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Abstract 
This study focuses on the order picking process of a distribution center (DC) supplying locomotive 
and railroad car parts. The DC employs a manual picker-to-parts system where pickers move on foot 
or by vehicular means. Efficiency of an order picking process in such a DC mainly depends on three 
problems when the layout of the DC is given: the storage location assignment problem (SLAP), the 
order batching problem and the order picker routing problem. This study focuses on the aggregate 
effect three major decisions have on order picking performance in a manual picker-to-parts ware-
house. 
   To study the effects of these three sub-problems, we create a framework that allows us to run sim-
ulated scenarios with different approaches to these problems. To solve the SLAP, we employ a hybrid 
of class-based and family grouping methods by enhancing a class-based SKU location assignment 
with modern clustering techniques. To further improve the order picking process, we experiment 
with various order batching methods. We use picker routing heuristics to evaluate combinations of 
the storage location assignments and batching procedures. Over a set of order lines to be fulfilled, 
the objective function is be the aggregate distance covered over the warehouse floor. We show that 
distance savings of more than 55% can be achieved by rearranging the DC. Moreover, we show that 
stock keeping unit (SKU) clustering can improve the performance of class-based storage location 
assignments and that even simple order batching algorithms are likely to improve order picking 
performance significantly. 
   Based on the framework, we develop a tool set that encompasses the aspects concerning the DC’s 
order picking process. The solution will be implemented into a cloud-computing environment, al-
lowing for real-time tracking of the DC’s order picking efficiency and the generation of visual tools 
that help move SKUs to desirable shelf locations and batch orders. 
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Tiivistelmä 
Tutkimus keskittyy veturien ja junavaunujen osia varastoivan jakelukeskuksen keräilyprosessiin. 
Jakelukeskuksen keräily suoritetaan jalan tai erilaisilla kulkuneuvoilla. Kolme suurinta 
keräilytoiminnan tehokkuuteen vaikuttavaa tekijää ovat varastoitavien nimikkeiden sijoittelu, 
tilausten yhdistely suuremmiksi kokonaisuuksiksi sekä keräilijän reitittäminen. Tässä 
tutkimuksessa tutkitaan näiden tekijöiden vaikutusta keräilyn tehokkuuteen. 
   Loimme viitekehyksen, jonka avulla voidaan arvioida näiden kolmen aliongelman vaikutusta 
keräilyn tehokkuuteen simulaatiomallien avulla. Nimikkeiden sijoitteluongelma ratkaistiin 
luokka- ja klusteriperusteisten strategioiden hybrideillä. Tilausten yhdistelyongelma taas 
ratkaistiin kahdella heuristiikalla. Erilaisten nimikesijoitteluiden ja tilausyhdistelystrategioiden 
kombinaatioiden tehokkuuden mittaaminen suoritettiin jakelukeskusta varten luodulla keräilijän 
reititysheuristiikalla. Päätösmuuttujana käytettiin tietyn tilausjoukon sisältämien keräilyrivien 
keräämiseen käytettyä matkaa. Parhailla kombinaatioilla saavutettiin yli 55 prosentin säästö 
nykytilanteeseen verrattuna. Lisäksi todettiin, että luokkaperusteista nimikesijoittelua on 
mahdollista tehostaa klusteroimalla nimikkeitä. Tulokset osoittavat myös, että tilausten 
yhdisteleminen on erittäin kannattavaa ja yksinkertaisillakin menetelmillä saavutetaan suuret 
hyödyt. 
   Viitekehyksen pohjalta rakennettiin työkalu, jonka avulla voidaan hallita ja havainnoida 
jakelukeskuksen keräilyprosessia. Työkalu implementoitiin pilvipalveluratkaisuna osaksi 
tilaajayrityksen varastonhallintaprosessia. Sen avulla voidaan seurata visuaalisten esitysten avulla 
keräilyn tehokkuuden kehitystä, suunnitella muutoksia nimikesijoitteluun ja yhdistellä tilauksia. 
Avainsanat  keräily, heuristiikka, klusterointi, reititys, jakelukeskus 
 



i

Contents
Contents i

1 Introduction 1

2 Literature review 4
2.1 Warehouse layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Storage location assignment strategies . . . . . . . . . . . . . . . . . . . 5

2.2.1 Class-based assignments . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Correlation-based assignments . . . . . . . . . . . . . . . . . . . 8

2.3 Order batching methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Picker routing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Research material and methods 14
3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 The layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 The stock level report . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.3 Historical SKU demand and order pick lists . . . . . . . . . . . . 18

3.2 Class-based storage assignments . . . . . . . . . . . . . . . . . . . . . . 19
3.2.1 Class generation . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Zone divisions . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Correlation-based storage assignments . . . . . . . . . . . . . . . . . . . 23
3.3.1 OPTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Sum-seed algorithm . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Order batching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.1 Seed batching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.2 Random batching . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Picker routing with modified s-shape heuristic . . . . . . . . . . . . . . . 33
3.6 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Results 38
4.1 Dataset description and performance measures . . . . . . . . . . . . . . . 38
4.2 Effects of the storage location assignments . . . . . . . . . . . . . . . . . 39
4.3 Effects of the order batching heuristics . . . . . . . . . . . . . . . . . . . 43
4.4 Accuracy and reliability of the method . . . . . . . . . . . . . . . . . . . 46

5 Discussion, practical implications and conclusions 49
5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Practical implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

References 55

A Normalized pairwise frequencies for the fastest SKUs 58

B OPTICS reachability plot 59



ii

C Performance of storage location assignments and batching combinations. 60

D Visualization tool 62



iii

List of Tables
1 Stock place distribution by block. . . . . . . . . . . . . . . . . . . . . . 16
2 Stock place distributions for zone variants 1, 2 and 3. . . . . . . . . . . . 22
3 Pick lists by type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4 ABC-1 Monte Carlo experiment. . . . . . . . . . . . . . . . . . . . . . . 48
A1 Normalized pairwise frequencies for the fastest SKUs. . . . . . . . . . . 58
C1 Performance of alternative storage location assignments. . . . . . . . . . 60
C2 Performance of all batching and storage location assignment combinations. 61



iv

List of Figures
1 The across-aisle (top), within-aisle (middle) and diagonal (bottom) policies. 8
2 Common routing heuristics in a three-block warehouse as illustrated by

Roodbergen and De Koster (2001a). . . . . . . . . . . . . . . . . . . . . 11
3 Layout of the distribution center. . . . . . . . . . . . . . . . . . . . . . . 15
4 Pallet item demand distribution . . . . . . . . . . . . . . . . . . . . . . 21
5 ABC-1 zone divisions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6 ABC-2 zone divisions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7 ABC-3 zone divisions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8 The ABC-1 assignment with the cluster assignment. . . . . . . . . . . . . 26
9 Relationship of pallet item lines and small item lines. . . . . . . . . . . . 30
10 The 16 common pick locations in the first four blocks of the DC. . . . . . 32
11 The five common pick locations in the last two blocks of the DC. . . . . . 32
12 Picker routes in the four first blocks of the DC. The depot is marked with a

black circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
13 Picker routes in the two rear blocks of the DC. . . . . . . . . . . . . . . 34
14 Example route generated by the s-shape algorithm. . . . . . . . . . . . . 35
15 The order picking framework. . . . . . . . . . . . . . . . . . . . . . . . 36
16 Absolute performance of all storage location assignments. . . . . . . . . 39
17 Relative performance of all storage location assignments. . . . . . . . . 40
18 Moving average time series for selected assignments. . . . . . . . . . . . 41
19 ABC-3 route length distribution. . . . . . . . . . . . . . . . . . . . . . . 42
20 C-ABC-3 route length distribution. . . . . . . . . . . . . . . . . . . . . . 42
21 Relative performance of the seed and the random batching algorithms

compared to FCFS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
22 Relative performance of all batching and storage location assignment

combinations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
23 Absolute performance of all batching and storage location assignment

combinations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
B1 The reachability plot generated by the OPTICS algorithm. . . . . . . . . 59
D1 Visualization tool example. . . . . . . . . . . . . . . . . . . . . . . . . . 62



Introduction 1

1 Introduction

The order picking process is often neglected, although it is the major cost component in

any warehouse and strongly affects supply chain performance. Of all the operations in

a warehouse, order picking is usually the most cost-intensive. In a manually operated

warehouse, order picking involves personnel moving around the warehouse collecting

orders. We define an order as a list of items that the order picker collects during a single

tour around the warehouse. Traveling around the warehouse is laborious and it often

requires a lot of time compared to other warehouse activities. Time spent traveling around

the warehouse collecting items is a non-value-adding direct cost (Bartholdi and Hackman

2011). Therefore, the time spent picking orders should be minimized.

Over the years, the demand structure of many warehouses has changed such that order

sizes have become smaller and orders need to be fulfilled faster (Le-Duc and De Koster

2005). This gives warehouse managers incentive to enhance the efficiency of their order

picking operations. Moreover, literature shows that the implementation of different order

batching methods, picker routing methods and storage location assignment strategies can

drastically reduce the costs attributable to the order picking process (Caron, Marchet, and

Perego 1998). De Koster, Le-Duc, and Roodbergen (2007) argue that in Western Europe,

over 80% of all warehouses are manual picker-to-parts systems, meaning that the issue of

order picking efficiency remains prevalent.

This study concentrates on the optimization of the order picking process in a large dis-

tribution center. The sub-problems faced in this thesis are the storage location assignment

problem (SLAP), the picker routing problem and the order batching problem, which are

the three the main factors affecting order picking efficiency when the warehouse layout

is fixed. For the case distribution center, which specializes in locomotive and railroad

car parts, the efficiency of the order picking process is a primary concern. In addition to

supplying other warehouses of the case firm, the distribution center must deliver orders to

nearby production units throughout the day. Orders from the production units must often

be fulfilled instantly. This requires an order picking process that can output stock-keeping

units (SKU) as quickly as possible. Stock-keeping units can be thought as the different

products or items that reside in a warehouse. SKUs may be be classified based on various

criteria; the case distribution center stores an especially wide range of SKUs ranging from

minuscule items to items weighing tons.

Minimizing the time required to pick orders is analogous to minimizing the distance

traveled in the distribution center. This is a complex optimization problem comprising

many moving parts. The optimization problem concerning the efficiency of the order
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picking process can be divided into four major intertwining decisions. They are 1) the

warehouse layout problem, 2) the storage location assignment problem (SLAP), 3) the order

batching problem and 4) the picker routing problem. Literature has shown multiple ways to

approach each one of these problems. For instance, order batching literature knows dozens

of algorithms that try to solve the batching problem from different angles. Moreover, both

the order batching problem and the picker routing problem are NP-hard, with the routing

problem being a special case of the traveling salesman problem. Most of the time, trying

to find global optima to these problems is useless: the demand characteristics of SKUs are

not constant, but stochastic, and change over time. The sub-problems of the order picking

process are challenging and vast on their own, but only when they are considered in unison,

the complexity of the order picking process really emerges.

The four decisions each deal with a different issue, although they are all relate to each

other and must therefore be considered in unison. The layout problem deals with the

physical dimensions of the warehouse: the number of racks and blocks, aisle configuration,

rack height to name a few. The storage location assignment problem concerns the placement

of the SKUs on the racks of the warehouse. This problem relates closely to the layout

problem in the design phase of the warehouse. Order batching is a method to improve

the efficiency of a warehouse by joining multiple orders into a single order pick list such

that the the number of tours that must be completed is reduced. The batching problem is

closely related to location assignment problem: SKU locations are used to determine the

best batches. The picker routing strategy of a warehouse defines the order in which the

order picker travels the aisles of the warehouse. Routing strategies are used to minimize

the distance the order picker must travel to collect orders.

The goal of this study is to find ways to improve the performance of the order picking

process in the case distribution center. An important criterion is that the solutions proposed

by the model have monetary value and that their implementation is feasible. Hence,

the research question is: "what is the most robust and optimal way to arrange the order

picking process of the manually operated case distribution center to minimize order picking

distance, and what are the main drivers behind improved order picking performance?"

Particularly interesting are the relative importances of the three (SLAP, batching, picker

routing) sub-problems. Moreover, order picking literature is lacking detailed information

about how correlated storage assignments perform compared to other assignments in

different scenarios. One of the goals of this thesis is to fill this gap. Finally, literature lacks

generalized frameworks describing the global optimization of an order picking process in

a manually operated warehouse, which this thesis will also address.

We will begin this thesis with a literature review that first discusses the order picking
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process as a whole, and then the partial problems related to it. Specific importance is given

to literature about the storage location assignment problem and the order batching problem.

