
A Modelling and Simulation Tool for
DNA Strand Displacement Systems

Shiting Long

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 15.5.2020

Supervisor

Professor Pekka Orponen
Professor Vitaly Skachek

Advisor

Dr. Vinay Gautam

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/333887508?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright © 2020 Shiting Long

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Shiting Long
Title A Modelling and Simulation Tool for DNA Strand Displacement Systems
Degree programme Computer Science
Major Security and Cloud Computing Code of major SCI3084
Supervisor Professor Pekka Orponen

Professor Vitaly Skachek
Advisor Dr. Vinay Gautam
Date 15.5.2020 Number of pages 63+7 Language English
Abstract
DNA is the hereditary material in almost all organisms, and the sequence of its
monomers efficiently conveys essential biological information. Although DNA is
well known for its biological functions, the unique material properties of DNA also
motivate scientists to design and manufacture DNA complexes for technological
purposes. This research field is termed DNA nanotechnology, and it aims to construct
arbitrary biomolecular structures using DNA molecules as building blocks.

DNA nanotechnology initially focused on programmable static structures, but it has
further inspired the designs of engineering systems with dynamic properties such as
logic circuits and catalytic systems. This dynamic variant of DNA nanotechnology
is enabled by the DNA strand displacement (DSD) mechanism. The design of a
DSD system involves discreetly designed initial species that can execute expected
sequential reactions. However, such task is hard to be accomplished by hand as the
complete reaction network of a large-scaled DSD system can be intractable.

In this thesis, we study the problem of modelling DSD systems, i.e., enumerating
combinatorially the full space of molecular complexes reachable from the initial
species and transferring the resulting chemical reaction network to a simulation
engine. We present a rule-based modelling pipeline RuleDSD for generating and
simulating reaction networks of DSD systems. RuleDSD is implemented as a software
package DSDPy, a tool that automatically generates a complete reaction network
for a described DSD system and integrates with the PySB framework for further
simulations using the BioNetGen engine. The reaction networks produced by DSDPy
show that it is suitable for modelling various DSD systems from existing literature.

Keywords DNA Nanotechnology, DNA Strand Displacement, Rule-based Modelling,
DSD Modelling and Simulation, PySB, BioNetGen

4

Preface
Firstly, I would like to thank my main supervisor Professor Pekka Orponen and my
advisor Dr. Vinay Gautam for offering this fascinating project presented in my thesis
and providing me guidance and patience all along. I would also like to thank my
second supervisor Professor Vitaly Skachek for encouraging me to pursue this thesis
topic in the beginning and supporting me whenever I need his help.

I would further extend my gratitude to the professors and coordinators that I have
met in the SECCLO programme, especially Professor Tuomas Aura, Dr. Ago-Erik
Riet, Laura Mursu and Eija Kujanpää. The two years I spent in this programme are
exceptional and unforgettable, I will bear this experience in mind as I continue my
journey of life.

Finally, I would like to express my love for my family and friends, without them I
would not be the person I am today.

Espoo, 15.5.2020

Shiting Long

5

Contents
Abstract 3

Preface 4

Contents 5

1 Introduction 7
1.1 Problem Statement . 8
1.2 Structure of the Thesis . 9

2 Background 11
2.1 DNA . 11
2.2 Domain-level DNA Strand Displacement System 13
2.3 Rule-Based Modelling . 16

3 Design 19
3.1 Overview . 19
3.2 Preliminaries . 22

3.2.1 Strand Graph . 22
3.2.2 Bond Graph . 23
3.2.3 Canonical Labelling of Species 25

4 Methods 31
4.1 Generation of Reaction Network . 31

4.1.1 Rule Binding (RB) . 31
4.1.2 Rule Unbinding (RU) . 37
4.1.3 Rule Three-way Branch Migration (R3) 39
4.1.4 Rule Four-way Branch Migration (R4) 40

4.2 Species Mapping . 41
4.2.1 From a Strand Graph to Its Canonical Labelling 41
4.2.2 From a Labelling to Its Strand Graph 45

4.3 PySB Model Generation . 45
4.4 Simulation . 46
4.5 Visualisation . 47

5 Results 48
5.1 DSDPy . 48
5.2 Modelling a DSD System of Three-way Initiated Four-Way Branch

Migration . 50
5.3 Modelling a Single-layer Catalytic DSD System 53

6 Discussion 57
6.1 Conclusion . 57
6.2 Future Work . 58

6

References 59

A Inputs and Outputs of the SCD System Modelling 64
A.1 Input . 64
A.2 Reaction Network of the SCD System 64
A.3 Simulation Results of the SCD System 70

7

1 Introduction
Deoxyribonucleic acid (DNA) is a molecule found in all known living organisms that
contains biological instructions for their development, survival and reproduction.
DNA usually exists as a winding two-stranded structure, which is described as a
double helix. The double helix is mainly stabilized by hydrogen bonds and base-
stacking interactions that come from the complementary nucleobases pairing (A-T,
G-C) between the two strands, which also induces the hybridisation between two
DNA strands strictly following the base pairing rule.

The nanoscale biomolecular infrastructure of DNA wraps up nature’s most complex
secrets, and thus motivates scientists to uncover the hidden information. Although
the biological properties of DNA have drawn most of the attention, the material
properties of DNA also attract researchers to nano-fabricate DNA complexes by
investigating and manipulating the interactions between DNA molecules.

In nanotechnology, self-assembly is a bottom-up approach which automatically gener-
ates extensive structures by preparing nanostructures in a defined arrangement. DNA
is a remarkable candidate material for self-assembly because of the base pairing rule
it obeys, as it makes the interactions between DNA molecules predictable. Seeman
first recognised this capability of DNA molecules serving as non-biological building
blocks for programmable designs of multilayered DNA complexes in 1982 [38]. The
study of this field was later termed DNA nanotechnology, and it was named structural
DNA nanotechnology when the finally assembled structures are static [39]. Over the
following years, a cube [4] and a truncated octahedron [43] made of DNA molecules
were synthesised using Seeman’s methodology. As the field broadens, more advanced
techniques have been introduced in DNA nanotechnology to increase the complexity
of DNA structures, such as DNA origami [36] and DNA tiling [50].

