
Aalto University

School of Science

Master’s Programme in Computer, Communication and Information Sciences

Miika Piiroinen

Containerization and Cloud Migration
of Legacy Web Services

Master’s Thesis
Espoo, May 25, 2020

Supervisors: Senior University Lecturer Vesa Hirvisalo
Advisor: M.Sc. (Tech.) Jaakko Kotimäki

D.Sc. (Tech.) Mikko Hakala

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/333887541?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Master’s Programme in Computer, Communication and
Information Sciences

ABSTRACT OF
MASTER’S THESIS

Author: Miika Piiroinen

Title:
Containerization and Cloud Migration of Legacy Web Services

Date: May 25, 2020 Pages: 50

Major: Computer Science Code: SCI3042

Supervisors: Senior University Lecturer Vesa Hirvisalo

Advisor: M.Sc. (Tech.) Jaakko Kotimäki
D.Sc. (Tech.) Mikko Hakala

A research group has multiple web services running on an outdated server hard-
ware. Many of the services are old and not actively developed anymore and also
often depend on outdated software, which is problematic from the security point
of view. It is time to decommission the old hardware and therefore the services
needs to be migrated onto a more modern platform. While migrating away from
the old servers, we want to make the services easier for the research group to
maintain and improve security where possible.

Containerization technologies are an increasingly popular way to build, package
and deploy software. Containers provide a convenient way to package software
along with it dependencies to be easily run across different computers and oper-
ating systems. While being more lightweight than virtual machines, containers
provide a layer of isolation between services running on a same host. Container-
ized services can be hosted on a cloud container platforms such as Kubernetes or
OpenShift.

In this thesis work, multiple existing web services built on top of varying
techonologies are containerized. The containerized services are then deployed
onto an OpenShift cloud container platform. We see how containerization can
lead to better maintainability and security of olded services. Containerization
provides a layer of isolation between the services improving security and makes it
easier to deploy them on different plaftorms if needed. The OpenShift platform
provides container orchestration and tools for automating builds and deployment,
which we utilize to make sure that the services and their dependencies are always
kept upt-do-date.

Keywords: cloud computing, containerization, migration, openshift

Language: English

2

Aalto-yliopisto
Perustieteiden korkeakoulu
Tieto-, tietoliikenne- ja informaatiotekniikan maisteriohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Miika Piiroinen

Työn nimi:
Legacy -palveluiden kontainerisointi ja pilvimigraatio

Päiväys: 25. toukokuuta 2020 Sivumäärä: 50

Pääaine: Tietotekniikka Koodi: SCI3042

Valvojat: Vanhempi yliopistonlehtori Vesa Hirvisalo

Ohjaaja: DI Jaakko Kotimäki
TkT Mikko Hakala

Tutkimusryhmällä on useita verkkopalveluita, joita ajetaan vanhentuneella, pai-
kallisella palvelinalustalla. Monet näistä palveluista eivät ole enää aktiivisessa
kehityksessä. Useat palveluista ovat riippuvaisia vanhoista ohjelmistoversioista,
joka on ongelmallista palveluiden turvallisuuden kannalta. Vanhat palvelimet on
tarkoitus poistaa käytöstä, ja palvelut tulee siirtää uudelle alustalle. Siirron yh-
teydessä haluamme tehdä palveluiste tutkimusryhmälle helpompia ylläpitää sekä
parantaa palveluiden turvallisuutta, mikäli mahdollista.

Kontainerisointi on suosittu tapa rakentaa, paketoida ja ajaa ohjelmistoja. Kon-
tainerit mahdollistavat ohjelmiston ja sen riippuvuuksien sisällyttämisen samaan
pakettiin, tehden ohjelmiston ajamisesta eri alustoilla ja käyttöjärjestelmillä help-
poa. Kontainerit ovat kevyempiä kuin perinteiset virtuaalikoneet, mutta eristävät
kuitenkin samassa ympäristössä ajettavat ohjelmistot toisistaan. Kontainerisoi-
tuja palveluita voidaan ajaa pilvikontaineriympäristöissä, kuten Kubernetes ja
OpenShift.

Tässä diplomityössä kontainerisoimme useita eri teknologioihin perus-
tuvia verkkopalveluita. Kontainerisoidut palvelut viedään OpenShift -
pilvikontaineralustalle. Näemme, kuinka kontainerisointi voi parantaa verk-
kopalveluiden ylläpidettävyyttä ja turvallisuutta. OpenShift -alusta huolehtii
kontainereiden orkestroinnista sekä tarjoaa meille työkalut kontainereiden luon-
nin ja ajamisen automatisointiin. Hyödynnämme tätä palveluiden ja niiden
ohjelmistoriippuvuuksien automaattiseen päivitykseen.

Asiasanat: pilvilaskenta, kontainerisointi, migraatio, openshift

Kieli: Englanti

3

Espoo, May 25, 2020

Miika Piiroinen

4

Abbreviations and Acronyms

CI/CD Continuous Integration and Continuous Deployment
SSH Secure Shell
CLI Command Line Interface
DNS Domain Name System
SPARQL SPARQL Protocol and RDF Query Language
SQL Structured Query Language
CGI Common Gateway Interface
URL Universal Resource Locator
VCL Varnish Configuration Language
YAML YAML Ain’t Markup Language
SSL Secure Sockets Layer
PV Persistent Volume
PVC Persistent Volume Claim
API Application Programming Interface
VM Virtual Machine
SOA Service Oriented Architecture
HTTP HyperText Transfer Protocol
IO Input/Output
PID Process Identifier
ID Identifier
UID User Identifier

5

Contents

Abbreviations and Acronyms 5

1 Introduction 8
1.1 Scope . 8
1.2 Problems . 9
1.3 Results . 9
1.4 Structure of the thesis . 10

2 Background 11
2.1 Software process . 11
2.2 Cloud computing . 12
2.3 Cloud migration . 13
2.4 Service based architectures . 13

3 Key technologies 15
3.1 Containerization . 15
3.2 Docker . 16
3.3 OpenShift . 17
3.4 OpenShift objects . 17

3.4.1 Deployments . 18
3.4.2 Services . 18
3.4.3 Images and ImageStreamTags 18
3.4.4 Builds . 19
3.4.5 Volumes . 19
3.4.6 ConfigMaps . 19
3.4.7 Routes . 19

3.5 Docker Hub . 20
3.6 GitHub . 20
3.7 GitLab . 20

6

4 Implementation 21
4.1 Architecture . 21

4.1.1 Frontend . 21
4.1.2 Web server . 22
4.1.3 App server . 22
4.1.4 Store server . 22
4.1.5 Changes . 22

4.2 Containerization . 23
4.2.1 Varnish Cache . 24
4.2.2 Apache websites . 25
4.2.3 Wordpress sites . 26
4.2.4 Tomcat applications 26

4.2.4.1 Java version 27
4.2.5 Fuseki databases . 27

4.3 Git repositories . 28
4.4 Automating Builds and Deployment 29
4.5 Backups . 30
4.6 Routing . 32
4.7 Migrating Data . 33

5 Discussion 39
5.1 Splitting cache and database 39
5.2 Benefits from PaaS . 40
5.3 Standardized respositories . 40
5.4 Service isolation . 40
5.5 Automated deployment . 41
5.6 Scalability . 41
5.7 Amount of work . 42
5.8 Code duplication . 42
5.9 Multiple processess per container 43
5.10 Making containers more generic 43
5.11 Storage problems . 44
5.12 Monitoring . 44
5.13 Testing . 44
5.14 Cost Optimization . 45

6 Conclusions 46

7

Chapter 1

Introduction

Containerizarion technologies makes it easier to deploy software across across
varying platforms and operating systems. The software is packaged with it’s
dependencies and libraries and is quaranteed to run in the same way on a
local development machine or a production server. Containerization is an
increasingly popular way to build, package and deploy software

Cloud Computing is a computing model that frees software developers
and IT operations from managing computing resources. Instead of using
dedicated server hardware, software can be deployed on a cloud platform
with a pool of shared computing resources. Many public cloud providers
also offer platforms allowing deployment and nearly infinite scalability of
containerized software. Therefore it is no wonder that big portion of the
newly developed software is utilizing containers in some form.

In this thesis, we are applying containerization technologies and cloud
computing resources in migration of existing web services. We are moving
the software services belonging to a reserch group from on-premises servers
to an OpenShift cloud container platform. This involves reengineering of the
software services for containerization and deploying the services on the cloud
platform.

Next in this chapter, we detail the scope, problem and results of this
work.

1.1 Scope

The services migrated in this work belong to the Semantic Computing Re-
search Group (SeCo) of Department of Computer Science, Aalto University.
The main goal of the work is to migrate these services, residing on physical
on-premises servers, onto a cloud container platform.