Second, in the empirical part, we first present the framework that is used as the basis when

modeling the order picking process of the distribution center. Then, we discuss the data

sources required to model the process after which we meticulously describe the methods

that were employed, including the generation of class-based assignments, SKU clustering,

order batching and picker routing. Third, in the results chapter, we assess the performance

of every simulated decision combination. Moreover, we discuss the credibility of the model

- its inputs and outputs - and whether the results reflect earlier literature or not. In addition,

the model’s practical implications to the case DC’s order picking process will be discussed.
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2 Literature review

The research about manual order picking systems is usually concerned with the warehouse

layout, the storage location assignment, order batching and picker routing. According to

De Koster, Le-Duc, and Roodbergen (2007), although picker-to-parts systems comprise

the majority of all warehouses, order picking literature tends to concentrate on AS/RS

(automated storage / retrieval system) systems. The order picking problem in a manual

picker-to-parts warehouse has, however, been studied extensively. The body of literature

is scattered, and most papers only address a single issue of the complex order picking

problem: comprehensive papers covering the whole process are scarce (De Koster, Le-Duc,

and Roodbergen 2007).

More often than not, literature considers at least one of the decisions affecting order

picking performance fixed. For instance, the large majority of newer papers simulating

different scenarios utilize a standard single-block warehouse (see e.g. Bindi et al. 2009;

Zhang 2016; Zhang, Wang, and Pan 2019). Because of the multidimensionality of the

order picking process, iteratively calculating the performance of each and every decision

set is computationally cumbersome (Chen et al. 2009). Therefore, studying the problems

independently with fixed parameters has been advised. This holds true especially for older

papers, whose authors had very limited computational power at their disposal.

Not many studies suggesting a general procedure by which the order picking process

should be optimized exist (De Koster, Le-Duc, and Roodbergen 2007). However, some

papers address the stock location assignment problem, the order batching problem and the

picker routing problem simultaneously. For instance, Petersen and Aase (2004) assess 27

different strategy combinations to determine the effects individual decisions have on order

picking performance related to each other. Moreover, Chen et al. (2009) introduce an order

picking optimization framework that utilizes data envelopment analysis and a Monte Carlo

method for comparing decision sets.

Next, we will discuss the literature on the four large problems concerning order picking

in a manually operated warehouse, starting with the layout problem. In the empirical part of

this thesis, the layout problem is not directly taken into account: it is taken as is. However,

the physical characteristics of the layout greatly affect the other three large decisions and

vice versa. Then, we will discuss different storage location assignment strategies, order

batching methods and, finally, different picker routing methods.
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2.1 Warehouse layout

In one of the few papers concerning warehouses with multiple pick blocks, Roodbergen

and De Koster (2001a) see the inclusion of additional blocks into the warehouse layout

as a two-edged sword: an additional cross aisle usually reduces average travel distances

(depending on the routing method, storage type and pick list sizes), but it also reduces the

storage space available near the depot area, potentially increasing picking tour lengths.

However, when only one extra block is added, great reductions in tour length can usually

be achieved (Roodbergen and De Koster 2001b). Petersen and Aase (2017) extend this

premise by studying unevenly sized blocks with different class-based storage location

assignments and conclude that block size has a non-significant effect on average route

length.

Therefore, in the planning phase of a warehouse layout, the optimal number of blocks

and aisles to be created should be considered alongside the routing problem and the storage

location assignment problem.

2.2 Storage location assignment strategies

The storage location assignment method determines the rules according to which SKUs are

located in the warehouse. De Koster, Le-Duc, and Roodbergen (2007) identify five typical

strategies, which are the random, closest-open, full turnover, dedicated and class-based

storage location assignments. The dedicated assignment differs from the other rest of

the assignments as it is the only strategy in which the items have predetermined places

that are reserved for certain SKUs. All the other assignments are practical extensions of

the random assignment. Moreover, strategies that try to model the demand dependencies

between SKUs have been proposed (see e.g. Zhang 2016; Kofler et al. 2015; Liu 1999;

Manzini et al. 2007). Such strategies have been called family-based by De Koster, Le-Duc,

and Roodbergen (2007), affinity-based by Kofler et al. (2015) and correlation-based by

Manzini et al. (2007). These strategies usually employ SKU clustering based on some

criterion. In this thesis these strategies will be referred to as correlation-based assignments.

We will now briefly discuss the random and dedicated storage assignments after which

class-based strategies and correlation-based strategies will be covered in greater detail.

The most commonly studied assignment is the random storage location assignment,

in which SKUs are freely distributed on the warehouse racks. The random assignment

sacrifices efficiency (travel time) for an even space use along the racks (Choe and Sharp

1991). The random assignment is often used in scientific experiments as a benchmark

for other stock location assignments (e.g. Le-Duc 2005; Kofler et al. 2015). Moreover,
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the random assignment is usually employed when using more complicated strategies. For

instance, in class-based strategies, the warehouse is divided into zones that contain items

belonging to a certain class: these zones usually use a random storage assignment. The

closest-open storage assignment is closely related to random storage: each item is stored

in the closest available stock place. In the long run, this will create an assignment that is

equal in performance to the random storage assignment (Schwarz, Graves, and Hausman

1978)).

In a dedicated storage assignment, each SKU is reserved its own stock place. This

means that if an SKU is out of stock, no other SKU may be placed in that stock place,

which wastes storage space (De Koster, Le-Duc, and Roodbergen 2007). Bartholdi and

Hackman (2011) argue that non-dedicated (random) assignments do not allow order pickers

to memorize the locations of as the locations can change constantly and a single SKU may

have multiple stock places, whereas this is possible in the dedicated assignment. However,

it is not revealed what the effect of memorizing each stock place on order picking efficiency

is.

The full turnover storage is a form of a dedicated storage in which the items with the

highest demand are located near the depot and the items with low demand are located

further from the depot (e.g. Le-Duc 2005; De Koster, Le-Duc, and Roodbergen 2007).

The full turnover storage is always more efficient than a class-based assignment, but

it is extremely information intensive (Petersen, Aase, and Heiser 2004). Furthermore,

popularity indexes such as the COI (cube-per-order index) are frequently mentioned in

literature. The COI takes into account not only the popularity of the items ordered, but also

their volume requirements (e.g. Kallina and Lynn 1976; Malmborg and Bhaskaran 1990).

Malmborg and Bhaskaran (1990) have proven that COI storage allocation minimizes the

distance traveled in a warehouse in very simple scenarios that concern pick lists with one

or two items. Next, we will discuss class-based and correlation-based storage location

assignments in more detail, because they serve as the basis for the empirical part of this

thesis.

2.2.1 Class-based assignments

Class-based assignments derive from the assumption that SKU demand is skewed. The

general idea is that a small fraction of all items in a warehouse constitute the majority

of all picking operations. Thus, class-based assignments can help "isolate" fast moving

items from slow-moving items instead of using one large zone for all items. The classes

are usually named as follows: A - for fast items, B - for intermediate items, and so on,

depending on the number of classes (e.g. De Koster, Le-Duc, and Roodbergen 2007; Le-
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Duc 2005). This is usually referred to as the "ABC" assignment. Literature does not give

unequivocal recommendations on the number of classes to implement. However, Petersen,

Aase, and Heiser (2004) showed that when the number of item classes is increased, order

picking performance increases and approaches that of a full turnover storage assignment.

They, however, argue that a warehouse with only two classes is only 20% less effective than

a full turnover warehouse. Furthermore, they argue that for practical reasons, in manually

operated warehouses, the number of classes should be between two and four. Figure 1

shows three common ABC configurations, some of which will appear in the empirical

part of this thesis. Racks reversed for fast items have been colored green, yellow for the

intermediate items and red for the slow items in this example.

The class divisions are known to be problematic: what is the most beneficial size for

each class? For example, some similarly demanded items will probably end in different

classes if a class-based assignment is realized. Moreover, The demand of SKUs is often

intermittent (high demand fluctuations for different items), which is not usually taken into

account in literature (Kofler et al. 2015). De Koster, Le-Duc, and Roodbergen (2007)

argue that such scenarios were becoming more and more common. Demand fluctuations

practically mean that certain items may change classes from time to time, meaning that

they should be relocated. Kofler et al. (2015) propose a strategy to minimize the costs

resulting from such re-locations by ranking the re-locations by their effect on picking

efficiency.

Different popularity measures such as pick frequency per time unit or unit count per

time unit may be used to conduct the ABC analysis to assess the demand structure of the

warehouse (Le-Duc 2005). De Koster, Le-Duc, and Roodbergen (2007) also mention the

COI as a possible popularity measure; Caron, Marchet, and Perego (1998) had earlier

studied the use of the COI with different ABC layouts.

The performance of class-based assignments strongly depends on the shape and place-

ment of the storage zones for the classes. Basic class policies include the diagonal, within-

aisle and across-aisle policies (see e.g. Petersen and Schmenner 1999; De Koster, Le-Duc,

and Roodbergen 2007). These three policies are demonstrated in figure 1. These strategies

can have different performance depending on the situation. However, the within-aisle

policy is usually found to be more efficient than the across-aisle policy (see e.g. Petersen

and Aase 2017). Pohl, Meller, and Gue (2011) introduce new unconventionally-shaped

class layouts called the fishbone and the flying-V, of which they argue the former performs

better than the basic policies in most circumstances and the latter better in random storage

scenarios. The choice of the class policy is largely dependent on the picker routing method

employed Le-Duc (e.g. 2005) and Petersen and Schmenner (1999), and the length of the



Literature review 8

Figure 1: The across-aisle (top), within-aisle (middle) and diagonal (bottom) policies.

pick list (De Koster, Le-Duc, and Roodbergen 2007).

2.2.2 Correlation-based assignments

Correlation-based storage location assignments use the demand structure of SKUs in a

warehouse to find relationships between them. When such relationships have been found,

SKUs that are often picked in the same picking tour should be assigned to stock places

close to each other (Brynzer and Johansson 2009).

The relationships between SKUs refer to statistical correlations detected from historical

demand data. In modern information systems, the statistical correlations from historical

data between SKUs should be easily obtainable. The statistical correlations are obtained

via customer order analysis (e.g. Zhang 2016; Bindi et al. 2009). However, the time

window of the sample data must be chosen carefully so as not to include not-up-to date

relationships between SKUs (Brynzer and Johansson 2009). The statistical correlation used

to finding relationships between items is usually a pairwise similarity measure between any

two SKUs (e.g. Manzini et al. 2007; Liu 1999; Zhang, Wang, and Pan 2019). According to
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Zhang, Wang, and Pan (2019), the pairwise correlation can be seen as a link to correlation

between more than two SKUs. Multiple similarity measures have been suggested. Zhang,

Wang, and Pan (2019) discuss many similarity measures proposed earlier; however, most

of them were applied to AS/RS systems. Bindi et al. (2009) divide SKU similarity

measures into two classes: general purpose indices, which only contain information about

the structure of the orders, and problem-oriented indices, which may include more detailed

criteria in addition to the order structure. A very simple similarity measure is employed by

Kofler et al. (2015), in which the pairwise similarity is the quotient of the remainder of the

maximum pairwise frequency of the dataset and the pairwise frequency of any two items,

and the maximum pairwise frequency, which returns a similarity value between zero and

one for each pair of items. This particular measure will be employed in the empirical part

of this study.

The similarity measures are used to extract SKU clusters from the SKUs in the ware-

house. According to Bindi et al. (2009, pp. 237) clustering "is the organisation of products

into different clusters (or families) so that the products in each cluster have high values of

similarity/correlation". Hierarchical and non-hierarchical clustering methods may be used

to find these clusters.

Literature on the performance of correlated storage location assignments is scarcer than

that of the other storage location assignments. However, most papers experimenting with

correlated assignments have achieved better performance than, for instance, typical class-

based storage assignments with regards to travel distance. For example, the SKU clustering

algorithm and location assignment of Zhang (2016) achieved over a 10% improvement

over a three-class turnover-based assignment, and was even marginally better than a full

turnover strategy, in which SKUs are assigned to stock places in a descending popularity

order starting from the best places. Moreover, the proposed similarity index and clustering

storage assignment of Bindi et al. (2009) achieved performance on par with a class-

based assignment. However, Zhang (2016) conducted a controlled simulation experiment,

whereas Bindi et al. (2009) conducted their study on real warehouse data, which had low

overall levels of correlation between items.

2.3 Order batching methods

Batching orders in a distribution center means that smaller orders are combined into a

larger whole to enhance efficiency. De Koster, Le-Duc, and Roodbergen (2007) argue that

order batching is effective when the average order size is small. According to Petersen and

Aase (2004), order batching usually has a larger effect on order picking efficiency than the

storage location assignment and the picker routing policy. However, in manually-operated
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warehouses, order batching can be associated with some practical problems. In this sub-

chapter we will first discuss the methods that have been used to batch orders. Second, we

will discuss the classical heuristic approaches in order batching. Third, the problems related

to the practical implementation of order batching into a manually-operated warehouse will

be discussed.

