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Voting is an integral part of the decision-making mechanism in many commu-
nities. Voting decides which bills become laws in parliament or users become
administrators on Wikipedia. Understanding a voter’s behaviour and being able
to predict how they will vote can help in selecting better and more successful
policies or candidates. As votes tend to be for or against a particular agenda,
they can be intuitively represented by positive or negative links respectively in a
signed network. These signed networks allow us to view voting through the lens
of graph theory and network analysis. Predicting a vote translates into predicting
the sign of a link in the network. The task of sign prediction in signed networks
is well studied and many approaches utilize social theories of balance and status
in a network. However, most conventional methods are generic and disregard the
iterative nature of voting in communities.

Therefore this thesis proposes two new approaches for solving the task of vote
prediction in signed networks. The first is a graph combination method that
gathers features from multiple auxiliary graphs as well as encoding balance and
status theories using triads. Then, it becomes a supervised machine learning
problem which can be solved using any general linear model. Second, we propose
a novel iterative method to learn relationships between users to predict votes. We
quantify a network’s adherence to status theory using the concept of agony and
hierarchy in directed networks. Analogously, we use the spectral decomposition
of the network to measure its balance. These measures are then used to predict
the votes that comply the most with the social theories.

We implement our approaches to predict votes in the elections of administrators
in Wikipedia. Our experiments and results on the wiki-Rfa dataset show that
the iterative models perform much better than the graph combination model.
We analyse the impact of the voting order on the performance of these models.
Furthermore, we find that balance theory represents votes in Wikipedia elections
better than status theory.
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Abbreviations and Acronyms

RfA Request for Adminship. The process of promoting a
Wikipedia user to an administrator

LSN Local Signed Network
LR Logistic Regression
ROC Receiver Operator Characteristic
PRpos The Precision-Recall curve for positive label probabil-

ities
PRneg The Precision-Recall curve for negative label proba-

bilities
AUC-ROC The area under the ROC curve
AUC-PRneg The area under the PRneg curve
AUC-PRpos The area under the PRpos curve
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Chapter 1

Introduction

In recent years, researchers have become increasingly interested in under-
standing the behaviour of voters in social networks. Knowledge of the fac-
tors that motivate voters, for example, voting for bills in the United States
Congress [29] or electing administrators in Wikipedia [10, 28, 35], is of great
importance in selecting successful policies or candidates. Voting is a clas-
sic problem and has been studied extensively in the fields of game theory
and political science [31, 49, 69]. More recently, there is a focus on using
information from networks formed from the interaction of voters to model
their behaviour. This provides an insight into these interactions and into the
influence of certain individuals on voters within a community.

In many communities, decision making is carried out through votes. In
these voting sessions, voters indicate if they are for or against an agenda
through their vote. These votes can be represented as positive or negative
links in a signed network. Analysing this network of voting yields various
interesting insights. For instance, using methods such as correlation clus-
tering [7, 13, 39] on these signed networks reveals communities that vote
similarly and have common ideologies. This provides us with a macroscopic
perspective of election dynamics and voting blocks.

On the other hand, predicting the sign of future links in these signed
networks gives us a local understanding of the nodes in the network [14,
36, 37]. This task is called sign prediction and translates into predicting
future votes in the voting networks. The methods to predict the sign of a
link use social theories of balance and status. For instance, balance theory
states that a friend of an enemy is likely to be an enemy [24]. Therefore, if a
user disagrees with a common neighbour who supports an agenda, then they
are more likely to oppose that agenda. Similarly, status theory states that
people interact on the basis or relative merit [36]. Hence, if you disregard
someone who in turn disregards an agenda, then you are more likely to
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CHAPTER 1. INTRODUCTION 8

disregard that agenda. These social theories provide a strong framework,
using which we can predict future interactions betweens voters and an agenda
within a community. By quantifying agreement or respect in a particular
community, we can understand the motivations and factors that affect an
individual voter’s decision.

The traditional sign prediction approaches are abstract and general, so
that they can be applied to signed networks that may not be voting networks
[1, 32, 65]. Therefore, they disregard the iterative and chronological nature in
which voting usually happens. Furthermore, these methods rely on features
obtained from counting triangles or triads, to encode the theories of balance
and status. Hence, they fail to incorporate larger effects of balance and
status in a network. Moreover, in cases where research does focus on sign
prediction in voting networks, they heavily rely on non-voting features of the
voters and agendas. They utilize these features and build bespoke machine
learning models that are task-specific and static [28, 29].

Firstly, in this thesis, we propose a method to extend conventional sign
prediction for the task of independent vote prediction. For an independent
voter, we define the voting neighbourhood with respect to a graph and the
previous voters in the session. Then, we gather the features from several
auxiliary graphs that contain non-voting relationships between users. Fur-
thermore, we collect triadic information from the voting network and create
a combined feature vector for a voter. Therefore, we formulate a supervised
machine learning problem to classify and predict the sign of a vote, using true
sign of the votes as targets. This graph combination model can be trained
with any general linear method using appropriate data processing techniques.

Secondly, we present a novel iterative framework that utilizes theories of
balance and status in the local signed network (LSN) of a voter to predict
the sign of their vote. The framework maintains and constantly updates
a relationship graph. The edges of this graph capture interaction between
voters such as agreement or concurrence. The LSN is defined as the intersec-
tion of the relationship graph with the graph of the current voting session.
Then, we quantify how much the LSN complies with balance theory or sta-
tus theory by utilizing the spectral decomposition or the agony of the LSN
respectively. This allows us to predict the vote as the edge, that when added
to the LSN, complies more with either balance or status theory. Therefore,
we create two models, namely an iterative balance model and an iterative
status model. These models are iterative as, once the voting is completed in
a session, they update their relationship graph with the information from the
session. Therefore, these models can be bootstrapped to start with no prior
information and improve over time.

Users in Wikipedia undergo a process called a Request for Adminship



CHAPTER 1. INTRODUCTION 9

(RfA), to gain administrative privileges. Candidates are nominated and the
RfA is a week long period in which any registered Wikipedia user can show
their support for or opposition towards the candidate. After the community
finishes its discussions and voting towards the candidate, the result of the
RfA is decided by a Bureaucrat (a special class of users). Upon success, the
candidate is granted administrative privileges, and upon failure, the candi-
date can appear for a renomination after a period of time.

We implement the models proposed to predict the votes in Wikipedia
RfA elections. The results show that the iterative models far out-perform the
graph combination model at predicting votes. We explore the consequences
of the voting order on the overall performance of the iterative models. Fur-
thermore, we analyse the features of both models to understand how well
the theories of balance and status represent votes in Wikipedia elections and
possible scope for future work.

1.1 Thesis Outline

The rest of the thesis is organized in the following manner. Firstly, we discuss
the background relating to signed graphs and hierarchy in directed networks
in Chapter 2. Next, in Chapter 3 we describe the vote prediction problem
and approaches to solving it. Chapter 4 provides a comprehensive view of
Wikipedia and the election process for administrators. In Chapter 5 we
explain the datasets used, construction of the model and evaluation criteria.
After that, we report our findings in Chapter 6 and discuss their implications.
Finally, we conclude the thesis and present future work in Chapter 7.



Chapter 2

Background

In this chapter, we provide the fundamentals of the graph theory concepts re-
quired to understand the rest of the thesis. In Section 2.1, we cover the basic
definitions and terminologies used to describe different types of graphs. Then,
we define a signed graph and discuss its unique properties in Section 2.2. We
outline the social theories of balance and status in signed networks in Sec-
tions 2.2.1 and 2.2.2. Later, in Section 2.3, we provide an overview of the
link and sign prediction tasks in signed network and highlights the impor-
tant approaches from recent works. Lastly, we explain techniques of finding
hierarchies in directed networks and the concept of agony in Section 2.4.

2.1 Graph Theory

In this section, we define the various types of graphs and their basic proper-
ties. The notation and terminologies used closely follow those used in Dies-
tel [18]. Graphs are structures that describe relationships between entities.
These entities are called vertices and entities related to one another are joined
by edges. The terms graph, vertices and edges can be used interchangeably
with network, nodes and links respectively.

Graphs can be classified broadly into two types based on whether their
edges possess a direction. We now go on to define them in detail.

2.1.1 Undirected Graphs

An undirected graph is a pair G = (V,E), where V is the set of vertices and
E is the set E ⊆ {(u, v) | u, v ∈ V } of unordered pairs of vertices called
edges. In this thesis, we will deal only with simple graphs, i.e., no self loops,
(u, v) ∈ V × V, u 6= v and there is at most one edge between u and v.

10
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The number of the vertices in a graph is called the order of the graph and
is denoted by n = |G|. In turn, the size of a graph is the number of edges
denoted by m = ‖G‖ or m = |E|. A vertex u is adjacent to v if they are
the end points of an edge, (u, v) ∈ E. All the vertices adjacent to a vertex
v are called the neighbourhood of v and is denoted by N(v). The degree of
a vertex v is the number of nodes adjacent to that vertex and is denoted by
d(v) = |N(v)|.

The edges of an undirected graph can have an associated value. This value
indicates the distance or similarity between a pair of vertices. These values
are called weights and the corresponding graph is called a weighted undirected
graph. Therefore, a weighted graph is defined as a triple G = (V,E,w), where
w : E → R+ is a function that maps an edge e to a positive real weight w(e).
Now, an unweighted graph is simply a weighted graph where the function w
is defined as: if e ∈ E then w(e) = 1 else w(e) = 0. The degree of a vertex v
in a weighted graph is the sum of the weights to all the neighbours of v, and
is defined as d(v) =

∑
u∈N(v)w((u, v)). An example of a weighted undirected

graph is shown in Figure 2.1.

v1

v2

v3

v4

v5

v6

2
1.5

1

4

3

Figure 2.1: An example of a weighted undirected graph

2.1.2 Directed Graphs

The main distinction regarding a directed graph (or digraph) is that the edges
are ordered pairs, i.e., (u, v) 6= (v, u). Therefore, a directed graph has a
similar definition: a pair G = (V,E), where V is the set of vertices and E
is the set of ordered pairs of vertices. Now given an edge e = (u, v) we can
define a source function src : E → V , such that src(e) = u and a destination
function d : E → V , where dest(e) = v. These functions classify the vertices
in an edge e as either the source or the destination. In this thesis, we deal
only with simple directed graphs, i.e., no self-loops, and there can be at most
one edge from u to v.
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As the edges now have an inherent direction, we can define the successors
and predecessors of a node v. A vertex u is called the successor of a node v,
if there exists a directed edge from v to u. Therefore, the set of successors
for a vertex v is defined as S(v) = {u | (v, u) ∈ E}. A predecessor of a node
v is a vertex u such that there exists a directed edge from u to v. The set
of predecessors for a vertex v is defined as P (v) = {u | (u, v) ∈ E}. Now,
a vertex u that is either a successor or a predecessor of a vertex v is called
a neighbour of the vertex v. Therefore, we define the neighbourhood of a
vertex v as the set of vertices in the union of successors and predecessor,
i.e. N(v) = S(u) ∪ P (v). This definition is also compatible with undirected
graphs, because if (u, v) ∈ E then (v, u) ∈ E.

Directed graphs can also have values associated with each directed edge
called a weight. A weighted directed graph can be defined as a triple G =
(V,E,w), where the weight function w : E → R+ maps each edge e to
a weight w(e). Now, the indegree of a vertex v is defined as the sum of
the edge weights from the predecessors of v and is denoted as din(v) =∑

u∈P (v)w((u, v)). Similarly, the outdegree of a vertex v is defined as the

sum of the edge weights to the successors of v and is denoted by dout(v) =∑
u∈S(v)w((v, u)). Figure 2.2 shows an example of a weighted directed graph.

v1

v2 v3

v4

v5v6 2

4

1

1.5

3.52.5

Figure 2.2: An example of a weighted directed graph

2.2 Signed Graphs

The simple weighted graphs we have defined so far only have non-negative
edge weights that can represent similarity or closeness. In the 1950s, social
psychologists found it desirable to express liking, disliking or indifference in
social interactions. This was formalized by Harary [24] using graphs with
weights (−1, 0, 1). These graphs are therefore called signed graphs, where a
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negative edge weight can denote dissimilarity between a pair of vertices. In
this thesis we will use notations and terms similar to Gallier [19], Kunegis et
al. [34], Hou [26] and Zaslavsky [68].

A signed graph is a triple G = (V,E,w), where V is the set of vertices, E
is the set of pairs of vertices and the weight function w : E → R. The weight
function now takes an edge e and maps it to a signed weight w(e). We can
partition the edges into positive and negative edges, E = E+ ∪ E−, where
E+ = {e | w(e) > 0} and E− = {e | w(e) < 0}. Similar to Zaslavsky [68], we
consider undirected signed graphs and directed signed graphs as distinct and
separate entities. We can see some examples of signed graphs in Figure 2.3.

v1

v2

v3

v4

v5

v6

2 −1.5

−1

4

−3

(a) A undirected signed graph

v1

v2 v3

v4

v5v6 −2

4

−1

1.5

3.52.5

(b) A directed signed graph

Figure 2.3: Examples of Signed Graphs

We now proceed to define a few more terms. The degree of a vertex v is
now the sum of the absolute edge weight of its neighbours, called the signed
degree and is defined as

d(v) =
∑

u∈N(v)

|w((u, v))|.

This can also be extended to signed indegree and signed outdegree denoted
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by din(v) and dout(v) and defined as

din(v) =
∑
u∈P (v)

|w((u, v))|,

and
dout(v) =

∑
u∈S(v)

|w((v, u))|.

We can create a n × n square weight matrix W , where each entry wij is
defined as

wij =

{
w((vi, vj)) if (vi, vj) ∈ E
0 if (vi, vj) /∈ E.

The signed degree matrix D is a diagonal matrix consisting of the signed
vertex degrees, D = diag(d(v1), . . . , d(vn)). We can now define the signed
Laplacian, L as

L = D −W
The signed Laplacian along with results from spectral analysis of signed
graphs [26, 34], will be useful for balance theory of signed graphs.