8

CHAPTER 1. INTRODUCTION 9

Firstly, the work introduces the relevant research areas including Software
Engineering, Cloud Computing, Service Architectures and Containerization.
Secondly, this work explains the key technologies used and the implementa-
tion of the migration. Thirdly, the work discusses the outcomes and what
can be learned from this migration project.

1.2 Problems

The on-premises server of the SeCo group have come to their end-of-life.
Older the hardware gets, the more likely it is to break. Therfore we need to
find a replacement for the hardware.

The operating system and software versions are outdated, which is a
problem from the security point of view. Old software is likely to contain
lots of security vulnerabilities. The outdated software should be updated or
replaced. Possible security problems should be mitigated otherwise where
updating or replacing software is not possible.

Deployment of the software services is on most cases not documented
properly. Configuration code quality has degraded over time due to lack
of refactoring. There is one configuration file for a cache handling traffic
for all of the services, that is especially difficult to read and understand.
This makes the configuration error-prone. All of these problems make the
maintenance of the services difficult. In order to improve the maintainability
of the services, we want to improve the documentation and refactor some of
the configuration items.

Problem related to legacy systems and software modernization are a com-
mon topic in the software industry. As an example, Khadka et al.[11] in-
terviewed 26 industrial practitioners on their views on legacy systems and
software modernization.

1.3 Results

This work is based on a migration project conducted by the author. In the
project, various web services are migrated from an on-premises servers to a
containerized cloud environment. In total, there are around 30 services in-
cluding simple websites, deployments of off-the-shelf applications, databases,
Tomcat java applications and some custom pieces of software.

We demonstrate how the different application types can be containerized.
We discuss the problems we encountered and how they were handled.

CHAPTER 1. INTRODUCTION 10

Based on the experiences from the migration project, we discuss: 1) How
the containerization can improve security, 2) How reengineering for contain-
ers and cloud can improve maintainability, 3) Amount of work involved, 4)
Mistakes and problems we encountered during the migration project and 5)
Drawbacks of cloud and microservice architectures

1.4 Structure of the thesis

In this chapter, we introduced the scope, problem and results as well as the
structure of the thesis. Chapter 2 introduces Software Process, Cloud Com-
puting, Cloud Migration and Service Architectures and the relevant works.
Chapter 3 introduces the key technologies used in the migration project:
Containerization, Docker, OpenShift and Git. In Chapter 4, we go through
the implementation of the migration. In Chapter 5 we discuss the results
and experiences from the migration. Chapter 6 concludes the thesis.

Chapter 2

Background

In this chapter we introduce the relevant research and literature. The relevant
research topics are introduced in the following order: software process, cloud
computing, cloud migration and service architectures.

2.1 Software process

In his book, Sommerville[25] describes the idea of a software process - a
set of activities for software production. Later part of the process is called
software evolution or software maintenance. The software is in production
and is mainly changed only to fix bug or vulnerabilities, to adapt to new
environments or in order to add functionality to support new requirements.

Sommerville[25] also talks about dealing with legacy systems. In his
words, ”Legacy systems are older systems that rely on languages or technol-
ogy that are no longer used for new systems development”. Such systems
become more difficult and expensive to maintain over time. Sommerville talks
about different options options for dealing with legacy systems: scrapping
the system, continuing with regular maintenance, reenginering the system or
replacing parts of, or the whole system. The choice mainly depends on the
importance of the system and the related costs.

There are lots of studies done regarding to legacy systems and software
modernizations. In their book, Seacord et al.[22] describes the software mod-
ernization process in a business context. In 2013, Khadka et al.[11] did an
empirical study, interviewing 26 industry practitioners about their views on
legacy systems and software modernization.

While in our case, there is not a well defined process for the development
of the software systems we are dealing with in this thesis, these points are
still highly relevant to the project. The motivation for the migration project

11

CHAPTER 2. BACKGROUND 12

comes from the hardware that has come to the end of its lifecycle. However
the software hosted using the hardware still needs to be maintained. There-
fore there is a need to migrate and possibly adapt the software for a new
platform.

There is also many pieces of software that rely on older technologies that
might not be supported anymore. Therefore there is a need to evaluate what
to do with each of these software. For most of the services, some degree of
reengineering is needed in order to adapt them for the new paltform. There
are also some services that can be scrapped. There are also some parts of the
software systems that we can easily replace with more modern alternatives.

2.2 Cloud computing

Cloud Computing is a wide concept. What is called a cloud, can vary from
small computer clusters used and hosted by a small company, to world wide
services consisting of multiple datacenters and hundreds of thousands of com-
puters. The cloud services provided range from virtualized hardware to ap-
plication platforms to software running on a web browser.

In 2010, Armbrust et al.[3] wrote a popular article about cloud com-
puting. In the article they go through the main advantages of the cloud
computing model. They also list the various obstacles and risks associated
with cloud computing that might keep businesses from adopting cloud com-
puting regardless of the advantages over investing to traditional, on-premises
hardware.

One of the most widely referred definitions for Cloud Computing comes
from NIST Definition of Cloud Computing by Mell and Grance[14]. In their
definition of the cloud computing model, they identify the essential charac-
teristics of a cloud service, different cloud service models as well as different
cloud deployment models.

Rittinghouse and Ransome[21] have written an introductory book about
cloud computing in 2016.

In its essence, cloud computing is a model, where a shared pool of com-
puting resources are accessed via the network. The resources can be quickly
provisioned and released on-demand. In practice this means that the user
of a cloud service can, for example, create virtual machines or deploy their
application code using a web interface, an API or other tools from the cloud
provider.

The three main cloud service models are Infrastructure as a Service (IaaS),
Platform as a Service (PaaS) and Software as a Service (SaaS). In IaaS, users
can deploy virtualized hardware, most commonly virtual machines (VMs)

CHAPTER 2. BACKGROUND 13

on-demand. In PaaS, the users are offered tools that they can use to deploy
their applications on the cloud provider’s infrastructure. In SaaS, the cloud
provider offers an access to a software hosted on their infrastructure via the
network.

2.3 Cloud migration

Zhao et al.[35] surveyed many papers on on-premises to cloud migration and
provide an overview of different strategies. They categorize the migrations
to three categories: migration to IaaS, migration to PaaS and migration to
SaaS.

In migration to IaaS, the software is rehosted on cloud provider’s in-
frastructure. This is usually the least involved strategy. Reengineering or
changes to the application are usually not needed. Usually a virtual ma-
chine containing the application is built and hosted on the cloud provider’s
infrastructure.

Migration to PaaS is a more involved strategy. Instead of infrastructure,
the cloud provider provides a platform to run the application on, such as a
database and an environment to run code in. This usually requires adapting
the software for the platform. The advantage over IaaS is in the resource
management. We do not need to worry about allocating resources or provi-
sioning/configuring virtual machines.

In migration to SaaS, the application or parts of it is replaced by a cloud
alternative. This often means only copying/transforming data from the local
system to the cloud alternative.

Our migration strategy is essentiallymigration to PaaS. We will be adapt-
ing the service software so that it can be run on the OpenShift platform. This
includes creating the container images and configuration that enable deploy-
ment of the application on the OpenShift platform.

2.4 Service based architectures

Service Oriented Architecture (SOA) and microservice architectures are ser-
vice based architectures, where applications are divided into smaller service
components that communicate with each other over some network protocol.
As described by Richards[20], the two architecture types are very different.
SOA puts emphasis on sharing and reusing functionality whereas microser-
vices aim to create self-contained components with minimal dependencies.
However both architecture types have the advantage of distributed architec-

CHAPTER 2. BACKGROUND 14

ture. The service components can be distributed over multiple servers and
scaled individually as needed.

Service based architecture and containerization go hand-in-hand. Service
based architecture can be seen as a requirement when developing for a cloud
container platform such as OpenShift - or the platforms can be seen as en-
abling technologies for the service architectures. In the cloud, containers are
essentially self-contained service components that communicate with each
other and to the internet over the network.

All the applications migrated in this project already more or less conform
to the service based architecture. The components such as databases, web
applications, cache and other programs are more or less self contained and
mainly communicate over the HTTP protocol. However we still need to
identify the different components and make decisions on what to include in
a single container, or essentially where the service boundaries are.

Chapter 3

Key technologies

In this chapter we introduce the key technologies used in the migration.
Section 4.2 introduces containerization. Section 3.2 introduces one the most
popular widely used container runtimes: Docker. Sections 3.3 and introduces
the OpenShift cloud container platform and OpenShift objects that are used
in configuring the platform. Section 3.5 introduces DockerHub, a public
repository used for storing container images. Sections 3.6 and 3.7 introduce
the code repositories GitLab and GitHub that we use for storing source code
and deployment configuration for the services.