Ma and Zhao (2014) review the methods that have been applied to solving the order

batching problem. Like with the order routing problem, most of the methods are heuristics,

because the order batching problem is NP-hard, just like the traveling salesman problem

from the picker routing problem.

Classical algorithms include the rule-based algorithms, the seed algorithms and the

savings algorithms (Ma and Zhao 2014). Elsayed (1981) developed four seed algorithms

for the problem, which try to minimize the total distance traveled to collect a set of orders.

Their algorithms first select a seed order, which is either the order with the most or the

least pick locations, or the order with the highest or the lowest number of collectible items

(for a total of four seed order rules). Then, accompanying orders are issued for the seed

order: the next accompanying order is the order which has the largest number of the same

pick locations as the seed order. Such simple algorithms are still used in recent studies (Ma

and Zhao 2014). An application of the Elsayed (1981) seed algorithm is employed in the

empirical part of this study.

Won and Olafsson (2005) proposed two heuristics for solving the order batching

problem and the picker routing problem simultaneously, i.e. their algorithms first solved

the batching problem by minimizing order response time and then solved the traveling

salesman problem for the created batches. Their approach, however, would be ill-suited

for use in manual order picking system due to the use of an optimal routing policy.

Advanced methods, such as the tabu search Henn and Wäscher (see 2012), genetic

algorithms Pan, Shih, and Wu (see 2015), iterated local search and ant colony optimization

Henn, Koch, et al. (2010) have been proposed in order to find the optimal method to batch

orders. However, Gademann and Van De Velde (2005) argue that warehouse managers

are reluctant to implement such advanced batching algorithms, because they are too hard

to understand. Moreover, order batching requires that the batched orders be consolidated

after the picking tour: this requires work, especially when multiple orders are in the same

batch (De Koster, Van Der Poort, and Wolters 1999).

2.4 Picker routing methods

The order picker routing problem has been extensively studied. Much of the research

focuses on different routing heuristics that are usually preferable to the optimal solution in
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practical conditions. The routing heuristic (or the optimal routing) determines the order in

which the order picker collects the items in an order pick list with the intent of minimizing

travel distance (Petersen and Aase 2004). The most common heuristics mentioned in

literature are the s-shape (traversal), the return, the midpoint, the largest gap and the

combined (and its extension) heuristics. Figure 2 shows the routes for a pick list generated

by the some of the common routing heuristics as well as an optimal routing algorithm.

Figure 2: Common routing heuristics in a three-block warehouse as illustrated by Rood-

bergen and De Koster (2001a).

Optimal algorithms for the picker routing problem are interesting because they directly

deal with a modified version of the traveling salesman problem. However, fast and reliable

algorithms for finding the optimal solution are only available for simple, standard-shaped

warehouses. For instance, Ratliff and Rosenthal (1983) developed an efficient algorithm

for a single-block warehouse that contains two cross-aisles, one at the front and one

at the rear of the warehouse. They argue that the application of their algorithm for a

warehouse with multiple blocks would prove impractical. Roodbergen and De Koster

(2001a) acknowledged this and opted to use a branch-and-bound algorithm in their studies
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concerning warehouses with multiple same-shaped blocks. They, however, conclude that

a branch-and-bound method is not suitable for continuous use due to its computational

time requirements. However, computing power of a PC is much higher today than it was

in the time of the study of Roodbergen and De Koster (2001a). In addition, De Koster,

Le-Duc, and Roodbergen (2007) note that an optimal algorithm might not even exist for

some warehouse layouts. Therefore, advanced methods for finding at least close-to-optimal

routes have been proposed. For instance, Hsieh, Huang, and Huang (2007) used particle

swarm optimization (PSO), a population-based stochastic optimization technique enhanced

with a genetic algorithm to find near-optimal solutions.

Generally, literature discourages the use of optimal routing in manually operated

warehouses not only due to the difficulty of implementing fast and reliable algorithms to

finding the optimal solution in the first place, but also due to the practical problems such

routes could cause. For example, from the order picker’s point of view, it is desirable to

have routes that are simple and easy to understand, which the optimal routes rarely are.

Having simple routes allows the order picker to find the pick locations more easily with

less errors (Roodbergen and De Koster 2001a)). However, some heuristics may also appear

too complicated. For instance, Petersen and Schmenner (1999) argue that a combination

of the s-shape and the largest gap heuristic generates routes so complicated that the order

picker is bound to make mistakes.

Petersen and Schmenner (1999) compared the performance of different routing heuris-

tics with different class-based storage assignments. They argue that if for each scenario,

the best performing routing heuristic were chosen, optimal routing would be only 3.3%

more efficient than the mix of heuristics. Moreover, Caron, Marchet, and Perego (1998)

compared the performance of the s-shape and the return routing methods in different

conditions using the COI. Generally, literature offers no one definite ordering of the heuris-

tics, because their performance is linked to other variables. However, the combined(+)

heuristic introduced by Roodbergen and De Koster (2001a) was the best heuristic in over

90% of their experiments, with the largest gap heuristic coming in at second place in

overall performance. Generally, the best routing heuristic seems to strongly depend on the

stock location assignment strategy (De Koster, Le-Duc, and Roodbergen 2007), e.g. the

within-aisle assignment might be more suitable for the s-shape heuristic than, for instance,

the across-aisle assignment.

Finally, from a general point of view, research on the picker routing problem may be

excessive. Petersen and Aase (2004) show that the benefit from using optimal routing

(or a complicated heuristic) instead of, for instance, the s-shape heuristic is negligible

compared to the benefits from introducing batching procedures or a class-based stock
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location assignment. Therefore, the routing strategy should only be considered after the

storage location assignment and the batching method have been optimized.
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3 Research material and methods

For the purpose of optimizing the order picking process in the case DC, we propose a

comprehensive framework addressing the issues that affect order picking efficiency the

most. Based on earlier literature, the most important decisions concerning the order

picking efficiency in manually-operated warehouses were the layout, the storage location

assignment, the order batching method, and the picker routing method, all of which we

discussed in chapter 2. Our empirical framework addresses the last three of these decisions

directly. The first one - the layout - is addressed indirectly via choices made with the picker

routing method. As mentioned earlier, few earlier papers address all of these issues in

real-life scenarios.

In this chapter, we discuss the elements of the framework one-by-one, starting with data

sources and their preparation for the pipeline. Then, we move onto the storage location

assignment, which is split between two phases, order analysis and SKU clustering, and

the actual assignment strategies. After the storage location assignment, we describe the

order batching methods in detail. Then, we describe the picker routing method created for

the DC’s layout. Finally, we conclude this chapter by discussing the framework and its

implementation.

3.1 Data

The data used in this study comprises historical demand data of all the SKUs in the DC

and the layout of the DC. These two data sources are essential for the modeling of the

order picking process. The data also includes the stock level report of the DC containing

information about the SKUs currently in the DC that is used to supplement the demand

data in the modeling phase. According to Bartholdi and Hackman (2011, pp. 231), these

three data sources are needed to model warehouse activity. Modeling the order picking

process of a distribution center accurately is information-intensive. It is imperative that

there is a large supply of historical order data to model the demand of the DCs SKUs

adequately.

Each of the data sources is needed in multiple phases along the pipeline of our frame-

work. For instance, the historical demand data has two main purposes: to order SKUs

based on their demand and to determine their clustering structure. Moreover, the historical

demand data contains information about the SKUs’ batching characteristics which the

batching algorithms make use of. Hence, due to the complexity of the setting, we discuss

each of the data sources separately. We will discuss the data sources and their uses in the

following order: 1) the layout, 2) the stock level report, 3) historical SKU demand and
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order pick lists.

3.1.1 The layout

Earlier research has mostly used simple and easy-to-understand warehouse layouts, al-

though it has never been proven that solutions created for them can be generalized for

more complex layouts in a straightforward way. Exceptions to this rule can be found in,

for instance, Pohl, Meller, and Gue (2011) and Dekker et al. (2004): these papers use

more unorthodox layouts. The layout of the case distribution center can be thought of as

a mix of a multi-block warehouse with front and rear cross-aisles, and a warehouse with

a block with only a front cross-aisle. A layout of this shape is not discussed in literature.

Therefore, we had to create a modeling scheme for this particular layout from scratch. A

simplified depiction of the distribution center modeled in this study is presented in figure 3.

The figure contains the aisle and block definitions used in the modeling of the DC.

Figure 3: Layout of the distribution center.

The case DC is a long, rectangular-shaped building that comprises two large compart-

ments and a third, smaller compartment at the back of the warehouse. The depot area is

located on the upper right hand side in figure 3. The two large compartments have narrower

aisles that are used for changing pick aisles. The narrower aisles effectively divide the

building into six warehouse blocks. Four of these blocks are in the front portion of the

warehouse and two of them in the rear. The vertical black lines in figure 3 show the block
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division. These blocks somewhat differ in size and shape. The six blocks are the basis for

the modified s-shape picker routing method (see 3.5) that is used to estimate route lengths

for order pick lists. The two main compartments have four parallel aisles each. The third,

smaller compartment, however, contains six parallel aisles, which, for practical purposes

were reduced to three in the modeling phase (see 3.5).

The document containing the DC layout is a PDF file, which can be used for the

extraction of the coordinates of individual racks in the DC with great accuracy. In figure 3

depicting the DC, the small rectangles of different sizes represent the individual racks. Each

of these racks has a number of individual stock places. Unique stock places have a unique

identifier code that follows a simple convention, making the identifier easy to manipulate.

The quantities of the unique stock places in each rack is used to create simulated SKU

placements in the DC (see 3.2.2). A single rectangle may contain a few dozen unique stock

places. Therefore, consolidating the stock places into larger units such as single racks (i.e.

rectangles) is the only way to purposefully simulate a SKU location assignment given the

very high number of individual stock place identifiers.

The consolidation process is extremely simple for every stock place in the DC. The

unique stock place identifier code for each stock place contains, among more accurate

location information, information about the rack row of the stock place and its position in

the rack row indicated by a running index. These two pieces of information can be used to

pinpoint a unique stock place identifier to a rack (rectangles in the figures) by modifying

the identifier code with string operations. After the consolidation, we are left with 310 and

212 possible physical locations for the pallet and small SKUs, respectively. This way, only

522 unique coordinates for the stock places are needed. Dekker et al. (2004, pp. 305-306)

employed similar tactics to reduce the number of individual stock places. The physical

sizes (total unique stock place identifiers as a proportion of the total) and the number of

individual coordinates in each block are reported in table 1.

Table 1: Stock place distribution by block.

Block 1 2 3 4 5 6

Stock places (of total) 19.1% 18.7% 17.7% 8.5% 31.2% 4.8%

Total consolidated 86 84 82 45 176 49

We notice that blocks one, two, and three are nearly equal in size. Block four is

considerably smaller, whereas the fifth block in the second large compartment of the DC is

very large compared to the other blocks measured in both metrics. The sixth block in the

back of the DC has very low overall capacity compared to the other blocks. Furthermore,
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the rectangles, or the unique racks, may be divided into two classes: pallet racks that may

hold extremely heavy items and racks specifically designed to house small items. The small

item racks (tiny rectangles) are located in the lowest parallel aisle of the warehouse (see

picking aisle 1 in figure 3), whereas all the other racks are pallet racks (larger rectangles).

The distinction between pallet and small item racks makes solving the storage location

assignment problem somewhat harder later on (see 3.2.1). For instance, items that are

small may be placed on the pallet racks but large items may not be placed on the small

item racks.

Evidently, the layout is essential for the picker routing heuristic and the class-based

storage assignment methods. First, the routing heuristic needs distances (derived from

the rack coordinates) so that it can calculate routes according to SKU locations (see 3.5).

Second, zones (see 3.2.2) for the class-based methods are derived straight from the layout,

with the rectangles in figure 3 being divided into zones for the classes. Last, evaluating

different decision combinations would not be possible without the exact layout of the

warehouse. The models used in this study do not use approximations or other methods to

determine the pick locations of SKUs during simulation that are common in older studies,

but stock locations accurate to less than a meter that take into account differences in rack

sizes and types. Taking this approach allows for detailed analysis of different picking

routes later on.

3.1.2 The stock level report

The stock level report may be used to study the distribution of the items in the DC: this

is beneficial when we deploy artificial SKU locations in the storage location assignment

phase. The report is used to assess the utilization rate of different racks of the DC - the

approximation of which in the storage location assignment phase is very hard. Therefore,

it may give insight into the number of SKUs that may be assigned to each zone in the

class-based assignments (see 3.2.1). The report itself is a static document that updates

daily. It contains information about the SKUs that are currently in the warehouse. Most

importantly, it reports some item specific information for each SKU: the type of the item,

its current stock quantity and value - and most importantly - its storage location, i.e. its

stock location identifier.

