsy and time-consuming activity. There were relatively large variations

in case amounts, run schedule requirements, and SLAs among the processes. Furthermore,

the situation was changing constantly. The frequent need for modifications to the execution

settings of each process called for enhanced convenience in managing the settings. To

manage the solution faster as a whole, a master process was created. The master process

was an additional process layer on top of the other processes in the solution. All the

processes could now be given instructions on for example when to start running and when
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to end via inputs to the master process. The master process could simply be executed itself,

passing on the customized instructions for each process under it. This saved a lot of time

when editing the schedules or other running conditions for the eight processes, because all

these details could now be set simultaneously through one process instead of eight. It also

helped manage the complexity of the solution in the sense that the whole structure of the

solution could now be viewed and operated in one process page, each process hiding the

information related to its execution.

The final major modification to the solution was adding process to the main process layer

that created a daily Excel report including details of the handling of the different cases

from an ongoing day. These details included for example the number of completed cases,

the number of incomplete cases resulted from system errors, and the number of cases

transferred to manual handling because of insufficient information in the service request

ticket. The reporting was first planned to be the final part of each seven processes

separately but creating a mutual report after the execution of all the processes in a day

saved time from the robots as only one Excel file needed to be created and filled once a

day. The adding of the reporting process in the structure was followed by a conclusion that

the RPA implementation for the employee data management was completed and the

artefact was accepted. The fourth and thus far final version of the solution can be seen in

Figure 8 below.
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Figure 8. The employee data management from automation viewpoint (Solution v. 4).

4.4 Reflection and Learning

Having the solution performing as intended in the  the

implementation could be called successful. However, throughout project there were

situations and outcomes to learn from. The reflections on those situations in this chapter

are a result of discussions had and notes taken during the project.

The first thing to learn from was the structure of the project in terms of how the processes

were developed and put in action in the production environment. Dividing the initial

employee data management process into seven separate processes based on the request

types in the beginning enabled having part of the solution generating the savings and other

benefits in a relatively quick schedule. Compared to battling with complexities of one

massive process for a long period of time, the seven processes could now be developed,

validated, and put into work gradually. For example, the process handling user account

removals could have been finished and scheduled to run on its own while the still

designing the rest of the processes in the testing environment. In other words, decomposing

the employee data management structure from automation viewpoint enabled the

implementation project to be similarly decomposed. In fact, getting the full benefits out of

the division to seven processes would have required the schedule of project to be similarly
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decomposed to seven independent parts. This advantage was not fully utilized however,

because even though  the processes were somewhat gradually set to work in the production

environment, they were almost all developed and put through acceptance tests in the

testing environment before the first one was even moved into production environment

validation.

The second learning point comes from centralizing some of the ticket application

components by creating the additional ticket application process to screen the tickets,

categorize them, and distribute them to the other processes for further handling. This

process also had another part that checked the comments from a third-party organization

and marked those cases fully completed. The ticket system section was later molded into

another separate RPA process with standardized inputs and outputs because it was noted

that it plays a central role in several business processes that the organization would be

potentially automating later. The new process was configured to be combined with any

processes needing to screen tickets. Similarly, the launch and termination of the two

applications were separated into their own processes having configurations that enabled

them to be combined with any processes that used those applications. All these processes

were placed in the component storage to be spotted and retrieved. The modification and

publishing of the ticket system process was conducted at a later stage in the project and

there were already a few other automation projects underway at that point. Those projects

might have benefited from such component. Thus, it was concluded that the search and

assessment of common tasks, would be most valuable when done already in the business

process mapping stage with the SMEs. The processes automating those parts should also

be created first in the development stage and published into the repository as fast as

possible to generate the scaling benefits of component development. This would, of course,

be preceded by checking that there was not already a component for the same purpose.

The third aspect of learning is closely related to the second one. It refers to realizing the

poss

battling with the poor co-operation between the RPA software and tools for a while, the

team discovered that using the tools could easily be bypassed as they were only supportive

commands that edited information in AD. There were also some parts in the processes that

needed to retrieve info from AD that had not yet been developed in the solution. At this
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point, an RPA component that could execute any Powershell commands given as inputs

was discovered and brought into the component storage. All AD related queries and

modifications in any process could now be performed with one component, saving a lot of

extra work from developers.

