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1 Introduction

1.1 Background and Motivation

Historically, fixed income arbitrage strategies such as yield curve arbitrage, swap spread

arbitrage and volatility arbitrage have been associated as typical hedge fund strategies. The

purpose of such arbitrage strategies is to recognize underpriced or overpriced fixed income

instruments and trade the mispricings in a market-neutral way. In this paper, I analyze

a yield curve arbitrage strategy on EUR swap curve. The idea is to use a neural network

model that identifies the rich or cheap points on the swap curve and provides hedge measures

for the mispriced points on the curve in order to make the total position market neutral.

Especially, the inputs to the neural network model are the calibrated factor values of the

two-factor Vasicek model. Using these factors as inputs for the neural network enables the

calculation of the hedging measures so that the strategy is market neutral to the Vasicek

risk factors. To my current knowledge, this kind of hybrid model which combines a term

structure model with a machine learning framework has not been developed previously.

According to Duarte et al. (2006), fixed income arbitrage strategies have become very

popular among the hedge fund industry after the beginning of the 21st century. This is

despite the fact that the very same strategies also played a major role in the hedge fund

crisis of 1998, during which the notorious collapse of the large hedge fund Long Term Capital

took place. The aforementioned facts characterize fixed income arbitrage rather well: most

of the time, these strategies may earn small positive returns but then as rare tail events

occur, these returns are easily wiped out and the strategies su↵er heavy losses. However,

based on the results of Duarte et al. (2006), yield curve arbitrage has historically produced

positively skewed returns with significant alpha. Despite the attractive nature of its returns,

yield curve arbitrage has been explicitly studied by only a few previous papers, namely by

Duarte et al. (2006) and Karsimus (2015).

Generally, a yield curve arbitrage strategy is a market-neutral strategy that seeks to profit

by exploiting pricing ine�ciencies between related fixed-income securities while neutralizing

exposure to interest rate risk. In the previous studies of yield curve arbitrage, the modelling

frameworks of the interest rate dynamics have been based on classical short-rate models.
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Duarte et al. (2006) used the two-factor version of the Vasicek (1977) term-structure model

and Karsimus (2015) used the two-factor version of Cox et al. (1985) and the Longsta↵ and

Schwartz (1992) two-factor model. As with any model, also these models have limitations

regarding the model assumptions, the dynamics of the model-implied interest rates and

calibration of the model parameters. This is why a machine learning framework for modelling

the interest rate is presented in this paper. Machine learning models have their limitations for

example regarding to overfitting, but the assumptions behind the models are less stringent

and the models learn the interest rate dynamics from the data. For a reader who is not

acquainted with machine learning models, Goodfellow et al. (2016) provide a comprehensive,

self-contained guide for the topic.

Because of the increased computational capacity and availability of data, machine learn-

ing methods have had increasing popularity in applications to finance-related problems

during the recent years. Among the most recent ones related to interest rate modelling,

Kirczenow et al. (2018) apply a machine learning model called Denoising Autoencoder to

extract features of the yield curves of illiquid corporate bonds. In turn, Sambasivan and Das

(2017) use Gaussian Process to forecast the US constant-maturity yield curve based on daily

data. However, to my current knowledge no study has applied machine learning methods to

modelling a swap curve.

The structure of the rest of the paper is as follows. First, I present the hypotheses.

Second, I go through previous research on arbitrage, applications of term structure models

and applications of machine learning models in asset pricing. Third, a separate chapter is

devoted to the most essential term-structure models in chronological order. After this, I in-

troduce the data set and go through the data cleaning procedures. In the following chapter,

I present the specifications of the neural network model, the swap curve modelling method-

ology, the trading methodology and the valuation methodology for the swap contracts. The

penultimate chapter presents and analyses the results and the final chapter concludes.
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1.2 Hypotheses

In this paper I assess the empirical out-of-sample performance of a neural network model on a

yield curve arbitrage strategy on EUR swap rates and compare the results to the performance

of a benchmark model, namely the two-factor Vasicek model. The analysis is based on the

following five hypotheses.

Hypothesis 1: The neural network model will produce a higher Sharpe ratio and a

higher gain-loss ratio compared to the Vasicek model.

Hypothesis 2: The neural network model produces positively skewed returns with

high kurtosis.

Hypothesis 3: The neural network model produces multifactor alpha with respect to

systematic risk factors.

Hypothesis 4: The neural network model has only minor exposures to systematic

risk factors.

Hypothesis 5: The neural network model has moderate to high tail risk with respect

to some of the systematic risk factors.

The first hypothesis is motivated by the following. First, machine learning models are rather

data intensive and use state-of-the-art optimization algorithms which could make them able

to learn the underlying dynamics of the interest rates better than the traditional short-rate

models. Second, applications of machine learning models in options pricing have shown

rather promising results in pricing accuracy: neural network models have generally been

superior to traditional parametric options pricing models such as the Black-Scholes model

(see e.g. Hutchinson et al. (1994), Anders et al. (1998), Amilon (2003), Bennell and Sutcli↵e

(2004), Stark (2017)). Thus, a neural network model could perform better also in yield curve

modelling compared to traditional short-rate models.

The second hypothesis is motivated by the fact that fixed income arbitrage strategies

are very typical hedge fund strategies which are supposed to be market neutral. Because

of the assumption about market neutrality, the strategies are expected to produce positive

returns regardless of the market environment. Thus, the second hypothesis states that

the return distribution is assumed to be positively skewed with a fatter right tail. The
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third and the fourth hypothesis are based on the assumption that the yield curve arbitrage

strategy produces abnormal positive returns and that the returns cannot be explained by

the returns of systematic risk factors. The final hypothesis is related to the tail risk of the

yield curve arbitrage strategy with respect to systematic risk factors. As stated before, based

on historical events it seems that fixed income arbitrage strategies might contain significant

amounts of tail risk.
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2 Related Literature

This section presents and summarizes previous research on hedge fund arbitrage strategies,

interest rate modelling and applications of machine learning models in finance. The section

is divided as follows. First, I go through previous research on the characteristics of arbitrage

strategies with a focus on hedge funds. Second, I present papers on practical applications

of iterest rate models. Finally, I will present literature about applying machine learning

models in the context of asset pricing. After the literature review chapter, a separate section

is devoted for term structure models.

2.1 Risk and Return in Arbitrage Strategies

As mentioned before, fixed income arbitrage strategies, such as yield curve arbitrage, are

considered to be very typical strategies for hedge funds. One of the most extensive studies

about these kinds of strategies is done by Duarte et al. (2006). In their work, the authors

provide an extensive analysis about the risk and return characteristics of the most widely

used fixed income arbitrage strategies: swap spread arbitrage, yield curve arbitrage, mort-

gage arbitrage, volatility arbitrage and finally capital structure arbitrage. In the paper, the

authors hypothesise whether fixed income arbitrage strategies are truly arbitrage, or if they

are compensation for carrying tail risk as in ”picking nickels in front of the steamroller”.

The results imply that all of the strategies produce positive excess returns on average and

also that most of the returns are positively skewed. The authors also analyze the amount

of market risk contained in the strategies and find that after adjusting for bond and equity

factors, the strategies that contain most ”intellectual capital”, namely yield curve arbitrage,

mortgage arbitrage and capital structure arbitrage, generate significant positive alphas. Es-

pecially, the strategies that generate significant alpha tend to be based on complex modelling

frameworks which are used to detect mispricings and to make the strategies market neutral

by using di↵erent hedging methodologies. Even after introducing hedge fund fees, some of

the strategies produce significant positive alpha. However, the results also indicate that

many of the strategies that are supposed to be market-neutral actually have exposure to

systematic risk factors. Despite of this, the authors find very little evidence that the fixed
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income arbitrage strategies were merely compensation for carrying tail risk.

Focusing solely on capital structure arbitrage, Yu (2006) finds that capital structure

arbitrage is indeed a rather attractive investment strategy. The idea of the strategy is to

exploit the pricing di↵erence between a company’s debt and equity by recognizing cheap or

rich credit default swap (CDS) spreads. In the work of Duarte et al. (2006), capital structure

arbitrage is one of the more complex strategies which tend to produce significant positive

alpha. In capital structure arbitrage, the complexity stems from the model that is used to

detect mispriced credit default swaps. However, based on the results of Yu (2006), capital

structure arbitrage seems to contain significant amount of risk. The risk is especially related

to events when the CDS spread is shorted and the market spread skyrockets simultaneously.

In these situations, the arbitrageur is forced to exit the position with large losses. Indeed, the

maximum monthly losses of the strategy can be as large as -33% even though the strategy

yields a very attractive Sharpe ratio of 1.54.

Focusing more on risk, Fung and Hsieh (2002) analyze the common sources of risk and

return in fixed income hedge fund strategies. The results imply that the main common

source of risk in such strategies is related to changes in interest rate spreads and also options

on interest rate spreads. Especially, fixed income hedge fund strategies seem to be typically

exposed to credit spreads. Okunev et al. (2006) develop nonlinear risk factors for analyzing

the tail risk in fixed income hedge fund strategies. Based on the findings, it seems that the

most significant risk factor in fixed income arbitrage strategies is a factor that is similar to

being short on put options on high-yield bonds. More generally, using nonlinear risk factors

seems to give increased estimates of the tail risk levels of hedge fund strategies. A similar

framework that utilizes nonlinear risk factors is presented by Jawadi and Khanniche (2012).

The motivation behind using nonlinear risk factors is to catch the asymmetric relationship

between the risk and return in hedge fund strategies and also to be able to model the time

varying nature of the exposure of hedge fund strategies to risk factors. The results indicate

that the hedge fund risk factor exposures indeed vary over time and that hedge fund returns

exhibit nonlinearity and asymmetry. Kelly and Jiang (2012) analyze the tail risk in hedge

fund returns and conclude that hedge fund returns exhibit consistent exposures to extreme

downside risk. Adrian et al. (2011) employ quantile regressions to assess the tail risk in
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di↵erent hedge fund strategies with respect to selected tail risk factors, such as a short-term

liquidity spread, USD carry trade excess returns and a credit spread. Based on their results,

it seems that correlations between di↵erent hedge fund styles increase in the tails which also

increases the probability of simultaneous losses across hedge fund styles. Liu et al. (2002)

study the e↵ect of liquidity risk and default risk on the market price of interest rate swaps.