3.1 Containerization

Containerization is usually defined as a way to package software and its
dependencies so that it can be run in varying computing environments. Con-
tainerized software is usually described as a more secure compared to regular
software as the containerization provides a layer of isolation between differ-
ent software running on the system. Containerization is also described as a
lightweight alternative to hardware level virtualization or virtual machines.
[6]

Containerized software is usually delivered as a container image. The im-
age contains the filesystem with the software as well as any binaries, libraries
and files the software depends on. The image also contains instructions for
running the contains such as volume locations and network ports to expose.
For running a containerized image, a container runtime is needed. The most
widely known way to run containerized software is using Docker[5].

A containerized process usually means that the process 1) cannot see
processes running outside of the container on the same host system, 2) can-
not access files or filesystem of the host system, 3) cannot access devices

15

CHAPTER 3. KEY TECHNOLOGIES 16

or network on the host system, 4) has limits on system resources, such as
processor time and memory. In order to set up the containerized process like
this, the container runtime utilizes 2 sets of linux kernel features: control
groups (cgroups) and namespaces.

cgroups allows setting limits to a group of processes, including memory
usage, IO bandwidth and CPU usage. namespaces are used to control access
to different system resources. There exists namespaces for mounts, pids,
uids, network, cgroups, utc (hostname), and ipc. Containerization includes
creating all of these namespaces for a process or set of processes, but the
most relevant are the first 4 types of namespaces. [5][29][28]

A mount namespace has its own set of mount points This means that
the processes cannot see filesystems or mounts from the host system or other
namespaces. [5][29]

A PID namespace has its own set of process IDs This means that processes
in a PID namespace can only see processes within the same namespace. PID
namespaces are nested, and processes have different ids for each namespace
they belong to. [5][29]

An UID namespace has its own set of user IDs. UID namespaces are also
nested and users get different ids in different namespaces. This means, for
example, that a root user (pid 0) in a container shows up as a non-root user
on the host system. [5][29]

A network namespace has its own betwork resources, such as network
interfaces, routing table, firewall etc. [5][29]

Running a containerized process is a complicated process involving at
least 1) creating the namespaces for the process. 2) Mounting filesystem in
the mount namespace of the process. 3) Setting up virtual network inter-
faces in the processess network namespace for network access. The container
runtime is an abstraction layer that makes running a containerized process
using a single command. The specifics are governed by the defaults of the
container runtime, instructions included in the container image and options
given by the user.

3.2 Docker

The most widely known container runtime is Docker [1]. At its simplest,
running a containerized software with Docker only requires the user to only
specify the container image.

Additional configuration, such as user to run the containerized process
as, networking, mounts or command to run can be defined when starting
the container. It is usual to define additional mounts for configuration files

CHAPTER 3. KEY TECHNOLOGIES 17

or persistent data or network ports to expose on the host system’s network
interfaces. [5]

For example, the following Docker command would run a containerized
NGINX web server while mounting the content to serve from a location on
the host system. The command also explicitly exposes the container’s port
80 on the host system’s network interface on port 8080.

docker run nginx -v /srv/www:/usr/share/nginx/html -p 8080:80

3.3 OpenShift

In this section we briefly introduce the relevant OpenShift features
OpenShift [19] is a Kubernetes based cloud container platform by Red

Hat. It provides container orchestration similarly to Kubernetes, as well as
lots of additional features providing tools for building, deploying, managing
and monitoring. OpenShift abstracts the underlying hardware. In OpenShift
we define objects, such as DeploymentConfig, ImageStreams, BuildConfigs,
PhysicalVolumeClaim (PVC), Services and Routes. OpenShift builds, de-
ploys, allocates persistent storage and defines networking based on these ob-
jects. For example, using DeploymentConfig we can define the container im-
ages and other options for deploying onee or multiple containers. OpenShift
takes care of deploying the containers and scheduling them on the underlying
physical nodes. [18]

3.4 OpenShift objects

One of the most important concepts in Kubernetes are the Kubernetes Ob-
jects. Objects represent the state of the Kubernetes cluster including, for
example, containers running in the cluster, services available in the cluster,
storage and different policies. The objects contains to fields called spec and
state. spec is defined by the user and describes a desired state. state contains
the actual state of the object. It is up to Kubernetes to bring the actual state
to match the given spec. [18][13]

For example, a Deployment object is can be used to define a pod with
containers and specific amount fo replicas to be run. A Service object can be
used to define a network service backed by some given set of pods running
in the cluster.

OpenShift is based on Kubernetes and works on the same principle, but
adds more object types. For example a Route object can be used to expose
Services in a specific hostname, port and url path. Instead of Deployment, we

CHAPTER 3. KEY TECHNOLOGIES 18

can create DeploymetConfig objects that manage the Deployments and lets
us, for example, define triggers for creating new deployments automatically
and life cycle hooks.

3.4.1 Deployments

In OpenShift, containers are deployed by defining a DeploymentConfig object.
A DeploymentConfig usually has at least the following information:
1. container image(s) to be deployed
2. ports to be exposed
3. volumes to be mounted inside the container(s)
4. environment variables to be passed to the container(s)
5. Amount of replicas to be deployed

After creating the DeploymentConfig, OpenShift runs the containers spec-
ified in the DeploymentConfig. All the objects, including DeploymentConfigs,
represent a desired state. OpenShift always works to bring the cluster to the
desired state. This means that, for example, a pod is automatically restarted
if it fails.

3.4.2 Services

In OpenShift, pods are usually not targeted directly. Instead, Service objects
are used to represent the pods. A Service object usually define at least 1) a
name, 2) source and target ports and 3) backing pods. Traffic targeted to
the Service will load balanced and sent to the backing pods. Services can
also be used to abstract external services outside the cluster. [18]

3.4.3 Images and ImageStreamTags

Container images in OpenShift are represented by ImageStream objects. Sim-
ilarly to docker registries, an ImageStream may contain multiple tags with
different versions of the container images. ImageStreams are an abstraction
over the actual image registries. ImageStreams and tags within them may
represent images from multiple sources, including the OpenShift’s internal
registry, Other ImageStreams or external registries. [18]

When deploying an application to in OpenShift, the container images are
referred to using the ImageStreams, in the same form

ImageStreams support scheduled importing of images from external reg-
istries. They also allow triggering new builds or deployments when the images
change.

CHAPTER 3. KEY TECHNOLOGIES 19

3.4.4 Builds

Openshift has a build system, which we can utilize to automate the building
of the container images. Builds are define using an OpenShift object Build-
Config. BuildConfig may be configured to initiate a new build automatically
on various triggers, including webhook calls, pushes to GitHub or a change to
an image in an ImageStream. BuildConfig can also be configured to run tests
within a container from the built image before pushing it to the ImageStream
[18]

3.4.5 Volumes

In OpenShift, persistent storage is represented by the Persistent Volume
(PV) and Persistent Volume Claim (PVC) objects. The user defines a PVC
describing the type of desired persistent storage. PVC includes, for example,
size of the storage, storage class and access type. In response to PVC, the
cluster administrator creates a PV that represents the actual storage. The
user does not need knowledge of the actual underlying storage system. In
a DeploymentConfig, user can use the created PVC as the volume source.
The persistent storage represented by the PVC will be mounted inside the
deployed container.[18]

3.4.6 ConfigMaps

For storing various kinds of configuration items, OpenShift’s ConfigMap ob-
jects can be used. These are basically collections of key-value pairs that can
be provided to a container using either of 3 different methods: 1) define the
key-value pairs as environment variables inside the container, 2) use the val-
ues as a parameters on the container command, 3) Mount the key-value pairs
as files inside the container.[18]

ConfigMaps are useful, for example, in passing single configuration values
or whole configuration files to the deployed container.

3.4.7 Routes

The pods within the OpenShift cluster usually do not have public IP ad-
dresses. Instead the cluster has a single entry point. In order to route traffic
in and out the cluster, OpenShift Route objects are used. These are an
abstraction for configuration the underlying router. Route objects mainly
define the following: 1) domain name 2) optional url path 3) Service to route

CHAPTER 3. KEY TECHNOLOGIES 20

traffic to 4) SSL termination 5) Handling of insecure traffic 6) Certificate and
private key.[18]

Defining a route makes all incoming route traffic matching the domain
name and url path to be routed to the given service. If defined, the router
also takes care of SSL termination and redirection of insecure http requests
to https.

3.5 Docker Hub

Dockerhub[7] is a public registry for container images provided by Docker.
Besides storing and sharing docker images, it Docker Hub can automatically
build images from GitHub. Docker Hub also supports setting up webhooks,
that are triggered when an image is updated.

Dockerhub hosts all the official Docker images, such as the base Debian,
Ubuntu or Alpine distribution images. Docker Hub also hosts lots of docker
images from external publishers.