2.2.1 Balance Theory

In the 1940s, Heider [25] proposed that when there are either positive relations
(friendship, love, support) and negative relations (enmity, hate, oppose) in
a group, the group tends towards balance. Balance is the concept that all
members aim to maintain consistency in the relations they share with other
members of the group. Hence, in a group of three members this can be seen
as having three positive relations or, one positive and two negative relations.
In Figure 2.4, the triads B1 and B2 are balanced and mirror aphorisms such
as ”the friend of my friend is also a friend” and ”the enemy of my enemy is
a friend” respectively. Therefore, triads B3 and B4 are called unbalanced or
imbalanced that denotes the cognitive dissonance between the members of
the triad. The dissonance can be understood by the counter-intuitive nature
of the phrase ”the friend of my friend is my enemy” described by triad B3

for the node v1.
Harary and Cartwright [11] generalized this notion of balance by using

signed graphs. As these relations are typically symmetric, balance is usually
defined for undirected signed graphs. This can been seen in Figure 2.4 where
solid edges are positive and dashed edges are negative. Davies [15] offers an



CHAPTER 2. BACKGROUND 15

alternate definition named weak balance,where triads of type B2 are consid-
ered to have lesser predictive utility as relationships of these type are less
common in real-life social networks.

v2

v1 v3

v2

v1 v3

v2

v1 v3

v2

v1 v3

+ +

+

B1

− −

+

B2

+ +

−

B3

− −

−

B4

Figure 2.4: Triads in undirected signed graphs. B1 and B2 are balanced triads
as they have even number of negative edges. B3 and B4 are unbalanced as
they have odd number of negative edges.

The concept of balance can be generalized for an undirected signed graph
G = (V,E,w). The sign of a cycle C in the signed graph G is defined as the
product of the edge weights, sgn(C) =

∏
e∈C w(e). A signed network G is

then said to be balanced if and only if all the sign of all cycles in network are
positive. Therefore, every cycle in G must have an even number of negative
edges. This leads to the result from Harary [24] that states that if a graph
G is balanced, then there is a partition of the vertices V = V1 ∪ V2 such
that edges within the vertices of each set is positive and edges between the
sets are negative. This means that once we delete the positive edges in a
balanced network, it becomes a bipartite graph. An example of a balanced
signed graph is shown in Figure 2.5. Here the partition of the vertex set is
V1 = {v1, v3, v4, v7, v8} and V2 = {v2, v5, v6, v9}.

The signed Laplacian matrix L of a signed graph G is always positive-
semidefinite. If the signed graph G is unbalanced, then it does not possess a
partition that can lead to a bipartite network connected by negative edges. If
the smallest eigenvalue of a graph G is denoted by λ1(G), then G is balanced
iff λ1(G) = 0. Therefore, L is positive-definite if and only if G is unbalanced
[26, 34, 68]. Hou [26] provides bounds on the value of λ1(G) and Li et al.
[40] show that λ1(G) can be used as a measure of how far the signed graph
G is from being balanced. Therefore, we can use the smallest eigenvalue of
the signed Laplacian, λ1(G) as a quantification of the balance of the signed
network G.
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v1

v2

v5

v6

v9

v3

v4

v7

v8

Figure 2.5: A balanced signed graph. Solid blue edges are positive and
dashed red edges are negative. Every cycle in this graph contains an even
number of negative edges.

2.2.2 Status Theory

Guha et al. [22] mention implicitly that a signed edge from u to v can be
interpreted in an asymmetric manner different from ”friend” or ”enemy”.
Leskovec et al. [36, 37] introduce the concept of status to contextualize di-

rected signed edges. A positive edge u
+−→ v indicates that v has a higher

status than u and a negative edge u
−−→ v means that v has a lower status

than u. This concept of relative status can be propagated transitively along
multiple steps which might lead to contradictions with balance theory [37].

For instance, given three vertices v1, v2 and v3, the presence of an edge

v1
+−→ v2 indicates that v1 thinks v2 has higher status, the edge v2

+−→ v3
indicates that v2 thinks v3 has higher status. Now, we wish to to close this
triad with an edge from v3 to v1. Status theory would say that through

transitivity, v1 has lower status than v3, therefore the prediction is v3
−−→ v1.

Whereas, in balance theory we would predict a positive edge v3
+−→ v1 to

make the cycle have even number of negative edges. In Figure 2.6, S1 is the
triad as predicted by balance theory, while triad S2 is what status theory
predicts.

There are also cases when status theory is ambivalent to the edge that

closes a triad. Consider the example when we have the edges v1
+−→ v2 and
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v2
−−→ v3. If we indicate the status of a vertex v using the function σ(v),

then the edges describe the following : σ(v2) > s(v1) and σ(v2) > σ(v3).
Therefore, we have no knowledge of the relative difference in status between

the vertices v1 and v3. Hence, both edges v3
+−→ v1 (σ(v3) > σ(v1)) and

v3
−−→ v1 (σ(v1) > σ(v3)) are equally valid for status theory. However, balance

theory unequivocally predicts v3
−−→ v1, to keep the resultant triad balanced.

This case is shown in Figure 2.6 as triads S3 and S4.

v2

v1 v3

v2

v1 v3

v2

v1 v3

v2

v1 v3

+ +

+

S1

+ +

−

S2

+ −

−

S3

+ −

+

S4

Figure 2.6: Triads in directed signed graphs. Triads S2, S3 and S4 are com-
pliant with status theory. Only triads S1 and S3 are compliant with balance
theory.

Each positive link inwards (d+in(v)) and negative link outwards (d−out(v))
increases status. In turn, each positive link outwards (d+out(v)) and negative
link inwards (d−in(v)) decreases status. Therefore, σ(v) = d+in(v) + d−out(v) −
d+out(v)−d−in(v) is a heuristic for the status of a node [36]. An interesting fact

is that, the edge u
−−→ v can be converted into positive edge in the opposite

direction u
+←− v. This fact reduces the number of unique triads that can

be formed using status theory and will be used in edge prediction tasks that
will be discussed in the coming chapters.

2.3 Link and Sign Prediction

The link prediction problem as defined by Liben-Nowell and Kleinberg [41]
is the task of inferring possible future edges between vertices in a social
network. To this end, the datasets used were split into training edges and
testing edges which had a common core set of vertices. The goal was to use
information in the training edges to predict the edges that were likely in the
test dataset. They showed that topological features such as number of com-
mon neighbours and Katz’s centrality index can be used in an unsupervised
setting to accurately predict future edges.
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Leskovec et al. [36] extended the link prediction problem to signed net-
works. They also introduced the problem of edge sign prediction: predict the
sign of a given edge (u, v), using the existing signed network G. A supervised
model for the task is proposed that uses network features such as indegree
and outdegree of a node along with triad features. The edge nodes u and v
and a common neighbour w form a triad. The directed edge between (u,w)
and (w, u) can be either forward or backwards and each edge is either positive
or negative. Therefore, there are 16 possible triad types for a given neighbour
w. Hence, for a given edge (u, v), they count the type of triad formed from
each common neighbour w and use it as a feature. They analyse these triadic
features from the trained model and show how they relate to balance and
status theory. Furthermore, for the link prediction problem, the information
from the negative edges in the signed network improves the overall accuracy
of the model. This seminal paper inspired many more approaches to solving
these problems for signed graphs.

Matrix factorization and latent space approaches facilitate link prediction
and sign prediction tasks for multiple edges simultaneously in a signed net-
work [1, 21, 27]. Supervised algorithms for both tasks can be improved by
utilizing additional node features such as inverse square metric [2] or node
rankings [48]. Models using graph motifs as features [32, 42] extend the con-
cept of triadic features for link and sign prediction. Chiang et al. generalize
balance theory for longer cycles and incorporate it as features to improve link
prediction [14]. Tang et al. [50] discuss the importance of predicting negative
links and highlight methods to overcome the inherent imbalance present in
signed network datasets. Cesa et al. [12] and Chiang et al. [13] utilize clus-
tering techniques to solve sign prediction and link prediction respectively.
Shuang et al. [65] and Karimi et al. [29] create bespoke models incorporating
user behaviour and political party affiliation respectively to predict the sign
of edges present in the networks.

2.4 Hierarchy in Directed Networks

Hierarchies exist in all social structures. From the explicit levels found in
nature, such as the food chain or organizational structures in businesses to
more implicit stratification that occurs on social media or online networks. A
common method to represent such hierarchies is through a tree. For example,
the chain of command in the military or within governments. Trees have well
defined levels and a single person at the top. Generalizing this structural
concept, we get a Directed Acyclic Graph (DAG), which represents a partially
ordered set. DAGs have perfect hierarchy, while structures such as cycles
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tend to have no hierarchy. Regular directed graphs occur somewhere between
these two extremes.

Gupte et al. [23] provide a method to discern the levels of stratification
present in a given directed network when no prior information of the hierarchy
exists. They define a measure of the hierarchy of a given directed network
G as h(G). In turn, they propose a polynomial algorithm to find the largest
hierarchy in that network.

They define the concept of social agony, which posits that agony is present
when a person having a higher rank in network interacts with a person who
has a lower rank. Therefore, if we define the rank of a node in graph G
as the function r : V → N, then a directed edge u → v causes agony when
r(u) ≥ r(v). The agony of an edge can be quantified as max(r(u)−r(v)+1, 0).
Hence, the agony of the graph G with respect to the rank function r is defined
as

A(G, r) =
∑

(u,v)∈E

max(r(u)− r(v) + 1, 0) .

As nodes in a graph tend to minimize the overall agony, the agony of a
network G is the smallest possible agony over all possible ranking for r,
A(G) = minr∈RankingsA(G, r). Therefore, the hierarchy of a given network
G, h(G) can now be expressed in terms of the agony of the network

h(G) = 1− 1

m
A(G),

where m is the number of edges. We can see examples of hierarchy in un-
weighted directed graph in Figure 2.7.

Therefore, finding a ranking of the nodes that minimizes the agony of
the network gives us the optimal hierarchy present in that network. Gupte
et al. [23] and Tatti [51] present a polynomial algorithm that can solve the
dual of the agony minimization problem to obtain the optimal ranking r
for unweighted graphs. Tatti [52] provides an alternate approach using a
capacitated circulation solver that can handle weighted digraphs as well as
additional cardinality constraints. These algorithms allows us to find the
levels of hierarchy present in any given directed social network and anal-
yse the interaction between members belonging to different strata in that
community.

We explain in future chapters how the hierarchy in a social network is
intrinsically linked to the theory of status in directed signed networks and
how agony can be used to measure the degree of adherence to status theory.
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(a) DAG has perfect hierarchy, h(G) = 1
and agony of each edge is 0
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(b) A cycle has no hierarchy, h(G) = 0
and each edge has agony of 1
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(c) Graph with some hierarchy h(G) =
2/5. Red dashed edge has agony of 3
and solid black edges have 0 agony.

Figure 2.7: Examples of hierarchy in unweighted directed graphs. Numbers
inside nodes indicate the rank of vertex.



Chapter 3

Vote Prediction

In this chapter, we cover the main motivation behind predicting the vote of an
individual voter and present the methods that can be used to solve this task.
First, we discuss the contrast in perspectives that is present when predicting
the result compared to predicting a vote in Section 3.1. Next, in Section 3.2,
we explain how the problem of vote prediction is intrinsically linked to the
tasks of link and sign prediction in a signed network. In Section 3.3, we
describe a supervised machine learning framework that uses features from
graphs for voting and non-voting data. Lastly, we present our novel approach
of constructing a local signed graph of the current voter and using balance
and status theory to predict the vote in Section 3.4.

3.1 Result versus Vote Prediction

In this thesis, we are interested in the voting behaviour for a collective action.
In such cases, members of a community come together as voters to decide
on a particular candidate item during a session. In a parliament the voters
are the elected members of the parliament and the candidate is usually a
bill or a policy matter. When it is promotion within a political party or an
online community such as Wikipedia, the members vote on a candidate who
has been nominated for the position. In all these cases, we have two levels
of decisions being made. The first is the individual decision that each voter
makes with regard to the candidate. The second is the final decision that
the group arrives at after everyone has voted. We refer to task of predicting
the former as vote prediction and the latter as result prediction.

Result prediction provides a macro level perspective of the incentives of a
community. We can create models based on the characteristics of a candidate
to predict the result of a collective action. This leads to an understanding on a

21
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communal level, of what characteristics are preferred and if there are voting
blocks formed within the members based on ideological differences. This
translates to practical examples such as party level dynamics in a parliament,
the topic of a bill or the credentials of a nominee [9, 66, 67].

On the other hand, when we focus on the vote prediction problem, we get
a deeper understanding of the dynamics between voters and the candidate.
In fields such as game theory, this is well studied using frameworks such as
strategic voting models and momentum [3, 6, 44, 49, 69]. These models are
more theoretical and are studied under synthetic conditions. Nevertheless,
they still provide a foundation on which we can construct practical models
that can utilize additional features. One such popular approach is using
textual information from bills, speeches and legislature to predict votes of
politicians in parliament [8, 20]. The next important step is to represent the
voting data as networks and leveraging network features to understand and
predict voter behaviour.

3.2 Voting and Signed networks

Votes by nature express a positive or negative relationship between a voter
and a candidate. Therefore, signed graphs provide an intuitive way to struc-
turally represent the voting pattern of members in a community. These
signed voting networks can be used to develop models to solve the task of
vote prediction and analyse voter behaviour.

Correlation clustering and community detection of signed voting graphs
can discover trends and vote blocks in communities [4, 7]. Analysing the net-
works using social theories of balance and status provides knowledge of voter
behaviour and features for prediction methods [16, 39]. The vote prediction
task can be broken down into two subtasks which are analogous to link and
sign prediction in signed networks.

The first subtask is to predict who will vote next given a candidate c
and a set of previous votes. This subtask is similar to link prediction in a
signed network, where we aim to predict possible future edges of the type
(v, c). The complexity of this subtask depends on the format of voting that
takes place. For instance, if there is a known voting order, such as roll
calls in parliamentary proceedings or explicit timestamps, then the subtask
is trivially solved. On the other hand, if the voting occurs simultaneously,
the subtask can be reduced to predicting the possible subset of members who
will vote in a given session. However, when the voting is iterative and there
is no known underlying process of who votes next, then a separate model
might be required to infer the voting sequence. This particular case can be
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combinatorially hard, as we would need to find the correct ordering of votes
in a session.