Their results indicate that the credit premium in swaps is mostly compensation for liquidity

risk, and that the liquidity premium in turn increases with maturity. On the other hand,

the term structure of the default premium is basically flat, but both the liquidity premium

and the default premium are time-varying. Also regarding market neutrality, Patton (2009)

finds that about one quarter the hedge funds in their sample have significant exposures to

market risk and thus are not market neutral in reality. Asness et al. (2001) show that hedge

funds tend to load tail risk in their strategies in order to boost their alpha-creation.

2.1.1 Limits to Arbitrage

Pure, textbook arbitrage requires no capital and carries no risk. Limits to arbitrage address

the issues of implementing pure arbitrage in reality as such real-world arbitrage strategies

require capital and are exposed to risks. Shleifer and Vishny (1997) state that arbitrage

becomes ine↵ective in extreme market environments. The authors also state the possibility

that many anomalies in the financial markets in fact stem from the volatility avoidance of

arbitrageurs rather than hidden macroeconomic risks. When analyzing investment policies

for theoretical arbitrage opportunities, Liu and Longsta↵ (2004) find that it is often actually

most optimal for an investor to underinvest in an arbitrage opportunity rather than taking

as big position as the margin requirements allow. Sometimes, it might even be so that it

is optimal for an investor to walk entirely away from an arbitrage opportunity. Even if

the optimal investment policy is followed, the simulation-based results of Liu and Longsta↵

(2004) imply that the arbitrage strategies often underperform the riskless asset and result

in low Sharpe ratios. Also, the analyzed arbitrage strategies tend to experience losses before

convergence. Regarding arbitrage trading of hedge funds, Siegmann and Stefanova (2009)

analyze how liqudity a↵ects the market neutrality of equity-based arbitrage strategies over

time. The results indicate that during times of low liquidity, market neutrality decreases
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due to the di�culties of maintaining dynamic hedging strategies that are required for market

neutrality. Mitchell and Pulvino (2012) analyze the e↵ect of the 2008 financial crisis to hedge

funds and arbitrage strategies. The outcome of the crisis was that leverage funding decreased,

which forced hedge funds, i.e. the arbitrageurs, to liquidate their positions which in turn

increased the mispricings between similar securities in the market. Fontaine and Nolin (2019)

employ a relative value measure to analyze the limits to arbitrage in fixed income markets.

The results are as expected: limits to arbitrage increase as funding decreases.

Generally, it seems that even though arbitrage opportunities can be recognized rather

frequently, it is usually the case that market conditions prevent the exploitation of such

arbitrage opportunities on a constant basis. Especially, limitations in liquidity and leverage

funding seem to be the most essential barriers to exploiting the full potential of recognized

arbitrage opportunities.

2.2 Applications of Term Structure Models

Applications of term structure models have been popular topics in the academic literature,

especially regarding the analysis of swap curves and government yield curves such as the

US Treasury yield curve. Du�e and Singleton (1997) use a two-factor a�ne term structure

model, namely the two-factor Cox-Ingersoll-Ross model, for the purpose of modelling the

US swap curve with counterparty credit risk and liquidity risk. Their results imply that

both the liquidity factor and the credit factor were significant sources of variation in the

swap rates. Liu et al. (2006) perform a similar study and find that the credit premium

priced into swap rates is primarily compensation for liquidity risk. However, both liquidity

and default premia vary significantly over time. Contrary to a�ne term structure models,

Adrian et al. (2013) develop a linear regression model and apply the model for the US

yield curve. A model that combines a term structure model with macroeconomic variables,

namely inflation and economic growth rates, was developed by Ang and Piazzesi (2003).

Diebold et al. (2006) performed a similar study in which the authors include real activity,

inflation and monetary policy as the macroeconomic variables. In both studies, the authors

find strong evidence that the macroeconomic variables have e↵ects on the future evolution

of the yield curve. Especially, the results of Ang and Piazzesi (2003) imply that 85% of the
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variation in the yield curve is explained by the macroeconomic factors. Mönch (2008) applies

similar methodology for forecasting US government bond yields with a model that adds an

a�ne term structure model and a factor-augmented vector autoregression. The model uses

about 160 variables that contain data about industrial production, employment, price indices,

monetary aggregates, survey data and stock indices, to mention a few. The results imply

that the model outperforms several benchmark models for out-of-sample forecasts. Grinblatt

(2001) develops a model that provides a closed form solution for swap spreads by employing

one-factor term structure models for modelling the liquidity of government securities and

short term borrowings.

Focusing more on the term structure models itself, Du↵ee (2002) introduces a class of

term structure models that the authors label as ”essentially a�ne models”. The main idea

in the paper is that standard a�ne term structure models are unable to reproduce the well-

known failure of the expectations hypothesis which states that long-term interest rates are

determined purely by current and future expected short-term rates. Dai and Singleton (2002)

are able to model the key characteristics of the expectations puzzle with a�ne and quadratic

term structure models. Dai and Singleton (2003) introduce an extensive survey in which the

authors analyze the theoretical and empirical properties of several dynamic term structure

models with empirical goodness-of-fit tests. Backus et al. (2001) develop two-currency ver-

sions of a�ne term structure models in order to characterise the so-called forward premium

anomaly, which means that high-yielding currencies tend to appreciate over time. However,

the authors state that the models have serious shortcomings in simultaneously producing

the forward premium anomaly and reproducing the fundamental properties of currencies

and interest rates. Collin-Dufresne and Solnik (2001) use a Vasicek-based framework to

model the default risk in the swap term structure in order to explain the relation between

corporate bond yields and the swap curve, i.e. the LIBOR-swap spread. Durham (2006) uses

a three-factor Gaussian term structure model to estimate the inflation risk premium both

in the nominal Treasury yield curve and the inflation-linked TIPS yield curve. Hördahl and

Tristani (2012) perform similar analysis for Euro-area data by using a linear macro model

combined with an a�ne term structure model.
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2.3 Machine Learning Models in Asset Pricing

2.3.1 Machine Learning in Options Pricing

One of the most popular topics combining machine learning frameworks and financial in-

struments is option pricing with machine learning. Previous studies have focused on how

machine learning models are capable of learning to price options and also on the hedging

performance of the models. Usually, the studies use market prices of options as a target and

then compare the performance of machine learning models to the Black-Scholes model.

In one of the first studies incorporating neural network methodology in options pricing,

Malliaris and Salchenberger (1993) compare the pricing performance of a neural network

model and the Black-Scholes model on S&P100 options. Another study was performed

by Hutchinson et al. (1994) where the authors compare the pricing and also the hedging

performance between the Black-Scholes model and a neural network model on S&P500 index

options. Stark (2017), the author of this thesis, performs a similar study based on the

methodology of Hutchinson et al. (1994) with more recent data on DAX30 index options.

Similar studies have been also performed by Garcia and Gençay (2000) and Bennell and

Sutcli↵e (2004). At the highest level, the results of the aforementioned studies show evidence

that the neural network models are superior to the Black-Scholes model. Amilon (2003)

compares the pricing and hedging performances of a neural network model with European-

style calls on OMX Stockholm index with implicit and historical volatilities. The results

indicate that the neural network was superior in both cases. Andreou et al. (2008) formulate

a hybrid framework in which parametric option pricing models (the Black-Scholes the and

the Corrado-Su model) are combined with a neural network. The results indicate that these

hybrid models outperform both the parametric models and the non-hybrid neural network

models. Yao et al. (2000) focus solely on analyzing the pricing performance of a neural

network model. The results indicate that neural networks are capable of pricing options

more accurately during volatile times compared to the Black-Scholes model. Overall, the

neural network models have shown to often outperform traditional options pricing models

both in terms of pricing accuracy and hedging performance.
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2.3.2 Machine Learning and Interest Rates

Only a few studies have studied interest rates with machine learning frameworks such as

neural networks. Sambasivan and Das (2017) compare the performance of Gaussian Process

regression, Nelson-Siegel model and a vector-autoregression model in forecasting US treasury

yields. The findings indicate that the Gaussian Process is superior for short term maturities

below one year and that the vector-autoregression model performs better for longer maturi-

ties starting from two years and up to 30 years. The performance of the Nelson-Siegel model

is low especially for the longer tenors. Kirczenow et al. (2018) apply an autoencoder to price

missing yields for illiquid corporate markets.

2.3.3 Other Machine Learning Applications in Asset Pricing

Apart from option pricing and interest rates, machine learning models have been used on a

wide domain of asset pricing problems ranging from consumer credit risk analysis to stock

return prediction. Gu et al. (2018) perform a wide comparison between di↵erent machine

learning models in predicting returns of U.S. stocks. The conclusion from the results is that

neural networks are the best performing machine learning method for this domain. In an-

other study related to prediction, Malliaris and Salchenberger (1996) use neural networks to

predict S&P100 implied volatility. Heaton et al. (2016) use a deep autoencoder for portfolio

selection in Markowitz framework. Khandani et al. (2010) use generalized classification and

regression trees to model consumer credit risk. In a similar study, Butaru et al. (2016) use

decision trees, random forests and regularized logistic regression. Decision trees are also

applied to analyze the drivers behind gold returns by Malliaris and Malliaris (2015). Com-

modities are also analyzed in Malliaris and Malliaris (2009) where the authors model the

interdependence between oil, gold and the euro with a neural network model. Sirignano

et al. (2016) and Kvamme et al. (2018) apply neural networks for modelling di↵erent risks

in mortgage loans. Regarding traditional asset pricing and factor investing, Gu et al. (2019)

formulate an asset pricing model based on an autoencoder with latent factors. A simple

long-short strategy based on the model yields a Sharpe of 1.53 on monthly data, which is

superior to the compared models including the Fama-French factor models. Moritz and Zim-
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mermann (2016) use a tree-based method for portfolio sorting. Borovykh et al. (2017) use a

convolutional neural network to predict S&P500 returns. Luss and d’Aspremont (2015) use

text classification to predict abnormal returns from news.

