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Developments in sensor technology have enabled the continuous electrocardiog-
raphy monitoring during daily activities. These recordings can be valuable in
the detection of arrhythmias and abnormal cardiac cycles that occur only under
certain circumstances or infrequently. Unfortunately, the activities of the patient
cause severe motion artifacts to the ECG signal that affect the signal quality and
complicate the signal interpretation. The motion based baseline wander artifact
can be reduced to a certain point by improving the stability of the electrode-skin
interface. However, also computational signal processing methods, like adaptive
filtering, are needed. The signal processing methods can be improved by utilizing
additional variables that correlate with the artifact sources. For example, accel-
eration and impedance signals have been studied as possible references of motion.
However, being able to do the measurements without additional sensors would
enable the measurement device to be simpler, lighter, and lower in cost.

This thesis presents an accelerometer-free ECG signal baseline wander reduction
algorithm that uses electromyography signal as a Kalman filter reference signal.
The EMG signal is extracted from the ECG signal itself and used as an estimate
of local electrode motion. The motion estimate is then used as a reference signal
for an adaptive Kalman filter baseline wander compensation algorithm. The al-
gorithm is evaluated on data collected in clinical trials. In addition, the feasibility
of removing the baseline wander using a reduced number of accelerometers as a
motion reference for Kalman filter is studied.

The results showed that the proposed method removed baseline wander success-
fully and without significant alterations in the signal morphology. The method
proved to be at least equally proficient with the methods it was compared to.
The results suggested that the baseline wander reduction from ambulatory ECG
measurements could be achieved without additional sensors using EMG signal as
a motion reference for the Kalman filter. In addition, also the reduced number of
accelerometers proved to be a feasible source of the motion reference signal.

Keywords: electrocardiography, Kalman filter, baseline wander, signal
processing, artifact reduction
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Sensoriteknologian kehitys on mahdollistanut sydansdahkokayrin jatkuvan mit-
taamisen péivittaisten aktiviteettien aikana. Jatkuvat mittaukset voivat aut-
taa havaitsemaan sellaisia rytmih&iriditd ja epdnormaaleja syddmen toiminta-
kiertoja, jotka esiintyvit vain tietyissd olosuhteissa tai epésddnnollisesti. Poti-
laan liikkeet kuitenkin aiheuttavat sydansidhkokayrddn voimakkaita liitkeartefak-
teja, jotka heikentdvit signaalin laatua ja vaikeuttavat signaalin tulkintaa. Liik-
keestd aiheutuvaa perustason vaellushéiriotéa voidaan hieman vahentdd paranta-
malla ihon ja elektrodin viélisen rajapinnan vakautta. Kuitenkin myo6s laskennal-
lisia signaalinkésittelymenetelemié, kuten adaptiivisia suotimia, tarvitaan. Sig-
naalinkésittelymenetelmia voidaan tehostaa hyodyntamalld lisimittaussuureita,
jotka korreloivat artefaktien ldhteen kanssa. Esimerkiksi kiihtyvyys- ja impedans-
sisignaaleja on tutkittu mahdollisina liikereferensseiné.

Téassd diplomityossd ehdotetaan perustason vaellushédiron véhentdmiseen
sydansdhkokayrastd menetelméé, joka ei hyodynné lisédsensoreita, vaan kayttéaa
lihassdhkokayrda Kalman-suotimen liike-estimaattina. Lihassdhkokayréd erote-
taan sydénsidhkokéayrasta ja sitd kdytetddn estimaattina elektrodien paikallises-
ta liikkeesté. Liike-estimaattia puolestaan hyddynnetédén adaptiiviseen Kalman-
suotimeen perustuvan perustason vaellushdirion kompensaatioalgoritmin re-
ferenssisignaalina. Algoritmi arvioidaan kliinisissd kokeissa kerétylla datalla.
Liséksi tutkitaan Kalman-suotimen toimivuutta kidytettéessé pienempad maaraé
kiihtyvyysantureita liike-estimaatin lahteené.

Tulokset osoittivat, ettd ehdotettu menetelmé poisti onnistuneesti perus-
tason vaellushédirion muuttamatta signaalin muotoa merkittavésti. Ehdo-
tettu menetelmd osoittautui toimivan vahintddn yhtd hyvin kuin mene-
telmét, joihin sitd verrattiin. Tulosten mukaan perustason vaellushéirion
vihentaminen liikkeen aikaisista sydéansdhkokayrdmittauksista olisi mahdollis-
ta ilman lisdsensoreita kayttdmaélla lihassdhkokayrdd Kalman-suotimen liikere-
ferenssiné. Lisdksi, vihennetty madra kiihtyvyysantureita osoittautui myos toi-
mivaksi liike-estimaatin ldhteeksi.