The second subtask is to predict how a voter v will vote for a candidate
c given the previous votes in the session. This task translates into predicting
the sign of an edge (v, c), in the current session. We call this subtask the
independent vote prediction problem. It is independent as we are only inter-
ested in the decision of the voter v, assuming that we have complete prior
knowledge of how the previous votes have been cast. Then, this problem can
be framed as a supervised learning task. It uses features of the interaction
between the current voter v, previous voters U and the candidate c to predict
the sign of the edge (v, c). We can utilize the theories of balance and status
in signed networks to create models similar to those by Karimi et al. [29] and
Jankowski-Lorek et al. [28] to predict voter behaviour.

3.3 Linear Combination of Graphs

In this section we explain how the approaches outlined in Section 2.3 can
be applied to solve the independent vote prediction problem. As discussed
previously, the edge sign prediction task in signed network is analogous to
vote prediction. The models proposed by Leskovec et al. [36] can be used
to predict the sign of the edge (v, c). However, voting in a community takes
place across many sessions in a chronological manner. Therefore, we must
partition the training and testing datasets to avoid data leakage. We propose
the following framework to gather features using a linear combination of the
voting history and several auxiliary graphs.

We denote the directed signed graph for the current voting session as
S = (VS, ES, wS). The current voter in consideration is denoted by v and the
candidate of the session is c. In this thesis, for all the models we assume that
each session has a unique candidate. The votes that have been cast prior to
the current voter exists as edges (u, c) in the session S and the set of prior
voters is denoted as U = {u | (u, c) ∈ ES}. The history H = (VH , EH , wH)
is defined as the directed signed graph containing the votes from sessions
chronologically prior to S.

We define a set of auxiliary graphs A = {G1, G2, . . . , Gl} based on ex-
ternal non-voting data. These auxiliary graphs can be either directed or
undirected, weighted or unweighted, signed or unsigned. This is similar to
the relational layer in Multidimensional Social Networks (MSN) described by
Kazienko et al. [30] and Jankowski-Lorek et al. [28]. However, the auxiliary
graphs capture different relations between a subset of the voting members
that need not overlap. These relations will be used to generate additional
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features for the vote prediction task.
Algorithm 1 describes how to generate a feature vector a from the auxil-

iary graphs A. The algorithm finds the intersection of the prior voters U and
the neighbourhood of the current voter v in the graph Gi which we call the
voting neighbourhood. Then the feature ai is computed as the weighted sum
of the voting neighbourhood plus the edge weight to the candidate (v, c) in
the auxiliary graph Gi. Figure 3.1 provides an example with three auxiliary
graphs and two prior voters u1 and u2. The dashed red edges are the votes
cast in the current session S by the prior voters. We see, in the example, G1

is a directed graph, G2 is an undirected graph and G3 is a signed directed
graph. The current voter v has different relations to his voting neighbourhood
in each auxiliary graph and therefore each feature is a different combination
of edge weights from those graphs.

In addition to the auxiliary feature vector a, we can also create triad
features based on the historical voting graph H. Similar to Leskovec et al.
[36] and Karimi et al. [29] we can form a set of unique triads T . Then, for
each node u in the common neighbourhood of Nvc we can count the triad
formed from the three vertices. Algorithm 2 describes this procedure.

We now create a feature matrix X for all the sessions in a given dataset.
In the feature matrix, each row is the concatenation of the auxiliary feature
vector and the triadic feature vector x = [a, t] . The target vector y is the
vector of true votes. Now, we train a linear machine learning model and use
it to predict the votes in a test dataset.

v c
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Figure 3.1: Example auxiliary features for v from combination of three graphs
and two prior voters u1 and u2. Dashed red lines are prior votes in the session.
Solid blue lines are edge weights in auxiliary graph. ai is feature for voter v
from auxiliary graph Gi
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Algorithm 1: Auxiliary feature vector for voter v

Input: Voter v, Candidate c, Set of auxiliary graphs A, Current
voting session S and Prior voters U

Result: Auxiliary Feature vector a
1 Initialize a of length |A|
2 foreach Gi in A do
3 Z = Ni(v) ∩ U // neighbours in Gi who have voted

4 ai ← 0
5 foreach z in Z do

/* vote in current session multiplied by the edge

weight in Gi */

6 ai += wS((z, c)) · wi((v, z))

7 end
8 ai+ = wi((v, c)) // Add edge weight to candidate

9 end
10 return a

Algorithm 2: Triad feature vector for voter v

Input: Voter v, Candidate c, Set of unique triads T , Voting history
graph H

Result: Triad Feature vector t
1 k ← |T |
2 Initialize counters cnt1, . . . , cntk to 0
3 Nvc = NH(v) ∩NH(c) // common neighbours in H
4 foreach u in Nvc do
5 Let 4 be the triad formed by vertices {v, u, c}
6 Classify 4 as the jth triad in T
7 Increment counter cntj
8 end
9 t← [cnt1, . . . , cntk]

10 return t

3.4 Local Signed Network

In this section, we present an unsupervised method that can be used iter-
atively to predict the votes in a session. This method builds on top the
concept of a voting neighbourhood, introduced in the previous section and
relies solely on the social theories of balance and status in signed networks
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to predict a vote. However, unlike the triadic features used in the supervised
method, we propose to utilize generic measures of a network’s adherence to
the theories of balance or status. Then, we predict the vote that preserves
these measures the best.

As defined in the previous section, the directed signed graph of the current
session is S = (VS, ES, wS) where, v is the voter, c is the candidate and U
is the set of prior voters in the session. H = (VH , EH , wH) is the directed
signed graph that contains the historical voting records prior to the current
session.

The first step is to construct a signed relationship graph R = (VR, ER, wR)
from the historical voting graph H. The edges of this graph capture simple
signed relationships between the voters such as agreement or concurrence.
The relationship graph can also be constructed uniquely based on the details
of the domain in which the voting occurs. Based on whether we use balance or
status theory to predict the vote, the relationship graph is either unweighted
or weighted respectively.

We now define the Local Signed Network (LSN) of a voter v as LSN =
S ∩l R. Where, ∩l is the local intersection of two graphs. Given two graph
G1 = (V1, E1) and G2 = (V2, E2), the local intersection is defined as seen in
Equation (3.1).

G1 ∩l G2 = (V1 ∩ V2, E1 ∪ E2). (3.1)

Therefore, the LSN is the subgraph induced by the neighbourhood of v in R
who have voted in the session S. We assume that candidate c is present in
the relationship graph so that we get all the prior vote edges (uj, c) in the
LSN. The voting neighbourhood that we described in the previous section,
has the same set of vertices as that of the LSN, i.e., VLSN = VS ∩ VR. There
are three main types of edges present in the LSN. The first are the prior
vote edges (uj, c), from the prior voters to the candidate. The second are
the relationship edges (v, uj), from the voter to the prior voters. The third
is the relationships between the prior voters (uj, uk). All these three types of
edges can be seen in the undirected LSN shown in Figure 3.2c. We will now
explain how to predict the edge (v, c) in the LSN using balance and status
theories.

3.4.1 Prediction Based on Balance Theory

As described in Section 2.2.1, balance theory is applied to undirected signed
graphs. Therefore, we construct an undirected signed relationship graph R
using the voting history. The edge set ER, represents the signed relations
between nodes and should be symmetric in nature. For example, the proba-
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bility of agreements or disagreement between a pair of nodes u and v. Now,
we create the LSN from the intersection of the session graph S and relation-
ship graph R. To keep the LSN an undirected graph, we ignore the direction
of the voting edges (uj, c).

Now, we turn to the task of predicting the sign of the edge (v, c) in the
LSN. The voter v can cast either a positive or negative vote for the candidate
c. This gives us two possibilities wLSN((v, c)) = +1 or wLSN((v, c)) = −1.
We state that the voter aims to maintain the balance in the LSN. Therefore,
we can predict the vote that when added as the edge (v, c) to the LSN results
in a more balanced network. This indicates that we require a measure of the
imbalance of a network. If LLSN is the signed Laplacian of the LSN with
eigenvalues λ1 ≤ λ2 ≤ . . . λn, then Li et al. [40] show that the smallest
eigenvalue λ1 is a measure of the imbalance of the LSN. Therefore, the larger
λ1 is, the more imbalanced the network is and if λ1 = 0, then the network is
perfectly balanced.

Combining these concepts we have Algorithm 3. When given a LSN and
an edge (v, c) to predict, we first assume the vote is positive, add it to the LSN
and compute the smallest eigenvalue denoted by λ+1 . Next, we assume the
vote is negative and add the edge to the LSN and compute the corresponding
smallest eigenvalue denoted by λ−1 .

Now, if λ+1 < λ−1 , then we can predict that the vote is positive, as the
resulting LSN is more balanced. Similarly, if λ−1 < λ+1 , we predict a negative
vote, as it results in a more balanced network. This deterministic rule does

not capture the gap between λ+1 and λ−1 . Therefore, the ratio r =
λ−1
λ+1

can

be used to express the confidence in predicting the vote is positive. As λ+1
approaches 0 (or λ−1 increases), r approaches ∞ and when λ−1 approaches 0
(or λ+1 increases), r approaches 0. Also, when λ+1 = λ−1 then r = 1, which
indicates that we are equivocal between the vote being positive and negative.
We convert the ratio r into a measure of the probability that the given edge
(v, c) is positive by defining p = 1/(1 + e(1−r)). Therefore, the output of the
model is the probability that a vote is positive.

Figure 3.2 shows an example of how we can iteratively predict votes using
balance theory. The current voter at every iteration i is v = ui+1. We start
in the first iteration i = 1 with one prior voter u1 who has voted negatively
for the candidate c seen by the dotted red line in Figure 3.2a. The current
voter v has a negative relationship with u1 indicated by the solid blue line.
Now, in this triad we know ”v disagrees with u1” and ”u1 disapproves of c”.
Using the intuition provided by balance theory, we can predict that the edge
(v, c) is positive as it results in the triad being balanced. This result can be
verified empirically by observing the values of smallest eigenvalue. We see
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that λ+1 = 0 and λ−1 = 1 and therefore, the positive vote probability is p = 1.
Now, in the next iteration, v becomes the prior voter u2 and we add the edge
(u2, c) with the true vote (in this example we assume it was the same as the
prediction made) and we get the next voter as the new v.

In the second iteration i = 2, the new voter v has a positive relation with
the prior voter u1 as seen in Figure 3.2b. By preserving the relation between
u1 and u2 from the previous iteration, we have larger cycles in the current
LSN. Similar to the previous iteration, we observe the smallest eigenvalues of
the LSN. We conclude that a negative vote leads to more balanced network
and positive vote probability is now p = 0. Now, in the third iteration i = 3,
the smallest eigenvalue of the LSN in both cases are equal. Therefore, we
are equivocal in the vote being positive or negative. Hence, the positive vote
probability is p = 0.5.

Algorithm 3: Predict positive vote probability using balance theory

Input: Voter v, Candidate c, Local Signed Network LSN
Result: Probablity of edge (v, c) being positive

1 wLSN((v, c))← +1 // Assume positive vote

2 Compute signed Laplacian L+

3 λ+1 ← smallest eigenvalue of L+

4 wLSN((v, c))← −1 // Assume negative vote

5 Compute signed Laplacian L−
6 λ−1 ← smallest eigenvalue of L−
7 wLSN((v, c))← 0 // Reset edge weight

8 r ← λ−1 /λ
+
1

9 p← 1/(1 + e(1−r))
10 return p

3.4.2 Prediction Based on Status Theory

We mentioned in Section 2.2.2 that status theory is defined for directed signed
networks. The relationship graph R should, therefore, be constructed from
the history H as a directed signed network. The directed edges (u, v) should
denote asymmetric relation between the nodes. For example, the ratio of
concurrence which is a measure of times that u has voted after v in a session
and agreed. The LSN created from the intersection of the session graph S
and the relationship graph R is also a directed signed graph.

Similar to predicting the vote using balance theory, the vote can either
be positive or negative. Now, we state that the voter aims to maintain
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Figure 3.2: Local Signed Network prediction based on balance theory. At
every iteration i the dotted red lines are prior votes, solid blue lines are
relationships based on voting records and the dashed black edge (v, c) is the
edge whose sign is being predicted. λ+1 and λ−1 correspond to the smallest
eigenvalue of the signed Laplacian Li based on whether w((v, c)) = +1 or
w((v, c)) = −1.

the status in the resulting LSN. Therefore, we predict the vote (v, c) that
when added to the LSN best preserves the status of the network. Therefore,
we require a measure of how much a given network adheres to the theory
of status. However, to the best of our knowledge, there are no existing
methods to quantify and measure the extent that a network conforms to
status theory. In this thesis, we present a quantitative definition of status
theory in a network and also present a novel method of using the agony of a
directed network to measure the compliance with status theory.

As we discussed in Section 2.2.2, signed edges can be interpreted as recog-

nition of relative status. This means that a positive edge u
+−→ v indicates
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that v has a higher status than u, and a negative edge u
−−→ v indicates that

v has lower status than u. Let us assume that there exists an implicit status
function σ : V → N that maps each node in the network to a quantity that

correlates with status. Therefore, the edges u
+−→ v and u

−−→ v indicate
σ(u) < σ(v) and σ(u) > σ(v) respectively. We can use this relative ranking
of status to predict the missing sign of an edge in a triad. Leskovec et al.
[37] provide a way to compute this status function σ from the node degrees
as shown in Section 2.2.2. However, this measure is still defined locally and
can be used only to predict the sign of an edge. We require a framework
to define violations to status theory and measure how much a network on a
whole complies with status theory. We define that an edge e = (u, v) violates
status theory if w(e)σ(u) 6≤ w(e)σ(v). Now, we can define when a network
is perfectly complaint with status.

Definition 1. Perfect Status Compliance A directed signed network G =
(V,E,w) with an implicit status function σ : V → N is said to be perfectly
status complaint if ∀e = (u, v) ∈ E, sgn(w(e))σ(u) ≤ sgn(w(e))σ(v).

Therefore, the number of edges that are in violation to status theory
can be a rudimentary measure of the status compliance of a given network.
However, in the case of most signed directed networks, we do not possess
the implicit status function σ. Hence, even computing the number of edges
that violate status theory is not possible. However, if we can infer the status
function σ from the structure of the signed network then we can measure the
status compliance of that network.