In some cases, we can directly utilize images from external vendors. Or
if suitable image is not available directly, we can build our own based on one
of the official images or one of the images from external publishers. We can
also host any of our own images, that can be made public, on Docker Hub.
The automated builds on Docker Hub helps us with setting up continuous
deployment.

3.6 GitHub

GitHub provides hosting of git repositories along with lots of features for
software development.[9]

We can use GitHub to host code for all of our public applications and
docker images. Integration with Docker Hub and support for triggering web-
hooks on code pushes helps us implementing continuous deployment.

3.7 GitLab

We also have a GitLab[10] service at our disposal, provided by the university.
It has similar set of features to GitHub, but can be used to host private
repositories. Private repositories are useful when we don’t want to make
the application code public or when the repository contains information that
should not be made public. For example, configuration specific to our envi-
ronment is something that we most likely do not want to be publicly visible.

Chapter 4

Implementation

This chapter tells how we implemented the migration. In Section 4.1, we
introduce the old deployment and the architectural changes that were done
in order to adapt the services for the new platform. In the Section sec-
tion:containerization, we go through how we containerized the different types
of services. In Section 4.3, the organization of the configuration repositories
is introduced. In Section 4.4 we show how the building and deployment
of the containers was automated. In Section 4.5, we implement an off-site
backup system. In Section 4.6, we show how routing of traffic is handled in
the OpenShift platform. In Section 4.7, the data is transferred fropm the old
environment to volumes on OpenShift.

4.1 Architecture

In the old environment there were four servers: frontend server, web server,
app server and store server. SSL termination caching and authentication
were done on the frontend. Web had an Apache web server hosting regular
web pages. App hosted mostly of Tomcat applications. Store was running a
Fuseki database server with lots of datasets used by different applications.

4.1.1 Frontend

For caching, frontend utilized Varnish Cache 3.0 [16]. The cache was con-
figured using a C-like configuration language VCL. All network traffic for
the services was going through this single cache server. The cache server
was also responsible for redirects, rewriting URLs and even authentication.
The configuration was quite complex and the logic was difficult to follow.
Furthermore, there was some clear errors in the logic.

21

CHAPTER 4. IMPLEMENTATION 22

4.1.2 Web server

The web server was used mainly to host web services consisting of HTML
pages, PHP and CGI scripts. It was also hosting a single Wordpress site
along with it’s MySQL database.

4.1.3 App server

The app server was used to host variety of services, mostly Tomcat applica-
tions.

The server had a Tomcat instance with multiple application deployments.
Most of the applications depended on a single or multiple datasets on the
store server. The applications would make HTTP requests to the store server
via the frontend server.

4.1.4 Store server

The store server was hosting a Fuseki SPARQL server[26]. The server
had tens of different RDF datasets that are accessed over HTTP using the
SPARQL Graph Store HTTP Protocol. The datasets were utilized by other
services hosted on Web and App. For some datasets, the SPARQL endpoint
was also made directly availbale to the internet, the data itself offered as a
service.

Many of the SPARQL queries being made to the server are relatively
heavy, often taking minutes to complete. This has been a major bottleneck
for many services utilizing the data. The store also relies heavily on the fron-
tend cache to speed up queries. Caching is effective since lots of queries are
identical coming from the same web services. Therefore caching the SPARQL
queries significantly improves the performance of the querying services.

4.1.5 Changes

We split the cache and its configuration that each service would have its own
Varnish instance and only the relevant parts of the configuration. This made
the individual cache configuration files simpler and easier to read. It also
allowed scaling the cache on per service basis if needed. Since the cache is
separate for each service, possibly badly behaving services will not affect the
caching of other services.

This change unfortunately comes with a downside. In the original caching
logic, there were some statements where the cache would be invalidated on
multiple different services simultaneously. Namely this scenario comes up

CHAPTER 4. IMPLEMENTATION 23

Figure 4.1: Old servers

when the data on store is updated - in such case the cache of possibly multiple
services using the data also needs to be invalidated. Implementing such cache
invalidation after splitting the cache to multiple instance might not be trivial.

We split the fuseki database server into multiple instances. We created
separate fuseki instances for the bigger datasets and combined the smaller
ones to a single instance. This should have mainly two benefits: 1) Make
it possible to scale and allocate resources on per dataset basis. 2) Make it
so that heavy queries on one dataset will not affect other datasets. This
should somewhat alleviate the bottleneck that the heavy SPARQL queries
were causing. Each fuseki instance would also get a dedicated Varnish in-
stance.

The old on-premises deployment and the new OpenShift deployments are
visualized in the figures 4.1 and 4.2.

4.2 Containerization

In this section, we show how the different types of services are containerized.

CHAPTER 4. IMPLEMENTATION 24

Figure 4.2: OpenShift deployment

4.2.1 Varnish Cache

We created a container image containing packages for Varnish 5.0 as well
as some additional modules for varnishes. The varnish is provided directly
in the debian’s package repository by the package ’varnish’. The extra
modules are downloaded and built from a repositories in GitHub. Namely,
modules built from the github repositories were fastly/libvmod-urlcode,
xcir/libvmod-parseform[24] and varnish/varnish-module[32]. These mod-
ules provide various functions that are used in the VCL configuration for
multiple different services.

The varnish container can be configured in few different ways depending
on the situation.

Firstly, A simple caching behaviour can be configured by simply defining
environment variables for the container. For example, VARNISH BACKEND IP

and VARNISH BACKEND PORT variables can be used to define the backend to be
cached. VARNISH DEFAULT TTL can be used to define the tome that backend
responses are cached for. VARNISH MEM can be defined to tell varnish the
amount of memory to be used. By default, the varnish container serves the
cached content at http://〈container〉:80.

In a more complicated scenario, a vcl configuration file can be mounted
inside the container at /etc/varnish/site.vcl and
/etc/varnish/default.vcl. The former way retains some default config-
uration included in the container image. The latter way can be used to
override all of our defined default configuration.

We used the container in 2 different ways. For apache and tomcat based

CHAPTER 4. IMPLEMENTATION 25

services, we extended the varnish container by adding apache or tomcat in-
stallations to the image. This way, a single containerimage containing both,
the backend service as well as the cache, was produced. Alternatively the
varnish container could be deployed as a standalone in front of the service
container. We used the latter especially with the Fuseki database services.

4.2.2 Apache websites

Majority of the services migrated were relatively simple web pages consist-
ing of HTML/JavaScript pages, media files PHP and possibly some CGI
programs. The web pages were hosted using the Apache web server.

For these services, we created a container image apache-varnish, which
contained packages for varnish, Apache web server, PHP and few common
PHP extensions.

Depending on the service, the apache-varnish container could be con-
figured in a few different ways: 1) Using the included default configuration
sufficient for some very simple sites 2) Modifying the default configuration
using environment variables for some very common configurations 3) overrid-
ing the default Apache configuration by building a new image or mounting
the configuration file or files. In most cases, the method 3 was used and a
new image built based on apache-varnish that replaces the apache’s vhost
configuration at /etc/apache/sites-enabled/000-default.conf.

There are 2 different ways to deploy the actual content of the website
(HTML, PHP, media etc.). The content could be build in to the container
image or it could be stored on a volume and mounted inside the container.

Advantages in the first approach are in cleaniness and version control
using a simple COPY command in a Dockerfile is easier than setting up volumes
and configuring the mounting. Additionlly, in this approach, the content is
stored in the same repository with the Dockerfile and other configuration,
meaning tha the content is also versioned.

However building the content into the container image also means that
possibly large files such as images or videos also gets stored and versioned
in git resulting into large repositories which may lead to various problems.
This way the content is also immutable, meaning that the content cannot be
modified by the service. This is mainly a problem for services that need to
modify files and store persistent data.

There was a single service that relied on CGI programs written in Python
2.7 and Python 3 . We created a new container image based on the
apache-varnish, that would add the packages for both Python versions
and a Python virtual environments for executing the CGI programs. Some

CHAPTER 4. IMPLEMENTATION 26

modifications were needed in the CGI launch scripts in order for them to
utilize the venvs.

Some of the sites were not compatible with PHP 7 Upgrading the code was
not a part of this project. Therefore we created a slightly modified container
image apache-varnish:php-5, that contained the older PHP version.

4.2.3 Wordpress sites

Amongst the migrated services, there were a couple of Wordpress sites [34].
Wordpress is a content management system written in PHP. In order to run,
it needs a web server to host the application on, and SQL database. For
Wordpress we created a new container image based on the apache-varnish
image. For the database, we used the Red Hat’s MySQL images[17].