Asiasanat: elektrokardiografia, Kalman-suodin, perustason vaellushairio,
signaalinkésittely, artefaktien vihentdminen

Kieli: Englanti
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Abbreviations and Acronyms

AV
DOF
ECG
EMG
ENU
FFT
IIR
IMU
KL
PSD
RMSE
SA
SMU

Atrioventricular

Degrees of freedom
Electrocardiography
Electromyography
East-north-up

Fast Fourier transform
Infinite impulse response
Inertial measurement unit
Kullback—Leibler

Power spectral density
Root mean square error
Sinoatrial

Single motor unit
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Chapter 1

Introduction

Electrocardiography (ECG) (Webster, 2010) is a technique used to record
the electrical activity of the heart. It is commonly used in medicine to mon-
itor and diagnose patients with a cardiac condition. The advances in sensor
and information technology have enabled ambulatory ECG recordings to be
performed outside clinical settings in personal healthcare domain. These
ambulatory ECG monitorings could lead to more representative data over
longer time frames, thus improve the detection of arrhythmias and abnor-
mal cardiac cycles that occur in paroxysmal manner or only under certain
circumstances. For example, atrial fibrillation can be paroxysmal and stay
easily undetected in the baseline ECG measurement (Higgins et al., 2013).

Atrial fibrillation is an independent risk factor for ischemic stroke that can
even five-fold the risk without anticoagulation therapy (Wolf et al., 1991).
Especially, patients who suffer from atrial fibrillation after a stroke have
a high risk for a recurrent stroke. Currently, the clinical guidelines given
by European Stroke Organisation (European Stroke Organisation (ESO),
2008) recommend 24-hour Holter monitoring after stroke. However, several
studies (Gumbinger et al., 2012; Jabaudon et al., 2004; Higgins et al., 2013)
have shown that paroxysmal atrial fibrillation detection can be improved
with prolonged ECG monitoring (Grond et al., 2013). In addition to the
improved detection, the ability to monitor the patients outside the hospital
environment would make the recordings more comfortable for the patient
and likely decrease the costs (Higgins et al., 2013).

Unfortunately, the ECG recordings performed during daily activities are
prone to artifacts caused by body movements. One of these artifacts is low
frequency baseline wander. The movement of the electrodes, with respect
to the skin, changes the impedance on the electrode-skin interface, which
causes the ECG baseline to wander (Webster, 2010). Artifact removal is
crucial, since the artifacts complicate the clinical interpretation of the ECG
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signal. Especially, when the longer recordings increase the amount of data
and the automated classification of sections of interest is applied, the removal
of artifacts becomes a requisite.

The non-computational denoising method of making the electrode-skin
interface more stable is not powerful enough for removing the artifact from
movement ECG measurements (Sérnmo and Laguna, 2005). Therefore, sig-
nal processing methods are needed. Classical high-pass filters are widely
used, but they might remove also cardiac information or alter the signal
morphology since the frequency spectra of the ECG signal and the baseline
wander artifact are slightly overlapping (Sweeney et al., 2012). Adaptive
filters, for example adaptive Kalman filters, have shown better performance
in removing the artefact without distracting the cardiac signal (Hostettler
et al., 2018). However, adaptive filters typically utilize a motion reference
measured with additional sensors. For motion artifact, accelerometers are the
most common reference sensors, although other sensors, such optical bend
sensors, impedance sensors and skin stretch sensors have also been considered
(Sweeney et al., 2012). The use of additional sensors cause the measurement
device to be more complex, more expensive, and more energy-consuming.

The aim of this thesis is to develop an ECG signal baseline wander reduc-
tion method that does not rely on additional sensors. The artifact reduction
in this thesis is scoped only to the baseline wander caused by motion. In
terms of methods, this thesis is scoped to study only the feasibility of adap-
tive Kalman filters in baseline wander reduction. The proposed method uses
electromyographic (EMG) signal as a motion reference signal for an adaptive
Kalman filter algorithm. The reference EMG signal is obtained without any
additional sensors by extracting it from the ECG signal with Butterworth
high-pass filter. Another objective is to study if the number of sensors could
be reduced in measurements that use accelerometer data as a reference signal
for an adaptive Kalman filter.

This thesis is divided into five chapters. Chapter 2 provides a view on
the background concepts: the principles of ECG, baseline wander artifact,
electromyogram, inertial measurement units, and Kalman filters. Chapter
3 introduces the materials and methods used in the signal processing and
algorithm evaluation. The results are presented in Chapter 4, and discussion
and conclusions on the results are given in Chapter 5.