We now use the concept of agony described in Section 2.4 to find the
optimal hierarchy of a given directed network. However, agony and hierarchy
were primarily defined for unsigned networks. We can easily remedy this by

using the fact that a negative edge u
−−→ v can be transformed into a positive

edge u
+←− v. If G is a signed network then we denote the unsigned directed

network obtained from the transformation described as G′.
The notion of hierarchy is strongly related to status theory for signed

networks. For instance, if G′ is a DAG, then there are no cycles and we
can find a status function σ, such that there are no edges that violate status
theory. Therefore, let us consider that the rank function r : V → N used
to define agony is the status function σ for the signed network. Then, the
agony of an edge in G′ is a measure of the violation of that edge with respect
to status theory.

The agony of an edge (u, v) in G′ given the status function σ is defined
as max(σ(u)−σ(v) + 1, 0). Therefore, agony is a quantification of the status
violation of an edge. The agony of the network with respect to a status
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function σ is defined as the sum of the agony of each edge in the network
denoted by A(G′, σ). The agony of the network A(G′) = minσ(A(G′, σ)). is
the smallest agony over all possible ranking of the nodes. In this way, the
agony of the network is a more generalized measure of status compliance
than just counting the number of violating edges. Therefore, we can use
one of the algorithms mentioned in Section 2.4 to compute agony of G′. We
call this value as the agony of the original signed network G and denote
α = α(G) = A(G′). The complete process is outlined in Algorithm 4. Now,
the agony of a signed network G is a measure of how far G is from being
perfectly status complaint. Theorem 1 shows that when α = 0 the network
is perfectly status complaint.

Theorem 1. Let G = (V,E,w) be a directed signed graph. Then α(G) = 0
if and only if G is perfectly status complaint.

Proof. The transformed unsigned directed network is G′ = (V ′, E ′, w′). The
agony of a the directed network G′ is 0 when the network has perfect hierarchy
[23]. Therefore, there exists a status function σ such that the agony of all
edges G′, i.e., σ(u) ≤ σ(v), ∀(u, v) ∈ E ′. Therefore, there are no edges in
G that violate status theory and G is perfectly status complaint. Similarly,
when G is perfectly status compliant, we can find a status function σ : V →
N, such that the agony of each edge in G′ is 0. Therefore, the agony of the
entire graph G′ is 0, and correspondingly α(G) = 0. Hence proved.

Now, we can compute the agony of the LSN and utilize it to predict the
sign of the vote. We follow a process similar to predicting the sign using
balance theorem. First, first assume the vote is positive and add the edge
(v, c) to the LSN and compute the agony and denote it α+. Next, we assume
the vote is negative, add the corresponding edge to the LSN and compute
the agony and denote it α−. If α+ < α−, then it means that the positive
vote results in a LSN that has fewer violations of status and therefore, we
can predict the vote is positive. Similarly, we predict a negative vote if
α− < α+. Alternatively, we can also compute the probability of a positive
vote as p = 1/(1 + e(1−r)), where r = α−/α+. This process is detailed in
Algorithm 5.

We see a directed LSN similar to the one in Figure 3.2a in Figure 3.3.
The branches indicate the two possibilities for the vote edge (v, c). The left
branch assumes that the vote is positive and adds it to the LSN. When we
transform the negative edges in the LSN we get a cycle. As a cycle indicates
that there is no hierarchy in the LSN, the agony α+ = 3 reflects the fact that
each edge violates status theory. The right branch assumes that the vote is
negative and includes it in the LSN. After transformation, we see that all the
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Algorithm 4: Compute Agony for a directed signed network

Input: Directed siged graph G = (V,E,w)
Result: Signed Agony α of G

1 Initialize G′ = (V ′, E ′, w′)
2 V ′ ← V
3 foreach e ∈ E do
4 if w(e) < 0 then
5 e′ ← (dest(e), src(e)) // Change direction of the edge

6 E ′ ← E ′ ∪ {e′}
7 w′(e′)← −w(e) // Make the weight positive

8 else
9 E ′ ← E ′ ∪ {e}

10 w′(e)← w(e)

11 end

12 end
13 α← Agony(G′)
14 return α

edges comply with status theory and therefore, the agony α− = 0. Now, the
corresponding positive vote probability is p = 0, indicating that we would
predict a negative vote. Note, this result is contradictory to the prediction
made by balance theory for the same LSN.

Algorithm 5: Predict positive vote probability using status theory

Input: Voter v, Candidate c, Local Signed Network LSN
Result: Probablity of edge (v, c) being positive

1 wLSN((v, c))← +1 // Assume positive vote

2 α+ ← SignedAgony(LSN)
3 wLSN((v, c))← −1 // Assume negative vote

4 α− ← SignedAgony(LSN)
5 wLSN((v, c))← 0 // Reset edge weight

6 r ← α−/α+

7 p← 1/(1 + e(1−r))
8 return p
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Figure 3.3: Example of LSN sign prediction using status theory.

3.4.3 Iterative Prediction Model

Now, Algorithm 6 describes a model that can predict the votes in a session
iteratively. We assume we have the order of votes in the session denoted by
O and the true votes function w∗. Then, we create the session graph and
initialize it with the candidate c and the first voter as seen in line 6. This
is because, we require information from at least one prior vote to effectively
predict any vote. In most settings, such as bills in a parliament or promotion
of a member in a community, there are always sponsors or nominators who
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propose the candidate in that session. Therefore, we are justified in starting
the session with the candidate and the first vote cast in the session graph S,
which we assume is the nominator’s vote. Next, for each subsequent voter
v in the list, we add them to the session and create the LSN. The Predict
function, in line 12 can be based on either balance theory (Algorithm 3) or
status theory (Algorithm 5). After predicting the vote, we add the true vote
of voter v to the session G and move on to the next voter in the list. After all
the votes are predicted in the session, we can update the relationship graph
H with the data from the current session S. This can include operations such
as adding nodes that were not present in R and updating the edge weights
based on the votes cast in the current session.

In this process we can predict all the votes in all the sessions by starting
with an empty relationship graph and updating it after every session. There-
fore, the model can be compared to a ”batch” machine learning model, where
each batch is a voting session and the model parameter is the relationship
graph R. In a batch, a machine learning model will predict an outcome based
on its parameters. Analogously, in a session, our iterative model predicts the
vote using the the information gathered from the previous sessions contained
in the relationship graph R. After a batch is complete, the machine learning
model updates its parameters based on the data in the batch. Similarly, after
the end of a session, our iterative model updates the relationships graph with
voting data from the current session.

Furthermore, we can bootstrap the iterative model from a complete blank
slate where R is an empty graph and then iteratively predicts sessions and
updates R. Therefore, the model can improve after each session by incorpo-
rating the voting information into the relationship graph.
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Algorithm 6: Iterative Prediction Model

Input: Candidate c, Relationship graph R = (VR, ER, wR), Order of
voters in current session O and true votes w∗

Result: Predictions for current session
1 k ← |O|
2 u← O[1] // First voter

3 VS ← {c, u} // candidate and first voter

4 ES ← {(u, c)} // first vote

5 wS((u, c))← w∗((u, c)) // Assign true vote

6 Initialize session graph S = {VS, ES, wS}
7 predictions← ∅
8 for i← 2 to k do
9 v ← O[i]

10 VS ← VS ∪ {v}
11 LSN ← S ∩l R
12 p← Predict(v, c, LSN)
13 predictions← predictions ∪ p
14 ES ← ES ∪ {(v, c)}
15 wS((v, c))← w∗((v, c)) // Assign true vote

16 end
17 Update(R, S) // Update Relationship graph

18 return predictions



Chapter 4

Wikipedia

In this chapter, we provide an overview of the inner workings and decision
making processes of Wikipedia. Firstly, in Section 4.1 we state the funda-
mental principles of Wikipedia and how it guides editors on the website.
Next, we describe the roles and responsibilities of the different categories of
Wikipedia users in Section 4.2. Lastly, we explain the election process for
administrators and discuss the voting behaviour in terms of existing research.

4.1 Principles of Wikipedia

Wikipedia is the largest online encyclopedia, with over six million pages of
content in the English version. It is maintained by an open collaborative
effort of multiple editors from all across the world. All the knowledge and
content is free and is supported by the non-profit Wikimedia Foundation.
The size and popularity of Wikipedia is attributed to the ability for anyone to
edit any content. All editors on Wikipedia follow five fundamental principles,
called the ”Five Pillars”, shown in Figure 4.1. These five pillars provide a
foundational framework for collaboration amongst users and contribution
towards the betterment of the Wikipedia project.

The first pillar states that Wikipedia is first and foremost an encyclopedia
[63]. Therefore, it must not contain any original research, propaganda or
advertisements [61]. Materials that do not have reliable references will be
removed by other edits.

The second pillar specifies that articles on Wikipedia should strive for a
neutral point of view. This might include presenting multiple perspectives
on the same subject accurately and not championing any one viewpoint as
”correct” or ”the truth”. If disagreements are present, then discussions must
take place for building consensus.

36
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Figure 4.1: Five Pillars of Wikipedia. Image downloaded from https://www.

flickr.com/photos/gforsythe/21684596874

The third principle enshrines the ideal that all content available on Wikipedia
is free to edit and share. However, this does not mean copyright violation
and plagiarism is tolerated by the community. There is no ownership of an
article by an editor; anyone may freely modify any content.

The fourth pillar describes Wikipedia’s code of conduct. It asks users
to act in good faith and assume good faith on the part of other editors.
Wikipedia etiquette urges disputes and disagreements, such as edit wars [58],
to be resolved with civility while respecting other editors.

The fifth and last pillar reminds users that all rules in Wikipedia are es-
sentially just policies and guidelines meant to help with collaboration. They
can evolve and change to reflect the requirement of the community. It as-
suages the fear of making mistakes and encourages editors to be bold, though
not reckless.

4.2 Formal Organization of Wikipedia

In this section, we describe the various categories of users and explain their
roles and responsibilities. All the facts and figures we provide in this thesis
are from the English version of Wikipedia. We define a ”user” of Wikipedia
as a person who contributes to the encyclopedia and a ”reader” as someone
who simply accesses the content.

https://www.flickr.com/photos/gforsythe/21684596874
https://www.flickr.com/photos/gforsythe/21684596874
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Wikipedia began as a completely open platform with no restrictions on
who could edit a page or create a new article. Changes and edits that were
made to a page were published immediately. This led to many pages that
contained erroneous or nonsensical text, or biased content. Therefore, this
led to the English version of Wikipedia introducing restrictions and tools
to protect the more controversial pages. They also introduced categories
of users to help protect and maintain the quality of the content available
on Wikipedia. We proceed to explain the four main user types as seen in
Figure 4.2.

(a) Editors (b) Administrators

(c) Bureaucrats (d) Arbitration Committee

Figure 4.2: Logos for each category of user that signify the role that they
play in the Wikipedia community.

4.2.1 Editors

Editors (or Wikipedians) are the primary users who edit and create all the
content on Wikipedia [64]. Figuratively, they hold Wikipedia in the palm of
their hands, as seen by the logo in Figure 4.2a. There are two main types
of editors on Wikipedia, namely registered and unregistered. A registered
user is someone who has a unique username and a permanent talk page to
communicate with other users. By contrast, unregistered users contribute
without a registered username and are usually referred to as IPs, as they are
only identified by their IP addresses. Unregistered users usually have similar
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rights as those of regular users to edit, discuss and contribute, but with
certain exceptions [59]. Unregistered users cannot create a new article, edit
a protected page, become administrators or vote in elections to promote users
within Wikipedia. As the focus of the thesis will be on the elections within
Wikipedia, when we refer to editors in the coming chapters and sections, we
refer to registered users.

Wikipedia has over 38 million registered users, and this number is con-
stantly rising. However, only roughly 0.37% (≈ 144000) of registered users
are active, i.e., have performed some action in the past 30 days. An even
smaller percentage of those active users participate in the community discus-
sion forums on Wikipedia. Now, we will explain what tasks editors perform
and how contributions are recorded in Wikipedia.

Each page in Wikipedia is classified into a namespace based on the type
of information that page contains [60]. Namespaces separate pages into sets
to distinguish content pages from administrative or editor related pages. For
example, the main (or article) namespace contains all the encyclopedic
content and the user namespace contains the user pages and information
related to their user accounts. Each page in Wikipedia also has a corre-
sponding talk page, which are used by editors to discuss changes to the page
in question. For instance, the user talk namespace has talk pages corre-
sponding to each user page and acts as a system to message particular users.
Figure 4.3 shows a list of the subject namespaces and their corresponding talk
namespaces. Now, we define a user contribution as any addition, deletion or
modification of a page under any namespace in Wikipedia [55]. Wikipedia
collects and stores every user contribution so that it can track cases of van-
dalism and copyright infringement.

The quality and quantity of the contribution of each editor varies signif-
icantly. There are many occasional users who merely correct minor spelling
and grammar errors in articles. At the same time, there are dedicated editors
who constantly create new articles, update large portions of text, and include
new references and images.

4.2.2 Administrators

Administrators (or admins) are editors who are given access to certain tools
and powers to maintain content on Wikipedia. Administrators can delete and
restore deleted pages, block and unblock users and IP addresses from editing,
and protect and remove protection from sensitive pages [56]. These tools are
associated with a mop that is used to clean up Wikipedia and is represented
by their logo, seen in Figure 4.2b. There are currently 1141 administrators,
of whom 500 are active. Although admins have access to these tools, they
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Figure 4.3: A list of the namespaces in Wikipedia [60].

are considered to be no more important than regular editors. Administrators
are elected through a week-long process called Request for Adminship (RfA),
at the end of which successful candidates are instated by a Bureaucrat. We
will cover the RfA process in detail in the coming sections.

Along with the tools and power, administrators also have certain respon-
sibilities. They are not to misuse the tools at their disposal in conflicts of
interest or disrupt Wikipedia by acting in bad faith. Administrators serve
indefinitely, but can be removed by Bureaucrats on the decision of the Ar-
bitration Committee for abuse of powers or inactivity. Admins help with
various areas of Wikipedia, such as processing administrative backlogs, help-
ing with ant-vandalism efforts, and managing copyright issues.