In addition to enabling the construction of complex DNA structures, DNA nan-
otechnology is becoming attractive in designing synthetic biochemical systems with
dynamic properties [55]. Dynamic DNA systems are usually based on the DNA
strand displacement (DSD) mechanism [53, 56], a process in which a strand that
hybridises partially to another strand displaces one or more pre-hybridised strands.
It can be initiated by a single-stranded short domain, referred to as toehold. The
feature of toehold-mediated DNA strand displacement allows the design of DNA
systems with a focus on the reaction networks instead of the finally assembled static
products. A wide variety of DNA strand displacement systems have been designed
over the past two decades, such as DNA tweezers [53], DNA walkers [42, 44], DNA
circuits [37, 33] and enzyme-free catalytic systems [56, 57].

8

1.1 Problem Statement
DSD systems use the DNA strand displacement mechanism as the main process to
perform computations. This requires the designer of the system to plan very carefully
so that the strand displacement reactions can happen in the right place and at the
right time. Since the DSD mechanism usually involves a list of consecutive reactions
and DSD systems may contain multiple sets of complexes associated with these
reactions, a direct hard-coded design of a DSD system can be exhausting. Moreover,
failing a laboratory experiment repeatedly can be expensive. In addition, the intri-
cate nature of DNA molecules opens up numerous possibilities when DNA systems
are scaled up. Crosstalk, i.e., DNA molecules undergoing a reaction unexpectedly
affecting other reactions, is common in DSD systems. Therefore, an automated
software for designing and simulating DSD systems prior to experimentation is in
demand as the complexity of DSD systems increase.

Intuitively, one can model the DNA strand displacement mechanism by formulating
the available reactions in this mechanism. Such reactions can be grouped into a small
number of categories that follow specific rules. Hence, these rules can be applied
on a given set of DNA molecules, where each application of a rule on one or more
DNA molecules represents a reaction. The outcome thus consists of a set of all
possible reactions and a renewed set of DNA molecules reachable from the given set.
Starting from a set of initial DNA molecules, repeated applications of these rules to
the current set of DNA molecules until there is no new DNA molecule produces the
full reaction network of the system [31].

The modelling insight of DSD systems has motivated the development of automated
design tools over the years. Visual DSD [25] is a tool for prototyping and analysis of
DSD systems using the DSD programming language and its compiler [31, 24]. Visual
DSD provides a programming interface through which a program adopting the DSD
language syntax can describe a DSD system. Thus, the corresponding DSD language
compiler can derive the set of all possible reactions based on a semantic analysis
with the reduction rules it defines. Then the produced reaction network can be
prompted for simulation. Other tools such as KinDA [1] and DyNAMiC Workbench
[17] also work as modelling tools for DSD systems, though both use an alternative enu-
meration method to condense the reaction network by eliminating fast transients [16].

Current DSD modelling tools face mainly two challenges. The first one is that the
enumerations over renewed sets may be computationally infeasible. The second one
is that DNA molecules involving complex secondary structures such as loops [51],
multiple branches [22] and pseudoknots [3] that cannot be expressed by previously
developed tools have emerged in DSD system designs. To address the first challenge,
researchers have proposed enumerators that cut out avoidable reactions with the sac-
rifice of full networks [16]. To address the second challenge, new methods have been
proposed as amendments to the existing tools [46, 30]. At the same time, rule-based
modelling languages such as BioNetGen [18] and Kappa [8] have successfully solved

9

similar challenges for modelling secondary structures in general biochemical systems.
In fact, a new implementation for Visual DSD was inspired by Kappa [30]. Although
DSD systems can be expressed in rule-based models using graphical structures to
represent DNA molecules, the DSD language cannot be encoded in Kappa [30].

The attempt to describe DSD systems by rule-based models has inspired us to develop
a tool that directly uses a rule-based modelling approach on graphical structures. The
tool combinatorially enumerates the full space of reachable DNA complexes from a
set of given initial DNA complexes, and then exports the resulting chemical reaction
network to a simulation engine. This method nevertheless saves the time required
to study the syntax of new programming languages, such as the DSD programming
language used in Visual DSD and BioNetGen modelling language (BNGL). The
architectural design of our tool constitutes the RuleDSD pipeline [13], a rule-based
modelling and simulation software design for DSD systems. The methods comprising
the RuleDSD pipeline are implemented as DSDPy, a tool that simplifies modelling
and simulation of custom-made DSD systems. DSDPy also contains a simple inter-
active interface, which allows users to pause, resume and prematurely stop during
the enumeration process to provide intermediate outputs for incremental analyses.

1.2 Structure of the Thesis
The remaining sections are organised as follows. Section 2 contains an introduction
to the basic concepts we discuss in this thesis, including DNA structure and domain-
level DNA strand displacement systems. In addition, we provide an overview of the
rule-based modelling approach and the BioNetGen software that implements this
approach for modelling biomolecular systems.

Section 3 provides a sketch of the RuleDSD pipeline and the definitions of critical
concepts used in it. Further, a brief description of the four components constituting
the RuleDSD pipeline is presented. Following the sketch, we give the details of
important graphical structures that represent DNA molecules and prove the existence
of a unique textual representation for each DNA molecule in the DSD system.

Section 4 explains the technical details of the RuleDSD implementation, which in-
clude the procedures and algorithms underlying the four components in the RuleDSD
pipeline. We highlight the definitions of each rule defined for RuleDSD as they are
the cornerstones in the rule-based modelling approach.

Section 5 presents the DSDPy tool, an implementation of the RuleDSD pipeline in
Python. Further, this section provides an overview of its graphical user interface
and gives a walkthrough of the tool for users. Finally, an analysis of two example
DSD systems studied using DSDPy is discussed in comparison to the modelling of
the same DSD systems using other state-of-the-art tools.