Chapter 2

Background

This chapter presents the physiological background of the ECG signal as well
as the principles of measuring the ECG. Section 2.3 introduces the baseline
wander artefact. Sections 2.4 and 2.5 provide descriptions of the EMG signal
and the IMUs that are utilized in the Kalman filters. The proposed solutions
for the artefact removal, Kalman filters, are introduced in Section 2.6 and
their use with IMUs as a motion reference in Section 2.7.

2.1 Physiology of ECG

2.1.1 Anatomy and function of the heart

The heart functions as a pump for the cardiovascular system (Tortora and
Derrickson, 2017). It has four chambers, two atria and two ventricles, whose
cyclic contractions generate the blood flow. The atria receive blood from
the veins which are blood vessels carrying blood toward the heart. The
ventricles eject blood into vessels leaving the heart called arteries. Moreover,
the heart is a double pump. The right part pumps blood into the pulmonary
circulation, which takes care of the blood transfer to the lungs. Conversely,
the left part runs the systemic circulation that delivers blood to the rest of
the body. The ventricles are separated from the atria and the arteries by
connective tissue valves to prevent the back flow of blood. The valves open
and close in response to pressure changes caused by ventricle contractions
and relaxations. The left and right ventricles are separated by a muscular
wall called the interventricular septum. The structure of the human heart is
illustrated in Figure 2.1.

Deoxygenated blood from the body enters the right atrium and is de-
livered to the right ventricle through the tricuspid valve (Tortora and Der-
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rickson, 2017). The right ventricle contracts and pushes blood through the
pulmonary valve into an artery called the pulmonary trunk that carries blood
to the lungs. The excess carbon dioxide is released and new oxygen picked up
in thin vessels called the pulmonary capillaries. The oxygenated blood flows
back to the heart through the pulmonary veins and enters the left atrium.
Blood is transferred to the left ventricle through the bicuspid valve. The
contraction of the heart pushes blood through the aortic valve into the aorta
from which it is distributed throughout the body via systemic arteries. The
exchange of the gases as well as nutrients takes place in systemic capillaries.
After the exchange, deoxygenated blood flows back to the right atrium of the
heart via systemic veins.

Systemic arteries

Pulmonary trunk

7 Pulmonary veins

Left atrium
Right atrium

Bicuspid valve

Aortic valve
Tricuspid valve

Left ventricle

Right ventricle

Pulmonary valve

Figure 2.1: The human heart is divided into two halves which both contain
an atria and a ventricle. Deoxygenated blood enters the right atrium and
continues to the pulmonary trunk via the right ventricle. Blood is oxygenated
in the lungs and then returns to the heart via pulmonary veins. Oxygenated
blood flows from the left atrium to the left ventricle before being delivered
throughout the body via the aorta. The blood flow inside the heart is re-
stricted by valves that only open during contractions. Blood vessels carrying
oxygenated blood are colored red and blood vessels carrying deoxygenated
blood are colored blue. Direction of the blood flow is marked with arrows.
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2.1.2 Cardiac conduction system

The heart wall is made of three layers: the external connective tissue layer
called the epicardium, the middle layer called the myocardium and the inner
endothelium layer called the endocardium (Tortora and Derrickson, 2017).
The myocardium covers 95% of the heart wall. It is composed of cardiac
muscle tissue and is responsible for the contractions and relaxations of the
heart.

Cardiac muscle fibers are striated, cylindrical fibers that may be divided
into branches. The connections between the adjacent fibers are specialized
membranes called intercalated discs (Strootbandt et al., 2016). Since the
intercalated discs contain gap junctions with very low electrical resistance,
they allow a rapid conduction of action potentials from one cell to another.
As a result, the heart muscles function as a synchronous unit. In addition,
cardiac muscle cells have a semipermeable cell membrane with selective ion
channels. Those channels let only specific charged particles to pass through
the membrane either into the cell or out of it. The selectivity of the membrane
creates a potential difference between the sides of the membrane, referred to
as resting membrane potential. In cardiac muscle fibers the resting membrane
potential is close to -90 mV (Tortora and Derrickson, 2017).

About 1% of the muscle fibers are autorhythmic fibers that have the
ability to excite action potentials in themselves (Tortora and Derrickson,
2017). The autorhythmic fibers have two important functions. Firstly, they
act as a pacemaker and thus pace the contractions of the heart by controlling
the action potential excitations. Secondly, they form the cardiac conduction
system. The conduction system is a network of autorhythmic fibers that
works as a pathway for the cardiac excitations to proceed throughout the
heart. The rest of the muscle fibers are contractile fibers that contract when
they receive the action potential from the conduction system (Tortora and
Derrickson, 2017).