4.2.3 Bureaucrats

Bureaucrats (or Crats) are users who perform certain actions [57]. They are
usually administrators and oversee procedural rules and enforce decisions.
There are a total of 19 bureaucrats currently in the English Wikipedia. Bu-
reaucrats are involved in the granting or revoking of administrator status to
users and adding and removing bots (software robots that carry out repet-
itive tasks on Wikipedia). Bureaucrats are bound by the policy and the
consensus of the community in granting these roles or permissions and are,
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therefore, expected to be good arbiters of consensus. Hence, they should
be able to identify criteria for a ”consensus” and also explain theirs reasons
behind their actions when requested.

Bureaucrats are also elected through a process similar to RfA, called Re-
quest for Bureaucratship (RfB), but higher thresholds of acceptance are usu-
ally demanded for considered selection. Interestingly, Bureaucrats are also
appointed following the final decision of another Bureaucrat, therefore, they
have complete control over the whole process. However, a Bureaucrat cannot
revoke the bureaucratic position of others. They also carry out the requests
from the Arbitration Committee to remove the permissions and privileges of
admins or bots. As their name suggests, Crats perform only bureaucratic
duties and are therefore represented by the logo seen in Figure 4.2c.

4.2.4 Arbitration Committee

The Arbitration Committee (or ArbCom) resolves disputes that have not
reached a resolution through community discussion or administrator over-
sight [54]. Their goal is to decisively bring binding solutions to ongoing
disputes and is reflected in the fact their logo is a balance scale, as seen in
Figure 4.2d. It is formed by a panel of experienced editors, usually adminis-
trators, who are elected by the community annually. There are currently 11
active members of the ArbCom.

The ArbCom only deals with disputes related to editor conduct and not
content related disputes. It can impose sanctions that would restrict editors
from contributing to certain topics and also recommend the revoking of ad-
ministrative privileges in cases of misuse. Although the ArbCom can take
the initiative on matters it deems are important, it usually acts on formal
requests made to the committee. As it is the last step in dispute resolution,
it only accepts a case when all other methods have failed. This is evident
from the fact that only 9 cases were accepted in 2019.

4.3 Request for Adminship

In this section, we will describe the election process to select administrators
in the English version of Wikipedia called Request for Adminship (RfA). We
cover the origin and history of the process, the evolution of the format and
the properties that lead to successful candidates. Lastly, we also cover the
existing research that has been carried out in understanding and predicting
RfAs.
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In the early days of Wikipedia, the founder, Jimmy Wales, directly sent
emails to the users to appoint them as administrators. Jimmy said that he
felt that getting administrative privileges is ”not a big deal”. However, as
the Wikipedia community grew, a long and intense process was developed to
select future administrators. A RfA is a week-long period during which all
registered Wikipedia users can vote on a candidate standing for the position
of administrator.

There are four main phases of a RfA: the nomination and beginning the
period, answering questions posed by the community, voting to show support,
opposition or neutrality towards the candidate, and the closing of the RfA
by a Bureaucrat.

The first phase begins with the creation of a RfA page for the nomi-
nee. The candidates are most often nominated by another well-known and
respected editor. However, self-nomination is a possibility. Self-nominated
candidates are usually under more scrutiny to ensure they are neither overea-
ger new users nor editors with prior issues. Nominations are usually ac-
companied by an introductory statement from the nominator indicating the
qualities the candidate possesses. Nominees can decline a nomination if they
wish to, in which case the RfA is closed immediately as unsuccessful. There-
fore, nominators usually only choose candidates who show good promise and
discuss the potential nomination prior to starting the RfA process.

Once a candidate accepts the RfA nomination, they are required to answer
three standard questions.

1. What admin work do you intend to take part in?

2. What are your best contributions to Wikipedia, and why?

3. Have you been in any conflicts over editing in the past or have other
users caused you stress? How have you dealt with it and how will you
deal with it in the future?

The first question aims to discern the value addition that a particular can-
didate will bring to Wikipedia if given admin privileges. The community
tends to look for initiative from nominees in utilizing existing tools to help
with chores such as reverting errors, identifying vandalism or copyright in-
fringements. The answer to the second question provides the community the
candidate’s achievements and quality of work. Editors who have several mul-
tiple good contributions tend to be more successful. In answering the third
question, candidates demonstrate their conflict management skills. The com-
munity values users who can interact in a civil manner. As an administrator
is involved in resolving disputes, users who were involved in heated discus-
sions or edit wars are generally unfavourable. Apart from these three fixed
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questions the candidate may also receive several open questions aimed at
testing their knowledge of Wikipedia procedures or gaining their opinions on
controversial issues.

Once all questions have been answered, the RfA moves to the voting
phase. During this phase, any registered user may vote in either the Sup-
port, Oppose or Neutral sections. Votes are generally followed by a comment
providing reasoning that explains their vote. Candidates can reply to op-
position comments to try and resolve any issues and convert their views.
However, candidates should refrain from verbose rebuttals as it might invite
more opposition. This phase is nerve-racking for the candidate as the tide of
the election changes constantly throughout the week and it is not possible to
reply to every comment in a civil and respectful manner.

At any point in the RfA, the candidate can withdraw their nomination
for any reason. At the end of the week, a Bureaucrat halts the voting and
proceeds to read all the comments. The Bureaucrat has to conclude if con-
sensus has been reached or not regarding the nomination. Bureaucrats are
highly experienced and will discount votes cast by sockpuppets (users who
have multiple accounts) and meatpuppets (new users recruited to influence
decisions). Although the decision is not based on majority voting, RfAs with
more than 75% support generally pass and by contrast ones with lesser than
65% support are bound to fail.

The Bureaucrat can also invoke clauses such as ”Not a snowball’s chance
in hell” (WP:SNOW [62]) and ”Not Now” (WP:NOTNOW [53]) to terminate
RfAs that they deem have no chance to succeed. These measure exists so that
frivolous RfAs do not waste the time of the community. If the Bureaucrat
decides that the nomination is successful, the candidate is promoted and
the RfA is closed as successful. If the nomination fails then the Bureaucrat
explains their reasoning and closes the RfA as a failure. Renomination of a
failed candidate can occur after waiting for a reasonable period of time from
the previous failed RfA.

RfAs have been extensively studied from a sociological and behavioural
aspects [17, 33]. Burke et al. [9] proposed a model based on RfA guides to
predict the success of a potential nomination. Since then, there have been
various models based on social networks [10, 46, 47] or user features and
contributions [5, 45] to identify influential voters and overall voting patterns.
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Implementation

In this chapter, we will outline the experiments carried out on the Wikipedia
elections of administrators using the vote prediction models that we pre-
sented in chapter 3. Firstly, we describe the existing sources of data from
Wikipedia and the datasets used in the experiments in Section 5.1. Next,
in Section 5.2, we discuss the implementation of the linear combination of
graphs model described in Section 3.3. Then, we cover the implementation
of the vote prediction models based on the theories of balance and status in
signed networks in Section 5.3. Furthermore, in Section 5.4, we discuss the
experiments conducted on the voting order and its impact on the predictive
power of the models proposed. Lastly, we explain the metrics which we can
use to evaluate the performance of the models in Section 5.5.

All implementations and datasets can be found at https://github.com/

ananth1996/Wikipedia

5.1 Datasets

As we discussed in Section 4.3 and 4.2.1, Wikipedia keeps detailed informa-
tion on the election proceedings for the RfA process as well as contributions
made by every editor on Wikipedia. These act as sources to get data regard-
ing the elections and user contributions. There are existing datasets compiled
by the Stanford Network Analysis Project (SNAP) [38] on both Wikipedia
RfAs and edit histories. However, the RfA dataset has missing features and
timestamps for votes that would restrict the usability in the proposed voting
models. Similarly, the wiki-meta and wiki-talk datasets only possess infor-
mation until 2008 and lack a username mapping to the network nodes. Due
to these limitations, we proceeded to scrape Wikipedia dumps and APIs
to obtain our own RfA and user contribution datasets, which we will now
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describe.

5.1.1 Wikipedia RfA Data

To obtain the RfA data, we parsed through the entire XML dump of Wikipedia
from January 2019. We filtered the pages related to the RfA process and then
extracted each vote and the corresponding comment and timestamp. Each
vote extracted has the features shown in Table 5.1.

Table 5.1: Features of each vote in the wiki-Rfa dataset

Feature Data Type Description

SRC text username of the source
TGT text username of the target
VOT [−1, 0, 1] Oppose, Neutral or Support vote
RES [−1, 1] Failure or Success of RfA
YEA date year of the RfA
DAT date & time timestamp of the vote
TXT text accompanying textual comment
UID alphanumeric unique identifier for the RfA

As we can see, the format of the data is very similar to the SNAP dataset.
We have an additional unique identifier field, called UID, to aid in distin-
guishing RfA of users who have had multiple nominations. We collected
226781 votes from 4557 elections with over 13000 unique usernames. There
are 166214 (≈ 73%) support, 46918 (≈ 20%) oppose and 13649 (≈ 6%) neu-
tral votes. As the voting format of RfA changes throughout the years, there
were issues in successfully extracting the source username or timestamp in-
formation. Regardless, only 1.6% of votes have missing timestamps and 0.4%
have a missing source. We will refer to this dataset as wiki-Rfa and it will
provide the information regarding the votes cast in a RfA.

5.1.2 User Contribution Data

As we discussed in Section 4.2.1, every edit made by a user is stored as a
contribution. Wikipedia provides an API to query all the contributions of a
particular user [43]. We utilized this API and collected the contribution data
of all the unique users we obtained from the wiki-Rfa dataset. There are
16 features that the API provides for each edit; we describe the most import
features in Table 5.2.
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Table 5.2: Important features of each contribution in the user-contrib
dataset

Feature Data Type Description

user text username of the editor
title text title of the page edited
namespace int namespace of the page edited
timestamp date & time timestamp of the edit
size int new size of the edit
sizediff int size delta of the edit against its parent
new boolean if the editor created a new page
minor boolean if it is a minor edit
comment text accompanying comment

As many users change their username, some of the usernames present in
the wiki-Rfa dataset might not have any contributions linked to their old
usernames. We were able to collect the user contribution details of more
than 11000 users, amounting to 100GB of data. We call this dataset user-
contrib and it provides a wealth of information on the editing habits of
the users who take part in Wikipedia RfAs. For instance, grouping the
contributions of a particular user by the namespace, we get the proportion
of the edits in different Wikipedia namespaces and the respective sizes and
quality of their edits.

5.2 Graph Combination Model

In this section, we describe how we implemented the linear combination of
graphs framework proposed in Section 3.3 for predicting votes in Wikipedia
RfA elections. We call this the Graph Combination model. The model
requires auxiliary graphs created from other non-election based information
as well as triadic features extracted from the voting data. Firstly, we discuss
the auxiliary graphs that we create from the user-contrib dataset. Next,
we explain the nomenclature and collection of triadic features from the wiki-
Rfa data. Then, we describe the process of preparing the data to suit the
supervised machine learning task as well as preventing any potential data
leaks. Lastly, we discuss the logistic regression model that we use as the
linear classifier trained on the features derived from the auxiliary and signed
networks.

The terms used in Chapter 3 can now be defined for the problem of
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predicting votes in a Wikipedia RfA. A candidate c is the nominee who
wishes to gain administrators privileges in the Wikipedia RfA. The voters v
are the registered users in Wikipedia. A session relates to the proceedings of
a particular RfA.

5.2.1 Graphs

First, we discuss the creation of the topic similarity network of users. Then,
we describe the process of forming the talk graph between users. Lastly, we
define the triadic features we extract from the previous voting data.

5.2.1.1 Topic Similarly Graph

In Table 5.2, we see that every contribution has a title of the page where the
edit was made. The most edited page titles of a user help in understanding
the topics they are interested in. Therefore, for a particular user, we gather
all their edits in the main namespace. We choose the main namespace
as it contains all the content articles on Wikipedia. By contrast, a user’s
edits in other namespaces such as, user and help, are not indicative of the
topics in which they possess knowledge. Then, we count the number of edits
grouped by each page title and choose their top 100 most edited pages in
the main namespace. Then we create a set of the words from all the top
100 page titles and remove common stop words using a natural language
corpus. This set now indicates the user’s topics of interest. Once we have
collected the topic set for all the unique users in the wiki-Rfa dataset,
we can compute the similarity between a pair of users using the Jaccard
similarity measure. Then, we can take this similarity measure and construct
a undirected weighted graph where a link between any two nodes indicates
the similarity in the topics of the corresponding users. However, we threshold
the value of similarity so that we can obtain only meaningful edges and not
a complete graph.

5.2.1.2 Talk and Interaction Graph

We discussed in the previous chapter how every registered user has a talk
page and how it is used as a medium of communication. Therefore, we can
gather the contributions of a certain editor in the user talk namespace
and use it to measure their interactions with other users. We will create
two auxiliary graphs in this manner. The first is a user talk graph, where
each edge contains the number of times they have written on another user’s
page. The second is a interaction graph, in which an edge only indicates
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if two users have interacted via a talk page. We can obtain the number
of talk page edits and the target user by grouping by the page titles and
extracting the username from the page title respectively. These graphs will
be directed in nature and the talk graph is weighted, while the interaction
graph is unweighted. In both these graphs, an edge u → v indicates that
user u has written in the talk page of user v.

In the Line 3 of Algorithm 1, we compute the neighbourhood of a node
v in graph Gi as Ni. We can define Ni in directed graphs Gi as only the
successors of a node rather the union of successors and predecessors. This
allow us to understand the influence of edge direction in directed auxiliary
graphs. Therefore, we will construct two more additional auxiliary graphs
which are reversed, i.e., an edge u → v indicates that user v has written on
the talk page of user u. Hence, we can compare the benefit each direction
brings to the model by analysing the feature importances of their respective
auxiliary graphs.

5.2.1.3 Signed Graph and Triadic Features

The wiki-Rfa dataset contains the voting information of users in RfAs.
These votes form a signed directed network. Therefore, we can utilize the
triadic features framework as proposed by Leskovec et al. [36].

We utilize a slightly modified naming scheme to identify unique triads in
the RfA data. Consider the we have a voter v, a candidate c and a third node
u. Then, the edge we wish to predict is (v, c) and the other edges (v, u) and
(u, c) form a triad. There are two directions for the edges (v, u) and (u, c)
and each edge can have three values, namely −1, 0 or +1 corresponding to a
oppose, neutral or support vote respectively. This leads to 2×2×3×3 = 36
possible triads.