As can be seen, machine learning models have been applied to a variety of problems

related to asset pricing. In many of the aforementioned studies, the results imply that

machine learning models perform rather well in several fields of asset pricing. It seems that

in many cases, machine learning models can be considered as an alternative for traditional,

well-established asset pricing models.
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3 Overview of Term-Structure Models

In the following sections, I will briefly review the well-known traditional term-structure

models. The mathematical notation and results in the sections are based on the book by

Brigo and Mercurio (2007). The purpose of presenting the main properties of these models

is to give the reader a perspective on the di↵erence between the traditional term-structure

models and machine learning models in yield curve modelling. Among the models presented

in the following chapters, the benchmark studies for this thesis apply the two-factor Gaussian

model (23) in Duarte et al. (2006) and the two-factor Cox-Ingersoll-Ross model (27) in

Karsimus (2015).

3.1 Terminology in Term-Structure Models

The key idea behind term-structure models is to model the so-called short rate, usually

denoted by r. The short-rate is a theoretical rate that represents the amount interest that is

accumulated in an infinitesimally short amount of time. Under term-structure models, the

short-rate follows a stochastic process specified by the model. A very closely related object

to the short-rate is the zero-coupon bond price, usually denoted by P . The zero-coupon

bond price at time t for tenor T represents the value at time t of one unit of currency that

will be received at time T . When the process for the short-rate is specified, a zero-coupon

bond price can be determined by the short rate. Based on no-arbitrage arguments, the

zero-coupon bond is specified in terms of the short-rate under the risk-neutral measure as

P (t, T ) = E
h
exp

⇣
�
Z

T

t

rsds
⌘���Ft

i
. (1)

Here Ft denotes the filtration of the short-rate process which can be thought as the in-

formation available up to time t. Based on the zero-coupon bond price, a corresponding

continuously compounded spot rate (i.e. zero rate) R can be computed as

R(t, T ) = � lnP (t, T )

⌧(t, T )
, (2)

where ⌧(t, T ) denotes the amount of time in years between times T and t. The zero-coupon

bond price P (t, T ) can be thought as a discount factor for cash flows taking place at time T

and the spot rate R(t, T ) is the corresponding discount rate.

13



Generally when it comes to di↵erent term-structure models, one is interested especially

in properties such as the distribution of the short-rate r and the resulting zero-coupon bond

price P . These aspects determine the analytical tractability of the models, for example

if a model has a closed-form solution for the zero-coupon price. The following sections

demonstrate these properties for several term-structure models.

3.2 One-factor term-structure models

3.2.1 Vasicek (1977)

The pioneering approach for interest rate modelling was proposed by Vasicek (1977). Under

the risk neutral measure, the Vasicek model defines the dynamics of the short-rate r as

dr(t) = k[✓ � r(t)]dt+ �dW (t), r(0) = r0 (3)

where k, ✓, � and r(0) are positive constants. This stochastic di↵erential equation is an

Ornstein-Uhlenbeck process, which is mean reverting. The parameter k denotes the speed of

mean reversion, ✓ denotes the long-term mean of the process and � denotes the volatility of

the process. W denotes standard Brownian motion under the risk neutral measure. Because

the parameters k, ✓ and � are assumed to be constant, the model is time-homogeneous.

Historically, it has been a common view that the main drawback of the Vasicek model

is that under its assumptions, we have a positive probability for negative short-rates. This

was an unreasonable feature for an interest rate model before the global financial crisis of

2008. However, in the prevailing ultra-low interest rate environment where for example the

short end of the EUR swap curve has been negative since year 2015, such model feature

is not necessarily a disadvantage. Another drawback is that the one-factor Vasicek model

cannot produce an inverted yield curve with any parameter values. In addition, the model

is endogenous in a sense that its initial term structure might not match exactly the term

structure observed in the market.

However, the model has also very attractive properties. First, the stochastic di↵erential

equation is linear and can be solved explicitly. Second, the distribution of the short rate is
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Gaussian. Integrating the stochastic di↵erential equation (3), we get for any 0  s < t

r(t) = r(s)e�k(t�s) + ✓
⇣
1� e�k(t�s)

⌘
+ �

Z
t

s

e�k(t�u)dW (u) (4)

Based on (4), we can compute the zero-coupon bond price in closed form with (1):

P (t, T ) = A(t, T )e�B(t,T )r(t), (5)

where

A(t, T ) = exp

⇢✓
✓ � �2

2k2

◆
[B(t, T )� T + t]� �2

4k
B(t, T )2

�

B(t, T ) =
1

k

h
1� e�k(T�t)

i
.

Thus, the Vasicek model has a rather straightforward formula for the zero-coupon price

which makes the model transparent and analytically tractable.

3.2.2 Dothan (1978)

The dynamics of the short rate under the Dothan model (Dothan (1978)) are defined as

dr(t) = ar(t)dt+ �r(t)dW (t). (6)

Integrating (6) yields

r(t) = r(s) exp

⇢✓
a� 1

2
�2

◆
(t� s) + �(W (t)�W (s))

�
(7)

Thus, r is lognormally distributed. Because of the lognormal distribution, r is always positive

for each t and thus the Dothan model overcomes the problem of negative rates of the Vasicek

model (3). The Dothan model also has a closed form solution for zero-coupon bonds, but as

noted by Brigo and Mercurio (2007), the solution is rather complex and includes a double

integral which requires numerical integration and thus it is not computationally very e�cient

to evaluate.

The lognormality of r incorporates another shortcoming: theoretically, an arbitrary small

time step can produce an infinite amount of money when modelling the evolution of a bank

account with one unit of currency. This problem is related to all lognormal short-rate models.
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3.2.3 Cox-Ingersoll-Ross (1985)

The Cox-Ingersoll-Ross (CIR) model proposed by Cox et al. (1985) uses a square-root dif-

fusion process for the short-rate which prevents negative rates. The model is formulated as

follows:

dr(t) = k[✓ � r(t)]dt+ �
p
r(t)dW (t), r(0) = r0, (8)

where k, ✓, � and r0 are positive constants with the condition

2k✓ > �2 (9)

With this formulation, r is always positive. (9) ensures that the process never hits the origin,

and thus it is guaranteed that r is positive for all t. Also, instead of normal distribution the

CIR process in (8) incorporates a noncentral �2-distribution. The CIR model has a closed

form solution for zero-coupon bond price, given by

P (t, T ) = A(t, T )e�B(t,T )r(t), (10)

where

A(t, T ) =


2h exp{ (k+h)(T�t)

2 }
2h+ (k + h)(exp{(T � t)h}� 1)

� 2k✓
�2

,

B(t, T ) =
2(exp{(T � t)h}� 1)

2h+ (k + h)(exp{(T � t)h}� 1)
,

h =
p
k2 + 2�2.

(11)

Thus, once the parameters of the model are known, the zero coupon bond price is straight-

forward to compute as with the Vasicek model (3).

3.2.4 Hull-White (1990)

The Hull-White model (Hull and White (1990)) is built on the Vasicek model (3) with the

addition that the model parameters are now time-varying. This is why the Hull-White model

is sometimes referred to as the Hull-White extended Vasicek model. Because of the time-

varying parameters, the Hull-White model is able to fit the currently observed yield curve
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in the market. The dynamics of the model are formulated as follows:

dr(t) = [#(t)� a(t)r(t)]dt+ �(t)dW (t), (12)

where #, a and � are deterministic functions of time. With this formulation, the model

can be made to fit the initial term structure and the term structure of forward or spot-

rate volatilities when pricing caps, floors or other interest rate derivatives with optionality.

However, it is generally known that the future volatility structures implied by the model can

be rather unrealistic compared to the ones observed in the market. This is why a simpler

version of the model is usually used when focusing on the modelling of the term structure of

short rates. The simpler model is essentially the same as (12) but with only one time-varying

parameter:

dr(t) = [#(t)� ar(t)]dt+ �dW (t), (13)

where # is still a deterministic function of time but a and � are now positive constants. From

(13), we get

r(t) = r(s)e�a(t�s) + ↵(t)� ↵(s)e�a(t�s) + �

Z
t

s

e�a(t�u)dW (u), (14)

where

↵(t) = fM(0, t) +
�2

2a2
(1� e�at)2. (15)

Here fM(0, T ) denotes the instantaneous market forward rate for maturity T at time 0.

Based on (14), we know that r is normally distributed. As with the Vasicek model (3), also

the Hull-White model has a positive probability for negative rates.

As with the models presented in earlier sections, the zero coupon bond price under the

dynamics of the Hull-White model can also be solved explicitly since we know that r has a

Gaussian distribution. Indeed, by using the definition of the zero-coupon bond price in (1),

it can be shown that the integral
R

T

t
r(u)du also has a Gaussian distribution and that the

zero-coupon bond price is given by

P (t, T ) = A(t, T )e�B(t,T )r(t), (16)
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where

A(t, T ) =
PM(0, T )

PM(0, t)
exp

n
B(t, T )fM(0, t)� �2

4a
(1� e�2at)B(t, T )2

o
.

B(t, T ) =
1

a

h
1� e�a(T�t)

i
.

Here, PM(0, t) denotes the currently observed market price of a zero-coupon bond with

maturity t.