Electrical activation of the heart begins from the sinoatrial (SA) node in
the right atrium (Tortora and Derrickson, 2017). The SA-node cells depo-
larize spontaneously and repeatedly to the threshold potential that triggers
the action potential. The action potential travels through both atria via gap
junctions and generates the simultaneous contraction of the atria that pushes
blood to the ventricles. The propagation of the action potential is slowed
down in the atrioventricular (AV) node to give time for the atria to drain.
Next, the action potential proceeds to the ventricles via the atrioventricular
bundle which is the only electrically conductive pathway between the atria
and the ventricles. The bundle diverges into left and right branches which
carry the signal to the apex of the heart. From there, the action potential
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Sinoatrial node

Atrioventricular bundle
Internodal pathways

Left bundle branch
L—

Atrioventricular node
Purkinje fibers

Right bundle branch

Figure 2.2: Electrical activation of the human heart begins with the sinoa-
trial node depolarization. The action potential propagates through both atria
causing them to contract. The propagation is slowed down in the atrioven-
tricular node to give time for the atria to drain. Next, the action potential
continues to proceed via the atrioventricular bundle and the bundle branches
to the Purkinje fibers that generate the contraction of the ventricles. The
conduction pathways are colored yellow.

spreads rapidly upward the ventricles via Purkinje fibers. The spreading ac-
tion potential causes the sequential contraction of the contractile fibers. The
ventricles contract and push the blood toward the semilunar valves. The
conduction system of the heart is visualized in Figure 2.2.

The SA-node initiates action potentials in a constant rate of about 100
times per minute (Tortora and Derrickson, 2017). However, the amount of
blood supply needed in the tissues is not constant but varies under differ-
ent conditions. The body adapts to the changing needs by regulating the
heart rate. The most important regulation mechanisms is the autonomic
regulation. The autonomic regulation originates in the cardiovascular center
in the brainstem (Tortora and Derrickson, 2017). If the need for the blood
increases in the tissues, for example, during physical activity, the cardiovas-
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cular center increases the frequency of nerve impulses in the sympathetic
nerves. Impulses in the sympathetic cardiac accelerator nerves trigger the
release of norepinephrine that raises the rate of the spontaneous depolariza-
tion in the SA-node. Conversely, if the heart rate needs to be decreased, for
example, during rest or sleep, the cardiovascular center increases the impulse
frequency in the parasympathetic nerves. The parasympathetic vagus nerves
release acetylcholine to the vicinity of the SA-node, AV-node, and atrial my-
ocardium, which decreases the rate of the spontaneous depolarization in their
autorhythmic fibers. With the autonomic nerve stimulations, the heart rate
can be controlled to vary from 20-30 beats/min up to over 200 beats/min
(Tortora and Derrickson, 2017). In addition to the autonomic regulation,
several chemicals, like hormones and cations, affect the heart rate. Further-
more, factors like age, gender, physical condition, and body temperature
all affect the resting heart rate and the possible maximum heart rate of an
individual.

2.2 Measurement of ECG

2.2.1 History and development of electrocardiography

Electrocardiography (ECG) is a technique to record the electrical activity
of the heart. The first observations of bioelectrical activity were made in
1786 by Luigi Galvani (AlGhatrif and Lindsay, 2012). Galvani managed to
record electrical current from dissected animal skeletal muscles. In 1842,
Carlo Matteucci proved with frogs that also heart beats are associated with
electrical current (AlGhatrif and Lindsay, 2012).

The first human ECG was recorded in 1887 by Augustus D. Waller
(Waller, 1887). It was recorded with capillary electrometer and surface elec-
trodes attached to the chest and back. Waller also proved that the electrical
activity preceded the ventricular contractions by recording the ECG and the
movements of the heart simultaneously. In 1901, Willem Einthoven suc-
ceeded to develop a new string galvanometer for more sensitive recordings
(Barold, 2003). Furthermore, Einthoven discovered the PQRST-waveform of
the ECG signal and the three standard limb leads (I, II and III) of ECG
recordings known as Einthoven’s triangle. Later, he was awarded the Nobel
Prize for discovering the mechanism of ECG.

Over the first decades of the 20th century, the clinical usage of the three-
lead ECG extended especially after improving the portability. Initially, the
ECG was used mainly to study arrhythmias. The diagnostic significance in-
creased after discovering that also myocardial infarctions could be diagnosed
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with ECG. The study of myocardial pathology led to the development of
new leads. The six unipolar chest leads (V1-V6) were standardized in 1938
(AlGhatrif and Lindsay, 2012). Finally, the augmented unipolar limb leads
(a-VL, a-VR and a-VF) were established leading to the standardization of
12-lead ECG in 1954 (AlGhatrif and Lindsay, 2012).

Currently, ECG is routinely used in medical diagnostics and there is a
range of ECG devices available. In addition to the standard 12-lead ECG,
there are for example ambulatory Holter monitors and multichannel body
surface mapping systems (Trobec et al., 2018). Additionally, wearable and
wireless ECG devices are emerging as a method for continuous monitoring in
elderly people healthcare (Baig et al., 2013) as well as in consumer products
with mobile applications.