During data preprocessing (see 3.1.3), the stock level report is used to filter out un-

desirable rows from the demand data. Specifically, demand rows for SKUs that are no

longer present in the warehouse are omitted, because such items have no future expected

demand from the DC and - as such - cannot be used to model the process anymore, and

their inclusion into the analyses would cause inaccuracies.



Research material and methods 18

The stock location report has a large role in the deployment of the model in practice.

During the practical implementation of a proposed model, it is used as the basis for the

lists that suggest changes to the storage location assignment. Specifically, the current SKU

storage locations presented in the stock level report are compared to the locations in the

proposed storage location assignment, which immediately tells the warehouse personnel

whether an SKU is currently located in the correct area or not.

3.1.3 Historical SKU demand and order pick lists

The most critical part of this study is the DC’s event data, because it allows us to define

what has been taken from the warehouse racks. We must determine 1) when an SKU

has been taken from the racks 2) if the SKU was the only pick of the tour or were there

other SKUs picked at the same time 3) what the locations of the order pick lines were

according to the warehouse layout picture. We define an order pick line as a row in the

order describing an SKU to be collected during a single tour. We argue that the demand

data is more crucial than the exact layout picture, because the layout picture could be

approximated via various methods. However, to meaningfully generate storage location

assignments, individual demand data for each of the SKUs in the warehouse is required.

The DC event data is fetched from a database that lists all stock events from every

warehouse of the client firm. The database is located in a cloud-computing environment

from which the required data is extracted via SQL queries. The data set is intricate and

understanding it requires good knowledge of the DC’s bookkeeping rules. For instance,

there is a large number of different stock event types, the use of which is not always

universal across the database. In addition, the meaning of some of the stock events is

unclear without thorough investigation of both the database and the underlying warehouse

process. Therefore, extensive pre-processing of the event data was required to filter out

pure SKU demand data for the DC. The pre-processing mainly concerned data unfit to be

modeled and the different pick operation types. The pre-processing steps were roughly the

following:

1. Find only the data concerning the case DC.

2. Only consider negative stock events: a negative "quantity" value indicates a pick

event.

3. Determine which stock event types can depict pick events (see 4.1 for more informa-

tion).

4. Filter out events that do not involve the order picker moving around the DC.
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5. Filter out order pick rows whose SKUs are not currently present in the stock level

report.

After pre-processing, the data is ready to be used to model the system. The procedures

where the processed demand data is used are: 1) ABC analysis (see 3.2) 2) order analysis

(see 3.3) 3) SKU cluster analysis according to the information obtained in step 2 (see

3.3) 4) batching according to the information obtained in step 2 (see 3.4). Moreover, the

pure processed event data may be fed directly into the picker routing algorithm to assess

the current and historical performance of the DC’s order picking efficiency. Finally, the

processed data may be further altered to use simulated storage location assignments to

see, what the order picking efficiency of the warehouse would have been had the location

assignment been different.

The stock event data does not tell us about the structure of the real pick order lists: a

realized picking tour is not necessarily the same as the whole pick list. This could happen

due to e.g. the pick list being too large to be picked in a single tour (multiple tours required

for a single list) or inconsistencies in data input. The extraction of the event lines belonging

to the same tour from the event data was done by grouping lines of a single event type

(pick lists may only contain lines of the same event type) according to their event times:

all lines that have been input to the system with the same timestamp are considered part of

the same picking tour (as soon as a set of pick lines arrives in the depot area, a stock event

is created). This strategy allowed a fairly accurate extraction of the realized pick lists and

their SKUs.

3.2 Class-based storage assignments

The main method of improving the efficiency of the order picking process is the manipula-

tion of the storage location assignment, alongside changing the picker routing and batching

policies. Class-based storage assignments are universally used in many order picking

processes because of their flexibility and ease of implementation. The reasons to employ a

class-based storage with multiple zones in the case DC are numerous:

• The length-to-width ratio of the case DC is very high and the pickers use somewhat

slow vehicles to move around. A totally random assignment is thus discouraged.

• The demand structure of the DC is skewed: a fraction of the SKUs constitute a large

part of the total demand measured in order pick lines.

• More complex methods such as the COI-measure are discouraged because of insuffi-

cient data.
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• Literature emphasizes the need for robust location assignment solutions.

• Class-based assignments may be complimented with correlation-based methods.

Next, we will describe how the SKUs were divided into different classes based on

their expected demand. We discuss the generation of the popularity measure for the SKUs.

Second, we will describe three class-zone variants to be used in the simulations. Last, we

will describe the method we used to communicate the proposed class-zone variant to the

DC personnel and how the proposed storage location assignment could be achieved the

easiest and the fastest.

3.2.1 Class generation

The DC contains two different kinds of racks (see 3.1.1): large pallet racks and small

item racks for small SKUs. The two SKU classes have somewhat different demand

characteristics, so we opted to run two parallel demand analyses: one for each of the SKU

types. This approach is endorsed by the fact that all the small SKU racks are located

in a single pick aisle - effectively in their own compartment. This makes the practical

implementation of the proposed models easier, although increasing computational time

by almost a half. These demand analyses are essentially the ABC analyses that were

introduced in 2.2.1.

We defined three classes based on SKU turnover for both the large pallet racks and

the small item racks for a total of six classes. The analysis itself was conducted in the

following manner: 1) determining the time window (how many months of demand data is

used to estimate SKU demand) for the demand data 2) calculating the number of times each

SKU appears in a pick list during the time window 3) sorting the resulting list of SKUs in

a descending order based on the number of pick list occurrences (i.e. SKU demand). Then,

the class divisions were based on the Pareto principle: a small number of unique SKUs

account for the majority of the pick events (see figure 4). To generate classes, we simply

cut the SKU distribution at certain percentiles (of total demand rows). The demand row

percentiles that divide the SKUs in classes were different for the two SKU types pertaining

to the differences in the physical size of the ABC class zones in the DC (see 3.2.2). We

named the three classes the fast, intermediate and slow SKUs. The fast, intermediate and

slow SKUs are divided with black vertical lines in figure 4 with the fast SKUs generating

70%, the intermediate SKUs 25% and the slow SKUs 5% of total SKU demand. Figure 4 is

the visualized output of the ABC analysis for the pallet items, where the x-axis reports the

SKU demand rank (descending popularity order), and the y-axis the cumulative number of

order pick lines (total demand) during the time window for the analysis.
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Figure 4: Pallet item demand distribution

The percentiles (y-axis) that split the distributions in three parts in figure 4 are somewhat

arbitrary: due to unavailability of accurate volume information of the SKUs and the stock

places, it was impossible to determine them accurately. The values used are based on the

approximate current utilization rate of the warehouse based on the stock level report (see

3.1.2). In the analysis, the split percentiles will be adjusted for each of the ABC zone

variants independently with some headroom. Figure 4 shows only items that have been

picked during the time window used in the ABC analysis: only a portion of slow items is

shown in the figure (items with zero demand are considered slow). Only once the model’s

implementation in the DC has been going on for a while, can the parameters be fixed: the

zones’ true capacity will then be empirically tested. The inaccuracy of the ABC parameter

settings at this point is not serious because of the shape of the cumulative distribution

functions: adding more slow SKUs to a faster zone exhibits the law of diminishing returns.

Most of the SKUs move so slowly that their effect on the overall performance of the

process is trivial, i.e. if improvements to the efficiency of the order picking process can be

made, the majority of the improvements can be achieved with quite a low number of SKU

re-locations between the classes.

3.2.2 Zone divisions

For the analysis, three different zone variants were created. The zone variants differ in

shape and physical size. The physical size of a zone is measured by the quantity of unique

stock places it contains. The three variants can be thought of as the across-aisle (ABC-1),

within-aisle (ABC-2) and diagonal (ABC-3) layouts that were repeatedly mentioned in

literature (see 2.2.1). Due to differences in the physical size of the zones in the three layout
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models, the ABC analyses for each of the layouts was run with different split parameters

(see 3.2.1 and figure 4). Figures 5, 6 and 7 show the layouts used in the analysis. In each

figure, the green part of the DC is reserved for the fast moving SKUs, the yellow part for

the intermediate SKUs and the red part for the slow SKUs. The figures do not contain the

rear part (blocks five and six) of the DC presented in figure 3, as it is reserved for the slow

items in each ABC layout model. Table 2 shows how the capacity in the distribution center

is divided between the three classes in each of the three layout models.

Table 2: Stock place distributions for zone variants 1, 2 and 3.

% of total capacity Fast (green) Intermediate (yellow) Slow (red)
ABC-1 20.0% 38.1% 41.9%

ABC-2 20.8% 46.2% 33.0%

ABC-3 19.2% 38.9% 41.9%

Figure 5: ABC-1 zone divisions.

The ABC-1 model has a clear layout: the fast zone ends at the first cross-aisle, the

intermediate zone ends at the third cross-aisle and the slow zone covers the rest of the DC

for both SKU types. The zone division thus follows the physical constraints set by the DC

layout. The physical proportions of the zones in this layout are roughly 1:2:2 for the fast,

intermediate and the slow zones, respectively, with visual inspection. The true stock place

distributions are very close to these values at 20.0%, 38.1% and 41.9% of total unique

stock places in the DC.

The second zone variant (figure 6) is totally different from the first one: now the fast

zone has been assigned a very large area that covers the first pick aisle in its entirety (for

pallet SKUs). The rest of the front part of the DC has then been assigned to the intermediate

zone and the back part of the DC to the slow zone. In this zone variant, the intermediate

zone for the small item racks covers the first four blocks instead of the first three in the

other two layouts. This zone variant includes a very long fast SKU zone for pallet items and

we expect it to perform worse than the other two variants. The physical sizes of the zones
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Figure 6: ABC-2 zone divisions.

are, however, not that different from the other two variants: now the fast zone includes

20.8%, the intermediate zone 46.2% and the slow zone 33.0% of all stock places.

Figure 7: ABC-3 zone divisions.

The third variant, the ABC-3 (figure 7) is essentially ABC-1 with slight modifications

to the shape of the fast and intermediate pallet zones. It is somewhat similar to the diagonal

ABC layout often mentioned in literature. The triangular zones were created to test whether

there is enough correlation between the small SKU type and the pallet SKU type: the

longer edge of the fast pallet zone lies next to the fast small SKU zone, which allows more

fast SKUs to be placed closer to it. If high demand correlation was present between these

two fast zones, we hypothesized that the ABC-3 model would perform somewhat better

than the ABC-1 model. Although this layout looks curious on paper, in practice it could

be implemented as easily as the two other zone variants. The physical sizes are almost

identical to that of the ABC-3 layout: 19.3%, 38.9% and 41.9% to the fast, intermediate and

slow zones, respectively. Because the physical sizes of the zones in ABC-1 and ABC-3 are

almost identical, we can easily determine, which one of them is more efficient by running

the ABC analyses for them with the same parameters (see 3.2.1) to achieve identical rack

utilization rates for both variants.

3.3 Correlation-based storage assignments

The DC contains thousands of unique SKUs. We define an SKU cluster as a set of SKUs that

are statistically correlated - they are often picked during the same tour. Only a fraction of all
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SKUs can be considered part of an SKU cluster, i.e. the overall level of demand correlation

between items in the DC is low. Therefore, creating a storage location assignment for the

whole DC using only SKU clusters is impossible: the clusters must be used to complement

another assignment, namely the class-based ABC assignment, which classifies the SKUs

based on their expected demand. Hence, the storage location assignment method that

exploits SKU correlations will be a combination of the two strategies: the class-based

method will be the main method (random assignment inside zones) in the background,

and a limited number of significant SKU clusters (dedicated assignment) will be located

in the zones. Mixing the two strategies together may cause some problems. However:

1) the number of SKU clusters is very limited, 2) most of the clusters should already be

self-evident for the DC personnel, 3) all clusters will be located in a relatively small area in

the fast moving SKU zones seemingly separate from the random items (see 8). Therefore,

including the cluster assignment into the class-based system should be feasible.

Using clusters alongside the class-based method has two main advantages over the

pure class-based method: in the fast zones, cluster SKUs may be assigned to stock places

adjacent to each other, which reduces the distance the picker needs to travel to collect

all items in a pick list. This is especially useful, when there are many pick aisles in a

zone: random assignments of clusters would lead to much longer travel distances. In such

scenarios: clustering should reduce the number of aisles a picker needs to travel to complete

a tour, on average. During the implementation phase of the new stock location assignment,

the found SKU clusters have another use. If, in the current location assignment, the

SKUs of a cluster are scattered throughout the warehouse, it may be beneficial to schedule

the moving of the SKUs of the cluster such that all of them will be moved to their new

locations subsequently, and the moving will began with the SKU farthest from the depot

area. This will help generate SKU moves that have maximum positive effect on order

picking distances early on in the relocation phase.