3.2.5 Hull-White extension of the CIR model

The Hull-White methodology of time-varying parameters can also be applied to the CIR

model. The dynamics of the short-rate are then

dr(t) = [#(t)� a(t)r(t)]dt+ �(t)
p
r(t)dW (t), (17)

where #, a and � are again deterministic functions of time. However, with this specification,

the zero-coupon bond price P does not have a closed-form solution and has to be evaluated

numerically. Even when simplifying the model by using constant values for the parameters

a and � and allowing # to be the only time-dependent parameter, a closed form solution for

# is not available. # can be solved numerically, but this does not guarantee that r is positive

which is required for the di↵usion term �
p

r(t)dW (t) to be well defined. That is, there

is a clear tradeo↵: Gaussian, Vasicek-based models have nice properties when it comes to

analytical tractability, but they also have the drawback of producing negative rates. The CIR

model with time-varying parameters guarantees that the rates are positive, but analytical

tractability is lost. To overcome this tradeo↵, a Gaussian model that addresses the problem

of negative rates was proposed by Black and Karasinski (1991).

3.2.6 Black-Karasinski (1991)

The Black-Karasinski model is a lognormal model with the dynamics of the short-rate defined

as

d ln(r(t)) = [✓(t)� a(t) ln(r(t))]dt+ �(t)dW (t), r(0) = r0 (18)

Because of the lognormality, the short-rate r is guaranteed to be positive. However, as

generally with lognormal models, a closed form solution for the zero-coupon bond price
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P is not available with this model. Also, the Black-Karasinski model has the problem of

exploding bank account similar to the Dothan model (6) which is generally a problem with

lognormal models. Also, another shortcoming stated by Brigo and Mercurio (2007) is that

modelling forward rates with the Black-Karasinski model is rather heavy computationally

since a trinomial tree with Monte-Carlo simulations is required for the process.

3.2.7 CIR with general deterministic shift extension

With shift extensions, the short-rate is generally defined as

rt = xt + '(t), t � 0, (19)

where x is a di↵usion process and ' is a deterministic function of time. The Hull-White

extended Vasicek model (12) is basically equivalent to using a deterministic shift for the

Vasicek model (3). However, shift extension is especially useful with the CIR model (8).

Remember that incorporating time-varying parameters in the CIR model (i.e. the Hull-

White extension for CIR model (17)) resulted in a loss in analytical tractability. When using

a deterministic shift for the CIR model, we get the desirable properties related to having

time-varying parameters (i.e. the ability to match the initial term-structure exactly) and

also analytical solutions for zero-coupon bond prices. Thus, we get a model that produces

positive rates, matches the initial yield curve and is analytically tractable.

The dynamics of the shift-extended CIR model are defined as

dx(t) = k[✓ � x(t)]dt+ �
p
x(t)dW (t), x(0) = x0

r(t) = x(t) + '(t),
(20)

where x0, k, ✓ and � are positive constants with the condition 2k✓ > �2 that ensures that

the origin is not accessible. Under the model, the shift 'CIR and instantaneous forward rate

fCIR become

'CIR(t;↵) = fM(0, t)� fCIR(0, t;↵),

fCIR(0, t;↵) =
2k✓(exp{th}� 1)

2h+ (k + h)(exp{th}� 1)
+ x0

4h2 exp{th}
[2h+ (k + h)(exp{th}� 1)]2

,

(21)

19



where h =
p
k2 + 2�2 and fM denotes the market-implied instantaneous forward rate. The

price of a zero-coupon bond is then given by

P (t, T ) = Ā(t, T ) exp�B(t, T )r(t),

where

Ā(t, T ) =
PM(0, T )A(0, t) exp{�B(0, t)x0}
PM(0, t)A(0, T ) exp{�B(0, T )x0}

A(t, T )eB(t,T )'CIR(t;↵) (22)

As before, PM denotes the market-implied zero coupon bond price, i.e. the market discount

factor.

3.3 Two-Factor Short-Rate Models

The main drawback of one-factor short-rate models is that under the one-factor dynamics,

the short end and the long end of the yield curve (e.g. the 1-month rate and the 10-year

rate) are perfectly correlated. This means that the yield curve moves in parallel shifts which

is an unrealistic assumption in real world. Two-factor short-rate models try to overcome

this problem by introducing more subtle correlation structures within the yield curve.

3.3.1 The Two-Factor Vasicek Model

The dynamics of the instantaneous short rate are defined as

r(t) = x(t) + y(t) + '(t), r(0) = r0, (23)

where the dynamics of the factors x and y are in turn defined as

dx(t) = �ax(t)dt+ �dW1(t)

dy(t) = �by(t)dt+ ⌘dW2(t)
(24)

with x(0) = y(0) = 0 Here, (W1,W2) is a two-dimensional Brownian motion with correlation

⇢, that is

dW1(t)dW2(t) = ⇢dt

and r0, a, b, � and ⌘ are positive constants. Integrating (23) yields

r(t) = x(s)e�a(t�s) + y(s)e�b(t�s) + �

Z
t

s

e�a(t�u)dW1(u) + ⌘

Z
t

s

e�b(t�u)dW2(u) + '(t) (25)
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so that the short-rate r is again normally distributed. The zero-coupon price is then given

by

P (t, T ) =
PM(0, T )

PM(0, t)
exp{A(t, T )},

A(t, T ) :=
1

2

h
V (t, T )� V (0, T ) + V (0, t)

i
� 1� e�a(T�t)

a
x(t)� 1� e�b(T�t)

b
y(t),

(26)

where PM(0, t) denotes the currently observed market price of a zero-coupon bond with

maturity t. Note that usually we only observe the prices P (0, t) for some fixed maturities

such as 1 month, 3 months, 6 months, 1 year and so on, so in order to get a smooth mapping

T 7! P (0, T ), T > 0 we must interpolate between the observed market prices. In the above

formula, V (t, T ) denotes the variance of the Gaussian random variable I defined as

I(t, T ) =

Z
T

t

h
x(u) + y(u)

i
du.

3.3.2 The Two-Factor Cox-Ingersoll-Ross Model

The dynamics of the two-factor CIR model are analogous to the two-factor Vasicek model

(23). The only di↵erence is that now the processes x and y follow a square-root di↵usion as

with the one-factor CIR model (8). The two-factor CIR model is defined as

r(t) = x(t) + y(t) + '(t)

dx(t) = k1[✓1 � x(t)]dt+ �1dW1(t)

dy(t) = k2[✓2 � x(t)]dt+ �2dW2(t),

(27)

where k1, ✓1, �1, k2, ✓2, �2 are positive constants again with the conditions 2k1✓1 > �2
1 and

2k2✓2 > �2
2 and W1 and W2 are independent Brownian motions.

For analysing the model, it is convenient to first look at a two-factor CIR model without

the shift '(t). This simplified model is labelled as CIR2. Without the shift, the zero-coupon

price is

PCIR2(t, T ; x(t), y(t),↵) = PCIR(t, T ; x(t), k1, ✓1, �1)P
CIR(t, T ; y(t), k2, ✓2, �2), (28)

where ↵ = (k1, ✓1, �1, k2, ✓2, �2) is the parameter vector and PCIR denotes the zero-coupon

bond price under the one-factor CIR model (8). Thus, the spot rate is given by

RCIR2(t, T ; x(t), y(t),↵) = RCIR(t, T ; x(t), k1, ✓1, �1) +RCIR(t, T ; y(t), k2, ✓2, �2), (29)
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where RCIR denotes the spot rate for the one-factor CIR model. The zero-coupon bond price

for the 2-factor CIR model with shift is then given as

PCIR2++(t, T ; x(t), y(t),↵) = exp


�
Z

T

t

'(s;↵)ds

�
PCIR2(t, T ; x(t), y(t),↵), (30)

where

exp


�
Z

T

t

'(s;↵)ds

�
= exp

nh
RCIR2(0, T ;↵)�RM(0, T )

i
T�

h
RCIR2(0, t;↵)�RM(0, t)

i
t
o
.

Thus, despite the additional factor, the calculations behind the two-factor models can gen-

erally be tracked back to the corresponding one-factor models.

Clearly, the advantage of traditional term-structure models presented in this chapter is

the analytical tractability of the models and the known dynamics of the short rate process.

However, one issue with term-structure models is the choice of the variables to which the

model is calibrated1. For example, one could choose to calibrate a chosen term-structure

model to interest rate caps, floors or swaptions. The performance of the model is naturally

a↵ected by this choice. Also, some of the calibration methods use tree structures such as

binomial trees, which are rather intensive computationally.

1Calibration of term structure models is not covered in this thesis.
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4 Data

The data I use in my study contain daily closing prices for three interest rate curves: the

EUR swap curve for full-year tenors between 1 year and 10 years, the Euribor curve ranging

between tenors of 1 week and 12 months, and the EUR overnight indexed swap (OIS) curve

ranging from the overnight rate to 10-year rate. All data are acquired from Bloomberg

Terminal. For the EUR swap curve, the data contain observations from January 3, 2000

until February 25, 2019. For the Euribor and OIS curves, the data contain observations for

the out-of-sample testing period ranging from January 4, 2010 to February 25, 2019 where

both of the curves are used in the valuation of the swap trades. The reason for having the

longer data set for the EUR swap curve is that the observations before January 4, 2010 are

used as a training dataset for the neural network model.

Data processing goes as follows. First, all the dates for which the EUR swap curve has

missing values in any tenor are dropped. This results in dropping 47 dates from the EUR

swap dataset. Second, the training dataset is constructed by selecting observations before

the beginning of year 2010. After this, all the dates for which any of the endpoints of the

Euribor curve or the OIS curve are missing, are dropped. For the OIS curve data, this

results in dropping 53 dates. For the Euribor curve data, none of the dates are dropped.

Finally, the test dataset is generated by merging the three cleaned datasets with an inner

join such that the merged dataset has observations for dates that are present in all of the

three separate datasets. Table 1 shows the summary statistics for the EUR swap data and

Figure 1 shows the historical plots. An essential observation is that on October 22, 2015 the

1-year swap rate entered negative territory. After this, all tenors except the longer tenors of

8, 9 and 10 years have experienced negative values.
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Table 1: Descriptive statistics for the EUR swap rates. The data contain observations

ranging from January 3, 2000 until February 25, 2019. N denotes the number of observations.

25%, 50% and 75% are the corresponding percentiles. All values are in percentages.