2.2.2 Standard 12-lead ECG

The standard 12-lead ECG consists of three bipolar limb leads, three aug-
mented limb leads, and six unipolar precordial leads (Trobec et al., 2018).
The limb leads record in the frontal plane of the body and the precordial
leads in the transverse plane. The term bipolar lead is used to describe that
the leads reflect the voltage difference between a pair of electrodes, whereas
the term unipolar lead refers to the voltage variations of a single electrode
in relation to a reference electrode (Sérnmo and Laguna, 2005). The bipolar
limb leads are recorded with electrodes placed on the left arm (LA), right
arm (RA), and left leg (LL). Typically, one electrode is placed on the right
leg (RL) to serve as an reference electrode. Lead I measures the potential
difference between LA and RA, lead II between LL and RA, and lead III
between LL and LA. The resulting lead vectors can be approximated to form
the Einthoven’s triangle, an equilateral triangle with the electrodes as its
corners and the heart as its center (Webster, 2010). As a result, the leads I,
I, and III are noted to reflect the potential differences in the frontal plane
in the directions with 0°, 60° and 120° angles, respectively.

To cover more directions in the frontal plane, the augmented limb leads
aVF, aVL, and aVR were introduced (S6rnmo and Laguna, 2005). They
are unipolar leads having a reference electrode called the Wilson central
terminal (Wilson et al., 1934). The Wilson central terminal is formed by
connecting the three limb electrodes through equal-valued resistances to a
central terminal. The voltage at the central terminal is the average of the
voltages at the limb electrodes. The lead from the Wilson central terminal
(V) to LA is known as VL, to RA as VR and to LL as VF. However, for
each lead, one of the resistances shunts the circuit between the electrode and
the central terminal, which leads to very small amplitude (Webster, 2010).
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To increase the amplitude, the limb being measured and the central terminal
are disconnected, thus the augmented limb leads are formed. The augmented
leads, known as aVL, aVR and aVF, correspond to the directions with -30°,
-150° and 90° angles, respectively. The lead angles in the frontal plane are
shown in Figure 2.3.

Figure 2.3: The lead angles of the limb leads and augmented limb leads. The
limb leads and augmented limb leads reflect the potential differences in the
frontal plane with angles of 0°, 60°, 90°, 120°, -30° and -150° relative to the
heart.

In order to get a view of the heart in the transverse plane, six precordial
leads are measured in the standard 12-lead ECG. Six chest electrodes are
placed in anatomically defined positions on the front and left side of the chest
wall. The potential differences are measured between the chest electrodes
and the Wilson central terminal. The resulting leads, named from V1 to V6,
cover the transverse plane directions from 0° to 100° with steps of 20° angle
(Trobec et al., 2018). The placement of both limb and precordial electrodes
is shown in Figure 2.4.
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Figure 2.4: The placement of the electrodes in the standard 12-lead ECG.
The recording limb electrodes are placed on the right arm, left arm, and
left leg. The reference electrode is placed on the right leg. The precordial
electrodes are placed on the front and left side of the chest wall.

2.2.3 Origin and morphology of the ECG signal

As described in Section 2.1.2, the action potential generated in the SA node
proceeds along the conduction system and excites the contractile muscle
fibers. In the contractile fibers, the action potential occurs in three stages:
first the fiber depolarizes, next comes the plateau and eventually the fiber
repolarizes back to the resting state (Tortora and Derrickson, 2017). The
depolarization begins when the additive action potentials from the neigh-
bouring fibers bring the membrane potential of the fiber to the threshold
potential. Reaching the threshold potential causes the opening of the sodium
ion channels of the membrane. Positively charged sodium ions flow into the
negatively charged muscle fiber cytosol down the electrochemical gradient.
The ion inflow produces a rapid depolarization of the fiber, which again closes
the sodium ion channels. During the next phase, plateau, the depolarization
is maintained by the balanced inflow of positive calcium ions and outflow
of positive potassium ions down the concentration gradients. Finally, the
repolarization restores the membrane potential to its negative resting value.
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The repolarization is achieved by closing the calcium ion channels and open-
ing additive potassium ion channels for increased potassium ion outflow. A
figure of the phases in myocardial action potential is shown in Figure 2.5.

Depolanzatlon Plateau Repolarlzat|on

mV

+30

-90

Figure 2.5: Myocardial action potential is divided into three stages: de-
polarization, plateau and repolarization. The depolarization is achieved by
the inflow of positive sodium ions. During the plateu, the depolarization is
maintained by balanced inflow of positive calcium ions and outflow of pos-
itive potassium ions. The repolarization restores the negative resting value
by positive potassium ion outflow.