Section 6 serves as a conclusion to this thesis. We review the major outcomes of this
thesis and discuss future possibilities for the RuleDSD pipeline and the DSDPy tool.

11

2 Background
In this section, we start with an introduction to the structure of DNA, then we
illustrate the DSD mechanism, focusing on domain-level DSD systems. We also
discuss the rule-based modelling approach used for biochemical systems in the end,
as it inspired us to design a user-friendly tool for modelling DSD systems which
saves the users from acquiring the knowledge of new programming languages such as
BNGL and the DSD programming language used in Visual DSD.

2.1 DNA
DNA molecules have multiple conformations, at least three of them are confirmed
to exist in nature: A-DNA, B-DNA and Z-DNA. The three conformations differ
in their geometry and dimensions. B-DNA, the double helical structure that was
first described by Watson and Crick in 1953 [48], is believed to be the most common
conformation in cells [35]. The model of B-DNA as illustrated in Figure 1 is widely
accepted as the structure for DNA molecules.

Figure 1: The double helical structure of DNA elucidated by Watson and Crick.
Image reprinted from [32].

DNA has a double-stranded structure, where each strand known as a polynucleotide
is composed of multiple nucleotides. A nucleotide has three major components: a

12

nucleobase, a five-carbon sugar, and a phosphate group. The exact nucleobase on
a nucleotide differentiates it from others. DNA contains four types of nucleobases:
cytosine (C), guanine (G), adenine (A) and thymine (T). The nucleotides are linked
together as a strand by bonds between the sugar of a nucleotide and the phosphate of
the next, and thus form a sugar-phosphate backbone. The two strands are hybridised
by hydrogen bonds between pairs of complementary nucleobases (i.e., C with G and
A with T).

The primary features of the Watson and Crick DNA model are as follows. Firstly,
each DNA strand has an inherent orientation because the organisation of a sugar-
phosphate backbone distinguishes two ends of a strand, known as the 5’ end and the 3’
end. Secondly, the two DNA strands in the model have the complementary sequences
of nucleotides and wind around in opposite directions to each other, resulting in an
antiparallel structure. Lastly, DNA follows a strict base pairing rule such that A
nucleobases are always paired with Ts and Cs with Gs.

Three characteristics make DNA an ideal material for structural self-assembly ap-
proach: hybridisation, stable branched DNA (see Figure 2), and convenient synthe-
sis of designed sequences [40]. The hybridisation of DNA not only connects two
DNA strands to form a double helix but can also combine two double helical DNA
molecules as shown in (a). Moreover, triply branched replication forks [49] and
four-arm branched Holliday junctions [21] are known DNA structures as well (see
(b) and (c)). These structures together with hybridisation provide rich possibilities
in designing topologically structured DNA molecules and simulating their reactions.
The capability of synthesising DNA molecules comprising arbitrary sequences allows
researchers to make these possibilities come true in reality.

(a) Hybridisation of two molecules using single-stranded sticky ends.

(b) Illustration of a triply branched DNA. (c) Illustration of a Holliday junction.

Figure 2: Hybridisation of DNA and stable branched DNA structures. Here, solid
lines represent DNA strands in the 5’ end to the 3’ end (arrowhead) orientation, and
dotted lines represent complementary base-pairing between two antiparallel DNA
strands.

13

2.2 Domain-level DNA Strand Displacement System
In DNA nanotechnology, DNA systems are usually studied at two levels: sequence-
level and domain-level. Sequence-level DNA systems focus on the designs and
interactions of DNA molecules at the level of nucleotides. Instead of taking nu-
cleotides as the smallest units, domain-level DNA systems use contiguous nucleotide
sequences of certain lengths, which are termed domains, as the smallest units. In
other words, strands in domain-level DNA systems are conceptually subdivided into
functional domains [56].

A DNA domain is usually assigned a specific name to separate the sequence it
represents from the other sequences. The complementary domain of a certain domain
nevertheless represents a complementary sequence so that the two complementary
domains can be paired. Recall that a DNA strand has an inherent orientation: we
consider the nucleotide sequence as oriented from the 5’ end to the 3’ end throughout
this thesis. Therefore, given a domain with the sequence ‘ACAG’, its complementary
domain would have sequence ‘CTGT’ because the pairing should be antiparallel. In
this way, the idea of base pairing rules is inherited by the domain-level DNA systems.

Notice that there is a possibility that the sequence represented by some domain might
be the same sequence that its complementary domain represents, e.g., a sequence
‘CCGG’. However, we do not allow a domain to pair with itself as it is against the idea
of strict pairing between two complementary domains. Hence, we do not consider
the possibility that two complementary domains represent the same sequence in
domain-level DNA systems in the scope of this thesis.

As sequence-level DNA systems provide comprehensive details, the information they
contain can be redundant. Domain-level DNA systems preserve the principles of
DNA interactions and simplify the representations of DNA molecules, which makes
them optimal for modelling dynamic DNA systems. Hence, we model domain-level
DNA systems in RuleDSD. Further discussions of DNA systems are therefore in
domain-level description.

We give the description of domains as follows. A domain name is conventionally a
combination of letters and/or numbers. We append a ‘∗’ symbol to a domain name
to represent the complementary domain. For example, a domain A∗ is the comple-
mentary domain of the domain A. Domains in DSD systems have long sequences
of nucleotides, e.g., 25-30 in length by the standards of Visual DSD [30]. There
are short domains with length 4-10 as well [31], which we term toehold domains.
We append a ‘̂ ’ symbol to a domain name to indicate that it is a toehold domain.
Toehold domains are short enough to bind swiftly without additional binding [56, 52].
On the other hand, toehold type bonds, i.e, bonds constituting of toehold domains,
are also actively available for an unbinding reaction when no adjacent bonds are
formed.

14

(a)

(b)

Figure 3: Examples of DNA strand displacement system. We use a bond name, e.g.,
b1 to represent a bond between two domains.