N Mean Std Min 25% 50% 75% Max

1-year swap rate 4947 1.95 1.75 -0.27 0.32 1.83 3.45 5.48

2-year swap rate 4947 2.08 1.76 -0.26 0.38 2.06 3.72 5.58

3-year swap rate 4947 2.24 1.76 -0.25 0.47 2.34 3.83 5.64

4-year swap rate 4947 2.40 1.76 -0.23 0.61 2.60 3.89 5.69

5-year swap rate 4947 2.55 1.74 -0.18 0.78 2.80 3.98 5.78

6-year swap rate 4947 2.68 1.72 -0.11 0.96 2.98 4.07 5.81

7-year swap rate 4947 2.81 1.71 -0.03 1.13 3.14 4.14 5.88

8-year swap rate 4947 2.92 1.69 0.06 1.30 3.26 4.24 5.94

9-year swap rate 4947 3.02 1.67 0.16 1.44 3.37 4.32 5.98

10-year swap rate 4947 3.11 1.65 0.24 1.58 3.46 4.40 6.02
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(a) 1-year swap rate (b) 2-year swap rate

(c) 3-year swap rate (d) 4-year swap rate

(e) 5-year swap rate (f) 6-year swap rate

(g) 7-year swap rate (h) 8-year swap rate

(i) 9-year swap rate (j) 10-year swap rate

Figure 1: EUR swap rates ranging from January 2, 2000 to February 25, 2019.
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5 Methodology

In this paper, I have chosen to use the two-factor Vasicek model for modeling the EUR swap

curve. For the neural network model, the values of the two factors are used as inputs, and

the benchmark strategy is based solely on the Vasicek model. The reasoning for choosing

the two-factor Vasicek model is threefold. First, the model allows for negative rates. This is

essential since the EUR swap rates entered the negative environment in the autumn of 2015.

Second, the model is relatively easy and straightforward to calibrate. Finally, the model has

already been used by Duarte et al. (2006) which makes it possible to compare the results.

5.1 Fitting the Vasicek factors

The neural network model uses the two factors of the Vasicek model as its inputs. Calculating

the factor values requires calibrating the Vasicek model to the market swap curves. In the

two-factor Vasicek model without shift extension, the processes for the factors are defined as

dx(t) = k1[✓1 � x(t)]dt+ �1dW1(t) (31)

dy(t) = k2[✓2 � y(t)]dt+ �2dW2(t) (32)

With these factor definitions, the zero-coupon bond price is

P (t, T ) = A(t, T, k1, ✓1, �1)A(t, T, k2, ✓2, �2) exp{�B(t, T, k1)xt � B(t, T, k2)yt}, (33)

where

A(t, T, k, ✓, �) = exp

(⇣
✓ � �2

2k2

⌘
(B(t, T, k)� T + t)� �2

4k
B(t, T, k)2

)
(34)

and

B(t, T, k) =
1

k

"
1� e�k(T�t)

#
. (35)

The model-implied swap rate for tenor T is then

ŝ(T ) =
1� P (0, T )P

n

i=1 P (0, ti)
, (36)

where ti are the times for the swap cash flows. For example, with a semiannual swap these

would be apporiximately 0.5, 1.0, 1.5 and so on. Duarte et al. (2006) use the following
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parametrization

dx(t) = (↵� �x(t))dt+ �dW1(t)

dy(t) = (µ� �y(t))dt+ ⌘dW2(t)

and report the optimized parameters as

↵ = 0.0009503

� = 0.0113727

� = 0.0548290

µ = 0.0240306

� = 0.4628664

⌘ = 0.0257381.

The optimized parameter values are used as an initial guess for the optimization process.

The parametrization used by Duarte et al. (2006) can be transferred to the parametrization

shown in (32) with the following relationships:

1 = �

✓1 =
↵

�

�1 = �

2 = �

✓2 =
µ

�

�2 = ⌘

The goal is to calculate the values for x0 and y0 for each date in the data. This is done

with the same process that is applied in both Duarte et al. (2006) and Karsimus (2015) with

the modification that in this paper, the parameters are calibrated with a rolling window so

that no forward-looking bias will occur in the calculated factor values. The process goes as

follows. First, I pick the first half-year period (that is, the first 126 observations) of data

from the beginning of the dataset. Second, by using the trial parameters, I solve the values
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of x0 and y0 for each date in the half-year window so that the model swap rates in tenors

of 1 year and 10 years match exactly to the true market swap rates for the corresponding

tenors. After this, the six parameters (1, ✓1, �1,2, ✓2 and �2) are optimized for the half-year

window by minimizing the mean squared error for tenors ranging from 2 years to 9 years.

This is a non-linear least-squares problem, which in this paper is solved with the limited-

memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm2. Once the parameters are

optimized, x0 and y0 are again solved so that the 1-year and 10-year model swap rates match

the market rates exactly. The factor values for the last date in the half-year window are then

saved, and the half-year window is shifted one day forward. The process continues similarly

until the end of the dataset, with the exception that the most recent optimized values for the

six parameters are used as trial values in the next half-year window. This process produces

daily values for the factors, which are then used as an input to the neural network.

5.2 Swap Mechanics and Valuation Methodology

Interest rate swaps are derivatives instruments which exchange future cash flows based on

two legs, the fixed leg and the floating leg. The owner of the swap receives the cash flows

from one leg and pays the cash flows from the other leg to the counterparty of the contract. A

payer swap pays the fixed leg and receives the floating leg and a receiver swap in turn receives

the fixed leg and pays the floating leg. The cash flows of the fixed leg are determined by the

specified fixed rate. The cash flows of the floating leg are usually determined by IBOR rates

such as LIBOR or EURIBOR. In this paper, semi-annual EUR swaps are used which means

that the floating leg is based on 6-month EURIBOR rates and cash flows are exchanged

semi-annually.

The interest rate swap rates that are observed on the market are so-called par swap

rates. A par swap rate is an annualized fixed rate that is determined in such way that the

discounted cash flows of the fixed leg and the floating leg sum to zero at initialization of

the swap. Thus, at initialization, the fixed leg cash flows are known for the whole lifetime

of the swap since the fixed rate does not change. However, at initialization, only the first

2In this paper, I use the Python package SciPy which has an implementation of the algorithm.
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floating cash flow is known: it is the 6-month EURIBOR rate that is observed at the market

at the time. As time passes, the floating rate is updated on each semi-annual cash flow date

to the 6-month EURIBOR rate of that date. Because the floating leg cash flows are not

known in advance, a forward curve must be used to obtain the implied forward rates for

each semiannual interval during the lifetime of the swap. These implied forward rates are

treated as the future cash flows of the floating leg. The methodology for constructing the

forward curve is explained in the next section.

5.2.1 OIS Discounting

After the financial crisis of 2008, using solely IBOR-based discounting has become infeasible

because IBOR-rates do not incorporate credit risk and collateral payments. Thus, market

participants have started to use the overnight-indexed-swap (OIS) curve for valuation of

interest rate swaps. This is generally referred as OIS discounting.

For swap valuation, I follow the methodology presented in Smith (2013) where the author

provides a practical, self-contained guide for valuing interest rate swaps with OIS discounting.

The process goes as follows. First, the OIS zero rates are bootstrapped from the OIS rates.

Cubic interpolation is then applied to obtain a continuous OIS zero curve. Second, the

swap curve and the EURIBOR curve are interpolated with linear intepolation. After this,

the OIS-consistent implied 6-month EURIBOR forward rates are bootstrapped by using the

interpolated OIS zero curve, the interpolated EURIBOR curve and the interpolated swap

curve. Finally, the zero rates at semiannual intervals are obtained from the forward curve

and after linear interpolation, we have a continuous zero curve (P ) that is used to discount

the cash flows of the swap contracts. The value of a payer swap with tenor T at time t,

0  t < T can then be expressed as

V = P (t, t1)(L� F ) +
NX

i=1

P (t, ti+1)(f(t, ti, ti+1)� F ) (37)

where L denotes the latest fixing of the floating rate, F denotes the fixed rate, N is the

number of remaining semiannual payments at time t and ti, ti < ti+1, i = 1, ..., N are the

remaining points of time of the semiannual payments with tN = T . f(t, T, S) denotes the

forward curve at time t with tenor T and expiry S.
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5.3 Modelling Methodology

A multi-layer perceptron, i.e. a vanilla neural network, is used to model the swap curve.

The neural network is first trained with the training data ranging between January 10, 2000

and January 1, 2010. The specifications for the network are as follows.

• Parameter initialization method: LeCun normal (see Klambauer et al. (2017))

• Optimizer: Adam (see Kingma and Ba (2014))

• Number of hidden layers: 1

• Hidden layer size: 30

• Activation function: SELU (see Klambauer et al. (2017))

• Batch size: 32

• Number of training epochs: 1000

• Learning rate: 0.001

Number of hidden layers is set to one based on the universal approximator theorem by Hornik

(1991). The chosen hidden layer size is rather arbitrary and based on experimentation. After

the neural network has been trained with the training data, the trading strategy backtest

is performed with the test data. This is done as follows. Each day in the backtest period,

currently observed values for the model input variables, that is, the two fitted Vasicek factors,

are fed to the network to produce the model-implied swap curve. After this, the network is

updated by training the network with the currently observed input variable values for one

epoch. The process continues similarly until the end of the backtest period.

5.4 Trading Methodology

In the trading methodology, I follow Duarte et al. (2006). Trades are initiated when the

mispricing between some of the model-implied swap rates and the currently observed market

swap rates is more than 5 basis points3. If the model-implied swap rate is lower than the

current market swap rate, then a receiver swap is entered. Similarly, if the model-implied

swap rate is higher than the current market swap rate, then a payer swap is entered. In

3Karsimus (2015) uses three di↵erent thresholds: 10, 15 and 20 basis points and Duarte et al. (2006) use

10 basis points.