Literature discusses many ways to model SKU correlations and a variety of clustering

methods have been developed. Pairwise SKU demand frequencies are the most common

method of modeling SKU correlation. From a practical point of view, these pairwise

frequencies are quite easy to obtain if sufficiently accurate demand data is available.

Specifically, if the SKUs belonging to each picking tour in the warehouse are known, the

pairwise frequencies between SKUs may be calculated. In practise, obtaining the pairwise

frequencies requires computing a square matrix the elements of which show the times

SKU A has been picked together with SKU B during a preset time window. We will call

the elements the pairwise frequencies hereinafter. Depending on the number of the SKUs

that have been demanded during the time window set for finding SKU correlations and the
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number of individual pick lists in that window the resulting matrix may be very large and

its generation may be computationally expensive.

We will now intricately describe the creation of the pairwise distance matrix and how

it may be used to cluster SKUs. Note that the use of the pairwise distance matrix limits

us only to clustering algorithms that do not need a feature matrix, as we only have the

matrix to describe the relation between any two SKUs. In order to create the pairwise

distance matrix, historical demand of the SKUs and information about the items picked in

a single picking tour (see 3.1.3) are needed. The matrix is generated by applying a simple

algorithm to a pre-processed set of demand data accompanied by the batching information

(information containing the SKUs picked within each picking tour). The procedure to

generate the pairwise frequency matrix is:

1. Create a list containing every SKU that appears in the dataset sorted in descending

order according to their demand, i.e. the list starts with the fastest moving items.

2. Create the null matrix C of the shape n x n, where n is the number of unique SKUs

in the dataset. Set both axis indices the same, starting from zero so that they match

the ordering of the list created in stage 1.

3. Now, each element of the matrix corresponds to a pair of SKUs identified by the row

and column indexes.

4. Begin the algorithm by finding the first batch of items from the demand data.

5. For each SKU pair (i.e. combination of two SKUs) in the first batch, increase the

corresponding elements of the pairwise frequency matrix by one. Note that the

matrix is symmetrical: two elements must be manipulated for each SKU pair.

6. Repeat stage five for every batch in the demand data.

7. Once every batch has been processed, the matrix is ready. Finally, set the diagonal

of the matrix to zero to exclude batches where (erroneously) a single SKU has been

listed twice.

8. To normalize the matrix into a form the OPTICS (Ankerst et al. 1999) algorithm

understands, apply a conversion to its elements:

Ci j = 1−
Ci j

maxCi j
(1)

where i is the row index and j is the column index of the matrix C. maxCi j is

the element of C with the highest absolute value. Now, each element has a value
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between zero and one. Values closer to zero indicate an SKU pairing with higher

importance. The OPTICS algorithm that will be applied to this matrix will consider

the SKUs based on these pairwise distance values. For the sum-seed algorithm, this

normalization is not necessary, because the algorithm works purely on the absolute

pairwise frequencies. A partial pairwise frequency matrix used in SKU clustering

can be found in Appendix A.

In the program code (when cluster assignments are used), the cluster SKUs are assigned

stock places very close to each other and all the clusters are located next to each other in

the fast moving SKU zones (see purple racks in figure 8). The clusters are located in the

same racks in all three ABC layouts. When items belonging to clusters have been assigned

storage locations, the rest of the SKUs belonging to the zone will be assigned to the zone

randomly. If there are some non-fast-moving SKUs in the clusters, the same number of

fast-moving non-cluster SKUs will be pushed to the slower intermediate zone (and the

same number of SKUs from the intermediate area to the slow area). Thus, the cluster

assignment used in this thesis gives intermediate or even slow moving SKUs belonging to a

cluster greater importance than to fast moving SKUs that have no measurable relationship

with other SKUs.

Figure 8: The ABC-1 assignment with the cluster assignment.

Next, we will introduce the clustering algorithms that were used to find correlated

itemsets for the storage location assignments. We used multiple algorithms to double check

that the they were working as supposed. In addition to the two algorithms described next,

we also experimented with the apriori algorithm commonly used in market basket analysis,

k-means clustering, and the DBSCAN algorithm. Those algorithms proved vastly inferior

compared to the OPTICS and sum-seed algorithms, when it came to finding meaningful

SKU clusters from the quite sparse data set. For instance, the apriori did indeed find

the most common item sets from the data, but also returned dozens of slightly different

variations for those sets. Moreover, the DBSCAN algorithm seemed to find meaningful

clusters, but it was found out that it would not accept SKUs of differing demands into the

same cluster. The OPTICS and the sum-seed algorithms, however, were able to include
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items with different turnover rates into clusters, making them far superior to the other

options.

3.3.1 OPTICS

Ordering of the points to identify the clustering structure or OPTICS is a density-based

clustering algorithm proposed by Ankerst et al. (1999). It is a generalization of the DB-

SCAN (short for density-based spectral clustering for applications with noise) algorithm.

A major benefit of OPTICS compared to e.g. DBSCAN or K-means clustering is that

it is able to extract clusters which include members of differing densities, i.e. in this

case it is better at finding SKU clusters that have both high and low turnover items. The

OPTICS implementation used in this study is the one found in the "Cluster" library of the

scikit-learn machine learning package for Python.

Because there is large variation in the demand frequencies between the SKUs in the

DC’s demand data, OPTICS will outperform most other clustering techniques. Another

benefit of the algorithm is that its parameter setting is simple: setting the noise threshold is

easy, i.e. a single parameter controls the "difficulty" of an SKU entering a cluster. Appendix

B shows the so-called reachability plot for the SKUs included in the cluster analysis. The

algorithm searches for SKU clusters in the valleys between any two higher-reaching points

in the reachability plot.

Due to the nature of the SKU demand data, the algorithm needed to be run twice

for different pick event types. Altogether, the algorithm was able to find a couple dozen

meaningful SKU clusters of differing sizes and with SKUs with different demands. OPTICS

does not limit the size of the clusters it finds, but a lower limit must be set: in this case it

was set at three SKUs. The largest clusters include approximately fifty SKUs, whereas the

smallest meaningful SKUs include three. The algorithm lists the clusters based on their

relevancy: the first few clusters are large and their SKUs all have relatively large demands.

Then the clusters keep getting smaller or the demands of their members start getting smaller,

implying weaker relationships between SKUs. This feature is very important since the

more important clusters constitute a very large part of the total SKU demand rows. A

threshold was set such that the algorithm finds a large number of clusters so as not to

exclude any meaningful ones. During the implementation phase the clusters near the

end of the list provided by the algorithm may then easily be discarded as non-significant.

Such non-significant clusters may, for instance, contain three SKUs but only a handful of

demand lines in total, i.e. it would be more beneficial to consider these items as not being

part of any cluster at all.
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3.3.2 Sum-seed algorithm

Zhang (2016) proposes two simple algorithms to cluster SKUs based on their pairwise

demand frequencies. They propose the static-seed and the sum-seed algorithms, which use

very simple procedures to extract clusters from the SKU demand data. This is appealing

for practical purposes as the algorithms can be written in only a few rows, calculate fast

and perform reasonably well. The sum-seed algorithm tries to create clusters one after

another based on the pairwise frequency values the current seed has with all the other

SKUs currently left in the pairwise frequency matrix.

The sum-seed algorithms works in the following way (see Zhang 2016, pp. 32)):

1. Generate the pairwise frequency matrix as described in 3.3. Do not normalize it.

2. Find the fastest moving SKU from the list containing the SKUs in a descending

popularity order and add it to a new cluster. Remove it from the popularity list. The

SKU becomes the seed.

3. Filter the rows of the pairwise frequency matrix with the seed. Locate the the SKU

with the highest pairwise frequency with the seed and add it to the cluster if the

maximum pairwise frequency is higher than a preset threshold value. If no such

SKU is found, end the algorithm and remove the seed from the pairwise frequency

matrix’s rows and columns.

4. If a suitable SKU is found and added to the cluster, the seed is modified: the seed

now contains all the SKUs added to the cluster at this point.

5. Similarly to part three, find the SKU with the highest pairwise frequency with the

seed. When there are multiple SKUs in the cluster already, find the SKU with the

highest aggregate pairwise frequency value with the seed and add it to the cluster.

The algorithm ends if: 1) no SKU satisfying the minimum threshold can be found 2)

the cluster has exceeded the preset value of maximum SKUs allowed in a cluster.

6. Once the cluster is complete, delete its members from the popularity list and the

rows and the columns of the pairwise frequency matrix.

7. Again, find the fastest remaining SKU from the popularity list and repeat the process

sufficiently many times. An upper limit to the number of times a new cluster will be

created should be set so that the algorithm does not iterate the whole SKU popularity

list: meaningful clusters should be found relatively early on.
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3.4 Order batching

Once the storage location assignment has been set according to any of the strategies

described earlier, order batching will take place in our framework. In this study, we will

apply two simple algorithms for this problem according to the DC’s restrictions, in addition

to the scenario where no batching is applied at all (FCFS - the first come, first served

method). The two algorithms are a seed algorithm exploiting storage location dependencies

between orders and an algorithm that generates random batches. Next, we describe the

general rules and restrictions used when batching orders, after which the two algorithms

will be described in greater detail.

The WMS (warehouse management system) of the DC receives orders during all times

of the day. To apply batching to these orders, they must be pooled by some criteria. In

the case DC, customer orders are typically printed twice a day, in the morning and in the

afternoon. Because most orders are usually printed at fixed intervals, a fixed time window

batching method should be used to batch orders. In fixed time window batching, incoming

orders are pooled at certain points of time after which they will be batched with some

method. Therefore, we chose to use a pooling method that essentially splits each 24-hour

period in two parts: a six-hour period starting at 09:00 and ending at 15:00 in the afternoon

and an 18-hour period starting at 15:00 and ending at 09:00 the next morning. Pools will

accumulate orders during these time windows and the pools will be batched for picking

once the window ends.

For practicality reasons, the order arrival times are approximated by the event times

which indicate that the orders have been completed. Orders are primarily collected with

the FCFS method in the current system, which means that the orders should leave the DC

in approximately the same order in which they arrived in the WMS. The main reason for

using this proxy for the arrival times is that the real order arrival times cannot be extracted

from the database in a consistent manner in the scope of this study, whereas the event times

for the outgoing orders are known for each pick line.

Furthermore, to conduct batching, restrictions to the picker’s capacity must be set: a

limit for the number of items the order picker is able to collect during a same tour must be

determined. Because the DC contains items of differing physical sizes, estimation of this

parameter is hard and some approximations are required. An order may contain items from

the small item racks only, from the pallet item racks only, or from both of them. Therefore,

it should be possible to find a relationship between these two item types by analyzing

orders that utilize the picker’s capacity to the fullest. Figure 9 shows the scatter plot of

pallet item lines and small item lines. Some of the points are superimposed, meaning that

a single point may include multiple different orders having the same number of small and
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pallet items.

Figure 9: Relationship of pallet item lines and small item lines.

We tried to find a frontier that would approximately represent the order picker’s joint

capacity of pallet items and small items. We were able to extract a linear relationship

between the two item types’ lines in an order: any combination of pallet item and small

item counts below the orange constraint line will be accepted in the batching phase. A

number of non-feasible orders with respect to the constraint exist. These orders will not be

batched at all and they will be picked independently in the program code. This method

is crude, but since the database contains inadequate data concerning the dimensions and

weight of individual items in the DC, it is much better than not having a capacity constraint

at all. The lax linear constraint for any order is presented in equation 2.

4
3

norder +morder ≤ 40 (2)

where norder is the number of pallet pick lines and morder is the number of small item lines.

Moreover, to further simplify the calculations, we determine that any pallet item line

may contain only one item irrespective of the true number expressed in the pick list. This

is done because most pallet lines contain a single item only. The small item constraint is

harder to determine: a single line may contain hundreds of very small parts. Therefore,

this constraint is also simplified. Many orders contain a large number of small item lines.
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Therefore, the picker’s small item capacity is approximated by the number of unique small

items in an order irrespective of their actual quantities.

The picker capacity constraint presented here is a rough approximation of the real

capacity of the order picker. However, to conduct batching, the constraint is essential.

Therefore, in order not to overestimate the capacity, the constraint is very strict, i.e.

the greediness of the batching algorithms is limited. Moreover, for computational and

practicality purposes, another constraint is set for all batching algorithms. This constraint

determines the maximum number of orders that can be included in the same batch. Because

the practicalities associated with order batching, we set a strict constraint: only two orders

may be batched together irrespective of the picker’s capacity. This allows us to test

the effect of batching in a very controlled environment without too many variables and

complexity.

3.4.1 Seed batching

The first heuristic is the first algorithm proposed by Elsayed (1981, pp. 528) originally

supposed to be used in AS/RS systems. The algorithm uses a seed order. After the seed

has been found, other orders will be batched with it. In a pool of queued orders, the seed is

determined as the order with the most pick locations. In our application, that is equivalent

to the order which has the largest sum of small item and pallet item lines (equation 3). This

algorithm is computationally inexpensive requiring only the comparison of a number of

sum metrics.