Figure 3 (a) shows a simple DNA strand displacement system. In the initial state
of the system, there is a double-stranded DNA molecule and a DNA strand. Since
toehold domain Tˆin strand 1 has a complementary domain T ∗̂ in strand 2, a binding
reaction is feasible. After the bond between the toehold domains is formed, strand 1
has two available options: 1) unbind with strand 2, and 2) initiate a reaction called
three-way branch migration [56], through which the following domain in strand 1
replaces the same domain in strand 3 and binds with the complementary domain in
strand 2. This process then releases strand 3 from the duplex.

Three-way branch migration is not the only type of reaction that results in strand
exchange. In fact, a similar reaction happens where there are four strands concerned
as illustrated in Figure 3 (b). If there is a Holliday junction as depicted, the bonds
between two pairs of complementary domains can be switched, resulting in two
double-stranded molecules. This reaction is called four-way branch migration [7].

The branch migration reactions convey a dynamic attribute of DSD systems. This
simple and robust DSD mechanism makes it possible to design various dynamic
systems based on DNA molecules. For instance, a two-input AND gate represented
by a DSD system was proposed in [37]. As illustrated in Figure 4, the output strand
is only produced when the two inputs are in presence with the reactant. Other
DNA logic gates such as OR and NOT gates have also been constructed [37]. These
results demonstrate the possibility that large and reliable circuits can be built up
by DNA molecules, which means that the DSD systems can be powerful tools for
programming biology [55]. Moreover, it was shown that any physically realistic
abstract chemical reaction network (CRN) can be implemented by a DSD system
of approximately equivalent behaviour [45], and any arbitrary linear input/output
system can be constructed by DNA molecules [28].

15

Figure 4: A two-input AND gate DSD system reported in [37].

It has been widely acknowledged that there are four types of reactions in DSD systems:
binding, unbinding, three-way branch migration and four-way branch migration (il-
lustrated in Figure 5). In a binding reaction, a domain binds with its complementary
domain, resulting in a duplex. An unbinding reaction performs contrarily to binding
as a duplex dissociates. These two reactions are the fundamental reactions in DSD
systems with which branch migration reactions can be associated and design with
the help of intricate, complex DNA molecular structures.

These types fit naturally with the idea of rules in a rule-based modelling approach
which we discuss in the following section. Thus, we call them DSD rules in this
thesis. The DSD rules are explained in detail in Section 4.1.

Particularly, the design of the toehold domains plays an important role in DSD
systems as they are frequently considered actively available for binding and unbinding,
and thus mediate branch migrations. Toehold domains can also be inactive if they
are buried within bonded long domains [37] or hidden inside a loop [9, 51].

So far we have explained domain-level DSD systems and the set of DSD reactions, we
need to further consider the reaction rates in order to make reliable predictions about
the kinetics of the reaction network. However, the kinetics of real physical systems
will be affected by external parameters such as temperature and salt concentrations,
and these variables are not included in our modelling approach. To illustrate the
calculation of reaction rates, we use the formula given by Grun et al. [16] where
the rates are approximated at 25°C and with 10 mM Mg+. Let ρ(r) be the reaction
rate of reaction r(A, B), where A is the reactant and B is the product. Note that A
and B may contain more than one species, i.e., A = a1, a2, ... and B = b1, b2, We

16

Figure 5: Illustrations of DSD reaction types.

assume ρ(r) is given by:
ρ(r) = k

∏
a∈A

[a] (1)

where k is a reaction constant and [a] denote the concentration of the species a.
Each reaction type has a distinct k, formulas to derive these reaction constants are
given in Section C in [16]. Notice that there are other types of reactions relevant
to DSD systems presented in [16] which are not covered by this thesis, we further
discuss them as future work in Section 6.2. Among the four reaction types that we
consider possible, only binding is dependent on concentrations, and thus have a unit
of M−1s−1. In the experiments with our tool DSDPy, we use k = 3× 105 M−1s−1

for binding reactions, other reaction constants are consistent with what was reported
by [16].

2.3 Rule-Based Modelling
Rule-based modelling was proposed as a computational approach for understanding
the physical interactions of biomolecules in cellular regulatory systems, which are
commonly studied for cellular signalling [15, 27]. Conventionally, a mathematical
model for a biomolecular system is reaction-based, i.e., numerous equations are en-

17

coded for modelling every possible reaction in the system. Rule-based modelling uses
formalised rules to express sets of reactions, each set having its own interpretation. A
rule describes certain conditions that the reactants need to satisfy in order to initiate
a particular type of chemical transformation. Moreover, rules can be defined and
visualised by graphs so that computer scientists and mathematicians do not need to
acquire additional knowledge to implement a rule-based model [20].

A model, in any case, should provide details of the quantities of each tractable
component in a system and reveal the logical consequences of the system to guide
experimentation. A direct challenge comes from this exploration of the system:
the number of components in a system may increase exponentially. In practice,
thousands of chemical species can be generated by even a small number of proteins
[10]. Hlavacek et al. [19] referred to this challenge as combinatorial complexity. To
address this challenge, dynamic models that account for all possible species can help
by deciding if a species is favoured to be traced. It was discovered that usually only a
small amount of species are efficiently populated in these models and the population
counts can change dramatically if the system dynamics (e.g., concentrations) is
changed [12]. Therefore, one can tune the system dynamics so that the favoured
species are populated as desired and the unfavoured are suppressed. In the modelling
process, only reactions with populated reactants are considered feasible, and thus an
explosion of generated species may be prevented.

To specify a model, one needs to provide the knowledge and assumptions about a
system so that a mathematical analysis can be pursued. Traditionally, one needs a
so-called reaction-scheme diagram to specify the possible species and reactions in the
system and then needs to translate this diagram into a system of coupled ordinary
differential equations (ODEs) [47]. Rule-based models take various approaches for
model specification. We introduce the approach adopted by BioNetGen [18] in the
remaining part of this section, as we use some of its concepts and implementations
for RuleDSD.