30



case of multiple mispricings, only the largest mispricing is traded. However, there can be

multiple trades that are open simultaneously because previously made trades do not need

to be closed when a new mispricing occurs. A trade is considered converged if the current

market swap rate deviates from the model-implied rate that was observed at the initiation

of the trade by less than one basis point. A trade will be closed when convergence occurs.

Also, the maximum length of each trade is 4 months, so if a trade has not converged in 4

months after initiation, the trade will be closed. A one basis point transaction cost will be

applied for each closed trade which is similar as in Duarte et al. (2006). When closing trades,

it is assumed that the swap position in question can be closed with its current market value.

One caveat that should be noted here is that ongoing swaps are not generally quoted in the

market. Thus, it is not possible to evaluate if in reality there would be enough liquidity to

be able to close the ongoing swaps with their current market value at the desired point of

time.

Each day during the backtest period, all open swap positions are valued with OIS dis-

counting (see 5.2.1). Thus, the returns of the strategy are based on daily mark-to-market

valuation of the total position.

5.4.1 Hedging methodology

The idea with hedging is to make the strategy market neutral by taking o↵setting positions

in 1-year and 10-year swaps. As the modelling is based on the two-factor Vasicek model,

the only uncertainty stems from the two factors. Thus, the idea is to solve the weights for

the 1-year and 10-year swaps so that the total position is neutral to the Vasicek factors. In

formulas, this can be expressed as

2

4
@ŝ(t)
@x

@ŝ(t)
@y

3

5 =

2

4
@ŝ(1)
@x

@ŝ(10)
@x

@ŝ(1)
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3

5

2

4!1

!10

3

5 (38)

where ŝ(t) is the model-implied swap rate for tenor t and !1 and !10 are the weights for the

1-year and 10-year swaps. For the Vasicek model, the partial derivatives of the swap rate
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with respect to the factors can be calculated in closed form as

@ŝ(T )

@x
=

B(0, T, k1)P (0, T )
nX

i=1

P (0, ti) + (1� P (0, T ))
nX

i=1

B(0, ti, k1)P (0, ti)

✓ nX

i=1

P (0, ti)

◆2 , (39)

and respectively for y by just replacing k1 with k2. For the neural network model, the

partial derivatives with respect to the factors are not available in closed form, but are instead

computed with automatic di↵erentiation in Tensorflow4. Once !1 and !10 are solved, the

nominals of the swaps are scaled in such way that the nominals of the hedge trades and the

main trade sum up to 1.

4Computing the partial derivatives is done by computing the Jacobian matrix of the neural network

output with Tensorflow’s GradientTape object.
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6 Results and Findings

In this section, the results of the backtested strategies are presented and analyzed. This

section is divided into three subsections. The first discusses the trading performance of the

strategies, the second analyzes the risk factor exposures and the third analyzes the tail risk

of the strategies.

6.1 Out-of-sample performance

Table 2: Out-of-sample summary statistics of the leveraged daily returns for the yield curve arbitrage strategies.

The training period for the neural network model is between January 10, 2000 and January 1, 2010 and the out-of-sample testing

period is between January 2, 2010 and February 25, 2019 for both strategies. Trades are initiated when the mispricing between

some of the model-implied swap rates and the currently observed market swap rates is more than 5 basis points. In case of

multiple mispricings, only the largest mispricing is traded. However, there can be multiple trades that are open simultaneously

(i.e. previously made trades do not need to be closed if a new mispricing occurs). Each initiated trade is hedged with 1-year

and 10-year swaps so that the trade is neutral to the Vasicek factors. The notionals are scaled so that the total notional of

each trade is 1. A trade is considered converged when the current market swap rate deviates from the model-implied rate that

was observed at the initiation of the trade by less than one basis point. Upon convergence, a trade is closed with a one basis

point transaction cost. New trades are not initiated if time to the end date of the backtest period is less than 4 months. N

denotes the number of daily returns during the out-of-sample period. Leverage is the leverage ratio that generates an ex post

annual standard deviation of 10%. G/L denotes the gain-loss ratio. MDD denotes the maximum drawdown in percentages and

its length in days. The t-statistic, skewness and kurtosis are based on heteroscedasticity and autocorrelation robust standard

errors using 1 lag. The Sharpe ratio is annualized. All return units are in basis points.

Model N Leverage Mean t-stat Std Min Max Skew Kurt Sharpe G/L MDD (%) MDD (days)

NN 2330 32.30 3.22 2.54 62.98 -616.68 556.96 0.65 16.487 0.81 1.08 -16.48% 485

Vasicek 2236 8.33 2.68 2.05 62.98 -275.86 288.16 0.15 5.70 0.68 1.09 -28.70% 413
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(a) Neural network, 2-year swap mispricings (b) Neural network, 3-year swap mispricings

(c) Neural network, 4-year swap mispricings (d) Neural network, 5-year swap mispricings

(e) Neural network, 6-year swap mispricings (f) Neural network, 7-year swap mispricings

(g) Neural network, 8-year swap mispricings (h) Neural network, 9-year swap mispricings

Figure 2: Neural network mispricings for swaps with tenors ranging from 2 years to 9 years.
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(a) Vasicek, 2-year swap mispricings (b) Vasicek, 3-year swap mispricings

(c) Vasicek, 4-year swap mispricings (d) Vasicek, 5-year swap mispricings

(e) Vasicek, 6-year swap mispricings (f) Vasicek, 7-year swap mispricings

(g) Vasicek, 8-year swap mispricings (h) Vasicek, 9-year swap mispricings

Figure 3: Vasicek model mispricings for swaps with tenors ranging from 2 years to 9 years.
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(a) Neural network cumulative out-of-sample performance (b) Vasicek model cumulative out-of-sample performance

Figure 4: Cumulative performances for the neural network model and the Vasicek model

Based on the summary statistics in Table 2 it seems that the neural network strategy earns

attractive returns during the out-of-sample test period. The Sharpe ratio of the neural

network strategy is 0.81 which is higher compared to the Sharpe ratio of 0.68 of the Vasicek

model strategy. Duarte et al. (2006) achieve annualized Sharpe ratios ranging between 0.52

and 0.79 with di↵erent configurations of the strategy. In all of their configurations, Duarte

et al. (2006) use a 10 basis point threshold for initiating trades. However, the authors declare

that using a 5-basis-point threshold (which is used in this paper) yields similar results. Also,

Karsimus (2015) achieves a Sharpe ratio of 1.26 by replicating the strategy of Duarte et al.

(2006) with the two-factor Cox-Ingersoll-Ross model (27) with 5-basis-point-threshold for

the period ranging from January 2002 to January 2015. However, this result is for in-sample

backtest. For the out-of-sample results with 5-basis-point limits, Karsimus (2015) achieves

a Sharpe ratio of 1.08 with rolling calibration and 0.94 with fixed calibration of the model.

The distribution of the returns of the neural network strategy is positively skewed and

has high kurtosis which supports the second hypothesis. Also, the skewness and kurtosis

values of the neural network are much higher compared to the Vasicek model. The t-value

of 2.54 implies that the average return of the neural network di↵ers from zero at the 1%

significance level.

Looking at the maximum drawdowns of the strategies, it seems that the maximum draw-

down of the neural network in percentages (-16.48%) is smaller in magnitude compared to

the Vasicek model (-28.70%). One possible explanation for the large maximum drawdown of
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the Vasicek model might be the change in swap rate dynamics before entering the negative

territory in the fall of year 2015. Looking at the cumulative performance of the Vasicek

model in Figure 4 reveals that the maximum drawdown period between 2014 and 2017 con-

tains indeed the period when the swap rates started entering negative territory. However,

even though the maximum drawdown of the neural network is lower compared to the Vasicek

model, the duration of the drawdown is quite long, 485 days.

Looking at the neural network mispricings in Figure 2 and the Vasicek model mispricings

in Figure 3, it seems that the neural network is more sensitive and reacts quicker to changes

in the swap rate dynamics. Also, the magnitude of the neural network mispricings seems

to stay rather constant across tenors, while the Vasicek model mispricings seem to decay

with longer tenors. This is a little surprising as the Vasicek factors are calibrated so that

they match exactly the 1-year and 10-year swap rates. Thus, one might expect that the

mispricings would be smaller in magnitude in the short and long end of the curve, and larger

in the middle.

Generally, it seems that the neural network model is superior to the two-factor Vasicek

model when performance is measured by Sharpe ratio. On the other hand, judging by gain-

loss ratios, it seems that the performance of the models is almost equal, the neural network

being slightly weaker than the Vasicek model. Also, it should be noted that even though the

neural network model produces an out-of-sample cumulative performance of around 75%, it

also uses a very high leverage ratio of 32.
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6.2 Multifactor regressions

In this section, I analyze the exposure of the backtested strategies to systematic risk factors.

As yield curve arbitrage strategies strive to be market neutral, they are assumed to generate

returns that have somewhat minimal exposure to commonly known risk factors. In other

words, the systematic risk factors are assumed to have only little explanatory power on the

yield curve arbitrage returns. However, as the yield curve arbitrage strategies are not pure

textbook arbitrage but more of market neutral relative value bets, it is reasonable to assume

that the strategies have exposure to interest rate-related risk, as pointed by Vayanos and

Vila (2009).

For the risk factor exposure analysis, I use two di↵erent factor models. In the first model,

I combine the well-known Fama-French three-factor model (Fama and French (1993)) and

the Fama-French momentum factor with hedge fund tail risk factors presented by Adrian

et al. (2011). These hedge fund tail risk factors include factors for carry and short volatility

strategy returns, which tend to generate steady, small returns most of the time but are

also prone to experience large losses occasionally. Thus, these factors are well-suited for

incorporating tail risk properties into the risk factors. The second factor model is the asset-

based style factor model presented by Fung and Hsieh (2004), which is specifically hedge

fund-oriented.