An electrocardiogram is a recording of the combined action potentials
produced by all of the heart muscle fibers (Tortora and Derrickson, 2017).
The depolarization and repolarization waves during each heartbeat produce
voltage changes that form the typical PQRST-waveform of the ECG record-
ings. The ECG signal morphology is dependent on the ECG measurement
angles, which in turn are dependent on the leads, both presented in Section
2.2.2. A typical ECG signal measured from lead I is shown in Figure 2.6.

The electrical activation in the SA-node is too weak to be recorded at the
body surface, thus the first visible deflection in the ECG recording is caused
by the next event, the atrial depolarization (Katz, 2011). The atrial depo-
larization produces the P-wave, which is followed by the QRS complex rep-
resenting the ventricular depolarization. The third deflection is the T-wave,
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Figure 2.6: ECG signal morphology over one cardiac cycle. The P-wave is
produced by the atrial depolarization, the QRS complex by the ventricular
depolarization, and the T-wave by the ventricular repolarization. The P-
R interval describes the action potential conduction time, the Q-T interval
the duration of the ventricular action potential, and the S-T segment the
duration of the plateau.

which corresponds to the repolarization of the ventricles. Between these de-
flections, the ECG normally returns to its baseline. In ECG analysis, the
amplitudes and shapes of the waves are examined to identify abnormalities
in heart function.

In addition to the waves, also the time spans between the waves provide
important information of the function of the heart (Tortora and Derrickson,
2017). The length of the interval between the atrial and ventricular activa-
tion, called the P-R interval, describes the action potential conduction time
through the AV-node, AV-bundle, bundle branches, and the Purkinje fibers
(Katz, 2011). The Q-T interval represents the total duration of the ventric-
ular action potential, and the S-T segment the duration of the plateau phase
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only.

The frequency spectrum of a normal ECG signal in sinus rhythm has
distinct characteristics. The accepted frequency range for diagnostic ECG
is 0.05-100 Hz (Orphanidou, 2018). Although, the power of a typical QRS
complex is in the frequencies below 30 Hz. The peak power occurs in the
range of 4-12 Hz, including the QRS complex as well as the P- and T-waves.
(Murthy et al., 1978). Normally, the highest peak, R-peak, has an amplitude
of maximum 3 mV (Sérnmo and Laguna, 2005).

2.3 Baseline wander

The diagnostic quality of ECG measurements can be affected by various types
of disturbances. The presence of the artifacts as well as poor processing of
the signal can lead to incorrect diagnoses when interpreting the ECG. The
disturbances are typically electrical interferences and can be categorised into
physiological and non-physiological artifacts (Crawford and Doherty, 2011).
The physiological artifacts include the movement artifacts baseline wander
and electromyographic noise. The non-physiological artifacts can be caused
for example by power lines, ground loops, loose electrode-lead connections,
or electrode misplacements. In this section, the movement artifact baseline
wander is presented.

The wandering of the ECG baseline is a motion artifact caused by im-
pedance changes at the electrode-skin interface. In an ideal measurement,
the ECG signal would be constantly centered at zero from where the waves
would deviate. In baseline wander, the center of the waves shifts from zero
in slow fluctuations. Figure 2.7 shows an example of an ECG signal with
significant baseline wander. There are two main methods how the baseline
wander can be induced (Webster, 2010). Firstly, if the electrode moves with
respect to the skin, the movement disturbs the charge distribution either at
the electrode-electrolyte or the electrolyte-skin interface. Secondly, stretch-
ing the skin or applying pressure to it, may change the skin potential several
millivolts.

Especially in the ECG measurements performed during motion, the base-
line wander is often accompanied with an electromyographic artifact. Typi-
cal causes for baseline wander are body movements, poor electrode contact,
movement of cables, respiration, and perspiration. The spectral content of
the baseline wander artifact is typically less than 1 Hz, but doing physical ex-
ercises during the recording may add higher frequency components (Sérnmo
and Laguna, 2005). The magnitude of the artifact can be several times higher
than the amplitude of the QRS complex.
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Figure 2.7: ECG signal with wandering baseline. The baseline wander is a
motion artifact caused by impedance changes at the electrode-skin interface.
The baseline wander appears as a slow fluctuation of the ECG baseline from
the zero-line that is marked with dashed line. There is also electromyographic
noise visible from ¢ ~ 19 s to t = 31 s.