BioNetGen (BNG) BioNetGen is a software for generating and simulating rule-
based models [18]. It is used for modelling various biochemical processes such as
gene regulation and metabolism [6, 5] in addition to cellular signalling. The role that
the rules in BNG play is described as follows. A rule is written in a similar format
as a chemical reaction, specifying a pattern that the reactant(s) and product(s)
should match. Given a set of initial species, each rule is examined for its matching
reactants. A reaction is established once the pattern matching succeeds, and then
the corresponding product(s) are added to the pool of possible species. Each reaction
is assigned a reaction rate which is associated with the corresponding rule.

BNG supports mainly two types of simulation [41]: deterministic simulation and
stochastic simulation. A deterministic simulator takes in the concentrations of initial
species and uses numerical integration of ODEs to model the system through time.
This setting is based on the assumption that the system is in an isothermal reactor of

18

constant volume and the notion of an individual molecule does not exist, which makes
the trajectories of changes in concentrations smooth and continuous [41]. However,
the deterministic simulator does not work well when the concentrations are small,
because then stochastic noise becomes important, i.e., a single molecule can affect the
system in a significant way. A stochastic simulator solves this problem by performing
the simulation using Gillespie’s stochastic simulation algorithm (SSA) [14], which
updates one reaction at a time. We do not elaborate on the implementation details of
simulators in this thesis, because RuleDSD does not implement any simulator of its
own, instead it uses simulation engines available through the PySB [26] framework, a
Python package that supports initialization and simulation of customisable rule-based
models.

Two approaches can be used to define the relation between the generation and the
simulation of reaction networks: “generate-first” approach and “on-the-fly” approach
[20]. As the names suggest, the generate-first approach generates all possible species
and reactions in advance of a simulation; whereas the on-the-fly approach generates
and simulates at the same time, which may be useful in addressing the problem
of combinatorial complexity when the reaction network is large or unbounded [20].
With the on-the-fly approach, reactions are generated only if their reactants become
populated, which means that some species may not be tracked because they are not
produced. BNG originally used the generate-first approach, then updated to the
on-the-fly approach [11]. RuleDSD adopts the generate-first approach, as it mainly
aims at revealing the interactions between the molecules in a DSD system. Hence,
RuleDSD generates reaction networks following the general rule-based modelling
concept, and then simulates the networks using existing simulation engines.

19

3 Design
In this section, we briefly introduce the structural design of the RuleDSD pipeline,
which contains four major components. We further discuss three critical concepts
used in RuleDSD regarding the graphical representations of domain-level DNA strand
complexes, which we term species.

3.1 Overview
RuleDSD is a pipeline that generates and simulates complete reaction networks of
DSD systems. The central idea of RuleDSD is to enumerate all species reachable from
a given set of species by applying the DSD rules and to encapsulate the discovered
species and explored reactions in a PySB model for further analyses. By adopting
the rule-based modelling approach, RuleDSD uses graphical structures to represent
species and defines rules as the types of reactions in DSD systems. These rules
are logical checks that can be performed on graphs, and if the checks of a rule are
passed for some reactant species, we say that the rule can be applied and a reaction
of this particular type is feasible. Algorithm 1 presents the implementation of the
enumerator underlying RuleDSD.

RuleDSD provides two types of integrators for DSD system simulation based on the
PySB model, SciPy ODE integrator and BioNetGen integrator. RuleDSD produces
not only lineplots of time-course data from simulations, but also species netlists and
reactions in a textual format that can be exported and saved by users. In accordance
with the functions that RuleDSD provides, the software design pipeline consists of
four components as illustrated in Figure 6.

Figure 6: The RuleDSD pipeline design.

Graph Processor The graph processor plays the most critical role in the pipeline
as it generates complete DSD reaction networks. The enumeration of all the species
reachable from the initial species in a DSD system can be viewed as a loop that
terminates when there are no new species to be discovered, and each iteration in the
loop is a step attempting to find new species by updating the reaction network.

One iteration of the algorithm that the graph processor executes can be roughly
divided into two phases, Generation and Mapping. The generation phase expands
the current reaction network by applying the DSD rules, whereas the mapping phase
performs a check on the newly discovered species in the generation phase to see if they

20

have already been included in the current reaction network. The current reaction
network is only updated when both generation phase and mapping phase have finished.

Figure 7 shows an example of an iterative process underlying graph processor in
which new species are generated and mapped to the existing species so as to produce
a reaction network. The generation phase explores all possible intra-species and
inter-species reactions given the species at hand. In our example, species 1, 2, 3 in
Figure 7 (a) are the reactant species that we want to put into the graph processor for
a reaction network generation. Once a reaction is accepted as a possible reaction, the
current reaction network is expanded by adding the reaction. Note that the graph
processor does not include the newly discovered species (e.g., species 4, 5) in the
current generation process. The generation process finishes when there is no possible
reaction to be added.

In practice, the mapping algorithm works within the generation process. Specifically,
once a reaction is added to the reaction network, the mapping algorithm checks if
the product(s) of the reaction have been discovered before. Species 4 and species 5
in Figure 7 (c) are indeed new species in the reaction network, thus, they are stored
as newly discovered species. However, species 1 in Figure 7 (c) as the product of the
reactants species 2 and species 3 is one of the species that already exists. Therefore,
the product is linked back to the known species 1 instead of storing its another
copy as illustrated in Figure 7 (d). The update of a reaction network finishes when
both the generation process and the corresponding mapping check of the last added

(a) The current reaction network. (b) The reaction network after the genera-
tion phase.

(c) The reaction network in the mapping
phase. (d) The updated reaction network.

Figure 7: An example of species generation and mapping in the graph processor.
The vertices denote species and the arrowed edges with a red circle denote reactions.
Note that different species are indicated by different numbers.

21

reaction finishes. In our example, this iteration is finished with species 4 and species
5 as new species.

The next iteration goes on with the updated reaction network in Figure 7 (d) as the
current network and the graph processor explore now species 1, 2, 3, 4, 5. This loop
ends when one iteration with no new species is finished. A pseudocode code of this
graph processing method is shown in Algorithm 1.