We denote the edge v → u as ”F” and the edge v ← u as ”B” indicating
a forward or a backward edge respectively. Similarly, the edge u→ c is ”F”
and u ← c is ”B”. The edge labels are ”−”, ”0”, or ”+” corresponding to
a oppose, neutral or support vote. Therefore, using this nomenclature, the

triad ”FB+−” represents the edges v
+−→ c and u

−←− c. Figure 5.1 shows
more examples of this triad nomenclature.

We store all the 36 unique triads in the set T and then utilize it to count
the triads for a particular edge, as seen in Algorithm 2. Therefore, for each
edge to be predicted (v, c), we have a triadic feature vector of length 36
containing the counts of the triads formed by all the common neighbours u.
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Figure 5.1: Examples of triad nomenclature in Wikipedia RfA elections.
Dashed edges are votes to be predicted and solid edges are votes from previous
RfAs.

5.2.2 Data Preparation

As only roughly 6% of all votes are neutral votes, we will not try to predict
neutral votes. This is in line with the Wikipedia RfA process where neutral
votes are not counted for the support percentage. However, we will use the
neutral votes to gather the triadic features and can utilize the additional
information to predict votes.

As we discussed in Section 3.2, the graph combination model is an ex-
tension of a sign prediction model for the task of predicting votes. A major
requirement to predict votes is to ensure that there is no data leakage when
creating the training features X. A data leak is when we have information
about the future available in the training data. This can cause the model
that we train to overfit on the leaked data and not generalize. Kairimi et al.
[29] outline a process to split a dataset chronologically and gather informa-
tion respecting the boundary dates at the location of the splits. Similarly, for
our problem setting, we divide the whole wiki-Rfa into three parts, namely
dev, train and test. As we are predicting votes, we split the datasets based
on the number of votes chronologically and round up to the closest RfA so
that it is contiguous.

The dev (or development) dataset will be the set of RfAs which we use
to construct the auxiliary and signed graphs. We ensure that the user-
contrib dataset is also restricted to the edits that happened until the date
of the last RfA in the dev dataset. Therefore, all the five auxiliary graphs
and the signed graphs are created only with information that is present in
the time frame of the dev dataset.

Next, the train (or training) dataset is what we use to create the feature
matrix X and target matrix y. In this dataset, we only consider the support
and oppose votes to be part of the prediction task and hence, filter out all
the neutral votes. Now, for each vote, we create the auxiliary feature vector
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a using the five auxiliary graphs and the triadic feature vector t from the
signed voting graph as described in Algorithms 1 and 2 respectively. These
features are concatenated into a feature vector x, which is of length 41 (5
auxiliary and 36 triadic features) and is a row of the feature matrix. The
corresponding true vote is also collected in the target y. The dev split ensure
that the auxiliary and triadic features in train do not overlap with the test
split. Therefore, this allows the feature matrix X to be independent of time
and we can use methods such as k-fold to cross validate the model.

Lastly, the test dataset contains votes that the model trained on the
training dataset would not have seen. This can be used to evaluate the
performance of the model. The feature matrix for the test dataset, Xtest and
the target, ytest are also constructed in a similar manner. For each vote in
the test dataset, we gather the auxiliary and triadic features from the same
graphs as we used for the training phase. We create each row of Xtest by
concatenating these features and gathering the true votes as the target.

As the auxiliary features and triadic features have different ranges, we
standardize both training and testing feature matrices so that all features
have a mean of zero and standard deviation of one. This will help the linear
models train better and reach an optimal solution faster as well as allow for
ease in interpreting the coefficients of the linear model.

5.2.3 Supervised Classification

Once we have created the training and testing feature matrices, X and Xtest

and the target vectors, y and ytest, the task is a regular supervised classifica-
tion problem. We can use any traditional linear classification model such as
support vector classifier (e.g.,linear SVC), logistic regression model or gradi-
ent boosting method (e.g., XGBoost). We choose a logistic regression (LR)
model for its interpretability and robustness to overfitting.

Given a feature vector x = (x1, x2, . . . , xn) with n features, a logistic
regression model learn to predict the probability of the form

P (support | x) =
1

1 + e−(β0+βx)
(5.1)

Where β0 and β = (β1, β2, . . . , βn) are the coefficients that the model learns
using the training data.

The wiki-Rfa dataset has a class imbalance problem. Support votes
are 73% compared to oppose votes at 20%. Therefore, we will utilize class
weights inversely proportional to the class frequencies while training so that
the model learns to predict negative votes effectively. As the training fea-
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tures X are independent of time, we use k-fold cross validation to tune the
regularization parameter for the logistic regression model.

5.3 Local Signed Network Models

We now discuss the implementation of the local signed network models dis-
cussed in Section 3.4 to predict votes in Wikipedia RfAs.

These models are iterative models and an important feature is that they
are unsupervised. Therefore, they do not require any learning of parameters
or preparation of data for training. Consequently, we can bootstrap the
models to start from the first available RfA. We achieve this by beginning
with an empty relationship graph R. In the first RfA, the LSN for all the
votes contain only the nodes for voter v and candidate c. Therefore, the
model will predict all votes with probability 0.5 of being support votes, as
there is no information available. After the first RfA is over, the relationship
graph R will be updated with the voting details. Now, in the second RfA
there is more information present and the model can predict votes with more
certainty. In this manner, the models can iteratively learn and predict all
the votes present in the wiki-Rfa dataset.

In a similar fashion, the iterative models elegantly handles new users for
whom we have no information . If at any point the current voter v is new and
there is no information in the relationship graph , then the model predicts
support vote probability of 0.5, because the LSN contains only the nodes v
and c . This new voter is then integrated into the relationship graph when it
is updated after the RfA session, shown in Line 17 of Algorithm 6. Therefore,
this new voter’s information is now available for future vote predictions.

In this thesis, we wish to separately study the votes that are predicted
with no information. Therefore, in our implementation we specifically mark
these votes. Consequently, we can accurately evaluate the iterative model
using only the votes predicted with information. Then, we can analyse the
distribution of the informationless votes and devise strategies to effectively
guess the vote in the cases when a voter is new. Lastly, we can verify if there
new voters follow some herd mentality when they vote for the first time.

We proposed two iterative models in Section 3.4, one using balance theory
and another using status theory. Both these models make use of only the
votes cast in sessions. Therefore, we will use the wiki-Rfa dataset for the
iterative models. First, we describe the iterative balance model and define the
relationship graph based on agreement between voters in Wikipedia RfAs.
Secondly, we explain the iterative status model and the relationship graph
based on the follower ratio in RfAs.
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5.3.1 Iterative Balance Model

The Iterative Balance Model uses balance theory in the local signed network
to predict the votes of independent voters in a Wikipedia RfA. As discussed
in Section 3.4.1, we require a signed symmetric measure between two voters.
We now propose a measure based on the agreement ratio between two users u
and v. The ratio is the number of times u and v have voted similarly, divided
by the number of common RfAs they have participated in. For example, if
u and v have participated in 12 common RfAs and have voted the same in 9
RfAs, then the agreement ratio is 0.75. This indicates that they agree more
than they disagree. Therefore, if a pair of users have an agreement ratio of
0.5, then they neither agree or disagree with each other. The agreement ratio
is symmetric and we covert it into a signed measure by subtracting 0.5 from
the ratio.

Hence, we define a signed undirected agreement graph A = (VA, EA, wA),
where the weight function is defined as seen in Equation (5.2).

wA((u, v)) =
Number of times u and v have voted similarly

Number of common RfAs for u and v
− 0.5 (5.2)

This agreement graph A, is the relationship graph R for the iterative
balance model described in Algorithm 6. In Line 17 there is a a method,
Update(R, S) to update the relationship graph after the end of a voting
session. Therefore, we require a method to update the signed weights in the
agreement graph A given the RfA voting details in a session S.

For notational ease, we assume that each edge e = (u, v) ∈ EA contains
two attributes, e.agree and e.common, the agreement ratio and the number
of common RfAs between the nodes respectively. Then, once we get the
voting information from the session, we can update the agreement ratio and
the number of common RfAs in a straightforward manner. This process is
shown in Algorithm 7.

We can bootstrap the model by beginning with an empty agreement graph
A. Then for votes with no information the predicted support probability is
0.5. After the RfA session is over, these new voters will be incorporated
into the agreement graph. Therefore, from the next RfA, the model has
information on the voters it has now incorporated.

5.3.2 Iterative Status Model

The Iterative Status Model, as described in Section 3.4.2, utilizes status the-
ory in the LSN to predict votes. Therefore, to predict votes in Wikipedia
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Algorithm 7: Update Agreement graph after a session

Input: Session graph S, Candidate c, Agreement graph A
Result: Updated Agreement graph A
// Get all voters

1 O ← VS − {c}
2 Order O by timestamp
3 for v ∈ O do
4 votev ← wS((v, c))
5 foreach u who voted after v do
6 voteu ← wS((u, c))
7 e← (v, u)
8 if e ∈ EA then
9 agree← e.agree

10 common← e.common
11 if votev = voteu then
12 agree← ((agree · common) + 1)/(common+ 1)
13 else
14 agree← (agree · common)/(common+ 1)
15 end
16 common← common+ 1

17 else if voteu = votev then
// if e is a new edge

18 common← number of elections v and u have in common
19 agree← 1/common
20 EA ← EA ∪ {e}
21 end
22 e.agree← agree
23 e.common← common
24 wA(e)← e.agree− 0.5

25 end

26 end
27 return A
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RfAs, we require a directed signed relationship graph. Similar to the agree-
ment ratio for the iterative balance model, we propose a follower ratio and
a corresponding directed signed follow graph F = (VF , EF , wF ).

An edge u → v in F indicates that node u follows v in RfAs. In more
detail, for the RfAs in which both user u and v have voted, u is said to follow
v, if u votes after v and u votes the same as what v had voted. Note, it is
not necessary for u to vote immediately after v, but just vote chronologically
after v. Then, we define the follower ratio as the number of times u has
agreed with v when u has voted after v, divided the total number of RfAs in
which u has voted after v. For example, if u and v have 12 RfAs in common
and in 8 of those, u has voted after v and in 5 out of 8, u has voted the
same as v, then the follower ratio is 5/8 = 0.625. Therefore, if the follower
ratio is below 0.5, it indicates that u tends to vote the opposite of what v
has voted. Also note that, if the follower ratio for (u, v) is 0.625, the follower
ratio in the other direction (v, u) is not necessarily the same. Therefore, it
is not symmetric and we can convert it into a signed measure by subtracting
0.5 from the follower ratio. The weight function wF for the follow graph can
be defined as seen in Equation (5.3).

wF ((u, v)) =
Number of times u voted after and agreed with v

Number of times u voted after v
− 0.5 (5.3)

When we create the LSN, we only consider the edges of type v → ui from
the follow graph F . This is because the voter v is voting after the voters in
U . Therefore, the edges v ← ui provide information that is not consistent
with the current voting order.

In a RfA we are predicting a vote v given the previous voters U , the
current session graph S and the follow graph F , as seen in Algorithm 5. We
utilize the code provided by Tatti [52] to compute the agony of a unsigned
weighted directed network as required by Algorithm 4.

The update rule for the follow graph F is similar to that for the agreement
graph. We assume that every edge e = (u, v) ∈ EF , has the attributes
e.follow and e.common, the follower ratio and the number of elections where
u voted after v respectively. After a RfA voting session, the session graph
S can be used to update the follower ratio and the corresponding weight as
show in Algorithm 8. This allows us to bootstrap the model by beginning
with an empty follow graph F . As the model predicts RfAs, the follow graph
is updated and contains more information to predict the next RfA.
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Algorithm 8: Update Follow graph after a session

Input: Session graph S, Candidate c, Follow graph F
Result: Updated Follow graph F
// Get all voters

1 O ← VS − {c}
2 Order O by timestamp
3 for v ∈ O do
4 votev ← wS((v, c))
5 foreach u who voted after v do
6 voteu ← wS((u, c))
7 e← (u, v)
8 if e ∈ EF then
9 follow ← e.follow

10 commonuv ← e.common
11 if votev = voteu then
12 follow ← ((follow · commonuv) + 1)/(commonuv + 1)
13 else
14 follow ← (follow · commonuv)/(commonuv + 1)
15 end
16 commonuv ← commonuv + 1

17 else if voteu = votev then
// if e is a new edge

18 commonuv ← number of elections where u voted after v
19 follow ← 1/commonuv
20 EF ← EF ∪ {e}
21 end
22 e.follow ← follow
23 e.common← commonuv
24 wF (e)← e.follow − 0.5

25 end

26 end
27 return F
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5.4 Voting Order Experiments

The iterative models based on balance and status theory predict votes in the
order that they were cast. In this thesis, we wish to analyse the importance
of the voting order for the quality of predictions from the iterative models.
To achieve this, we gather two more RfAs that occurred in May and August
of 2019. These RfAs are not part of the wiki-Rfa dataset, and therefore the
models trained on the dataset will have not seen the votes in these session
before.

The first is the RfA of user HickoryOughtShirt?4, that was completed on
1st May 2019. The RfA was successful with 182 support, 19 oppose and 9
neutral votes. This is an example of a RfA that did not have much opposition
and consensus was evident in the proceedings. This RfA can be used to test
if the model is able to effectively predict the minority of negative votes that
appeared in this election, which were only 9% of all votes cast.

The second RfA we collected was the unsuccessful nomination of the user
Hawkeye7 in August 2019. In fact, this was the third RfA nomination for the
user. He was successful in his first nomination in November 2009 and was pro-
moted to an administrator. After that, he lost his administrative privileges
following an ArbCom decision for misuse of his administrative tools. The
second nomination in February 2016 resulted in failure even after receiving
a significant amount of support votes (191 support and 95 opposition votes).
The third nomination in August 2019 also resulted in failure after a fairly
close voting phase. He received 91 support, 83 oppose and 15 neutral votes.
This RfA is a perfect example of how Wikipedia RfAs are not a majority
voting election. Therefore, it will be useful to study if the iterative models
are able to effectively generalize the information that have learnt from the
wiki-Rfa dataset. Also, we can analyse the impact of the order of votes to
see if that can affect the prediction in especially close RfAs.