The Dockerfile of Wordpress downloads and extracts the latest Wordpress
release to a intermediate folder /wordpress inside the image. We defined en-
vironment variables for configuration that needs to be set in the Wordpress
configuration file. The configuration includes, for example, the site URL and
database credentials. A custom Wordpress configuration file was added with
configuration items replaced by environment variables. An entrypoint was
added that would copy the wordpress installation from /wordpress to the
deployment directory var/www/html, if the wordpress installation does not
already exist there. The entrypoint also uses envsubst to place the environ-
ment variables in the configuration file.

For the wordpress container a volume needs to be provided for persistent
data at /var/www/html. Wordpress stores data such as user media and
plugins inside this folder.

In the MySQL container , a volume needs to be provided for persistent
data at /var/lib/mysql/data, which is where the MySQL data is stored at.

4.2.4 Tomcat applications

Usually Tomcat applications are usually located under a single folder:

<webapp>/<files>

<webapp>/WEB-INF/web.xml

<webapp>/WEB-INF/classes/

<webapp>/WEB-INF/lib/

However, in our case some applications also had some persistent data
stored elsewhere in the system.

CHAPTER 4. IMPLEMENTATION 27

There are multiple ways to deploy applications on a Tomcat server. Tom-
cat automatically loads applications from the folder defined by an envi-
ronment variable CATALINA BASE. Tomcat includes a web application called
”Tomcat Manager” , which provides an HTTP API as well as web interface
for managing the Tomcat server. [27]

Because a single container will be running only one Tomcat application,
It is only required that a single Tomcat application is loaded at the container
startup.

For some application, there was no source code available. In such cases,
we simply copied the webapp folder from the old servers to the repository.
We could create a simple Dockerfile, that copies the application on top of
the generic Tomcat container image.

Where application source code was available, we included building the
application from source in the the Dockerfile.

4.2.4.1 Java version

Some services that had no original sources available could not be run on
newer Java versions. Therefore, we created a container image,
tomcat-varnish:tomcat-7, which would instead contain older versions of
Tomcat and Java: Tomcat 7 and Oracle JDK 6. This made it possible, de-
pending on the service, to simply copy the webapp, mount it inside the con-
tainer or alternatively create a new image based on tomcat-varnish:tomcat-7
with the webapp folder built-in. folder from the old server and run it as-is.

4.2.5 Fuseki databases

On a Fuseki 2 server [26], the data is stored in the folder indicated by the
FUSEKI BASE environment variable. Layout of this folder is as follows:

<FUSEKI_BASE>/

<FUSEKI_BASE>/config.ttl

<FUSEKI_BASE>/shiro.ini

<FUSEKI_BASE>/databases/

<FUSEKI_BASE>/databases/<dataset>/

<FUSEKI_BASE>/backups/

<FUSEKI_BASE>/configuration/

<FUSEKI_BASE>/configuration/<dataset-assembler>.ttl

<FUSEKI_BASE>/logs/

<FUSEKI_BASE>/system/

<FUSEKI_BASE>/system_files/

<FUSEKI_BASE>/templates/

CHAPTER 4. IMPLEMENTATION 28

We are mainly interested in config.ttl, shiro.ini, .ttl files under
configuration/, and data stored under databases/. Rest of the files/folders
are either not needed or are generated by the fuseki.

We created a fuseki container image that can be deployed and configured
in a few different ways depending on the situation.

Without any configuration, the container runs fuseki with a preconfig-
ured single dataset that is served over HTTP at the SPARQL endpoint
http://〈host〉/ds/sparql. Using environment variables ENABLE DATA WRITE,
ENABLE UPDATE, and ENABLE UPLOAD, other endpoints for updating the data
can be enabled. http://〈host〉/ds/sparql endpoint can be used to update
data using SPARQL Graph Store protocol. http://〈host〉/ds/upload can
be used to upload data (non-SPARQL). http://〈host〉/ds/update can be
used for SPARQL Update requests. The container also hosts and adminis-
trative interface at http://〈host〉:3030. In this case, a volume should be
also mounted inside the container under /fuseki-base/databases, in order
to persist the data between container redeployments/updates.

The folder /fuseki-base can also be directly copied over/mounted from
another, existing fuseki installation. However it was discovered that using
this method, the data might not be compatible as-is. For example, Lucene
text index and SpatialLucene indexes from older fuseki versions are not com-
patible and needs to be regenarated in order for the indexes to work properly.
Also the .ttl configuration files might need to be modified.

In case of read-only datasets, the data could be provided as .ttl files. A
new container image based on the fuseki image can be created that loads
in the data on build. In the Dockerfile of the new image, A script is run
that uses a tdbloader tool to load the data to the fuseki. The built image
therefore has /fuseki-base already populated with the data.

On the old server, the configuration was stored a bit differently. There was
a single fuseki-config.ttl that contained configuration for all datasets.
This is, while valid, an outdated way of configuring the datasets. In this
migration, this central configuration file was split according to the newer
layout to per-dataset assembler files.

4.3 Git repositories

For each of the services in the new environment, we created a Git repository
for storing the service configuration. The repository has everything needed in
deploying the service:1) Source code or Binaries, 2) Dockerfile, 3) OpenShift
deployment configuration, 3) OpenShift route configuration, 4) README.
This structure is visualised in Figure 4.3

CHAPTER 4. IMPLEMENTATION 29

Figure 4.3: Git repository structure

This standard format ensures that the repository contains all the config-
uration items as well as instructions needed in building and deployment of a
single service. In some cases the repositories are split in 2 parts, where the
public container image build configuration is hosted on GitHub and Open-
Shift configuration specific to SeCo’s deployment is stored in the private
GitLab.

4.4 Automating Builds and Deployment

In the new environment, the aim was to make building and deploying the
services completely automated. A new build of a container image should be
initiated automatically by either 1) a change to the source repository from
which the build is done or 2) change to the base image from which the con-
tainer image is built. A new version of a container should also be automat-
ically deployed when a new version of the container image is available. We
automated the container builds and deployment solely using native features
of GitLab, GitHub, DockerHub and OpenShift.

Builds initiated by the case can be implemented relatively easily on both
build platforms: DockerHub and OpenShift. DockerHub features an inte-
gration with GitHub for automated builds. In OpenShift, a webhook based
build triggers can be defined.

On DockerHub, the we connect the image repository with a GitHub repos-
itory. Using the web interface, a set of build rules can be defined that link
branches of a GitHub repository with tags in the DockerHub repository.
Turning on ”Autobuild” option on these rules sets the build so that it is
automatically triggered whenever the corresponding branch in GitHub is up-
dated. The user interface for configuring the build rules can be seen in Figure
4.4. It is also possible to enable ”repository links” that also automatically
trigger the builds when the base image defined by the FROM statement in
the Dockerfile is updated. The repository links, however, do not work with
the official images such as the ubuntu or debian base images.

CHAPTER 4. IMPLEMENTATION 30

On OpenShift, as a part of BuildConfig, we set up two kinds of build
triggers in order to automate the builds: webhook triggers and image change
triggers. These two types of triggers are shown in Figure 4.5.

Webhook build triggers gives an URL that, when requested, initiates a
new build from the source repository. In the figure it is represented by ’trig-
gers.generic’ attribute. OpenShift creates an URL in the form https://

〈openshift host〉/apis/build.openshift.io/v1/namespaces/〈project〉
/buildconfigs/〈buildconfig〉/webhooks/〈secret〉/generic, as seen in
Figure 4.6.

Image change build triggers initiate a new build whenever the base image
is updated. In the figure it is represented by the ’triggers.imageChange’
attribute. In the trigger the ImageStreamTag is defined that, when updated,
initiates the new build. This works only with images within the OpenShift’s
internal registry. It is not possible, for example, directly point the trigger
to an image in DockerHub. However there are 2 workarounds for this: 1)
a scheduled import from DockerHub or other registries to the OpenShift’s
internal registry can be created. Triggers can then be based on the imported
image. 2) DockerHub can also be set up to call the webhook build triggers
in OpenShift. The method 1 was preferred, since the storage needed in the
internal registry to import the additional images is not a problem and it
works even with 3rd party repositories, such as the official distro images.

Both, GitLab and GitHub, allows configuring webhooks on push events
to the repositories. The webhook can be pointed to the URL given to by
OpenShift. This is done using the web interface of GitHub or GitLab. The
user interfaces offered by GitHub and GitLab for configuring the webhooks
can be seen respetively in the figures 4.10 and 4.11

For automating the deployment of newly built images, we configured trig-
gers in the DeploymentConfig object in OpenShift as shown in Figure 4.8. In
the trigger only needs the name of the ImageStreamTag that the built images
are pushed to. OpenShift takes care of deploying the new image whenever
the ImageStreamTag is updated.

The two main automation pipelines are visualized in Figure 4.9

4.5 Backups

The volume storage used in the OpenShift platform is redundant, but it
does not feature actual backups or help in case of erroneous deletion of data.
Therefore a backup solution for the data stored on the volumes is needed.