Alorithm 1 Generate New Species
Input: InitSL: List of Initial species
Output: SL: List of all possible species

1: function generation(InitSL)
2: SL = InitSL
3: visited[i] = False for i = 0 to len(SL)− 1
4: cursor = 0
5: while not visited[cursor] do
6: oldlen = len(SL)
7: for i = cursor to oldlen− 1 do
8: SL.insert(check_mono_reaction(i)) ▷ check_mono_reaction(i)

returns a list of all possible species generated by inter-species reaction concerning
the species with index i in SL.

9: visited[i] = True
10: end for
11: comb ← combinations of old species (whose index i in SL satisfies i <

oldlen) and new species (whose index i ≥ oldlen)
12: for j ∈ comb do
13: SL.insert(check_bi_reaction(j)) ▷ check_bi_reaction(j) returns

a list of all possible species generated by intra-species reaction concerning the
species in combination j.

14: end for
15: if oldlen ̸= len(SL) then
16: cursor = oldlen
17: else
18: cursor = oldlen− 1
19: end if
20: newlen = len(SL)
21: for i = oldlen to newlen− 1 do
22: visited.insert(False)
23: end for
24: end while
25: return SL
26: end function

22

PySB Model Generation There are three main types of components in PySB
models: Monomer, Rule and Parameter. Monomers are the elements whose be-
haviours one wants to model; rules define chemical reactions between monomers and
their complexes; parameters are constant numerical values that represent chemical
kinetics rates of the reactions. In RuleDSD, we consider species as an equivalent
to the PySB monomers, DSD reactions between the species as the PySB rules, and
kinetic rate constants of the DSD reactions as the PySB parameters. Hence, with
the information of a complete reaction network provided by the graph processor,
RuleDSD can simply construct a PySB model.

Simulation PySB provides an interface for numeric integration of PySB models.
The supported integrators include the ODE solvers listed in SciPy, the BioNetGen
integrator and the Kappa integrator. RuleDSD uses the BioNetGen integrator as
primary integrator and the SciPy lsoda integrator as a secondary integrator.

Visualisation RuleDSD produces not only simulation results as lineplots, but also
complete lists of discovered species and explored reactions by the graph processor. It
uses the MatPlotLib library as the graph engine for plotting the data retrieved from
simulation engines.

3.2 Preliminaries
Here we give definitions of the important concepts related to the representations of
DNA strand complexes in the RuleDSD modelling approach. We use some common
notations from graph theory.

3.2.1 Strand Graph

A Strand Graph (SG) is a hybrid graph that describes a system of DNA strands. We
take the definition of strand graph from [30] with an added attribute domain.

Definition 1. A Strand Graph is a 7-tuple SG = (V, length, colour, A, toehold, E, domain),
where:

• V = {1, ..., N} is the set of ‘vertices’, where each vertex is assigned a unique
natural number.

• ‘length’ is a function that assigns a natural number to a vertex, e.g., length(X) =
L indicates that vertex X has length L.

• ‘colour’ is a function that assigns a natural number to a vertex, e.g., colour(X) =
C indicates that vertex X has colour C.

23

• A and E are sets of sets containing two pairs, each pair consists of a vertex and
a position, e.g., {(X1, Y1), (X2, Y2)} denotes an element in A or E where X1, X2
are vertices and Y1, Y2 (Y1 ≤ length(X1), Y2 ≤ length(X2)) are positions in the
vertices, respectively. We call the elements in E ‘edges’ or ‘existing edges’ and
the elements in A ‘admissible edges’.

• ‘toehold’ is a function that assigns a boolean value to a set containing two pairs,
e.g., toehold({(X1, Y1), (X2, Y2)}) = True indicates that the set {(X1, Y1), (X2, Y2)}
is a toehold.

• ‘domain’ is a function that assigns an expression (a string of characters) to a
pair, e.g., toehold((X1, Y1)) = ‘D’ implies that the position Y1 in vertex X1 is
textually expressed as D.

In RuleDSD design, vertices in a strand graph denote strands. Since RuleDSD aims
to model domain-level DSD systems, the smallest units that compose the strands
are domains. Therefore, the lengths of vertices are represented in the length of
domains. Colours of vertices represent types of strands; strands with exactly the
same sequence of domains are considered of the same type of strands. Edges (existing
edges) denote bonds between domains, i.e., the edge {(X1, Y1), (X2, Y2)} denotes
a bond between domain at position Y1 of strand X1 and domain at position Y2 of
strand X2. Namely, a pair of a vertex and a position represents a domain. The
domain position is always numbered from the 5’ end to the 3’ end of the DNA strand,
and we start the numbering from 1 in this thesis. Admissible edges denote potential
bonds between domains, thus implying that A ⊇ E. Toeholds verify the toehold
type bonds, i.e., the bond {(X1, Y1), (X2, Y2)} is a toehold type bond if and only if
(X1, Y1) and (X2, Y2) are both toehold domains. Domains denote the expressions of
domains in the strands. An example of the strand graph representation is illustrated
in Figure 8.

3.2.2 Bond Graph

A Bond Graph (BG) is a secondary undirected graph derived from an SG that
describes the connections between the strands in the SG.

Definition 2. A Bond Graph is a 3-tuple BG = (V, colour, E), where:
• V = {1, ..., N} is the set of ‘vertices’, where each vertex is assigned a unique

natural number. V is inherited from an SG.

• ‘colour’ is a function that assigns a natural number to a vertex, e.g., colour(X) =
Y denotes vertex X has colour Y. The function colour is inherited from an SG.

• E is a set of sets containing two pairs, each pair consists of a vertex and a list
of positions, e.g., {(X1, [Y1]), (X2, [Y2])} denotes an element in E where X1, X2
are vertices and Y1, Y2 are positions in the vertices. We call the elements of E
‘edges’.

24

(a) Schematic of a domain-level DSD sys-
tem.

(b) Strand Graph of (a).

(c) Textual representation of (b).