The amount and intensity of the motion artifacts increase when shift-
ing from clinical resting ECG recordings into longer ambulatory measure-
ments. The baseline wander can be reduced by improving the stability of the
electrode-skin interface. This can be achieved by using nonpolarizable elec-
trodes, removing the stratum corneum layer of the skin, or using microneedle
electrodes that pass through the stratum corneum and the barrier layer of the
skin (Webster, 2010). However, these methods can not completely prevent
the occurrence of baseline wander and some of them can be painful for the
patient. Therefore, signal processing methods are needed. Two major com-
putational techniques used to remove the baseline wander are linear filtering
and polynomial fitting (Sérnmo and Laguna, 2005). Yet, despite their wide
use and rather easy implementation, these classical filtering techniques have
some major drawbacks. Since the spectral contents of the ECG signal and
the baseline wander artifact are typically slightly overlapping, for example,
high-pass filtering might also remove some important cardiac information
(Sweeney et al., 2012). Moreover, if the phase response of the filter is not
linear, it might also alter the ECG morphology (Kaur and Singh, 2011).
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2.4 Electromyogram

Like Section 2.3 presented, the electromyographic signal in ECG is usually
considered as an artifact. However, electromyogram (EMG) also gives valu-
able information of muscle activity that is often related to movement. In
this thesis, the electromyographic interference in ECG is utilized as a ref-
erence signal for the Kalman filter, indicating patient movement during the
recording.

The EMG signal originates from the electrical activity of the skeletal mus-
cles (Sérnmo and Laguna, 2005). The skeletal muscles are involved in pro-
ducing movement as well as in maintaining the body position. The skeletal
muscles are organized in motor units, which include a single motor nerve fiber
and the muscle fibers to which it is attached (Webster, 2010). A single motor
unit (SMU) represents the smallest functional unit of volitional contraction.
As in the cardiac muscle tissue, also the skeletal muscle fiber contractions are
controlled by the action potentials. The SMU contracts when the action po-
tential coming from the innervating motor neuron spreads along the excitable
membranes of the muscle fibers. Thus, the active muscle fibers of the SMU
constitute a bioelectric source (Webster, 2010), which evokes field potentials
that can be recorded from body surface. The EMG signal is a summation of
the motor unit action potentials that are sufficiently close to the recording
electrode. The amplitude of the surface EMG signal is typically in the range
of 0.25-5 mV (Sérnmo and Laguna, 2005). The frequency range is wide and
partially overlapping with the spectral content of ECG signal.

Since the ECG electrodes are measuring heart induced potentials from
the body surface, they also capture the EMG signal from the superficial
muscles near them. Especially, when the ECG is recorded during exercise,
a significant amount of muscular activation occurs which results in EMG
contaminated ECG signal. In this thesis, the ECG is recorded while the
subjects are performing certain motion sequences. Thus, the ECG signal
features also EMG components. The aim is to use an adaptive Kalman filter
to reduce the amount of motion related baseline wander in the ECG signal.
Since the baseline wander and the EMG signal are both motion artifacts, they
can be assumed to originate from the same motion. Therefore, the extracted
EMG signal is used as a reference signal providing information on the amount
of the measurement noise for the Kalman filter. The principles of Kalman
filters are introduced in Section 2.6 and the more detailed description of the
reference signal usage for modeling motion is given in Section 3.4.
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2.5 Inertial measurement units

An inertial measurement unit (IMU) is an electronic device that measures
the position changes of the measured object (Kempe, 2011). The modern
IMUs typically consist of accelerometer, gyroscope and magnetometer (Ah-
mad et al., 2013). Commonly, they are all tri-axial, gaining together nine
degrees of freedom (DOF). The accelerometer is used to measure the iner-
tial acceleration whereas the gyroscope measures the angular rotation. The
magnetometer measures the yaw angle rotation from magnetic fields and is
used to improve the reading of the gyroscope that is easily disturbed by drift.
IMUs are commonly used in applications of navigation systems, robotics, and
industry quality control. In medical applications, they can be used, for ex-
ample, in long term health monitoring (Rodriguez-Martin et al., 2013) and
in pose estimation (Tobergte et al., 2009).

In this thesis, and in adaptive ECG signal denoising in general, IMUs are
used to measure the movement of the electrodes. The electrode movement
is then used as a reference signal for an adaptive filter that removes the mo-
tion artifact. The adaptive Kalman filter algorithm presented by Hostettler
et al. (2018), and used in this thesis, utilizes the data from all three sensors
when estimating the motion of the electrode. The algorithms and the use
of reference signals are presented in Section 3.4. Although the use of IMUs
as a motion reference is an effective method in motion artifact reduction,
this thesis studies, if a successful artifact removal could be achieved with a
reduced number of IMUs or even without any additional sensors.