The first factor model is built as follows. For equity-related risk factors, I use the three

factors by Fama and French (European versions): the size factor SMB (small-minus-big),

the value factor HML (high-minus-low) and the momentum factor WML (winner-minus-

loser).5 In addition to the equity risk factors, I include the following risk factors. First,

the Bloomberg Cumulative FX Carry Trade index (CTG10) is included for incorporating

carry risk. Second, a Credit Suisse short VIX total return index is included for implied

volatility-related risk (labelled as VIX) and a Credit Suisse short variance swap total return

index is included for incorporating risk related to level shifts in volatility (labelled as VAR).

Third, for credit risk, I include the Bloomberg Barclays US aggregated BAA total return

index (labelled as BAA). Finally, I include the slope of the yield curve and the liquidity

5The data are from the website of Kenneth R. French: http://mba.tuck.dartmouth.edu/pages/

faculty/ken.french/index.html.
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spread as European bond risk factors. The slope factor is calculated as the daily change in

the spread between the 10-year generic German government yield and the 3-month generic

German government yield (10Y-3M). The liquidity spread (LIQ) is calculated similarly as

the daily change in the spread between the Frankfurt 3-month Interbank O↵ered rate and

the 3-month generic German government yield.6 That is, the excess returns of the strategy

are analyzed with the model

R = ↵ + �0RM + �1RSMB + �2RHML + �3RWML + �4RCTG10

+�6RV IX + �7RV AR + �8RBAA + �9R10Y�3M + �10RLIQ.

6All data except the Fama-French factors are acquired from Bloomberg Terminal.
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Table 3: Multifactor regression results of the daily excess returns on systematic risk factors. Carry denotes the

returns of a Bloomberg carry index on G10 currencies. Credit denotes the returns of Bloomberg Barclays US aggregated BAA

total return index. For the Fama-French factors, HML denotes the value factor (high-minus-low) and SMB denotes the size

factor (small-minus-big). The Fama-French factors factors are based on European data. Liquidity spread denotes the daily

change in the spread between the Frankfurt 3-month Interbank O↵ered Rate and the 3-month generic German government

yield. Slope denotes the daily change in the spread between the 10-year German generic government yield and the 3-month

German generic government yield. Volatility (implied) denotes the returns of a Credit Suisse Short VIX index, and volatility

(level) denotes the returns of a Credit Suisse Short Variance Swap index. Regressions are calculated with heteroscedasticity

and autocorrelation robust standard errors with 1 lag. All values denote the t-statisics for the factors, and alpha is reported in

basis points in parenthesis.

Dependent variable:

Neural network Vasicek

↵ 2.507⇤⇤ 2.284⇤⇤

(2.87) (3.00)

Carry -2.128⇤⇤ -0.850

Credit 0.611 -2.862⇤⇤⇤

Fama-French HML -0.701 -0.612

Fama-French Market -0.124 -0.692

Fama-French Momentum -2.208⇤⇤ 0.295

Fama-French SMB 1.527 2.055⇤⇤

Liquidity spread 8.847⇤⇤⇤ 2.374⇤⇤

Slope -10.494⇤⇤⇤ -2.457⇤⇤

Volatility (implied) -0.972 -1.058

Volatility (level shift) -0.276 -0.318

R2 0.194 0.056

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

The results in Table 3 imply that both models produce significant multifactor alpha at 5%

significance level. The alpha of the neural network is 2.87 basis points per day, which is



slightly less than the alpha of the Vasicek model, 3 basis points per day. In addition, the

neural network strategy has significant exposures to carry, momentum, slope and liquidity

spread. The significant exposures of the neural network strategy the momentum risk factor

and the Vasicek model strategy to the size factor are somewhat surprising as one might

think that yield curve arbitrage strategies should not have very much in common with

equity markets. However, this kind of phenomenon where fixed income strategies contain

stock market risk was also discovered by Campbell (1987) whose results imply that the risk

premia on equity markets tend to move closely together with the risk premia of long-dated

bonds.

Carry strategies are generally known to produce small, steady returns most of the time,

but occasionally they tend to incur heavier losses. Thus, it seems that the neural network

strategy has exposure to this kind of tail risk that is typical for carry strategies as the carry

factor is significant at 5% level for the neural network strategy. Surprisingly, the neural

network strategy does not seem to be exposed to significant credit risk as opposed to the

Vasicek model, for which the credit factor is significant at 5% level. This is contrary to the

results of Fung and Hsieh (2002), which indicate that fixed income arbitrage strategies are

typically exposed to especially credit risk. Thus, it seems that the neural network model is

able to mitigate the credit risk but in turn has exposure to carry risk.

To conclude, it seems that the strategy based on the Vasicek model has somewhat more

desirable properties for a hedge fund-like arbitrage strategy mainly because the risk factors

only explain about 5.6% of the variance in the Vasicek model returns as implied by the R2

of the multifactor regression. However, both strategies generate multifactor alpha, which is

in line with the results of both Duarte et al. (2006) and Karsimus (2015). Both strategies

have significant exposures to interest rate-related risk factors, which is logical since both

strategies take relative value bets on the interest rate swap curve. Also, both strategies have

significant exposure to one equity factor which is in line with the results of Campbell (1987).

The neural network model seems to contain carry risk premium, which is also logical due

to the similar characteristics of carry strategies and fixed income arbitrage strategies. The

Vasicek model has exposure to credit risk which is a similar result as in Fung and Hsieh

(2002).
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6.2.1 Asset-based style factor regressions

In addition to the regression model specified above, I also evaluate the exposure of the

strategies to risk factors that are specific to hedge funds. This is done with the Fung-Hsieh

asset-based style (ABS) factor model Fung and Hsieh (2004) that consists of eight factors:

two equity risk factors, two interest rate-related risk factors, three trend-following risk factors

and finally an emerging market risk factor. The ABS model is used to identify if the yield

curve arbitrage strategies produce so-called hedge fund alpha. The equity factors consist of a

market factor and a size spread factor. In this paper, I use the returns of STOXX Europe 600

index as the market factor. For small cap returns, I use STOXX Europe 200 Small index and

the size spread factor is then defined as the di↵erence between the small cap returns and the

returns of the market portfolio. For the interest rate-related risk factors, I use the monthly

change of the German 10-year constant maturity yield as a bond risk factor and Bloomberg

Barclays US aggregated BAA total return index as the credit risk factor.7 The three option

portfolios which incorporate risk factors for currency trend following, bond trend following

and commodity trend following are the original lookback straddle portfolios constructed by

Fung and Hsieh (2004).8 In this case, the regressions are run with monthly returns because

the frequency of the Fung-Hsieh lookback straddle portfolios is on a monthly basis.

7Data for the equity factors, the interest rate-related risk factors and the emerging market risk factor

are acquired from Bloomberg Terminal.
8The data for the lookback straddle portfolios are from the data library of David A. Hsieh: http:

//faculty.fuqua.duke.edu/~dah7/DataLibrary/TF-FAC.xls.
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Table 4: Regression results of the monthly excess out-of-sample returns of the yield curve arbitrage strategies

on Fung-Hsieh asset-based style factors. Bond denotes the monthly change of German 10-year constant maturity yield.

Bond lookback straddle denotes the returns of a portfolio of lookback straddles on bond futures. Credit denotes the returns on

Bloomberg Barclays US aggregated BAA total return index. Commodity lookback straddle denotes the returns of a portfolio

of lockback straddles on commodity futures. Emerging market is the return on MSCI Emerging Markets index. FX lookback

straddle denotes the returns of a portfolio that consists of lookback straddles on currency futures. Market returns are the

returns of STOXX Europe 600 index. Size spread denotes the di↵erence between returns on STOXX Europe 200 Small and

STOXX Europe 600. Regressions are calculated with heteroscedasticity and autocorrelation robust standard errors with 1 lag.

All values denote the t-statisics for the factors, and alpha is reported in parenthesis in basis points.

Dependent variable:

Neural network Vasicek

↵ 2.024⇤⇤ 2.677⇤⇤⇤

(38.049) (63.151)

Bond -3.884⇤⇤⇤ -0.819

Bond lookback straddle -2.244⇤⇤ -0.695

Commodity lookback straddle -1.521 0.119

Credit -2.690⇤⇤⇤ -1.999⇤⇤

Emerging market 1.777⇤ -0.447

FX lookback straddle 1.110 -0.228

Market -0.612 -0.563

Size spread -0.715 0.348

R2 0.277 0.114

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

Based on the results in Table 4, it seems that both strategies generate multifactor hedge fund

alpha. The alpha of the neural network strategy is significant at 5% level, and respectively

the alpha of the Vasicek model is significant at 1% level. Also, the Vasicek model alpha (63

basis points per month) is almost double compared to the neural network alpha (38 basis

points per month). The neural network seems to have significant exposure to bond and
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credit factors, and also to the bond trend following factor. Especially the significant bond

and credit exposures are somewhat expected based on previous literature since as pointed by

Vayanos and Vila (2009), yield curve arbitrage strategies are expected to have some exposure

to interest rate-related risks. Thus, it is surprising that neither the bond risk factor nor the

bond trend following risk factor are significant for the Vasicek model. The only significant

factor for the Vasicek model is the credit factor. Thus, it seems that also with the asset-

based style factors, the Vasicek model has less exposure to the factors compared to the neural

network strategy. The neural network strategy also has exposure to emerging market risk

factor, but this result is significant only at 10% level. Most probably, this emerging market

exposure is mostly due to noise since the yield curve arbitrage strategies operate on the

developed market interest rates of the Eurozone.

Generally, based on the results of the Fung-Hsieh ABS regressions, it seems that the

Vasicek model is more attractive from hedge fund perspective compared to the neural network

model since the Vasicek model produces clearly higher multifactor alpha and has exposure

to only one of the ABS factors. In addition, the R2 of 0.114 is a lot smaller compared to the

neural network (0.277).

6.3 Quantile Regressions

This section analyzes the tail risk of the strategies in more detail. The yield curve arbitrage

strategy returns are divided into 20 quantiles, and then the strategy returns are regressed

with the previously presented Fama-French/tail risk factor regression model inside each

quantile. Quantile regressions are used in a similar manner by Adrian et al. (2011) to

evaluate the tail risk exposures of hedge fund strategies with the di↵erence that Adrian

et al. (2011) regress the strategy returns pairwise with each risk factor but here multifactor

regressions are employed for each quantile in order to avoid omitted variable bias in the

quantile regressions.