Figure 8: An example of a DSD system represented in strand graph notations. The
‘∗’ symbol denotes complementary domains and the ‘ ˆ ’ symbol denotes toehold
domains. The colour numbers 1, 2, 3, 4, 5 denote respectively green, red, yellow,
blue, purple in (a) and (b). We use solid lines and dotted lines to represent edges
and admissible edges, respectively. Note that the arrows in (b) only demonstrate the
orientations of domains on strands from the 5’ end to the 3’ end.

The idea of a bond graph is to simplify an SG while preserving its central parts for
calculations. RuleDSD works with domain-level binding and unbinding of strands
in DSD systems. Hence, it only needs information on the connectivities of domains
between strands in the system.

A BG inherits the basic elements V and colour from an SG, they represent strands
and strand types as they do in the corresponding SG. Since only the connectivities
are relevant, the positions of bonded domains are needed instead of the details of
domains, because they show how the strands are connected. In contrast with an
SG, an element of an edge in a BG does not represent one bond, but all the bonds
between the two bonded strands. As shown in Figure 9 (a), the edges in BGs denote
the connections between strands. For example, the edge {(3, [2, 3]), (5, [3, 2])} denotes
that strand 3 is bonded to strand 5 by the domains at position 2 and position 3 of
strand 3, whose corresponding bonded domains are at position 3 and position 2 of
strand 5, respectively.

25

(a) Bond graph. (b) Textual representation of (a).

Figure 9: Bond Graph derived from the Strand Graph in Figure 8.

Note that RuleDSD does not check if the positions of domains in the edges of a BG
are valid, because the BG does not have the attribute length. This may lead to
inaccuracies when it relies on BGs for further calculations. Therefore, it is strictly
defined in RuleDSD that a BG must have a parent SG which it represents, and such
a relation is one-to-one in the system.

3.2.3 Canonical Labelling of Species

Species are DNA molecules consisting of interconnected strands. As a special case,
we also consider a strand with no connections with other strands a species. For
example, in Figure 9, the combination of strands 3, 4, 5 is a species, whereas strand
1 and strand 2 are two other species.

RuleDSD usually uses a strand graph to represent a species because it contains full
information. However, a strand graph may contain several species as the edges may
not connect all the vertices. Thus, a partition of a strand graph is needed to divide
components of strand graphs, each represents only one species. We present this
algorithm in Section 4.2 and we assume that every strand graph discussed in this
section represents only one species.

In this thesis, we represent species textually by adopting the syntax of process calcu-
lus from [30]. We apply slightly different naming as given by [30] in the following
definition.

Definition 3. Syntax for textual representation of species, in terms of domain name

26

x and bond name i.

Domain d ::= x Domain name
|x∗ Complementary domain
| x̂ Toehold domain

Possible bonded domain o ::= d Free domain
| d!i Bonded domain with bond name i

Strand S ::= o1...oN Sequence of domains, N ≥ 1
Species P ::= ⟨S1⟩|...|⟨SN⟩ Multiset of strands, N ≥ 1

We call this textual representation of a species a labelling due to the fact that it can
be seen as an assignment of labels to a strand graph (See Figure 10). A labelling of
a species given its strand graph can be derived by a graph traversal. Hence, a simple
Breadth-First Search (BFS) algorithm is used to derive the labelling of a species as
illustrated in Algorithm 3.

We briefly discuss the labelling algorithm (Algorithm 3) by a walkthrough using
the example in Figure 10. Suppose we start from the strand 3 in (b), we write the
domains occurred in the strand from the 5’ end to the 3’ end and wrap them with
brackets. When there is a bonded domain occurred, we write a ‘!’ symbol to indicate
that it is bonded and append its bond name afterwards. Nevertheless, there must be
two bonded complementary domains with the same bond name in a labelling, with
the restriction that this bond name occurs only twice in the labelling. Therefore,
we represent strand 3 in a labelling as ⟨E ∗̂ D∗!b2 C ∗̂!b3 B∗!b1⟩. We then append a
‘|’ symbol as a separation of strands, and write the first strand that strand 3 binds
with, i.e., the strand with a domain that binds with the smallest domain in strand 3,
which is strand 5 in this case. We move on to the second strand that strand 3 binds
with (strand 4), and we finish this exploration of strand 3 when all the strands that
bind with strand 3 are written. We further explore the next written strand (strand 5
in our example), and so on. The derivation is finished when all the strands in the
species are written.

Recall that there is a mapping phase in the graph processor of RuleDSD in which it
detects if a newly discovered species coincides with known species. One can consider
this problem as a graph isomorphism problem, where one needs to tell if a given
strand graph is isomorphic to any of the existing strand graphs. The definition of a
strand graph isomorphism is similar to that of a standard coloured graph isomorphism,
with added features concerning the positions on the vertices.

Definition 4. Let G and G′ be strand graphs. An ‘isomorphism’ is a bijective
function σ : G.V →bij G′.V satisfying the condition that σ(G) = G′, i.e.:

1. ∀v1, v2 ∈ G.V, i ∈ [1, G.length(v1)], j ∈ [1, G.length(v2)], it holds that
{(v1, i), (v2, j)} ∈ G.E ⇐⇒ {(σ(v1), i), (σ(v2), j)} ∈ G′.E.

27

(a) Schematic domain-
level representation.

(b) Strand graph representation. (c) Labelling represen-
tation.

Figure 10: Representations of an example species taken from Figure 8. The labelling
in (c) is derived by Algorithm 3 given (b) and start vertex 3 as input.

2. ∀v ∈ G.V , it holds that G.colour(v) = G′.colour(σ(v)).

An isomorphism from G to itself is called an ‘automorphism’.

Since strand graph isomorphism is an edge-preserving bijection with the additional
information on the edges including the coloured vertices and positions in vertices,
two strand graphs are isomorphic to each other if and only if they represent the same
species.