For this purpose, we set up a virtual machine that provides access over
SSH to the university’s NetApp based storage system. We also created an

CHAPTER 4. IMPLEMENTATION 31

Figure 4.4: Setting up automated builds on DockerHub

rsync container that can push the data from the OpenShift volumes to the
virtual machine

The virtual server is very simple Ubuntu installation. It has a single
network drive mounted from the NetApp server. It has an OpenSSH server
for SSH access, which is restricted to the OpenShift platform using a fire-
wall. The system has a dedicated backup user with SSH access with key
authentication.

The rsync container only has packages for ssh, and simply runs an rsync
command at startup that synchronizes files from a given source folder to a
given target folder. The source and target are defined by giving the container
environment variables RSYNC SOURCE and RSYNC TARGET. These variables are
fed as-is to the rsync command, so they can be local folders or remote loca-
tions. The ssh private key used to access the remote host and known hosts

file for identifying the remote target machine are mounted inside the rsync
container. OpenShift ConfigMap resouces are used for mounting these files.

For scheduling the backups, we are using separate OpenShift CronJob’s
for each volume to be backed up. The CronJob’s configuration starts up
the rsync container with the volume mounted to a specific folder inside the
container, and sets up RSYNC SOURCE and RSYNC TARGET variables
point to the mounted volume and the remote backup target machien respec-
tively. The CronJob configuration also mounts the ssh key and known hosts
file from the ConfigMap.

The OpenShift volumes support RWX mode, meaning that they can be
mounted inside multiple containers simultaneously. Therefore the backups
can be run without interfering with the normal operation of the services using

CHAPTER 4. IMPLEMENTATION 32

Figure 4.5: Openshift build triggers

the data.
We store all backup CronJob configurations in a single GitLab repository,

along with a script that can be used to easily push the CronJob configurations
to OpenShift.

4.6 Routing

The OpenShift cluster has a single IP address for ingress. The containers
or pods are not directly visible to the internet and do not have separate
public IP addresses. Therefore all DNS records to that IP address, and the
OpenShift’s router forwards the HTTP packages based on hostname and path
to the backing pods and containers. The router does also SSL termination.

For configuring the routing of HTTP requests inside the cluster to the
backing pod, we use OpenShift Routes. The route configuration needs to
define at least the following: 1) Encryption (e.g. SSL termination or inse-
cure) 2) Hostname to route 3) URL path to route 4) The OpenShift Service
representing the backends (usually a Pod or multiple Pods). Route also han-
dles the insecure traffic in case SSL encryption is used. The Route can be
configured to e.g. redirect all HTTP traffic to the corresponding HTTPS
URL. An example configuration of an OpenShift Route can be seen in the
Figure 4.12

CHAPTER 4. IMPLEMENTATION 33

Figure 4.6: Openshift webhook URL

We defined separate routes for each domain name, or combination of
domain name and path in case there is multiple services under a single domain
name.

For majority of services, SSL encryption is enabled using Letsencrypt
certificates. SSL termination is taken care by the OpenShift router as long
as the certificate and private key is included in the Route configuration.
An OpenShift ACME controller [30] is deployed within the project, which
automatically aquires and renews certificates for the OpenShift Routes that
have the annotation kubernetes.io/tls-acme: "true" defined.

Within each service’s git repository, we include a script, that creates
all the required routes for that service utilizing the OpenShift CLI. Having
the scripts makes setting up the routes easier in case the service needs to
be redeployed from scratch. The scripts also server the purpose of storing
the route configurations, domain names and URL paths associated with the
specific service.

As with all other OpenShift objects, we label the routes with labels textt-
tapp:〈service name〉 and environment:〈environment〉 to make it easy to
identify which routes are associated with specific services.

4.7 Migrating Data

The only way for to access the OpenShift volumes is from within a running
container. One way to transfer data to a container, is to run a container
with the volume mounted and then use the OpenShift CLI’s ’oc rsync’ com-
mand to transfer data from a local machine to the container. This works
well for small amounts of data, but it was discovered that, at least on the
OpenShift platform in question, the connections time out after some time.

CHAPTER 4. IMPLEMENTATION 34

Figure 4.7: Openshift scheduled import

Bigger transfers would time out before completion.
One way often recommended seems to be to run a container with a Web-

DAV server that could provide the containers filesystem over HTTP. On the
OpenShift platform, It is not possible to route any other protocols besides
HTTP to the containers, so using WebDAV would makes sense. However it
was discovered that WebDAV lacks in some ways. For example, there does
not seem to be a way to retain file timestamps when transferring files.

We resolved the data transfer problem by using a container that included
rsync. We deployed the container to OpenShift, mounting the target volume
the data needs to be transferred to and setting the container’s command to
e.g. ’sleep infinity’. A remote shell can then be the opened inside the con-
tainer using the OpenShift CLI’s ’oc rsh’ command. rsync can be run from
within the container in order to pull the data from the SSH server to the
mounted volume. The remote shell connection, however, does timeout sim-

CHAPTER 4. IMPLEMENTATION 35

Figure 4.8: Openshift Deploymetn Trigger

Figure 4.9: Automating builds

ilarily to the OpenShift CLI’s rsync command. This can be worked around
this by running the rsync inside the container as a background job and then
use ’disown’ to prevent the rsync process from dying along with the shell
when the connection times out.

CHAPTER 4. IMPLEMENTATION 36

Figure 4.10: Setting up webhooks in GitHub

CHAPTER 4. IMPLEMENTATION 37

Figure 4.11: Setting up webhooks in GitLab

CHAPTER 4. IMPLEMENTATION 38

Figure 4.12: OpenShift Route Configuration

Chapter 5

Discussion

The migration project was completed successfully. All of the services and
functions of the old servers containerized and moved to either the OpenShift
platform or to a cloud virtual machine. The old servers have been decom-
missioned.

In this chapter we discuss about the outcomes of the migration project.
We see to what was improved, what work is left as well as the drawbacks of
moving into the cloud.

the first 6 sections in this chapter discuss the benefits of this migra-
tion. Splitting the server software to multiple instances, moving to PaaS and
creating a standard format for configuration repositories improved maintain-
ability of the system. Containerization and automation mitigated some of
the security problems in the old system. Smaller services also lead to better
scalability.

The last 8 sections in this chapter discusses the drawbacks and prob-
lems we found out as well as things that could still be improved in the new
environment.

5.1 Splitting cache and database

We split up the large caching service to multiple instances. Each of the
service would have their own cache service and configuration for it. While
this lead to some code duplication, the individual configuration files are much
shorter and easier to read and therefore less prone to errors. Some of the
routing and redirect logic could be handed over to OpenShift routes, which
further decreased the complexity of the individual cache configuration files.

Splitting up the monolithic database server to multiple instances reduced
the risk of a single dataset consuming too much resources. It also allows

39

CHAPTER 5. DISCUSSION 40

allocating more resources for the datasets that need them. This was not
possible in the old environment.

5.2 Benefits from PaaS

The primary driver for this migration project was the aging server hardware.
One of the main benefits of PaaS is that it frees the user from managing the
computing resources[33][35]. Containerization technologies and OpenShift
enables the usage of PaaS regardless of programming languages or softare
dependencies.

5.3 Standardized respositories

The included creating a dedicated git repository for each service. These
repositories would include 1) a readme with a brief description of the service
and it’s deployment 2) Dockerfile if not using an off-the-shelf container image
3) An OpenShift template and parameters for the template

Having a brief readme for each service is useful in general. It gives a
quick overview of what is included in the repository and how the service is
deployed. The Dockerfile is not only used for building the container image,
but it also works as a document about the dependencies of the service. The
OpenShift template and it’s parameters also work as a documentation about
the deployment. From them one can deduce how the service is deployed,
including 1) container image used 2) environment variables used 3) data
locations indicated by the volumes mounted.

We believe that this standard format makes it easier to maintain the
services in the future.

5.4 Service isolation

In the old server, multiple services were running on a single server. The
server operating system along with many of the pieces of software were old
and not supported anymore. This was a problem from the security point of
view.

Containerization works as a layer of isolation between the different ser-
vices. Even though there are multiple container running on the same host,
the services are isolated from each other by the linux namespaces. Even
though some services still require old versions of software in order to run, a

CHAPTER 5. DISCUSSION 41

problem in a single service cannot compromise other services as it could’ve
on the old servers.

5.5 Automated deployment

The automated deployments can be used to ensure that the software versions
in the deployed images are always up-to-date. This should ensure that any
security vulnerabilities due to outdated software/dependencies are mitigated
as soon as possible.