The fourth learning came from discovering the two almost identical components that

included a set of functionalities performed in a single page of the ticket application. Since

from the application viewpoint the page was designed so that any number of fields could

be filled and then saved, it was not efficient to have multiple object components with

different sets of functions performed in the page, tightly coupled with different scenarios.

Thus, each of the different functions that could be performed in the page was automated

with their own object component that was named after the function. Now the developers

picking the matching components from the storage, instead of examining the sequence of

multiple functions in a variety of components made for different scenarios in the page.

Thus, assessing the hidden information in the components could now be skipped.

The final major learning came with the clumsiness of controlling the running times,

running conditions and recovery logic for the processes in the solution. Having them all

separately accessed and regulated took a relatively long time. Towards the end of the

implementation, a control process was created to solve this problem. This meant

practically creating a new process layer on top of all the eight processes and their

subprocesses. All the controlling could now be conducted through this master process that

would pass on the running instructions for the subprocesses given as inputs. In addition to

saving time, the new hierarchy level provided by the master process also helped the robot

administrators to visualize the solution and its logic as a whole better, and thus manage the

complexity of it.
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5 Discussion

5.1 Formalization of Learning

5.1.1 Design principles

This study formed four design principles that steer RPA solutions towards higher

modularity. The first one is about decomposing the whole solution into several processes,

the second one is related to decomposing the components into smaller components, the

third one covers creating separate components for the common parts of the processes, and

the fourth principle handles adding a new process layer to an automation solution.

Design principle 1: Decompose a process for automation into as many processes as there

are different types of independently executable cases originating from its source(s) of

information

The first design principle is related to detecting the different independently executable

scenarios that the entity being automated includes. The scenarios here mean different types

of cases, each having their own sequence of steps that significantly differentiates from the

ones in other types of cases. If these cases can be independently handled, and thus the

automations for them can independently produce benefits, the modularity level of the

solution should be increased by decomposing the solution into as many automated

processes as there are case types. This allows a faster reaping of the benefits from the

automation as the solution can be gradually deployed. The automation for handling the

most valuable case types can be created first and put into action, generating cost savings

and other benefits already before the other parts are developed. Majority of the bugs or

special features related to automating the applications are also exposed when test running

the first automated processes. These properties can then be taken into account when

developing the rest of the processes, saving time from the developers. A faster

implementation process is enabled also because different parts of the solution can be

independently and concurrently developed. Another benefit is limiting the effects of

potential errors in the solution into a smaller area as they only impact the scenario they

emerge in.
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In this project, the solution was initially split into seven automation processes in

correspondence with the seven different types of cases based the seven different types of

service requests made for the user accounts of the employees. All the requests originated

from one source, the ticket system in the ticket application, and were handled by different

sequences of tasks. The splitting made it easier for the two developers to start developing

the RPA solution concurrently as they could each work on different independent parts of

the employee data management without excessive need for coordination between each

other. It also enabled automating the handling of the most common and valuable requests

first and launching their automations before other parts. Another benefit gained was the

enhanced controlling of the solution as there were now seven parts in the solution to be

separately regulated in terms of running conditions and the number of robots, or

cuting it. This helped for example keeping up with the different SLAs that

the requests had by adjusting the conditions and designating more resources to the

processes that handled the most urgent request types. One more advantage gained was that

the potential errors in the execution of the solution were now only affecting the handling of

the request type they emerged in.

Design principle 2: Increase the number of different automation configuration options by

decomposing automation components into smaller components with less functions

whenever it enhances their reusability in different business process automations

The second design principle has similar traits with the first one but focuses on the

automation components in the lower hierarchical levels. It highlights the meaning of ties

between automation components and business processes. The components, usually

operating at the lowest level in the hierarchy, should be decomposed to a point where

another decomposition would not enhance the reusability of that part of automation in

other automations. In other words, the variety of possible automation configurations for a

certain area should match the variety of the needs of potentially automated business

processes operating in that area. This steers the automations towards increasing flexibility

and efficiency by creating sets of components, each set containing one type of function in

one spot instead of several, that offer at least the same amount of automation configuration

options for a certain area that the business processes use functionalities in that area. It often

means matching the number of different automation options with the number of functional

options provided by the target applications or their parts by creating automation
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components that each have a limited number of functions to perform, typically one or two

per component. The number functions in a component in this case depends on the relations

of the functions in the target application. This procedure allows all the different business

processes using those parts to be efficiently automated combining the same standard

components for each purpose, instead of making the developers browse through a variety

of components with different combinations of functions in each scenario, and trying to find

out if there is already a component made for their purpose.