Norder = norder +morder (3)

where norder is the number of pallet pick lines and morder the number of small item lines.

Accompanying orders are assigned to the seed order in the following way: the first

accompanying order from the pool is the order with the largest number of common pick

locations with the seed order. We determine "common pick location" as a pick aisle in

a block. That is, each block can have at most four common pick locations in the first

five blocks (20 in total), corresponding to the number of parallel pick lines in each block.

Figure 10 shows the common pick locations in the first four blocks and figure 11 the

common pick locations in the last two blocks. The algorithm then identifies the number of

common pick locations by comparing the storage location codes of the SKUs in the seed

order with that of the other orders in the pool.

If no order in the pool has a positive common pick location count with the seed: the

algorithm ends and the seed order is not batched with any order and will be collected in

a batch of its own. If orders with positive common pick locations are found, the order
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Figure 10: The 16 common pick locations in the first four blocks of the DC.

Figure 11: The five common pick locations in the last two blocks of the DC.

with the largest common pick location count is merged with the seed order and the merged

order becomes the seed. The seed is updated as long as orders with common pick locations

with the seed are found, or until the picker’s capacity is reached. This is, however, trivial,

as the maximum number of orders in a batch was set at two: a single seed order may only

get one accompanying order. This procedure is continued until all the orders in the pool

have been batched, after which the algorithm moves onto the next pool (time window).

3.4.2 Random batching

The second and final batching method is an algorithm that randomly pairs orders inside a

pool until the pool has been depleted. The random algorithm is used to validate the results

obtained from the FCFS method (no batching at all) and the seed method. Obviously, if

the seed method fails to perform significantly better than the random algorithm, there is no

reason to implement the seed algorithm explained above, but to use an altogether different

approach to order batching. The random algorithm employed here works in the following

way:

1. Inside a fixed time window pool, all order combinations of one and two orders are

enumerated.

2. Combinations that break the picker’s capacity constraint are removed with the ex-
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ception of such combinations with the length of one order.

3. A combination of orders is randomly picked from the pool and saved: all combina-

tions containing the orders in this combination will be removed from the pool.

4. This is continued until the pool is empty and all the orders in the pool have been

collected.

3.5 Picker routing with modified s-shape heuristic

The s-shape heuristic is perhaps the most well-known and most implemented heuristic used

in manual order picking operations. The heuristic is intuitive and creates simple routes, as

opposed to some of the more complicated heuristics. As of writing this thesis, the case DC

uses a picker routing system where an order pick list is printed from the ERP system. The

pick list contains all the pick lines sorted by the stock places of the list items in alphabetical

(each letter denoting a row of racks) order. This is a very simple heuristic that closely

resembles the s-shape heuristic. It, however, has some severe limitations concerning the

DC’s block structure and the rack sorting order. Therefore, we opted to use a modified

s-shape implementation that supports multiple blocks and accommodates a non-standard

rear block. The heuristic itself is largely based on the description given by Roodbergen

and De Koster (2001a). Next, an accurate description of the heuristic is given alongside a

depiction of the possible transitions the order picker may make in the warehouse.

The warehouse layout dictates that the heuristic should have four pick aisles in the first

five blocks (see the parallel black lines in figures 12 and 13). However, the sixth block is

shaped differently: it has three single-file racks, which are problematic since we cannot

know which side the picker will pick the items from. Therefore, we simplified the layout in

the last block by allowing the virtual picker to travel through the single-file racks, reducing

the number of the parallel pick aisles in the last block to three. This simplification is shown

in figure 13. Now the order picker collects items from multiple racks in the new virtual

pick aisles at the same time. This choice somewhat reduces the accuracy of the heuristic in

the last block. This reduction in accuracy is, however, not at all critical. First, very few

items are ever fetched from the last block in practice. Second, when items are fetched from

the last block, it is very unusual that more than one aisle needs to be visited during a single

tour.

The algorithm written for this study works in the following way (mostly along the

description for the s-shape heuristic for warehouses with multiple cross aisles given by

Roodbergen and De Koster (2001a, pp. 3-4). Figure 14 contains an example route generated

by this algorithm with picks in the front part of the DC only.
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Figure 12: Picker routes in the four first blocks of the DC. The depot is marked with a

black circle.

Figure 13: Picker routes in the two rear blocks of the DC.

1. Determine the leftmost (when viewed from the depot area) pick aisle containing

picks.

2. Move to the front of this leftmost aisle.

3. Determine the farthest block that contains picks.

4. Following the leftmost pick aisle, move to the front cross aisle of the farthest picking

block.

5. Now, determine which of the pick aisles right of the leftmost pick aisle in the farthest

block contain picks.

6. Along the cross aisle, move to the front of the first such aisle. If the current aisle

contains picks, do not move.

7. Now, there are two options. If the current aisle is the only aisle containing picks in

the block, go to the farthest pick location along that parallel pick aisle and return

to the front of the block (this block has now been completely picked). If the block

contains more than one pick aisle, traverse the entire block. Then find the next aisle

containing picks and entirely traverse it to return to the front of the block.
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8. Repeat step 7 until all the aisles of the block have been picked. Now, the farthest

block has been handled.

9. Depending on the location of the farthest block, a number of blocks must be handled

before the picker can return to the depot. All the blocks are picked in the same

manner as the farthest block with the picker ending up in front of the block when it

has been completed.

10. The order (left to right or right to left) in which the picker handles each block is

determined by the aisle the picker stops when the previous block has been completed.

The picker always starts the next block by moving to the leftmost or rightmost

back cross aisle with picks in that block, whichever is closest to the aisle the picker

stopped after finishing the previous block.

11. Once the picker arrives at the first block from the depot, the block is picked as usual,

after which the picker returns to the depot and the route is complete.

Figure 14: Example route generated by the s-shape algorithm.

3.6 Framework

Our framework is used to model the order picking process from the moment an order arrives

in the WMS until it has been dispatched from the DC. Essentially, it attempts to model

the order picking process by converting it into a chain of events that contains separate

phases - each of which has its own set of sub-decisions and parameter sets. The practical

implementation of the framework for this study was completely written in the programming

language Python with the necessary data being extracted from various databases. Figure

15 shows the outline of the framework.

The framework includes five distinct phases: 1) data preparation, 2) order analysis and

clustering, 3) storage location assignment, 4) order batching, 5) travel distance calculation.

The relationships between the parts of the model are presented with arrows. The framework
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Figure 15: The order picking framework.

includes elements with different outlines. First, the rectangular elements represent the data

sources and the different methods that can be applied to them. Second, the two triangular

elements in the pipeline represent the choices that can be made regarding SKU clustering

and order batching. Last, the circular elements represent the outputs of certain phases after

data processing.

The framework is built to allow for the testing of different decision sets. For instance,

multiple different storage location assignments can be employed and SKU clustering may

be included or omitted. Moreover, sensitivity analyses may be conducted for changes in

any decision parameter. The framework is also somewhat modular: more strategies may be

easily added to the storage location assignment, the order batching and the travel distance

calculation phases. In addition, if need be, a sixth phase, travel time calculation may be

conducted after the travel distances have been obtained. Problems related to converting

travel distance estimates into travel time, and why it is not included in our framework is

discussed in chapter 5.1.

Whatever the chosen decision set, the output will always the aggregate travel distance

for a set of orders. Outputs for the decision sets are comparable, which allows us to assess

their relative performance. This is because, by default, the same data input is used for

every decision set. The framework has a stochastic element: the obtained results - aside

from the current and full turnover storage location assignments with the FCFS and seed
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batching strategies (four in total) - are nondeterministic, meaning that the output itself is

fundamentally a random variable. It is later shown that the standard errors of the output

values are negligible for all stock assignments due to a sufficiently large sample size.

In addition to the scalar-valued output, the framework is built in a way that allows

the construction of time series for assessing the performance of different decision sets

over time. This is especially useful for practical purposes, for instance, keeping track of

the current efficiency level of the DC compared to a simulated decision set. Moreover,

such time series may be used to detect, for instance, seasonalities and differences in order

picking workloads and efficiencies in the DC at different times (e.g. day cycles).
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4 Results

We will begin this chapter by describing the dataset and the measures that we use to assess

order picking performance. Then, we will discuss the performance of different storage

location assignments and the effects of order batching. Furthermore, the accuracy of the

model is critically assessed. After going through the results, we discuss our findings in

relation to existing literature and consider the practical implications of our findings.

4.1 Dataset description and performance measures

The ABC analyses for the storage location assignments used a time window of three

months to capture the relative demands of the SKUs in the DC, i.e. the ABC classes were

defined with historical demand data. Based on the analyses, the SKUs were assigned to

stock places for the three-month test set of orders. Hence, every SKU had a fixed stock

location for the duration of the test for each of the tested assignments.

Table 3 shows statistics about the order test set. The test set contains 4783 independent

orders over a time period of three months split between three order types. The order types

one, two and three refer to the nature of demand for each order. The types may, for instance,

have different levels of urgency. The average length of an order pick list in the test set is

3.46 rows.

The performance measure can either be thought as the aggregate distance traveled

in the test or the average travel distance over the test set of orders, which are equivalent

when no batching is applied. However, when order batching methods are introduced, the

aggregate measure must be used, as the number of tours in the warehouse will decrease.

The performance metric describing the aggregate distance is shown in equation 4. In

equation 4, si refers to the length of a single picking tour (see an example tour in figure 14)

and N is the total number of picking tours.

S =
N

∑
i=1

si (4)

Table 3: Pick lists by type.

Type 1 Type 2 Type 3 Total

N 3219 1439 125 4783

Avg. pick list length 4.04 2.32 1.62 3.46
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4.2 Effects of the storage location assignments

Our analysis shows that great reductions in the travel distance in the warehouse can be

achieved with any of the three class-based assignments. Moreover, introducing SKU

clustering to the class-based assignments can enhance performance even more, whereas

randomizing the assignment for the DC resulted in significant loss in performance. Fig-

ures 16 and 17 show the absolute and relative performance of different storage location

assignments. Appendix C contains all the results in a tabular form.

We obtained performance metrics for nine different storage location assignments. The

performance metric used in figure 16 is described in equation 4. "Current" means that

the storage locations for the realized orders were used. "Random" is an assignment

where the SKU locations in the small item racks and the pallet item racks (separately)

are completely randomized. The "full turnover" assignment assigns SKUs to the stock

places in a descending popularity order with the fastest items being located nearest to the

depot and the slowest farthest from the deport. The full turnover assignment is a dedicated

assignment. Finally, the three ABC (see figures 5, 6, 7) layouts were tested both with and

without SKU clustering with the cluster assignments being marked with the prefix "C-".

Figure 16: Absolute performance of all storage location assignments.

Figure 16 shows the absolute performance of the storage location assignments. The

current storage location assignment was used as a benchmark. Moreover, the random

assignment was created to act as a lower limit for order picking performance. In addi-

tion, the full turnover assignment was created as a somewhat theoretical upper limit for
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performance: a dedicated full turnover assignment should yield better results than any

class-based assignment. This is clearly indicated in figure 16.

Figure 17: Relative performance of all storage location assignments.

The relative performance of the storage location assignments is shown in figure 17.

The full turnover assignment had the best performance, as expected, improving the current

assignment by approximately 50%. The second best performance was shown by the cluster

variants C-ABC-1 and C-ABC-3, indicating that significant clusters could be obtained

from the demand data. Thus, the assumption that performance would increase if cluster

items were placed close to each other and the clusters close to the loading area held. The

clustered versions of ABC-1 and ABC-3 were quite close to the full turnover assignment

in performance at over 40% reduction in total travel distance compared to the current

assignment. The benefit from using the C-ABC-1 and C-ABC-3 instead of ABC-1 and

ABC-3 was significant.

The ABC-2 assignment achieved considerable reductions in average travel distance at

about 23%. However, its performance was not as nearly as good as that of ABC-1 or ABC-3.

However, When clustering was applied to the ABC-2 assignment, its performance improved

dramatically. At 36% increase in performance compared to the current assignment the

C-ABC-2 assignment approached the ABC-1 in performance. The large increase in

performance can be explained by the large size of the fast pallet item zone in the ABC-2

model: the non-cluster version shares all the fast items uniformly around the long aisle,

whereas the C-ABC-2 allows us to place most of the fastest items very close to the depot

within the cluster zone (see figure 8).
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Furthermore, the testing method allows us to study the performance measure as a time

series over the test dates. Figure 18 shows the time series for selected storage location

assignments. The curves are 14-day moving averages of travel distance, because daily

averages had very high variance and it was hard to analyze the changes in the overall

performance level using such graphs.

Figure 18: Moving average time series for selected assignments.