2.6 Kalman filters

Kalman filter (Kalman, 1960) is an recursive estimator used to estimate the
states of a linear Gaussian dynamic system. The Kalman filter utilizes the
measurement data as well as prior knowledge about the measurement device
and the system to provide an optimal system state estimate with statistically
minimised error (Mason, 2002). The Kalman filter consists of two steps,
prediction step and update step (Welch and Bishop, 1995). In the prediction
step, the filter produces an a priori estimate of the system state in the
next time step based on the previous estimate. Next, the new measurement
is used to refine the a priori estimate to obtain an improved a posteriori
estimate. After each prediction and update step pair, the Kalman filter loop
is repeated. The previous a posteriori estimates are used to predict the next
a priori estimates, hence the recursive nature. The function of the Kalman
filter is based on the assumption that the dynamic system is linear and the
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noise is Gaussian. However, there are variations available for nonlinear and
non-Gaussian problems, such as the extended Kalman filter (Sweeney et al.,
2012).

Kalman filtering is computationally efficient due to its matrix operations.
In addition, the recursive nature makes the real-time implementations of
Kalman filter feasible. Consequently, the Kalman filter has found many ap-
plications, to a great extent in the fields of navigation and target tracking.
The number of applications in biomedical signal processing is smaller but
increasing. For example, adaptive Kalman filters have been proposed as a
method for ECG baseline wander removal, for example, by Hostettler et al.
(2018) and Mneimneh et al. (2006). Further, Vullings et al. (2010) success-
fully used adaptive Kalman filter and Sameni et al. (2005) and Sayadi and
Shamsollahi (2008) extended Kalman filter for ECG signal denoising, but
targeting the high frequency noise instead of the baseline wander.

The Kalman filter state-space model (Equation 2.1) describes a system
where the evolution of the system state x; follows a linear dynamic model
with Gaussian process noise and the measurements y;. are linearly related to
the system state with Gaussian noise (Kovvali et al., 2014). The dynamic
model and measurement model are given as (Sarkké, 2013; Welch and Bishop,
1995):

X = Ag-1Xp-1 + Qk—1, (2.1a)
yi = Hyxy, + 1y, (2.1b)

where x; € R" is the state of the system at time step k& and y; € R™ is
the measurement at time step k. The state transition matrix of the dynamic
model A;_; relates the state at the previous time step £ — 1 to the current
state. The measurement model matrix Hj gives the connection between
the state x; and the measurement y,. The random variables q, and ry
denote the process noise and measurement noise, respectively. They are
assumed to be independet and white with normal probability distributions
qr ~ N(0,Q_1) and r, ~ N(0,Ry). The process noise covariances Qj_;
and the measurement noise covariances Ry are assumed to be given.

In the prediction step, the a prior: system state estimate m, and its
covariance matrix P, are calculated using the a posteriori estimates of the
previous time step (for in-depth derivations of the Kalman filter equations,
refer to, for example, Sarkké (2013)) :

m, =A;_m;_, (2.2a)
P;: - AkflpkflA]I_l + Qkfl. (22b)
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The predicted system state estimate is used in the update step to obtain the
predicted measurement estimate zy:

Next, the error in the estimated measurement v, the innovation, can be
calculated with the actual measurement value yy:

Vi =Yk — Zg. (24)

The covariance matrix of the prediction error is named as innovation matrix
and can be calculated as:

Sy = H,P, H, +R;. (2.5)

The weighting matrix, Kalman filter gain, that minimizes the a posterior:
estimation error covariance can be calculated as:

K, =P H,S;". (2.6)

Finally, the a posteriori state estimate my and its covariance matrix Py are
updated:

m; = m,; + Kka, (27&)
P, =P, - K;S.K}. (2.7b)

2.7 Baseline wander compensation with IMUs

This thesis is a continuation of the study by Hostettler et al. (2018) which
represents the state of the art in ECG baseline wander reduction. Hostettler
et al. (2018) proposed a baseline wander compensation algorithm that is
based on adaptive Kalman filtering and IMUs. They attached the IMUs to
each recording electrode and recorded ECG while the subjects performed
motions. The IMUs were used to estimate the local electrode motion which
served as a reference signal for the Kalman filter.

The local electrode motion was estimated with the Kalman filtering and
smoothing algorithm for attitude tracking introduced by Sarkka et al. (2015).
The attitude tracker estimates the attitude of each IMUs by tracking the
gravity and magnetic field vectors in the local coordinate frames of the IMUs.
The estimated attitudes were used to estimate the relative motions of the
IMUs in global coordinates. The motion estimation was performed again with
a Kalman filter using an inertial navigation model (Titterton and Weston,
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2004) as the dynamic model and the attitudes as inputs. Finally, the motion
artifact reduction was done with a Kalman filter using the estimated local
positions as a reference signal and modeling the ECG measurement as a
superposition of the cardiac signal and the baseline wander disturbance. The
result was the estimate of the m<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>