In this project, the ties of RPA components to certain scenarios and business processes

were loosened while examining the functions in Piste. The two almost identical object

components with several functions were transformed into several object components, each

having one function related to the page they were interfering with. Because the functions in

the page were once designed to be used independently or with any number of other

functions by the software developers, this modification enhanced the reusability of the

automation made for that page as a whole by allowing the free mixing and matching of the

functions in the page via their own RPA components, thus adjusting the level of relations

between the functions from automation viewpoint to match the level of relations provided

by the target application. In other words, the two initial components that were tied to

certain business process scenarios where a certain set of functions in the page was to be

performed, were now split into several different components consisting of one function

each that could be mixed and matched for any kind of purpose that the page design

allowed. This modification was necessary as it was discovered that the page in Piste was

frequently used in a variety of business process scenarios, both the ones being currently

automated and other processes potentially automated later. This meant that that all kinds of

combinations of functions were used in the page and should be made possible to automate

as well. If the page, on the other hand, would have been in rare use in the business

processes and/or there would for example most likely be only one combination of

functions used in the future as well, similar pressure to create multiple components and

diversify the automation options would not have existed. Identical modifications, however,

were done to some other parts of the solution as well, producing the same benefits.

Design principle 3: Create separate automation components for the common parts of

business processes being automated
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The third design principle focuses on the automation of the common tasks shared by

different business processes and spread across the automation processes. An automation

design can be improved by detecting these features and grouping them into a single

automation component. This speeds up the development work by enhancing the economies

of scale as those components handling the common parts can now be easily reused

wherever those parts are interfered with, instead of constructing the same sequence of steps

repeatedly in different automations.

In this project, the third principle was followed on several occasions. Creating an

additional eighth process for the RPA solution containing the common parts of the ticket

application shortened the development time when all the modifications concerning those

parts could now be made editing one process instead of all seven processes. The risk on

system errors was also mitigated as the robot would only have to navigate in the ticket

system to screen tickets and check comments for all the request types on one occasion

instead of a total of fourteen times during a full execution of the solution. This also further

added control to the solution as the screening of the tickets could now be separately

regulated in terms of running conditions and the number of robots executing it. Similar

advantages were gained by for example creating one report process for the whole solution,

isolating the launch and termination functionalities of the applications into their own

processes, and centralizing the editing of AD into one component that executes Powershell

commands.

Separating the sequence of steps in the ticket system further into its own process was also

an application of the third design principle. The difference to the creation of the eighth

process for the solution was the scope of the effects. While the creation of the eighth

process produced economies of scale in terms of development work in the current project,

the isolation of the ticket system features into its own process provided the scale

economies for several potential future projects. The ticket screening and comment

checking process had features that were considered common to the processes in the current

project but not common to the processes in the organization in a larger scale. The ticket

system part on the other hand, was consider common both to the current solution and other

business processes in the organization.
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Another key aspect of applying the third principle is that the common parts of the business

processes should already be detected in the process mapping stage. If there are common

parts, the automation for these parts should then be created first so that the economies of

scale can be achieved as early as possible by the current project and potential other projects

running.

Design principle 4: Create designs that enable quick controlling of the robots

The fourth principle highlights the importance of convenient controlling of the robots.

When the product system of automation solutions grows and there are tens or even

hundreds of automations to manage, the time savings of easy controlling for the

administrators of the robots can be remarkable. In this project the controlling of the

solution was enhanced by adding a layer on top of the RPA component hierarchy. Because

of the nature of the RPA solution as a hierarchical structure, the new top layer could be

used to convey a set of rules to the RPA components in the lower level, which were now

all the eight processes included in the solution. The rules in this case represent the running

conditions for the eight processes that could be set as inputs for the top process layer, that

. The time savings in this scenario originated from

being able to set the conditions to all processes via one process instead of separately

editing the running settings of each process in the RPA software.