Automation is an integral part of modern software development, CI/CD
and DevOps practices. More from DevOps and Continuous Deployment can
be read from [4] and [2]. Recent research on the topic includes a systematic
review on CI/CD approaches, tools, challenges and practices, in 2017 by
Shahin et al.[23]. Another example is an the master’s thesis by Mustonen [15],
where he evaluated benefits of Continuous Deployment based on interviews
and a survey from software professionals.

5.6 Scalability

The migrated services were originally not designed specifically for containers
or cloud. Therefore they do not benefit as much from the horizontal scaling
of pods offered by the OpenShift platform. This would otherwise greatly
improve scalability of the services. However we are not expecting the increase
in the utilization of these services in the future so this should not be a
problem.

Regardless, the platform allows us to set resource limits, namely cpu and
memory, on per pod basis. This is useful as we can allocate resources specif-
ically for the services that need them. Furthermore, badly behaving services
cannot consume more resources than they are limited to, possibly affecting
other services. This is an improvement compared to the old environment.

Getting benefits from scalability was not the driver for this project.
Reengineering all of the services to take full advantage of the cloud would
have not been feasible.

In more critical systems and applications handling lots of users and/or
traffic, evaluating scalability and failure resistance is important. For example,
S. Toimela[31], in his Master’s Thesis, evaluated scalability and failure re-
covery in the context of telecommunication applications. K. Muhammad[12],
also in his Master’s thesis, looks at migration of monolithic payment applica-
tion to containerized microservices architecture. In the thesis, improvements

CHAPTER 5. DISCUSSION 42

on failure recovery and scaling times are evaluated.

5.7 Amount of work

The migration included adapting and moving 30 web services to the Open-
Shift cloud container platform.

Time used in the migration project was not tracked accurately. However
we can approximate the effort the project took.

Most of the work was conducted by the author of this paper. We can
approximate that the project lasted from January 2018 till end of January
2020. The author approximates that during this period, the time he spend
on this project is comparable to 30%-40% of hours of a full-time employee.

I had experience from one similarly sized migration project, but no practi-
cal experience working with container technologies or cloud platforms. There-
fore a significant amount of the work went to researching the relevant tech-
nologies and learning. Originally we thought that the migration would take
3-4 months. However the services had to me migrated one by one and more
often than not, something unexpected would come up. The project ended
up lasting multiple times longer than we originally thought.

Not doing the reengineering for cloud and migrating the programs and
data as-is to a new virtual machines would have likely taken much less time.

5.8 Code duplication

One of the drawbacks of a microservice architecture is duplication of code
and functionality[20]. Even though a microservice architecture was not in-
tentionally being implemented in this project, some of the drawbacks of a
microservice architecture was realized when splitting some of the service. For
example, each service having their own cache meant that some of the cache
configuration was written multiple times for different services. The config-
uration did have some service specific variation, so the same configuration
could not be used for all of the services either.

This was addressed to some degree by including the common parts of
the configuration to the cache base image and introducing another, service
specific configuration on top of that. However this approach adds coupling
and configuration split to multiple files is harder to read and understand.

CHAPTER 5. DISCUSSION 43

5.9 Multiple processess per container

In the beginning of the project, a new container image was built for each
service. This meant that, for example, for Apache based web sites, we would
need to run two services within a container: The Apache web server and
Varnish Cache in order to implement the logic from the previous cache on
the frontend server. The reasoning behind this was that a it would be simpler
to create write only a single Dockerfile for a service. However it is generally
advised that a container should not include more than a one service. We too,
did discover that multiple processess whithin a container comes with some
complications.

Firstly, we need to execute the processess on the background. This makes
signal handling complicated. By default, whenever a container is stopped by
the orchestrator, the process id 0 is sent a SIGTERM so it can terminate grace-
fully. However, this means that the signal, depending on the implementation,
does not neccessarily propagate to the processess on the background. There-
fore, in the case of an Apache web site, the Apahce server or the Varnish
Cache might not be terminated gracefully. The signals should therefore be
explicitly propagated to the child processess

Secondly, logging gets more complicated. Usually, the containers simply
log to stdout. So in order to get logs from the both processess, we need to
somehow concatenate logs from both of them to the stdout. We would work
around this by forst forwarding the logs from each process to separate files.
Then would execute tail -f 〈log files〉 as the foreground process. This works
to some degree, but we found out that in some cases this would result in
problems like a lot of empty lines being printed in the logs.

The overhead introduced by containerizing a process is insignificant in
regards of performance so performance is not a reason to include multiple
processess within a container.

Separating the processess to their own containers remains as a future
improvement.

5.10 Making containers more generic

During the project, for many of the services, configuration and data was
built-in to the container image. This meant that a new container image was
created for each of the services. This seemed reasonable as we could build
in the configuration and in some cases data into the container. This would
allow deploying the image as is without further configuration. This is not
necessarily a bad practice. For example, documentation of the official nginx

CHAPTER 5. DISCUSSION 44

image[8] mentions this as the ’cleaner way’
However in some cases it might be better to create more generic images

and mount the configuration items and data utilizing OpenShift ConfigMaps
and Volumes. This means that less images are built and stored. The images
built also would not contain any sensitive information as no specific config-
uration or data is included. However this approach requires extra platform
specific configuration. In OpenShift this means uploading the configuration
ro data and writing configuration for mounts.

5.11 Storage problems

During the migration project, there were multiple occasions where the volume
mounts would fail on OpenShift. The problems were likely caused by capacity
problems in the underlying storage system. Towards the end of the migration
the storage was more stable.

5.12 Monitoring

The OpenShift’s monitoring interface a reasonable summary of what is hap-
pening within the OpenShift project. It also shows any errors and warnings
from builds and deployments. However it does not automatically inform, for
example, via email if something goes wrong.

Also some of the builds are done in DockerHub. So there are multiple
platforms to be monitored. Therefore it would be beneficial to have a single
monitoring solution that would gather the information from these multiple
sources and inform the owner of the services in case there is an error. This
remains as a future work.

5.13 Testing

Currently there isn’t much automated tests done. In most cases, the only
way to test after doing changes to a service, is to deploy the container lo-
cally. Even then, it is not always possible to thoroughly test the services, as
they might rely on data or integrations not available on a local development
machine.

Dockerhub and OpenShift both have features that enable testing even
without a dedicated CI/CD solution such as Jenkins or Buildbot. Dock-
erHub lets us set up automated tests using a docker-compose file included
in the source repository an image is built from. The docker-compose file

CHAPTER 5. DISCUSSION 45

is deployed before the built image is pushed the DockerHub repository. If
the deployment defined by the docker-compose file fails, the built will result
in an error instead. In the docker-compose file, it is also possible to define
dependent services allowing us, to some degree, run even integration tests
within DockerHub

Automated testing is an important part part of and modern software
development and DevOps practices[4][2].

5.14 Cost Optimization

One characteristic of cloud is that usage is billed by metered usage. This
project was not limited by resources and optimization of resource usage was
not a focus. However optimizing the resource requests and limits of the de-
ployments and setting proper limits is something that should be addressed in
the future. Especially finding proper memory limits for the Java based appli-
cations, since Java’s memory management doesn’t work well in containerized
environment and it needs explicit limits to be set.

Chapter 6

Conclusions

This work focused on a migration of existing services and showed how con-
tainerization can, in addition to developing new software, also be used in
modernization efforts of existing software.

We migrated the web services of the SeCo research group from an on-
premises servers to OpenShift. The migrated services included simple web-
sites and tomcat applications and databases. Some of the services were de-
ployments of off-the-shelf applications. All of the applications were container-
ized and they were mainly deployed on an OpenShift container platform.

The project demonstrated how the different application types can be con-
tainerized. The project showed the problems that were encountered and how
they can be handled. Each application type comes with it’s own considera-
tions when moving to a containerized deployment.

We talked about how the containerization technologies improved the qual-
ity, especially maintainability and security of the migrated services. Down-
sides of the migration were brought up including the amount of work included
in learning the new technologies and reengineering existing services as well
as new complexities introduced by moving towards microservice like archi-
tecture. Various improvements for the future were also discussed.

Containerization has only recently seen a big increase in popularity due
to enabling technologies such as Docker, Kubernetes and support from public
cloud providers. Incresing amount of new software is developed and deployed
using container technologies so it is important to keep researching the poten-
tials as well as draw-backs of them.

46

Bibliography

[1] Docker. webpage. https://www.docker.com/. Accessed 15 May 2019.

[2] Amazon Web Services, Inc. What is DevOps? webpage, 2020. https:

//aws.amazon.com/devops/what-is-devops/. Accessed 16 May 2020.

[3] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoica, et al. A view of cloud computing. Communica-
tions of the ACM, 53(4):50–58, 2010. doi: 10.1145/1721654.1721672.

[4] Atlassian. What is DevOps? webpage, 2020. https://www.atlassian.

com/devops. Accessed 16 May 2020.