We first predict the votes in both RfAs in the same order that they took
place in. We call this the normal vote ordering. Next, we reverse the order
of votes from the second vote cast. This is because the first votes cast in
Wikipedia RfAs are of the nominators and they provide the starting point for
the iterative predictions. We refer to this ordering as reversed vote ordering.
Lastly, we randomly permute the votes, except the first one cast by the co-
nominator. We do 10 trails and then average the results. This is called
random voting order.

By studying the predictive quality of both the status and balance based
iterative models, we can understand the role of the voting order in each
approach. We can also gain insights into creating a more global framework of
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vote prediction if the voting order does not vastly affect the model’s predictive
accuracy.

5.5 Evaluation Metrics

In this section, we discuss the various metrics that we can use to evaluate
the implementation of the models discussed in the previous sections. As
mentioned in Section 5.1, the wiki-Rfa dataset has an imbalance of support
votes. Therefore, simple measures such as accuracy scores might be mislead-
ing as the baseline accuracy for predicting all votes as support votes is nearly
73%. The models we implement in Section 5.2 and 5.2 output probabilities,
and hence the metrics must also be able to utilize these outputs.

The independent vote prediction task is a binary classification task. The
models implemented provide the probability of the vote being a support vote.
Therefore, we have a target class y ∈ {−1, 1} corresponding to oppose and
support votes and the result is a probability p ∈ [0, 1] for being a support
vote. Hence, we propose traditional metrics such as Receiver Operator Char-
acteristics (ROC) and Precision Recall (PR) to evaluate the results of the
model. We also discuss how to compute F1 scores to evaluate model in a
deterministic manner for a given threshold θ.

We can choose a threshold θ, for the probabilities that we have as the
output from the model. Then, we predict all outputs where p > θ as +1 and
where p ≤ θ as −1. When we compare our predictions with the true outputs
y, we get four possible outcomes. First, when the prediction is +1 and the
true outcome is also +1, then it is called a true positive (TP). Second, when
the prediction is −1 and the true output is also −1, then it is a true negative
(TN). However, if the predicted output is −1 and the true output is +1, then
it is referred to as a false negative (FN). Similarly, if the prediction is +1,
but the true output is −1, then it is a false positive (FP). These four values
can be represented in a confusion matrix, as seen in Figure 5.2.

5.5.1 Receiver Operating Characteristics

Now, the true positive rate (TPR) is the measure of the number of correct
positive predictions made out all the available true positive outcomes and is
defined as, TPR = TP/(TP +FN). Similarly, the false positive rate (FPR)
measures the number of incorrect classifications of negative samples out of
all the available negative samples, i.e., FPR = FP/(FP + TN). Therefore,
the ROC curve is the space defined by the TPR as a function of the FPR,
i.e., the TPR on y-axis and FPR on the x-axis. Each point on the ROC
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Figure 5.2: Confusion Matrix for binary classification task

curve corresponds to a confusion matrix at some threshold. A model that
randomly predicts outcomes will plot a diagonal line, indicating that the TPR
and FPR are equal. A perfect classifier’s plot would have a point at (0, 1),
which indicates that there are no samples that are misclassified. Although the
ROC curve can be visually inspected to compare models, we utilize the area
under the ROC curve (AUC-ROC) as a quantitative measure of a model’s
performance. Therefore, the baseline random model has a AUC-ROC of 0.5.

The AUC-ROC score is unaffected by an imbalanced dataset. This means
that a high AUC-ROC score might hide the fact that the baseline accuracy of
predicting all samples as positive might indeed be higher than 0.5. Therefore,
we need to be careful when interpreting the quality of the model solely based
on the AUC-ROC score.

5.5.2 Precision Recall

Recall is the same as true positive rate (TPR), i.e., recall = TP/(TP +
FN). The ratio of the number of true positive predictions out of all the
predicted positive outcomes is called precision (or positive predictive rate).
It is defined as, precision = TP/(TP + FP ). Precision and recall are in
tension, i.e., improving precision reduces recall and vice versa. Therefore, the
Precision-Recall (PR) curve is the space defined by representing precision as
a function of recall, i.e., precision on y-axis and recall on the x-axis. Each
point on the PR curve corresponds to a single confusion matrix obtained from
a particular value of the threshold θ. The baseline for the PR curve is based
on the frequency of the positive label in the true outcomes and appears as a
horizontal line in the plots. Hence, the PR curve is affected by the imbalance
present in the dataset. Therefore, we define two measures to better represent
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the imbalances present in the wiki-Rfa dataset.
The PR curve is usually defined with respect to the positive label proba-

bility. We refer to this curve as the positive PR curve and denote it by PRpos.
The positive baseline is computed as ratio of the true positive outputs and the
total number of samples, baselinepos = (TP +FN)/(TP +FN +FP +TN).
This will be higher for the wiki-Rfa dataset as there are more positive sam-
ples, i.e., support votes. We can measure the positive label performance by
computing the area under the PRpos curve (AUC-PRpos), it is also called
average precision score. The AUC-PRpos score should be higher than the
positive baseline to be significant. Even so, the AUC-PRpos does not tell us
if the model has learnt to predict negative votes equally well.

For this purpose, we define the negative PR curve as the PR curve where
we consider the probability of predicting a negative outcome and denote it
by PRneg. As we have a binary classification task, if the positive probabil-
ity vector is p, then the negative probability vector is simply 1 − p. Now
considering −1 to be the positive label, we can plot a PRneg curve in the
same manner. The negative baseline for the PRneg curve is defined as the
ratio of the true negative samples divided by the total number of samples,
baselineneg = (TN +FP )/(TP +FN +FP +TN). As the negative samples,
i.e., oppose votes, are the minority in the wiki-Rfa dataset, the correspond-
ing negative baseline will also be lower. We can measure the performance
of the model in predicting negative samples by computing the area under
the PRneg curve (AUC-PRneg). This measure will be more important for
evaluating the performance of the iterative models on the wiki-Rfa dataset.

5.5.3 F1 Score

The F1 score is the harmonic mean of precision and recall and defined as

F1 = 2 · precision · recall

precision + recall
.

Therefore, if we consider a PR curve, then the F1 score is computed by
taking the precision and recall values at a particular point on that curve. If
the curve was for the positive class probability, i.e., a PRpos curve, then we
define the associated F1 score as the F1pos score. Similarly, if the curve is for
the negative class probabilities, i.e., a PRneg curve, then the score is called
the F1neg score. A simple average of the F1pos and F1neg scores is called the
macro F1 score, and is defined as follows,

F1macro =
F1pos + F1neg

2
.
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The F1macro score is useful for datasets which are imbalanced as it places
equal weight on the performance for both positive and negative labels.

All the metrics in the previous subsubsection used probabilities directly to
evaluate the overall performance of the model. As the F1 score is calculated
for a point in the PR curve, it corresponds to the particular value of threshold
θ, that yielded those values of precision and recall in the confusion matrix.
Therefore, we can now plot the F1 score as a function of the threshold. This
allows us to analyse both the F1pos and F1neg plots versus the threshold and
choose the optimal value of θ, that maximizes the F1macro score. Hence, we
can understand how the model will perform when asked to deterministically
predict classes.



Chapter 6

Results and Discussion

In this chapter, we present the results of the experiments described in Chap-
ter 5 and discuss the performance of the models. First, in Section 6.1, we
describe the development, training and testing split of the dataset. Then,
we present the results of the graph combination model and discuss the most
important features of the logistic regression classifier. Moreover, we compare
it to the performance of the iterative models in the same test dataset and
explain the shortcoming of the graph combination model. Second, we display
the results of the iterative models using the entire wiki-Rfa dataset in Sec-
tion 6.2. Further, we examine the performance of the iterative models and
discuss the optimal selection of the threshold to predict results. Lastly, the
results of the voting order experiments are presented in Section 6.3. We anal-
yse the significance of the voting order on the performance of the iterative
models.

6.1 Test Dataset Results

As we described in Section 5.2.2, the graph combination model requires the
wiki-Rfa dataset to be split into three part to prevent data leak. Although
we performed the experiments for many variation of these three splits, we
will show the results from the 30 − 30 − 40 split into development (dev),
training (train) and testing (test) respectively. As the model aims to predict
votes, we choose to split it on the percentage of votes, as seen in Table 6.1.
We round up the nearest RfA ending so that we have contiguous elections
in each split. In Table 6.1, we see this as small overlaps between the last
dates of the previous splits and the first dates. The time frame overlap is
almost exactly seven days, which is the duration of a RfA. Next, we present
the details of the auxiliary and signed graphs formed from the dev dataset

61
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and the graph combination model’s performance on the test dataset.

Table 6.1: wiki-Rfa dataset split information

Feature Development Training Testing

Percentage 30% 30% 40%
Number of votes 62833 62807 83830
Number of RfAs 1668 1551 1314
First Date 22/02/2004 31/10/2006 24/06/2008
Last Date 06/11/2006 30/06/2008 01/01/2019

Next, we also show the results of the iterative models on the test dataset.
We achieve this by evaluating the iterative models’ results in the same time
period as the test data. Through this approach, we can compare the benefits
of the iterative model, which can utilize both the development and training
datasets to learn and update its respective relationship graph.

We provide the evaluation metrics for all models along with the baseline
for the test dataset, as seen in Table 6.2. The AUC-PRneg baseline shows
that negative votes are the minority in the test test. Similarly, the AUC-
PRpos baseline shows that a model predicting all votes as support votes can
achieve nearly 77% accuracy. Now, we discuss the results of each model in
more detail.

Table 6.2: Results of different models for the test split of the wiki-Rfa
dataset

Model AUC-ROC AUC-PRpos AUC-PRneg

Baseline 0.5 0.776 0.224
Graph Combination 0.542 0.798 0.251
Iterative Balance 0.815 0.922 0.614
Iterative Status 0.754 0.9 0.486

6.1.1 Graph Combination Model Results

We start by describing the details of the auxiliary and signed graphs formed
from the dev dataset, as seen in Table 6.3. The % of test users covered refers
the percentage of unique users in the test dataset present in the graph. It
can be used as a proxy to measure the amount of information a graph can
provide for predicting a vote in a RfA in the test dataset. We see that the
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similarity graph is fairly dense and is completely connected, as we chose the
minimum similarity of an edge of 0.03 to be considered viable. It also has
the largest coverage of nodes in the test dataset. The talk graph also has
a large strongly connected component (as it is directed) and a smaller test
user coverage. The social interaction graph is the same as the talk graph,
but is unweighted, therefore, has the same statistics as the talk graph. As
we explained in Section 5.2.1.2, we also include the reversed talk and social
interaction graphs to gain additional features. The signed graph is by far the
smallest, least dense and weakest connected graph of all the graphs. This is
because, the signed graph only contains the voting data from the dev dataset.

Table 6.3: Information of graphs formed using development data split

Graph |V | |E| density

largest
component

size

% of
test users
covered

Topic Similarity 6368 1463465 0.0721 6368 27.3
Talk 5477 213307 0.0071 3489 18.9
Signed Voting 4675 65595 0.003 1083 9

Using these auxiliary and signed graphs we prepare the training and test-
ing feature matrices X and Xtext and target vectors, y and ytest respectively.
We train the Logistic Regression (LR) model on the training feature matrix
and target vector using five fold cross validation. The feature importances of
the trained LR model are shown in Figure 6.1. We see both, the five auxiliary
features and the 36 triadic features. Talk Graph R and Social Interactions
R features refer to the reversed versions of the talk and social interaction
graphs respectively. We see that the topic similarity graph has the largest
coefficient. The importance of the similarity feature amongst the auxiliary
features can be explained by the fact that, the topic similarity has the largest
coverage of test users and therefore contributes the most information.

Among the other features, the triad FB++ has the next largest coeffi-
cient. This result is consistent with balance theory, which would predict a
positive edge to maintain the balance in the triad. However, for this triad,
status theory does not have a preference of either a positive or negative edge.
Attempting to interpret the result in terms of status theory we have: if a
candidate and voter have a mutual friend who they both respect, then it is
more likely that the voter will support the candidate. Though this is not
typically expected behaviour, it might suggest some subtle social influences
at play amongst the voters.

The other triadic feature that is significant is the triad FB−+. Yet, here
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the coefficient is negative, indicating that the prediction is more likely to be
a negative edge, i.e., an oppose vote. This result is again consistent only with
balance theory. Balance theory predicts the vote is negative to balance the
resulting triad to be balanced. Status theory implies that, if the candidate
has a common friend, whom the voter does not respect, but the friend looks
up to the candidate, then the voter is undecided. However, the result in
this case indicates that the voter has a negative view of the candidate and
votes against them more often. Therefore, we see the results agreeing more
strongly with balance theory rather than status theory.

And then, we see that both versions of the social interaction graphs are
more significant than the talk graph. This indicates that simple existence
correspondence is more important than the amount of correspondence or the
direction of correspondence between voters and their voting neighbourhood.
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Figure 6.1: Feature importances of the trained Logistic Regression model

Then, we tested the trained LR model on the test feature matrix and
evaluated the output with the target vectors. The results and the evaluation
metrics are seen in Table 6.2. We see that the graph combination model does
not perform very well. It has marginal gains on all three baseline metrics.
We can analyse these in more details looking at the ROC and PR curves,
shown in Figure 6.2. The ROC-AUC curve shows that model has a marginal
improvement over the 0.5 baseline. Similarly, the PRneg curve depicts that
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the model fails to learn to predict negative votes more than the baseline of
0.2. This combined with the marginal gain in predicting positive votes implies
that the model has not learnt any statistically significant information.

We can explain the low performance of the model by using its lack of
information. As the features that are created for each vote are dependent on
only the dev dataset, they have limited impact when predicting votes in the
test dataset. This is due to the fact that RfAs are chronological, as there
are many more newer users in the test dataset and there is no information
available on them in the dev dataset. This problem might reduce, if we
change the percentage of data in the dev, train and test datasets. However,
increasing the size of dev dataset split, leads to a lack of training data. In
this scenario, the LR model cannot efficiently learn the coefficients from the
features that have now possess more information. This leads again to the
model only achieving marginal improvements over the baselines.
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Figure 6.2: Logistic Regression plots for test data

6.1.2 Iterative Model Results

Now, we discuss the results of the iterative models for the test dataset. We
see the evaluation metrics for both the iterative balance and status models
in Table 6.2. These results are the predictions the iterative models makes
for the RfAs present in the test dataset. We see that both models perform
much better than the baselines as well as the graphical combination model.