5.1.2 Practical Utility

The RPA implementation in this study provides practical utility for end users and other

companies implementing RPA. It describes the process of creating a practical artefact, an

automation solution, to manage employee data in the case organization. The artefact

reduced the daily time of

modifications to a fraction of the original, allowing that time to be used in other tasks. The

artefact also quadrupled the process speed and reduced errors made in the employee data

management.

As for RPA usage the study provides an understanding on how modularity can be utilized

in RPA solutions to enhance the efficiency of both the development and administration of

the automations. The solution created in this research can be utilized via its modular

components that can be scaled and reused in other RPA solutions in the organization. This
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enables the organization to leverage the benefits from the solution not only to the current

implementation but also to other implementations with different business processes, thus

helping the organization to respond faster to the heterogeneous demands for automations.

The solution also

presenting a practical example of how modularity can enhance the quality of RPA

components and make the solutions both flexible and effective.

5.1.3 Theoretical implications

This study contributes to earlier research on modularity and provides an example of the

relationship between RPA and modularity. On the one hand, the theoretical contributions

introduce how modularity principles comport with RPA and, on the other hand, what

effects are achieved through increasing modularity in RPA.

The structure of the RPA solution qualifies well as a hierarchically nested system defined

by Simon (1991) and Schilling (2000). A hierarchical system forms a structure of

, each of the latter being hierarchic in structure to a point

where the lowest level of elementary subsystem is reached. The RPA components in the

artefact were hierarchically layered, adapting to the common aspects of a hierarchical

system. From development viewpoint the solution was also suitable for a complex system.

Simon (1991) described a complex system one made up of a large number of parts that

interact in a nonsimple way whole is more than the sum of the parts.

This means that there is usually an unknown nature and amplitude of interactions between

different parts of the system, on which the performance implications of the system derive

from (Simon, 1991; Ethiraj & Levinthal, 2004). The developmental and administrative

value of the created RPA solution was able to vary based on for example how the

complexity of the solution was mitigated, how well it could be controlled, and how

reusable and scalable the components were

metrics depended on how the different parts of it were constructed and positioned in the

hierarchy, in other words, what kind of interactions there were from a development or

administration viewpoint. Thus, the solution depicted the properties of a complex system.

Similarly, it also complied with the concept of product system presented by Salvador

(2007), which emphasizes the meaning of different product variants, in other words, a set

of products, achieved by different configurations in the product. The RPA solution was

edited over time and different versions of it were evaluated. The reviews were followed by
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improvements, in other words, new configurations of the solution, and some of its parts.

These properties, identified in the project, support the fact that the principles of modularity

can be adapted to it.

5.1.3.1 Definitional perspectives

The definitional aspects of modularity, discussed by for example Salvador (2007), Baldwin

and Clark (2000), and Schilling (2000), include the commonality of components, the

combinability of components, the level of coupling between components, the

standardization of component interfaces, information visibility in the solution, and the

function binding properties in the components. These assessment aspects of modularity

were recognized in the artefact during the interventions in the project. The team increased

the level of modularity in the artefact through all the different definitional perspectives on

modularity and the changes in them were seen when the modifications to the artefact were

made. The final version of the automation solution included a balance between visible and

hidden information, enforced by different layers of RPA component hierarchy that was

formed throughout the project. The components in the solution were decomposed to a

point where they could be separated, mixed and matched for different purposes and

scenarios, producing different configurations. In other words, the coupling between the

components and certain business process scenarios was reduced whenever it enhanced

their combinability to other processes. The sequences of components automating common

tasks, and their relations to one another, were isolated into single processes providing

standard inputs and outputs. These processes were modified to be able serve a variety of

different solutions by their standardized interfaces, making their commonality level high.

The functional bind between the RPA components was assessed when decomposing them

and matching them with the functionalities in the applications. The solution could also be

divided into distinct parts that performed certain functions more than one way. For

example the eight separate subprocesses executing the ticket requests could be viewed as

the modules forming the solution in the master process level as well as each object

component performing application-level functions in the processes could be viewed as the

modules forming the solution.