Figure 18 shows the time series for selected storage location assignments compared

against the actual assignment (blue curve). These time series can be used to analyze the

changes in order picking efficiency. We notice that the curves for the class-based and

correlation-based assignments have much lower variance than the current or the random

assignments.

Generally, the performance metrics shown in figure 16 and the time series graph

support the two class-based layouts, ABC-1 and ABC-3. The ABC-2 layout seems to be a

considerably weaker option. The performance differences between the cluster versions and

the pure class-based versions of ABC-1 and ABC-3 cannot be analyzed with these metrics:

we observe that the cluster assignments perform about 2-4 percentage points better than

the non-clustered ones. Therefore, let us study the route length distributions of different

storage location assignments shown in figures 19 and 20.

The x-axes in these figures show the route distance bins and the y-axes show the

number of completed routes whose length falls within the bins. We observe that the

ABC-3 assignment without clusters creates a route length distribution with a long right

tail. The histogram is similar in shape to a log-normal distribution. The version of the
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Figure 19: ABC-3 route length distribution.

Figure 20: C-ABC-3 route length distribution.

ABC-3 assignment employing SKU clustering has a somewhat better overall performance.

However, this assignment seems to create a very large number of routes of similar length as

indicated by the few very frequent bins. This is due to the placement of the SKU clusters

in the front portion of the small item and the first pallet item pick aisles. Implications of

deciding to implement a cluster assignment alongside the pure ABC assignment will be

discussed in 5.1 and 5.2.
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4.3 Effects of the order batching heuristics

Using even a simple algorithm to batch orders resulted in significant reductions in travel

distance. When combined with the best-performing class-based storage location assign-

ments, the combined achievable reductions in aggregate travel distance were close to sixty

percent. The relative effect of batching was much smaller than that of changing the storage

location assignment in our simulations. In this section, we will first assess the performance

of the two batching algorithms compared to the FCFS situation for each storage location

assignment. Then, we will discuss the absolute and relative performance of every storage

location assignment and batching combination compared to the current situation. Numeric

tables of all obtained results can be found in appendix C.

When applied to the current storage location assignment, both batching algorithms

were able to reduce travel distance by at least a fifth, with the seed algorithm achieving

savings of almost 25%. Figure 21 shows the relative performance of the two batching

algorithms compared to FCFS for each storage location assignment. Considering that both

algorithms were restricted to batching only two orders at most into a single picking tour,

the results are significant. Even though better results could be achieved by changing the

storage location assignment to either ABC-1 or ABC-3 or their cluster variants as shown

in 4.2, implementing the batching algorithms requires little investment compared to the

extensive re-organisation that is required by changing the storage location assignment.

Moreover, savings from the batching algorithms can be achieved immediately.

Figure 21: Relative performance of the seed and the random batching algorithms compared

to FCFS.
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When combined with different storage location assignments, the effects of the batching

heuristics differed somewhat. The ABC-2, random and full turnover assignments benefited

the most from using the seed algorithm, with the random and full turnover assignments

saving 30% and 32% over their non-batched versions, respectively. The ABC-2 assignment

improved by 27% when using the seed algorithm, which is notably more than that any of

the other class-based assignments, including the clustered version of ABC-2.

The two assignments benefiting the most from the random batching algorithm were

the ABC-2 and the random storage location assignment. Overall, the performance of the

random algorithm was significantly worse than that of the seed algorithm: none of the

assignments were improved by more than 24% (the random assignment), and the only

class-based assignment that improved by more than 20% was the ABC-2 assignment.

Figure 22 shows the relative performance of every batching and storage location

assignment combination. The bolded labels show the relative performance of the seed

batching algorithm with each of the storage location assignments compared to the current

situation (current FCFS).

Figure 22: Relative performance of all batching and storage location assignment combina-

tions.

When assessing the total savings of the batching and location assignment combinations,

we find out that the most beneficial combination is the seed algorithm combined with the

full turnover assignment, which could potentially reduce travel distance by 66%. The full

turnover assignment, however, can not be easily implemented. Therefore, the C-ABC-1

and C-ABC-3 combined with the seed algorithm are the best performing combinations
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with travel distance reductions of 57 percent each. However, the two assignments that

benefited the most from batching were the ABC-2 and the random assignment. When using

the seed algorithm, the ABC-2 improved by 20 percentage points compared to the situation

where no batching was done, and the random algorithm by more than 55 percentage points.

The random assignment with the seed algorithm, however, still performed worse than the

current storage location assignment with no batching.

Figure 23 shows the absolute performance of each of the 27 different batching and

storage location assignment combinations. The black dotted line shows the baseline value

achieved with the current storage location assignment with no batching (FCFS). The red

dotted line shows the performance of the best feasible combination, which is the C-ABC-1

with seed batching. Given the long distances traveled in the DC, the theoretical savings

with any decision combination other than the random assignment (with or without batching)

are significant.

Figure 23: Absolute performance of all batching and storage location assignment combi-

nations.

We conclude that the best-performing combinations are the C-ABC-1 and the C-ABC-3

with either of the batching algorithms or the ABC-1 and the ABC-3 with the seed algorithm.

All of these combinations achieve travel distance reductions close to 55 percent. When

using a non-clustered class-based assignment, the ABC-3 with the seed algorithm is the best

option, because it is almost as efficient as C-ABC-1 or C-ABC-3 with the seed algorithm.

Moreover, we conclude that the benefits from using the seed algorithm over the random

algorithm are clear: it is notably more efficient when using any of the storage location
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assignments.

4.4 Accuracy and reliability of the method

The model that was used to obtain the distance estimates in 4.2 and 4.3 is quite complicated.

Therefore, it may contain inaccuracies resulting from certain assumptions and relaxations

made during the modeling phase. Three distinct sources of inaccuracy can be identified:

layout modeling, data pre-processing and the algorithms themselves. Specifically, most of

the inaccuracies result from simplifications and practical choices. Including every detail in

the simulations would have made the model too complex. Some of the relaxations were

made due to insufficient data, and some were made in order to keep the model generalizable.

However, the model closely follows and combines procedures from literature and is very

accurate. In this chapter, we discuss the issues related parts of the modeling starting with

the layout and ending with the assumptions used when designing the algorithms.

Some issues have been simplified when modeling the warehouse layout, which directly

affect the accuracy of the routing heuristic. Notably, the consolidation of the stock places

into larger entities (see 3.1.1) reduces the accuracy of the routing. The accuracy of the

coordinates for the consolidated stock places and the distances between them are very

accurate in practice: all distances were measured with an accuracy of approximately nine

centimeters, which was the highest possible accuracy of the document from which the

coordinates were derived. The error resulting from the coordinate mapping should be

negligible given the large size of the DC (its length is more than 250 meters). Potentially, a

more serious omission may be found in the vertical plane. The developed routing heuristic

only works in two dimensions: a somewhat important aspect of the DC, the rack height,

was not taken into account in any part of the framework. Most of the racks in the DC have

five or six different levels from which SKUs may be fetched. The vehicles used in the DC,

however, move vertically very quickly, and the total height of the racks is less than five

meters.

Moreover, it is assumed that the order picker may change aisles through any vertical

underpass with any vehicle and any load, although this might not be possible in reality.

Because of this choice, the routing heuristic used is not the same as the current routing

convention in the DC. The performance metrics therefore only reflect the modified s-shape

heuristic developed for the purpose of calculating route lengths. However, the difference in

route lengths between the actual routing policy and the modified s-shape heuristic should

not differ much in reality, although the latter should be somewhat more efficient in part

due to the added possibility of using any underpass.

Another drawback to the accuracy of the routing algorithm is that it cannot process all
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unique stock place identifiers in the demand data. Some identifiers do not follow the usual

convention with four identifiers (rack name, location of the rack in the aisle, level of the

stock place in the rack, horizontal placement of the stock place in the rack level), but some

other convention or no convention at all. Considering that there are nearly twenty thousand

unique stock place identifiers in the DC, it makes no sense to create unique coordinates for

stock place identifiers that do not follow the usual convention: the manual labour needed

to locate each and every stock place identifier and then map them to the routing algorithm

would be excessive. Therefore, all demand rows whose storage location identifier did not

appear to follow the usual naming convention were dropped from the routing phase. They,

however, do appear in the turnover analyses. Luckily, only a minor portion of all order

pick lines had to be filtered out due to the stock place identifier being invalid. However,

some of these lines may have been part of larger order pick lists, which would now have

fewer lines than expected resulting in somewhat erroneous route lengths in the realized

storage location assignment calculations.

When assessing the framework, batching is probably its most error-prone phase due

to the large number of assumptions required to make the algorithms work. Specifically,

the constraint that no more than two orders should be batched together severely restricts

the function of both algorithms. If this constraint were dropped, the two algorithms would

probably have shown much larger reductions in travel distance. This constraint had to be

put in place because of insufficient data on picker capacity. Moreover, the other constraint

dictating the number of items the picker may carry at once is a rough estimate, only put in

place to restrict the greediness of the algorithms. The performance of the two algorithms,

however, can be be compared to each other and that of the FCFS scenario (no batching),

which makes it possible to give vague estimates about the savings potential achievable

with simple algorithms.

To assess the correctness of the framework’s implementation, we devised an experiment.

The performance measures presented in figures 16 and 23 are essentially random variables,

which depend on the initial shuffling of the stock locations for the SKUs before batching

and routing, and the batching method when random fixed time window batching is used.

We conducted a Monte Carlo experiment to show that the measures presented in the tables

are accurate enough, i.e. that the variation in the performance measures during sampling is

negligible. Using the ABC-1 assignment, we ran the stock location shuffling procedure ten

times and then used the routing algorithm to calculate the performance measures for this

sample. The results (in thousands of meters) are presented in table 4.

For the sample of ten simulations in table 4 we obtain an expected distance of 421

thousand meters, a standard error of the mean of 989 meters and a 99% confidence
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Table 4: ABC-1 Monte Carlo experiment.

1 2 3 4 5 6 7 8 9 10 E(X)

ABC-1 (FCFS) 416 423 424 421 421 425 424 421 416 420 421

Savings -41% -40% -40% -40% -40% -40% -40% -40% -41% -40% -40%

interval of 418-424 thousand meters, meaning that using the Monte Carlo method to

determine every performance measure is not needed. From a practical standpoint, running

a full Monte Carlo simulation with each of the 23 alternative scenarios (four of the 27

scenarios are deterministic) would be computationally expensive and bring little value.

More importantly, we proved that the effect on order picking performance of a single

alternative storage location assignment is very stable as long as the zones have been

ordered randomly. Moreover, Roodbergen and De Koster (2001a) used a sample size of

only 2000 orders to achieve a relative error of under 1% with high probability in a similar

simulation experiment, whereas our sample size is 4783 in each of the ten stock location

shuffles in table 4. Therefore, the performance order and the magnitude of the results

presented in 4.2 and 4.3 are correct and accurate. We will next discuss the framework and

the obtained results in relation to existing literature and conclude the thesis.
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5 Discussion, practical implications and conclusions

Generally, the results of this study were in line with existing literature. First, we will discuss

the following issues: the relative performance of the storage location assignments, the

performance of the correlation-based assignments, performance of the batching algorithms

and the choice of the picker routing algorithm. Moreover, we discuss the omission of time

conversions of travel distances and the estimation of SKU demand from historical data.

Second, we will discuss the practical implications of the study to our case distribution

center and then conclude this thesis.

5.1 Discussion

Caron, Marchet, and Perego (1998) argue that the within aisle policy (ABC-2 in this

study) might be very flexible when using a correlated assignment. The within-aisle policy

itself performed worse compared to the across-aisle and diagonal configurations in our

simulations perhaps in part due to the very high length-to-width ratio of the warehouse.

However, the ABC-2 configuration was much more sensitive to the addition of the corre-

lated assignment: its performance improved much more than that of ABC-1 and ABC-3

when SKU clusters were incorporated to create the C-ABC variants.

The results of our study show that correlation-based assignments may be incorporated

into class-based assignments to improve their performance. This is in line with earlier

literature. Zhang (2016) was able to show that even the full turnover assignment could be

improved with simple clustering algorithms. However, their setup differed greatly from

that of ours.

The effect of order batching on order picking performance was smaller than that of

the storage location assignment in this study. Earlier literature, however, emphasizes that

batching is the most effective way to improve order picking performance (e.g. Petersen

and Aase 2004). However, most of the earlier papers had used simulated data, setting

arbitrary rules to, for example, picker capacity and order arrival times, which may have not

reflected real world scenarios. The batching experiments in this study were subject to strict

constraints due to fact that complete information about the picker’s capacity and the SKUs

was not available.

The decision to only use the s-shape algorithm for picker routing in should be discussed.