[5] Docker Inc. Docker Documentation. webpage, 2019.
https://docs.docker.com/. Accessed 15 May 2019.

[6] Docker Inc. What is a Container. webpage, 2020. https://www.docker.
com/resources/what-container. Accessed 29 Mar 2020.

[7] Docker Inc. DockerHub. webpage, 2020. https://hub.docker.com/.
Accessed 29 Mar 2020.

[8] Docker Official Images. nginx. webpage, 2020. https://hub.docker.

com/_/nginx. Accessed 29 Mar 2020.

[9] GitHub Inc. GitHub. webpage, 2020. https://github.com/. Accessed
29 Mar 2020.

[10] GitLab. GitLab. webpage, 2020. https://github.com/. Accessed 29
Mar 2020.

[11] Ravi Khadka, Belfrit V Batlajery, Amir M Saeidi, Slinger Jansen,
and Jurriaan Hage. How do professionals perceive legacy systems

47

https://aws.amazon.com/devops/what-is-devops/
https://aws.amazon.com/devops/what-is-devops/
https://www.atlassian.com/devops
https://www.atlassian.com/devops
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://hub.docker.com/
https://hub.docker.com/_/nginx
https://hub.docker.com/_/nginx
https://github.com/
https://github.com/

BIBLIOGRAPHY 48

and software modernization? In Proceedings of the 36th Interna-
tional Conference on Software Engineering, pages 36–47, 2014. doi:
10.1145/2568225.2568318.

[12] Muhammad Khan. Scalable invoice-based b2b payments with microser-
vices. G2 pro gradu, diplomityö, 2020. URL http://urn.fi/URN:NBN:

fi:aalto-202001261876.

[13] Kubernetes. Understanding Kubernetes Objects. webpage, 2020. https:
//kubernetes.io/docs/concepts/overview/working-with-objects/

kubernetes-objects/. Accessed 3 Apr 2020.

[14] Peter Mell, Tim Grance, et al. The nist definition of cloud computing.
2011.

[15] Aleksi Mustonen. Ways to improve continuous deployment processes.
G2 pro gradu, diplomityö, 2020-03-16. URL http://urn.fi/URN:NBN:

fi:aalto-202003222623.

[16] Poul-Henning Kamp. Varnish HTTP Cache. webpage, 2020. https:

//varnish-cache.org/. Accessed 29 Mar 2020.

[17] Red Hat, Inc. Using Red Hat Software Collections Container Im-
ages. webpage, 2020. https://access.redhat.com/documentation/

en-us/red_hat_software_collections/2/html-single/using_red_hat_

software_collections_container_images/index. Accessed 29 Mar
2020.

[18] RedHat. OKD 3.11 Documentation, . https://docs.okd.io/3.11/

welcome/index.html. Accessed 29 Mar 2020.

[19] RedHat. OpenShift, . https://www.openshift.com/ Accessed 15 Apr
2020.

[20] Mark Richards. Microservices vs. service-oriented architecture. O’Reilly
Media, 2015.

[21] John W Rittinghouse and James F Ransome. Cloud computing: imple-
mentation, management, and security. CRC press, 2016.

[22] Robert C Seacord, Daniel Plakosh, and Grace A Lewis. Modernizing
legacy systems: software technologies, engineering processes, and busi-
ness practices. Addison-Wesley Professional, 2003.

http://urn.fi/URN:NBN:fi:aalto-202001261876
http://urn.fi/URN:NBN:fi:aalto-202001261876
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/
http://urn.fi/URN:NBN:fi:aalto-202003222623
http://urn.fi/URN:NBN:fi:aalto-202003222623
https://varnish-cache.org/
https://varnish-cache.org/
https://access.redhat.com/documentation/en-us/red_hat_software_collections/2/html-single/using_red_hat_software_collections_container_images/index
https://access.redhat.com/documentation/en-us/red_hat_software_collections/2/html-single/using_red_hat_software_collections_container_images/index
https://access.redhat.com/documentation/en-us/red_hat_software_collections/2/html-single/using_red_hat_software_collections_container_images/index
https://docs.okd.io/3.11/welcome/index.html
https://docs.okd.io/3.11/welcome/index.html
https://www.openshift.com/

BIBLIOGRAPHY 49

[23] Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. Continu-
ous integration, delivery and deployment: a systematic review on ap-
proaches, tools, challenges and practices. IEEE Access, 5:3909–3943,
2017.

[24] Shohei Tanaka. vmod-parseform. webpage, 2020. https://github.com/
xcir/libvmod-parseform. Accessed 29 Mar 2020.

[25] Ian Sommerville. Software Engineering GE. Pearson Australia Pty
Limited, 2016.

[26] The Apache Software Foundation. Apache Jena Fuseki. webpage,
2020. https://jena.apache.org/documentation/fuseki2/index.html.
Accessed 29 Mar 2020.

[27] The Apache Software Foundation. Apache Tomcat 8 Documentation.
webpage, 2020. https://tomcat.apache.org/tomcat-8.5-doc/index.

html. Accessed 29 Mar 2020.

[28] The Linux man-pages project. cgroups, . Copy of text available at
http://man7.org/linux/man-pages/man7/cgroups.7.html. Accessed 29
Mar 2020.

[29] The Linux man-pages project. namespaces, . Copy of text available at
http://man7.org/linux/man-pages/man7/namespaces.7.html. Accessed
29 Mar 2020.

[30] tnozicka. openshift-acme. webpage, 2020. https://github.com/

tnozicka/openshift-acme. Accessed 29 Mar 2020.

[31] Samu Toimela. Containerization of telco cloud applications; ohjelmis-
tokonttien hyödyntäminen pilvipohjaisen mobiiliverkon sovelluksissa.
G2 pro gradu, diplomityö, 2017. URL http://urn.fi/URN:NBN:fi:

aalto-201706135434.

[32] Varnish Software. varnish-modules. webpage, 2020. https://github.

com/varnish/varnish-modules. Accessed 29 Mar 2020.

[33] Quang Hieu Vu and Rasool Asal. Legacy application migration to the
cloud: Practicability and methodology. In 2012 IEEE Eighth World
Congress on Services, pages 270–277. IEEE, 2012.

[34] WordPress. WordPress. webpage, 2020. https://wordpress.org. Ac-
cessed 29 Mar 2020.

https://github.com/xcir/libvmod-parseform
https://github.com/xcir/libvmod-parseform
https://jena.apache.org/documentation/fuseki2/index.html
https://tomcat.apache.org/tomcat-8.5-doc/index.html
https://tomcat.apache.org/tomcat-8.5-doc/index.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
https://github.com/tnozicka/openshift-acme
https://github.com/tnozicka/openshift-acme
http://urn.fi/URN:NBN:fi:aalto-201706135434
http://urn.fi/URN:NBN:fi:aalto-201706135434
https://github.com/varnish/varnish-modules
https://github.com/varnish/varnish-modules
https://wordpress.org

BIBLIOGRAPHY 50

[35] Jun-Feng Zhao and Jian-Tao Zhou. Strategies and methods for cloud
migration. international Journal of Automation and Computing, 11(2):
143–152, 2014. doi: 10.1007/s11633-014-0776-7.

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Scope
	1.2 Problems
	1.3 Results
	1.4 Structure of the thesis

	2 Background
	2.1 Software process
	2.2 Cloud computing
	2.3 Cloud migration
	2.4 Service based architectures

	3 Key technologies
	3.1 Containerization
	3.2 Docker
	3.3 OpenShift
	3.4 OpenShift objects
	3.4.1 Deployments
	3.4.2 Services
	3.4.3 Images and ImageStreamTags
	3.4.4 Builds
	3.4.5 Volumes
	3.4.6 ConfigMaps
	3.4.7 Routes

	3.5 Docker Hub
	3.6 GitHub
	3.7 GitLab

	4 Implementation
	4.1 Architecture
	4.1.1 Frontend
	4.1.2 Web server
	4.1.3 App server
	4.1.4 Store server
	4.1.5 Changes

	4.2 Containerization
	4.2.1 Varnish Cache
	4.2.2 Apache websites
	4.2.3 Wordpress sites
	4.2.4 Tomcat applications
	4.2.4.1 Java version

	4.2.5 Fuseki databases

	4.3 Git repositories
	4.4 Automating Builds and Deployment
	4.5 Backups
	4.6 Routing
	4.7 Migrating Data

	5 Discussion
	5.1 Splitting cache and database
	5.2 Benefits from PaaS
	5.3 Standardized respositories
	5.4 Service isolation
	5.5 Automated deployment
	5.6 Scalability
	5.7 Amount of work
	5.8 Code duplication
	5.9 Multiple processess per container
	5.10 Making containers more generic
	5.11 Storage problems
	5.12 Monitoring
	5.13 Testing
	5.14 Cost Optimization

	6 Conclusions