5.1.3.2 Tradeoff of modularity

The tradeoff of modularity and was assessed when decomposing the object components

into finer components in the solution. Synergistic specificity of a system can be described

as the degree to which greater functionality is achieved in the system by specific relations
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of components to one another. The modularity of a system increases, decomposing the

system into ever-finer modular components, until a balance is found between the pressure

to become more modular by heterogenous demands made for it and the functionality

obtained through synergistic specificity (Schilling. 2000). An example of this considering

this project was a page in Piste application that faced heterogenous automation demands

because there were several different business process scenarios to be automated where the

combinations of different functions performed in the page varied a lot. Furthermore, using

any function in the page did not have any effect on the usage of other functions and they

could be freely combined, so there were actually no synergies designed between them by

the developers of the application. Thus, there was a pressure for the part of the automation

solution that handled the page to become more modular and reach the same low level of

synergistic specificity that the page design and the business process scenarios had. On the

other hand, if there would have been for example more homogenous demands and only a

couple of particular combinations of functions performed in the page in all of the business

processes potentially being automated, the level of synergistic specificity could have been

seen higher. The synergy in this case would have stemmed from the commonly used

specific combinations of functions and customizing automation components for those

purposes would have positively affected the speed of development.

5.1.3.3 Modular operators

The team also applied all the six modular operators, discussed by Baldwin and Clark

(2000), and Gamba and Fusari (2009), to the artefact when making improvements, which

supports the connection between RPA and modularity. The modular operators represent

the changes that can be conducted in a modular design to modify the existing structures

into new structures in defined ways (Baldwin and Clark, 2000). The operators include

splitting, substituting, augmenting, excluding, inverting, and porting.

Splitting creates a set of independent modules from an interconnected design or module by

breaking it apart (Gamba & Fusari, 2009). Splitting was used for example when dividing

the solution into seven processes. Substitution enables an existing module or an

interconnected design to be changed with a new one (Gamba & Fusari, 2009). Substitution

was conducted for example when the components automating the usage of the supportive

AD tools were replaced by the component executing Powershell commands. Augmenting

creates a new level of hierarchy or increments an existing layer of modules, enhancing a
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design by adding one or more modules to it without changing the existing design rules

(Gamba & Fusari, 2009). Augmenting was applied for example when the reporting process

was added to the master process design as a new module, or a building block, where all the

other eight processes already were. Excluding, which is often applied together with the

augmenting operator, allows creating a minimal design with the opportunity to increase its

size, scope, and depth later, and then increment it (Gamba & Fusari, 2009). The properties

of exclusion were utilized by constructing the solution in parts based on the division to

eight processes. This enabled both the strategic and financial benefits of exclusion

described by Gamba and Fusari (2009), because all the processes were circling around in

the same applications. The first processes were built, validated, and improved before

starting the development of the other processes. This allowed the team to minimize the risk

of having to make improvements widely in the solution as the already validated

automations could be used as an example of working automation logic in the applications

in question. The automated processes were also gradually launched into work, most

valuable ones already generating cost savings as the rest were still in development.

Inversion happens when similarities in modules are detected, followed by splitting the

modules containing the similarities to single out the similar components, leading to a new

module for the similar components to be created to a higher level in hierarchy (Gamba &

Fusari, 2009). This operator was applied when a separate process was created for the ticket

screening, ticket categorizing, and comment checking. The final operator, porting, enables

the creation of a module component that is compatible with other designs that have

different design rules (Gamba & Fusari, 2009). The majority of the RPA components at the

lowest level of hierarchy are usually portable by nature because of their simplicity, which

was the case in this solution as well. Porting at the higher hierarchy level was enabled in

this project by isolating the ticket system actions into one component, that could then be

used in different RPA designs. The set of initially lowest level components was bundled

together forming a higher-level component, which in this RPA environment meant a

process at the process level. This new process was then used as a subprocess in the process

that handled tickets and checked comments, which was, in turn, placed at a higher

hierarchical level.
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5.1.3.4 Benefits of modularity