Petersen and Aase (2004) argue based on a simulation that the choice of the picker routing

method is much less critical than choosing the right storage location assignment and

employing some batching method. However, route length calculations may not be run

without some algorithm. When comparing the performance of different routing algorithms,



Discussion, practical implications and conclusions 50

research states that their behaviour is affected by the warehouse’s physical traits and and

the nature of SKU demand. For instance, Roodbergen and De Koster (2001a) show that

with few cross aisles, the s-shape algorithm is the most inefficient algorithm out of the

tested algorithms. However, according to their simulations, when the number of blocks is

increased (i.e. more cross aisles are added to the layout), the s-shape algorithm becomes

much more efficient in relation to the other algorithms. The layout used in this study has

six cross aisles, at which point the performance difference between the picker routing

algorithms is quite small. Therefore, had we written more routing algorithms, we would

have obtained a large number of similar results with little practical value. Moreover, even

switching over to the optimal routing should yield little improvement to the results obtained

with storage location assignments and batching policies (Petersen and Aase 2004).

Directly linked to the picker routing algorithm, we omitted time conversions altogether

from the model. For every storage location and batching combination distance estimate,

the time conversion would have been a linear conversion incorporating the number of

small items and pallet items in addition to the order picker’s average velocity. Naturally,

an aggregate time reduction estimate would give more insight into the economic effects

of different decisions. However, we omitted the conversions due to the difficulty of

obtaining trustworthy parameter estimates for the conversions: the relative performance of

the decision combinations would stay the same even if a time conversion were applied.

There are no analytical frameworks for these kind of time conversions in manual order

picking literature (Le-Duc 2005). However, e.g. Petersen (1999) uses a simple time

conversion to compare different strategies. Their calculations include the average velocity

of the order picker and the time it takes for the order picker to collect one item from the

racks. More complicated estimates exist: Chen et al. (2009) also add the parameters

setup time in seconds for a route and sorting time in seconds per item following a normal

distribution. Some authors, for instance, Dekker et al. (2004) employ very intricate time

conversions.

Finally, SKU demand was estimated from historical data in our study, which is the case

with most papers concerning the order picking process in a manually operated warehouse.

However, the demand patterns can change rapidly, moving items between classes. Earlier

papers do not discuss this issue in detail, although some authors (e.g. Kofler et al. (2015)

and Petersen and Aase (2004)) mention it as a possible drawback to using class-based

assignments. Using demand forecasting to form the ABC classes is lacking from manual

order picking literature. We found no papers addressing the issue of stochastic demand data

than Kofler et al. (2015), who discuss the issue of re-locating SKUs when their demand has

changed. Their approach, however, is based on past variance in SKU demand. However,



Discussion, practical implications and conclusions 51

we address that taking SKU demand distributions from past demand data may result in

overly positive time savings estimates.

5.2 Practical implications

In cooperation with the distribution center personnel, we developed a tool set that can be

used to optimize order picking performance according to the results obtained in this thesis.

The output of the algorithms was visualized with the Microsoft Power BI visualization

tool and the whole application was put into a cloud computing environment in Amazon

Web Services S3, where it can be run on demand or at regular intervals. In this final part,

we discuss the potential benefits of the framework to the processes of the distribution

center and analyze the implementation tools in greater detail. Finally, we discuss the

generalization of the framework in a narrow scope.

From a theoretical point of view, the framework we introduced in 3.6 could improve the

order picking efficiency of the case DC considerably. Percentage reductions of more than

55% in travel distance were achieved with the best strategy combinations. However, the

framework does not consider the amount of work that is needed to 1) make the necessary

changes to the general storage location assignment in the DC, 2) uphold the new storage

location assignment over time. The changes to the storage location assignment in the first

place are quite extensive: relocation of thousands of SKUs is needed. Moreover, the new

storage location assignment will inevitably deteriorate over time resulting from changes

in the demand structure of the DC. This deterioration can only be prevented via regular

re-locations of SKUs that at any time reside in the wrong area in the DC. Therefore,

the cost benefits resulting from the proposed changes are hard to estimate beforehand.

However, after the bulk of the required re-locations is done, only small adjustments to the

assignment will be needed from time to time. In the long run, we argue that the benefits

resulting from the changes proposed by the framework will easily exceed the costs of the

initial relocation and the costs resulting from the regular adjustments.

Simple and intuitive tools were created to help the DC personnel realize the changes

proposed by the framework. Only the minimal information required to make changes to

the order picking process are presented to the DC personnel. The framework is able to

output three primary tools, which can be used to make appropriate changes to the storage

location assignment of the DC.

The first and the most important of these tools is a modified stock level report. The

way our modified stock level report works is extremely simple: the current stock locations

of each of the DC’s SKUs are compared against the locations of the SKUs in a chosen

alternative assignment, e.g. the ABC-1 assignment. This comparison is used for flagging
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any SKU that has a stock place in the wrong turnover zone. Then, the warehouse personnel

may decide whether to move the SKU to the correct zone or let it stay where it is, depending

on the demand frequency of the SKU. The demand information is printed for each SKU

alongside the correct turnover class because the classes may contain items of differing

turnover rates. Within any zone, the warehouse personnel are free to choose the new stock

places as the assignments within the class should be random.

The second tool is used to run the cluster analysis of the SKUs and print the clusters

such that the warehouse personnel may decide the correct placement for the cluster based

on the number of unique SKUs in the cluster and the types of the items in the cluster. The

third tool is another modified stock level report: it contains information only on the SKUs

that are considered as having zero turnover rate based on the demand data. Due to the DC’s

high utilization rate, such items may needlessly occupy space in areas reserved for SKUs

belonging to the fast or intermediate class. This third tool was created for the sole purpose

of finding non-moving SKUs for relocation to the slow zone and for creating space in the

fast and intermediate zones for their respective SKUs. The third tool is important in the

initial phase of the SKU relocation as rack space must be freed from the fast item zones.

Time series of the DC’s order picking efficiency may be printed each time the model

is run via an optional parameter. The time series can be used by the DC personnel both

as a tool to monitor the current efficiency of the order picking process compared to a

simulated scenario as well as a diagnostic tool to assess the performance implications of

changes made to the storage location assignment. The time series will show the effects of

re-locations on the general efficiency level with a slight delay. In the long run, the time

series has an essential role in keeping the storage location assignment up to date with

changing demand patterns: deterioration of the storage location assignment can be directly

observed from an upward trend in the series. If such trends emerge, the model may be run

again to track and find the cause of them from the output lists, after which the required

changes to the storage location assignment can be made.

In addition to the three tools and the time series graph, the visualization tool is able to

output a chart that reports the current situation of the storage location assignment adhering

to a selected assignment for quick visual inspection. The chart reports the situations for

all six zones in the DC (see 3.2.1). An example chart can be found in appendix D. This

chart immediately shows to what degree the current storage location assignment follows

the selected assignment in each of the six zones.

The implementation of the framework written in the Python programming language is

located in a cloud-computing environment, the AWS (Amazon Web Services). Generation

of new tools to support the order picking process is automated: the end user need only set
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the requested parameters and the respective tools will be provided. The algorithms may be

run and the Power BI report generated on-demand.

Generalization of our framework to other distribution centers should be fairly straight-

forward as long as the underlying data structures remain unchanged. The most difficult

part about this would be the need to rewrite the picker routing algorithms for differently

shaped layouts.

5.3 Conclusions

The research question of this study was: "what is the most robust and optimal way to

arrange the order picking process of the manually operated case distribution center to

minimize order picking distance, and what are the main drivers behind improved order

picking performance?" Using class-based storage location assignments supplemented with

a correlation-based assignment and a simple order batching procedure, we showed that the

order picking distance could be reduced significantly. Our simulations show that travel

distance savings up to 55% compared to the DC’s current order picking process could

be achieved with relatively simple changes to the process. We observed, that in the case

distribution center, the main driver for better order picking performance was the storage

location assignment before order batching. This is mostly due to the distribution center

being very long and having few aisles. Moreover, we argue that due to this same reason, the

picker routing problem is the least important driver behind better order picking performance

in the case DC. We argue that using order batching, significant savings can be achieved

with very simple methods.

To come to this conclusion, we created a framework that analyzes and optimizes the

order picking process of a distribution center via simulations based on the historical SKU

demand patters of the DC. We employed a heuristic picker routing policy to calculate the

distance a picker must travel on the warehouse floor over a set of pick lists for a large set

of different SLAP and batching strategies. Furthermore, we deployed a solution based on

the framework into a cloud-computing environment, where the DC personnel may run the

program on-demand and visually inspect the condition of their order picking process.

The results obtained from the framework were mostly in line with existing literature.

Although there is a massive body of literature covering the order picking process in

a manual picker-to-parts warehouse, few papers even try to model the whole process.

Furthermore, few papers had created assignments using SKU clusters. Our research

was an experiment of doing this with an unorthodox warehouse layout. In spite of the

characteristics of the case warehouse, the underlying modeling process used in this paper

could easily be expanded or modified to accommodate different warehouses.
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This study contributed to the order picking literature in that it introduced a framework

that may easily be applied to real-world order picking processes in an end-to-end pipeline

taking into account the most critical issues in manual order picking.
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A Normalized pairwise frequencies for the fastest SKUs

Table A1: Normalized pairwise frequencies for the fastest SKUs.

0 1 2 3 4 5 6 7 8 9 10

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1 1.00 1.00 0.19 0.19 0.27 1.00 1.00 1.00 1.00 1.00 1.00

2 1.00 0.19 1.00 0.19 0.27 1.00 1.00 1.00 1.00 1.00 1.00

3 1.00 0.19 0.19 1.00 0.27 1.00 1.00 1.00 1.00 1.00 1.00

4 1.00 0.27 0.27 0.27 1.00 1.00 1.00 1.00 1.00 1.00 1.00

5 1.00 1.00 1.00 1.00 1.00 1.00 0.51 0.40 1.00 1.00 1.00

6 1.00 1.00 1.00 1.00 1.00 0.51 1.00 0.51 0.92 0.92 0.92

7 1.00 1.00 1.00 1.00 1.00 0.40 0.51 1.00 1.00 1.00 1.00

8 1.00 1.00 1.00 1.00 1.00 1.00 0.92 1.00 1.00 0.44 0.44

9 1.00 1.00 1.00 1.00 1.00 1.00 0.92 1.00 0.44 1.00 0.37

10 1.00 1.00 1.00 1.00 1.00 1.00 0.92 1.00 0.44 0.37 1.00
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B OPTICS reachability plot

Figure B1: The reachability plot generated by the OPTICS algorithm.
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C Performance of storage location assignments and batch-

ing combinations.

Table C1: Performance of alternative storage location assignments.

Model Current ABC-1 ABC-2 ABC-3 Random Full turnover C-ABC-1 C-ABC-2 C-ABC-3

Type 1 491057 279453 350544 271438 732667 221960 255752 287892 262124

Type 2 202328 139134 181682 134886 338422 119736 131383 153585 133005

Type 3 12072 8275 8799 7683 21809 8184 9291 10346 8697

Total 705456 426863 541025 414007 1092898 349879 396426 451823 403825

Type 1 NA -43.09% -28.61% -44.72% 49.20% -54.80% -47.92% -41.37% -46.62%

Type 2 NA -31.23% -10.20% -33.33% 67.26% -40.82% -35.06% -24.09% -34.26%

Type 3 NA -31.45% -27.11% -36.36% 80.66% -32.21% -23.04% -14.30% -27.96%

Savings NA -39.49% -23.31% -41.31% 54.92% -50.40% -43.81% -35.95% -42.76%

Types "1", "2" and "3" refer to the three different types of orders that the DC handles.

The table shows the absolute and relative distances for each of these order types. The

bottom line showing the total savings is a weighted average for the order types.
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Table C2: Performance of all batching and storage location assignment combinations.

Current ABC-1 ABC-2 ABC-3 Random Full turnover C-ABC-1 C-ABC-2 C-ABC-3

FCFS 705456 426863 541025 414007 1092898 349879 396426 451823 403825

Seed algorithm 540469 323781 395425 313529 766049 236846 299871 341195 301576

Compared to

FCFS

-23.39% -24.15% -26.91% -24.27% -29.91% -32.31% -24.36% -24.48% -25.32%

Random algo-

rithm

565927 353977 420249 340184 834693 273355 328488 366305 329041

Compared to

FCFS

-19.78% -17.07% -22.32% -17.83% -23.63% -21.87% -17.14% -18.93% -18.52%

Total savings

(Compared to

current FCFS)

Seed algorithm -23.39% -54.10% -43.95% -55.56% 8.59% -66.43% -57.49% -51.63% -57.25%

Random algo-

rithm

-19.78% -49.82% -40.43% -51.78% 18.32% -61.25% -53.44% -48.08% -53.36%
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D Visualization tool

Figure D1: Visualization tool example.

The visualization tool shows SKUs set for re-location from the slow small item zone

(red) to the fast small item zone (green) in the ABC-1 storage location assignment.
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