However, directly comparing the iterative models’ result to the graphical
model’s result is not fair. Because, the iterative models assimilate the in-
formation each election as they progress in the test dataset and utilize that
information to predict votes in the next RfA. Therefore, the predictions of
the iterative model are not independent. In spite of this, analysing the im-
provements of the iterative models provides understanding of the inherent
shortcomings of the graphical combination model discussed previously.



CHAPTER 6. RESULTS AND DISCUSSION 66

Out of both models, we see that the Iterative Balance Model performs
much better. We see that the model is able to better predict both positive
and negative votes, seen by the large AUC-PRpos and AUC-PRneg scores
respectively. This is in line with the previous analysis that balance theory
better predicts triads in the voting neighbourhood. Here, we see that the
LSN of the voter conforms more according to balance theory than status
theory.

Another analysis, both the iterative balance and status models achieve
better performance than the graphical combination model utilizing only the
voting data. Furthermore, this indicates that there is a scope of incorpo-
rating the auxiliary features to the iterative models to further improve the
performance of the models. Moreover, it clearly shows that solving the lack
of information problem present in the graph combination model can lead to
better predictions.

We can analyse the iterative models further considering the complete
wiki-Rfa dataset.

6.2 Complete wiki-Rfa Results

The iterative models described in Second 5.3, can be bootstrapped to predict
all the votes in the wiki-Rfa dataset. The results for the models along with
the baselines are shown in Table 6.4. We see the complete dataset is more
imbalanced than the test dataset, seen by the larger AUC-PRpos and smaller
AUC-PRneg baselines.

6.2.1 New Voter Analysis

As discussed in Section 5.3, we marked all votes that were predicted without
any information when we encountered new voters. This amounted to 11812
or approximately 5.7% of all votes predicted. The distribution of the true
value of these votes is 9217 support and 2595 oppose votes. This shows that
new voters are almost 3x more likely to vote positively. We analysed these
new voters’ votes with the progress of the election of the time to study herd
mentality. Comparing these votes to the sign of the cumulative sum of votes
until that point, we see that nearly 81% of new votes are the same as the
herd. Similarity, we also compare the new voters to the votes cast by the
person immediately before them. We see that 76% of new voters agree with
the previous voter. Therefore, we can adopt a simple strategy of predicting
the new voters to have a probability of voting support equal to the fraction
of support votes cast until that point.
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Table 6.4: Results of iterative models on the complete wiki-Rfa dataset

Model AUC-ROC AUC-PRpos AUC-PRneg

Baseline 0.5 0.784 0.216
Iterative Balance 0.835 0.935 0.635
Iterative Status 0.784 0.917 0.502

Table 6.5: Information of relationship graphs of iterative models using entire
wiki-Rfa dataset

Relationship Graph |V | |E| density
largest component

size

Agreement Graph 11924 2451028 0.0345 11908
Follow Graph 11924 3136303 0.0220 11563

6.2.1.1 Iterative Balance Model Results

The iterative balance models performs very well even when predicting all the
votes in the entire wiki-Rfa dataset. The results in Table 6.4, shows that
on every metric the balance model has a significant margin over the baseline.
Especially, we see that negative votes are predicted almost three times better
than the baseline, seen by the AUC-PRneg score of 0.635. This indicates
that the model has collected useful information in the agreement graph, as
seen in Table 6.5. The graph obtained at the end of the process is fairly
large and dense and is nearly connected. Therefore, a rich representation of
relationships between Wikipedia users is stored in the agreement graph.
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Figure 6.3: Plots for the Iterative Balance Model on the complete wiki-Rfa
dataset

The plots in Figure 6.3, show that the model consistently performs well
above the baselines. Now, in choosing an optimal threshold for the model,
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we turn to the plots in Figure 6.4. These show how the F1 score changes
as we move the threshold parameter θ. We see that the F1pos score only
starts to decrease gradually after θ = 0.5. Also, there is a peak for the
F1neg score a little after the point of θ = 0.5. Therefore, we can choose
θ = 0.53, to obtain a F1pos = 0.887 and F1neg =0.602. This gives us F1macro

= (0.887 + 0.602)/2 = 0.745. This threshold also indicates that even if λ+1
of the LSN is slightly smaller than λ−1 then the vote predicted is positive.
Therefore, the model has good compliance with balance theory.
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Figure 6.4: F1 score versus threshold plots for Iterative Balance Model

6.2.2 Iterative Status Model Results

Table 6.4 show that the iterative status model also performs admirably above
the baseline results. We also see in Table 6.5, that the follow graph is large,
fairly dense and has large strongly connected components. However, its per-
formance is still relatively lower than the iterative balance model.

In Figure 6.5, we see that the PRpos curve is nearly identical to that of the
iterative balance model. This is also reflected in the high AUC-PRpos score
comparable to the iterative balance model. However, the PRneg curve clearly
shows that there is a lower quality when predicting negative votes. This
translates in the smaller AUC-PRneg score and explains the overall lower
AUC-ROC score of the model. The lower predictive performance can be
explained using our earlier analysis of the graph combination model. We see
that in reality, the triads where status theory is ambivalent actually have
a preference for a particular sign. Therefore, the cases when the agony of
the LSN is equal for both cases, i.e., α+ = α−, should not map to p = 0.5.
Rather, we must modify status theory to better represent signed relationships
in a network.
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Figure 6.5: Plots for the Iterative Status Model on the complete wiki-Rfa
dataset

In Figure 6.6, we see another issue caused by the large number of the
support vote probabilities being 0.5. The F1pos curve is again identical to
the F1pos curve of the iterative balance model. However, the F1neg curve
shows that there is an inflection at θ = 0.5. The change is quite drastic
with F1neg = 0.05 at θ = 0.49 and F1neg = 0.32 at θ = 0.5. This affects the
choice of an optimal threshold for the model. We see that the F1neg score
increases as threshold is increased beyond θ = 0.5. This indicates that closer
to 0.5, there are many false positives. However, choosing θ = 0.75 at the
peak of the F1neg score is not suitable, as the F1pos score starts to drop much
more significantly. Hence, we choose θ = 0.63 as the constrained optimum
giving us F1pos =0.861 and F1neg =0.504, therefore, F1macro = 0.606. This
deterministic metric is also lower than the 0.745 of the iterative balance
model. The choice of threshold close ot = 0.6 suggests that the α+, the
agony for the positive vote case, must be considerably lower than α−, the
agony for the negative vote case, to predict a positive vote. Therefore, this
also indicates that we need to make additional modifications to status theory
if we want to increase the predictive power of the iterative status model.

6.3 Voting Order Results

In Section 5.4, we discussed how to study the effects of voting order on
the performance of the iterative models trained on the complete wiki-Rfa
dataset. The results for the third RfA nomination of user Hawkeye7 is pre-
sented in Table 6.6 and is referred to the failed RfA. Similarly, the results of
user HickoryOughtShirt?4 ’s nomination is show in table 6.7 and is called the
successful RfA.
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Figure 6.6: F1 score versus threshold plots for Iterative Status Model

6.3.1 Failed RfA Results

We see that the voting in the failed RfA is fairly tight. The AUC-PRpos

score is 0.52 and AUC-PRneg is 0.479, indicating that the election did indeed
have more support votes than oppose. Nevertheless, the RfA failed as the
Bureaucrat responsible concluded that the consensus was to not promote the
user.

For the normal voting order, as seen in Table 6.6, the balance model per-
forms much worse when compared to the status model. In fact, the iterative
balance model performs below the baseline for all metrics. This can be at-
tributed to the fact that this particular user had two previous nominations
of which one was successful. Therefore, a symmetric measure of agreement
might not be helpful in predicting the balance as the election progresses, es-
pecially when the voting margins are tight. On the other hand, we see that
the iterative status model performs better the iterative balance model, but is
still worse than the baseline metrics for a random model. This clearly shows
that both models are struggling to predict votes in a RfAs with a narrow
margin of difference between support and oppose votes.

For the reversed voting order, we see that iterative balance model performs
considerably better compared to the normal voting order. Especially, we see
that all the metrics, i.e., AUC-ROC, AUC-PRpos and AUC-PRneg scores have
improved above the baseline, increasing the model’s overall performance.
This is interesting, as it suggests that the LSNs formed by reversing the voting
order provides better information on the voting behaviour than the actual
voting order. Similarly, we see the status model also gaining in performance
when the voting order is reversed. Although the AUC-PRneg score is still
below the baseline, we see the overall performance has improved. We can
explain the model’s difficulty in predicting negative votes using our previous



CHAPTER 6. RESULTS AND DISCUSSION 71

analysis; status theory complies less with the true data than balance theory.
Therefore, we infer that reversing the voting order improves the performance
of both models.

Meanwhile, the results of the average of ten random voting orders for
both models lie in between the results for the normal and reversed voting
methods. We see that the result for the iterative balance model is above the
baseline for all metrics and the iterative status model is close to the baseline.
Therefore, we see that the voting order does affect the performance of the
iterative models and that we can benefit from reversing the voting order and
averaging the results to obtain better predictions for RfAs that have tight
margins.

Table 6.6: Results for different vote orderings for the failed RfA

Model Vote Order AUC-ROC AUC-PRpos AUC-PRneg

Baseline - 0.5 0.52 0.479

Iterative
Balance

Normal 0.392 0.490 0.403
Reversed 0.575 0.606 0.529
Random 0.527 0.552 0.517

Iterative
Status

Normal 0.454 0.532 0.457
Reversed 0.515 0.563 0.466
Random 0.493 0.538 0.480

6.3.2 Successful RfA Results

In Table 6.7, we see that the result of the RfA is clearly evident in the
AUC-PRpos and AUC-PRneg baselines. Nearly, all votes are supporting the
candidate and there are a few minority opposition votes. For this RfA, we
see the results are in line with the results we obtained for the failed RfA.

For the normal voting order, we see that the iterative balance model has
AUC-ROC and AUC-PRpos scores lower than the baseline but AUC-PRneg

scores well above the baseline. This indicates that the model is better able to
predict oppose votes, but at the cost of the better predictions for the support
votes. We see a similar phenomenon for the iterative status model where the
AUC-PRpos is below the baseline but the overall AUC-ROC is slightly above
the random model baseline. This highlights the difficulty of predicting the
oppose votes in a fairly clear election.

Once again, in the results for the reversed voting order, we see that both
iterative models have better performance across all metrics. Especially, we
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see both models have much larger AUC-PRpos scores which in turn boosts
the AUC-ROC scores, as the positive votes are the majority in this RfA. As
a result, we also see that the AUC-PRneg scores drop, indicating the tension
in optimizing both positive and negative vote prediction.

The average of 10 random voting order results show that the performance
of the models are overall better than the normal voting order.

A note to consider is that this analysis and results are only for the two
new RfAs and can be further analysed in detail as a separate project.

Table 6.7: Results for different vote orderings for the successful RfA

Model Vote Order AUC-ROC AUC-PRpos AUC-PRneg

Baseline - 0.5 0.905 0.095

Iterative
Balance

Normal 0.48 0.90 0.231
Reversed 0.649 0.933 0.216
Random 0.607 0.921 0.273

Iterative
Status

Normal 0.503 0.898 0.211
Reversed 0.628 0.931 0.151
Random 0.612 0.921 0.230



Chapter 7

Conclusions and Future Work

In this thesis, we described how voting in a community can be intuitively
and structurally represented using signed networks. The positive and nega-
tive links directly map to a voter’s support for or opposition to a candidate
respectively. Furthermore, we discussed how the problem of vote prediction
is related to the task of predicting the sign of a link in the signed network.
Then, we explain the structural theories of balance and status in signed
networks, derived from the field of social psychology. We discuss the exist-
ing approaches and methods to solve the sign prediction tasks and explain
their limitations for the vote prediction task. Therefore, we proposed two
new models for the task of vote prediction, incorporating the chronological
nature of voting.

The first, is an extension of supervised models for sign prediction ap-
proaches. To predict the vote of an individual voter towards a candidate, we
introduce the concept of a voting neighbourhood. We gather features from
the voting neighbourhood of a voter and various auxiliary graphs that rep-
resent relationships between the members in community. Then, we count
the unique triadic features that capture the theories of balance and status
in the voting neighbourhood. The combination of all these features and the
known true votes form a traditional supervised machine learning problem.
Therefore, any linear classification model can be trained to predict positive
and negative edges that correspond to support or oppose votes.

The second, we proposed an iterative model that relies solely on structural
balance and status theories. We extend upon the concept of the voting
neighbourhood to create a Local Signed Network (LSN) for a voter. We state
that within this LSN, the voter prefers to vote in a manner that, the resultant
LSN better adheres to either balance or status theory. Therefore, we arrive
at two models, the first in which a voter maintains the balance of the LSN
and the second where the voter preserves the status in the LSN. Then, we

73
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developed methods to quantitatively measure a network’s adherence with
either balance or status theory. We utilize these measures to predict how
an independent user will vote given their LSN. Furthermore, as the voting
progresses, we proposed to maintain a relationships graph that encapsulates
the interaction between the voters in the community. This, led to the ability
to iteratively predict votes in a session and assimilating the information at
the end of a session.

From the results presented in Chapter 6, we conclude that the proposed
models are effective in predicting the votes in Wikipedia RfAs. The graph
combination models perform poorly only due the the restrictions of the su-
pervised learning framework and lack of information to predict votes far off
in the future. We show that the iterative models overcome these problems
and are able to effectively predict votes of the entire dataset using only vot-
ing related data. We analysed how new voters with respect to the model,
tend to vote. This showed that a majority new users follow the herd men-
tality or vote similar to person immediately before them. Furthermore, we
show that votes in the promotion process of Wikipedia administrators are
generally more compliant with balance theory than status theory. We also
conclude that the iterative models are sensitive to the voting order. Revers-
ing the order of voting brings greater predictive power in both elections that
are close as well as elections that are landslides.

Future work includes developing a modified theory of social status in
signed network that better represents relationships between people in real
life. Similarly, we plan to incorporate external non-voting features to im-
prove the iterative models and extend the experiments to congressional and
parliamentary voting on bills and laws.
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