In addition to the RPA-specific benefits such as reduced risk of system errors during

automation execution and better SLA management, many of the benefits of modularity

detected in this project also relate to benefits presented in earlier research. The flexibility

of the system can be improved by the increased number of possible configurations

(Schilling, 2000). This can mold into strategic flexibility by

respond faster to changing demand by quickly producing product variations with new

combinations of new or existing modular components. The modular structure of the RPA

solution allowed different configurations to be achieved relatively quickly when making

improvements and changes. This also empowered the capability of the or

team to better respond to future demands for automation by providing scalable

components. Modularity can also generate scale advantages in production when there are

common parts used in various items, economies in the sourcing of the parts allow potential

decrease in the production costs (Baldwin & Clark, 2000). There were multiple common

parts used in the solution, providing time and cost savings in the development for this

project, and potential future RPA projects. The common parts also reduced the navigation

that the robots would have to perform in the applications, thus decreasing the risk for

system errors.

Time and cost savings can also be provided by the limitation of interaction between

elements and thus reducing the amount and range of potentially unproductive cycling

occurring in a design or production process. This also leads to better manageability of the

process, increased probability of success, and enhanced quality of the final output. One

more modularity aspect that leads to saved time is the possibility to work on different parts

of a design concurrently because the independent blocks in a modular structure can all be

developed simultaneously (Baldwin & Clark, 2000). Furthermore, modularity also

enhances the possibility of specialization in the design process as each module can be

worked with no worry of damaging the whole project (Gamba & Fusari, 2009). Dividing

the RPA solution to seven processes resulted in the developers concurrently building the

solution each taking one process under development simultaneously, which enabled a

faster implementation and isolation of the effects of potential errors. Concurrent

development was also empowered by the structure of the solution as a hierarchical system

with different-sized modular components in different layers. The division to seven

processes also enabled the team to customize the project in the sense that the most valuable



Discussion 55

processes were automated first and put into work generating benefits, while the

development of other processes followed later, having commonalities with the procedure

presented by Keith et al., (2013). The first processes had brought out the bugs and other

notes concerning the automation of the applications which could be utilized in the

development of the rest of the processes. This combined to the fact that each component in

the solution, whether a small object component or a larger process component, had a clear

role reduced unproductive cycling in the development.

Modularity also accommodates uncertainty in a design because the hidden parameters are

isolated from other parts in the design, leading to modular structures also being flexible as

potential new changes applied to a hidden module does not require much changes to the

rest of the system (Baldwin & Clark, 2000; Schilling, 2000). The automation solution was

formed into four different layers of component hierarchy. This helped mitigate the

complexity of the solution by hiding the automation rules and instructions for the robots in

each layer and thus accommodate uncertainty in the system. It also made the modifications

faster to make as the changes could be targeted to certain modular RPA components and

their effects could be limited there.

As a conclusion, this study presents an example of how the principles of modularity can be

adapted into RPA and how the benefits of modularity are shown in RPA implementations.

It suggests that modularity can be used to solve design problems in RPA as an RPA

solution can be handled as a hierarchically nested and complex system to which modularity

principles can be applied. This produces valuable benefits to both the development and

administration of  automations.

5.2 Limitations and future research

As always, there are some limitations to the study. Firstly, the study involved only one

project concerning one organization and their IT environment. Studies in different

organizations with different IT environments might point out additional aspects and design

principles. At the very least, they would provide supplementary results on the matter.

The RPA as an automation technology evolves currently with a fast pace so the principles

presented here might evolve correspondingly. New principles may arise while some of the

old principles lose their significance or change their form. Thus, future studies of the same

topic may be required to have a more updated understanding of the relationship between
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RPA and modularity. Another limitation was that the scope and schedule of the study only

enabled examining the direct and shorter-term benefits of modularity in RPA as the

research mostly only covered the implementation phase of the solution. It would be

interesting to also examine the more indirect and longer-term benefits of modularity in an

 concerning for example the trajectory of their automation

strategy. It would also be interesting to have a more quantitative study on the actual cost

savings originating from enhancing the modularity of RPA components. One more

interesting topic for research could be studying the actual optimal level of modularity in

different RPA environments and scenarios.
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