44



(a) Neural network, carry (b) Neural network, credit (c) Neural network, high-minus-low

(d) Neural network, market (e) Neural network, momentum (f) Neural network, small-minus-big

(g) Neural network, liquidity (h) Neural network, slope (i) Neural network, volatility (implied)

(j) Neural network, volatility (level

shift)

Figure 5: Neural network strategy, multifactor quantile regression t-statistics. The dashed lines denote the

5% (green) and 1% (red) significance levels.
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(a) Vasicek, carry (b) Vasicek, credit (c) Vasicek, high-minus-low

(d) Vasicek, market (e) Vasicek, momentum (f) Vasicek, small-minus-big

(g) Vasicek, liquidity (h) Vasicek, slope (i) Vasicek, volatility (implied)

(j) Vasicek, volatility (level shift)

Figure 6: Vasicek model strategy, multifactor quantile regression t-statistics. The dashed lines denote the 5%

(green) and 1% (red) significance levels.
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Table 5: Multifactor quantile regression results of daily excess returns, left and right tails. The number of

quantiles is 20. Left tail denotes the first quantile of the yield curve arbitrage returns, and right tail denotes the twentieth

quantile. Carry denotes the returns of a Bloomberg carry index on G10 currencies. Credit denotes the returns on Bloomberg

Barclays US aggregated BAA total return index. For the Fama-French factors, HML denotes the value factor (high-minus-low)

and SMB denotes the size factor (small-minus-big). The Fama-French factors factors are based on European data. Liquidity

spread denotes the daily change in the spread between Frankfurt 3-month Interbank O↵ered Rate and the 3-month generic

German government yield. Slope denotes the daily change in the spread between the 10-year German generic government yield

and the 3-month German generic government yield. Volatility (implied) denotes the returns of a Credit Suisse Short VIX

index, and volatility (level) denotes the returns of a Credit Suisse Short Variance Swap index. Regressions are calculated with

heteroscedasticity and autocorrelation robust standard errors with 1 lag. All values denote the t-statisics for the factors.

Dependent variable:

Neural left tail Vasicek left tail Neural right tail Vasicek right tail

Carry -0.115 -0.544 -1.271 -0.717

Credit 0.301 -2.202⇤⇤ 0.011 -1.263

Fama-French HML 0.620 0.259 0.912 -1.315

Fama-French Market 0.721 0.860 0.230 0.164

Fama-French Momentum 0.330 -0.103 -1.411 0.903

Fama-French SMB 0.880 0.329 1.997⇤⇤ 2.058⇤⇤

Liquidity spread 1.707⇤ 3.101⇤⇤⇤ 3.128⇤⇤⇤ -1.110

Slope -3.719⇤⇤⇤ -3.282⇤⇤⇤ -3.615⇤⇤⇤ 0.356

Volatility (implied) -0.671 -0.992 0.471 -1.088

Volatility (level shift) -1.988⇤⇤ -0.663 -0.677 -0.468

R2 0.433 0.2 0.432 0.349

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

The quantile regression graphs for the neural network in Figure 5 imply that the neural

network strategy is exposed to tail risk with respect to the interest rate-related risk factors

slope and liquidity spread. The graphs for the quantile t-statistics of liquidity spread and

slope are both U-shaped, which means that the risk factor significance increases in the tails of
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the strategy. For the Vasicek model, the slope and liquidity spread factors are also significant

in the left tail of the strategy, but the graphs in Figure 6 do not show as clear U-shaped

pattern as with the neural network.

Table 5 presents the multifactor regression results in the left and right tails of both of

the yield curve arbitrage strategies. The results imply the following. Regarding the credit

factor, the strategies behave rather di↵erently in the tails. For the left tail of the Vasicek

model strategy, the credit factor is significant at 5% level whereas it is insignificant for the

neural network strategy in both tails. This result is in line with the previous regression

results of the Fama-French/hedge fund tail risk factor regression model. Also, reflecting on

the previous regression results, it is a bit surprising that the carry risk factor is insignificant

for the neural network model in both tails. Thus, it seems that the neural network strategy

has exposure to carry risk, but this risk is not purely tail risk. Instead of carry tail risk, the

neural network strategy seems to pick up level-shift volatility risk in the left tail. However,

the coe�cient of the volatility level shift is negative, which means that in the left tail of the

neural network strategy, the e↵ect of negative returns for the short variance swap portfolio

is positive for the neural network strategy. This could be beneficial, since during market

tail events, volatility tends to spike. Thus, as the neural network strategy has negative

coe�cient for a short volatility portfolio in its left tail, during market turmoil the volatility

spiking can have a positive e↵ect on the neural network returns, assuming that the neural

network strategy is also simultaneously in its left tail.

With equity factors, both strategies have significant coe�cients for the size factor in the

right tails. However, based on previous literature, the exposure of the strategies to equity

factors is not as surprising as it first might sound. As mentioned previously, Campbell (1987)

finds that fixed income strategies can indeed contain significant amounts of stock market risk.

Considering the interest rate-related risk factors, both the neural network strategy and

the Vasicek model strategy have significant exposure to the interest rate risk in the left tail,

as implied by the significant t-statistics for the slope risk factor. Regarding the liquidity

spread, both strategies have 1% significance in both left and right tails. Again, this is

somehow expected as the liquidity spread mainly depicts overall liquidity and credit risk in

the markets and fixed income arbitrage strategies tend to be exposed such risks. Also, the

48



swap curve incorporates a credit premium in itself, as noted by Liu et al. (2002).

Overall based on the quantile regression analysis, it seems that both the neural network

and the Vasicek model have exposure to mainly interest-rate related tail risks. Based on

the shapes of the graphs in Table 5, the risk factor exposures experience somewhat random

behaviour across quantiles for most of the risk factors. This is a desirable property for the

yield curve strategies as such strategies are expected to have very little co-movement with

the risk factors despite of the market environment.
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7 Conclusions

In this thesis, I analyze the out-of-sample trading performance of a yield curve arbitrage

strategy on EUR swap curve where the modelling is based on a novel hybrid neural network

approach in which a neural network uses the fitted factors of the two-factor Vasicek model

as its inputs. I compare the results to an identical benchmark strategy where the modelling

is based solely on the two-factor Vasicek model. Evaluation of the performance is done

by comparing well-known investment statistics such as the Sharpe ratio, gain-loss ratio and

multifactor alpha. The first hypothesis is that the neural network-based strategy outperforms

the benchmark strategy when performance is evaluated by Sharpe ratio and gain-loss ratio.

The results regarding the first hypothesis are two-fold. Based on Sharpe ratio, the neu-

ral network model performs clearly better compared to the benchmark strategy: the out-

of-sample Sharpe ratio of the strategy 0.81 including transaction costs is generally higher

compared to the benchmark strategy, which has Sharpe ratio of 0.68. The gain/loss ratios

of the strategies are practically equal.

The second hypothesis is that the neural network-based strategy produces positively

skewed returns with high kurtosis. The results support this hypothesis. Also, the skewness

and kurtosis values for the neural network strategy are quite much higher compared to the

Vasicek model.

The third hypothesis is that the neural network model produces positive, significant

multifactor alpha. The results support this hypothesis as after controlling for well-known

systematic risk factors, both the neural network strategy and the Vasicek model strategy

produce significant alpha. This result is also in line with previous literature on yield curve

arbitrage strategies.

The fourth hypothesis is that the neural network model has low exposure to well-known

risk factors. The results of the multifactor regression analysis do not fully support this

hypothesis as the neural network strategy has significant coe�cients for especially interest

rate-related risk factors. In this sense, the Vasicek model benchmark strategy seems to have

more suitable properties for a hedge fund arbitrage strategy compared to the neural network

model.
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The final hypothesis states that the neural network strategy has notable levels tail risk

with respect to systematic risk factors. The results of the quantile regression analysis imply

that both of the strategies have significant tail risk coe�cients for interest rate-related risk

factors. In addition, the neural network model has significant left tail exposure for level

shifts in volatility, and the Vasicek model has significant left tail exposure to a credit risk

factor.

Even though the Vasicek model benchmark strategy has less exposure to risk factors

compared to the neural network strategy, the Vasicek model strategy has a larger maximum

drawdown of around -28% compared to -16% of the neural network strategy. One possible

explanation for this is that the maximum drawdown takes place on a time period when the

interest rates entered negative territory in the Eurozone, and that the Vasicek model is not

able to adapt to the change in the interest rate dynamics as quickly as the neural network

model.

To conclude, it seems that the Vasicek model benchmark strategy has more of the features

of a market neutral hedge fund arbitrage strategy as it has less exposure to risk factors and

produces higher multifactor alpha. On the contrary, the neural network strategy is more

desirable from an investment point of view as it has rather high Sharpe ratio, the magnitude

the maximum drawdown is smaller and the absolute cumulative performance is higher during

the out-of-sample period. The promising results of the neural network strategy show the

potential of applying machine learning models in the context of interest rates, and further

research could focus on applying machine learning models for interest rates in a more general

setting.
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Garcia, R. and Gençay, R. (2000). Pricing and Hedging Derivative Securities with Neural Networks

and a Homogeneity Hint. Journal of Econometrics, 94(1-2):93–115.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT press.

Grinblatt, M. (2001). An Analytic Solution for Interest Rate Swap Spreads. International Review

of Finance, 2(3):113–149.

Gu, S., Kelly, B., and Xiu, D. (2018). Empirical Asset Pricing via Machine Learning. Technical

report, National Bureau of Economic Research.

Gu, S., Kelly, B. T., and Xiu, D. (2019). Autoencoder Asset Pricing Models. Available at SSRN.

Heaton, J., Polson, N. G., and Witte, J. (2016). Deep Portfolio Theory. arXiv preprint

arXiv:1605.07230.
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