In graph theory, the canonisation problem for finding a canonical labelling of a graph
is often connected to the graph isomorphism problem. A canonical labelling of graph
G is an isomorphism-invariant labelling of G’s vertices, i.e., the canonical labellings
of two graphs are the same if and only if they are isomorphic to each other.

Definition 5. A canonical labelling L(G) of a graph G satisfies the property that
for any graph G′, L(G) = L(G′) ⇐⇒ G ≃ G′.

Algorithms for canonical labelling of graphs used for modelling in biology have been
well studied [29, 23]. Inspired by the canonical labelling algorithms given in [29],
we prove the existence of a canonical labelling for a strand graph that represents
a species in the rest of this section. With the canonical labelling of strand graphs,
RuleDSD creates a tag for a strand graph that allows it to compare the tag with
other tags so that it learns if the strand graph represents the same species with other
strand graphs, which is exactly what should be achieved in the mapping phase.

Theorem 1. Given two strand graphs G, G′ with starting vertices s, s′ to Algorithm
3, the outputs are the same if and only if there exists a strand graph isomorphism σ:
G ≃ G′ such that σ(s) = s′.

Proof. We first show that Algorithm 3 producing the same outputs for G and G′

implies that G and G′ are isomorphic to each other. To further analyse the statement,
we give Algorithm 2, a method to rename the vertices in G and G′ and to produce a

28

Alorithm 2 Define σ

Input: ls: a labelling derived from G; ls′: a labelling derived from G’.
Output: σ: a bijective function.

1: function derivation(ls, ls′, G, G′)
2: α, α′ = ∅
3: ls.split(′|′) ▷ Split the string ls into lists using character ‘|’ as separators
4: ls′.split(′|′)
5: for i = 1 to ls.length do
6: α = α + {i}
7: α′ = α′ + {ls.length + i}
8: σ(i) = ls.length + i
9: σ(ls.length + i) = i

10: end for
11: G.V = Rename(G.V, α) ▷ Rename elements in G.V according to α
12: G.V ′ = Rename(G.V ′, α′)
13: return σ
14: end function

function serving as a strand graph isomorphism.

Algorithm 2 renames the vertex in position i of ls as i and the vertex in position
i of ls′ as ls.length + i and sets the bijection σ between i and ls.length + i for
i ∈ [1, ls.length]. Since the outputs are the same, the sets of colours of vertices and
the sequences these vertices appear in the labellings are the same. Therefore, we
have ∀v ∈ G.V, G.colour(v) = G′.colour(σ(v)).

The canonical form includes the binding information between vertices, that is,
∀p ∈ [1, ls.length], the vertex vp at position p in ls and the vertex vls.length+p at
position p in ls′ are bonded to the vertices at the same positions k1, .., kn (n ≥ 1)
in ls and ls′ at the same positions of domains, respectively. Therefore, we have
∀t ∈ [1, n], i ∈ [1, G.length(vp)], j ∈ [1, G.length(vkt)]:

{(vp, i), (vkt , j)} ∈ G.E ⇐⇒ {(vls.length+p, i), (vls.length+kt , j)} ∈ G′.E

⇐⇒ {(σ(vp), i), (σ(vkt), j)} ∈ G′.E.

We conclude that σ is an isomorphism, and we have G ≃ G′. We check that it is
indeed the case that σ(s) = s′. Therefore, if Algorithm 3 produces the same outputs
for G, G′, then G, G′ are isomorphic to each other.

Now we show that the existence of an isomorphism σ : G ≃ G′ implies that Algorithm
3 produces the same outputs for G, G′ given the starting vertices s, s′ where σ(s) = s′.
Assume that we give s, G and s′, G′ separately to Algorithm 3, and we use a prime
symbol to denote values obtained in the run with s′, G′, e.g., ls′ denotes the output
of the run with s′, G′. We can see from the inner loop (lines 13 to 29) of Algorithm
3 that for each vertex v (v′ if in the run with s′, G′) added to queue Q, it is the

29

case that σ(v) = v′. Therefore, each vertex in the sequence ls has the same string
representation of that in the sequence ls′, implying that ls = ls′.

Corollary 1. There exists a canonical labelling, if one can establish that for any
two isomorphic strand graphs G ≃ G′, it is the case that σ(s) = s′ for the starting
vertices s, s′ of Algorithm 3.

Proof. We know from Theorem 1 that two labellings derived by Algorithm 3 are
the same if and only if it holds that σ : G ≃ G′ such that σ(s) = s′. Therefore, a
labelling is unique for an isomorphism class if the starting vertices chosen for this
class are isomorphic to each other.

We further discuss the derivation of a canonical labelling in Section 4.2 together with
optimisation techniques available to speed up the canonical labelling process.

30

Alorithm 3 Derive a Labelling
Input: s: start vertex; SG: strand graph of a species.
Output: ls: a labelling of the species.

1: function derive_labelling(s, SG)
2: for u ∈ SG.V − {s} do
3: u.visited = False
4: end for
5: s.visited = True
6: ls = String()
7: Q = ∅
8: ENQUEUE(Q, s)
9:

10: while Q ̸= ∅ do
11: u = DEQUEUE(Q)
12: str =′ ⟨′
13: for i = 1 to SG.length(u) do
14: str = str + SG.domain((u, i))
15: if is_bonded(u, i) then
16: (v, j) = bonded_to(u, i)
17: if v.visited = False then
18: str = str+′!′ + create_bond_name(u, i, v, j) ▷

create_bond_name() simply name the bond by the order that it is encountered.
19: ENQUEUE(Q, v)
20: else
21: str = str+′!′ + get_bond_name(u, i)
22: end if
23: end if
24: if i = SG.length(u) then
25: str = str+′⟩′
26: else
27: str = str +′ ′

28: end if
29: end for
30: u.visited← True
31: if Q.is_empty() then
32: ls = ls + str
33: else
34: ls = ls + str +′ |′
35: end if
36: end while
37: return ls
38: end function

31

4 Methods
In this section, we present the technical details of the RuleDSD pipeline. The section
is organised as shown in Figure 6, except that we discuss the generation and mapping
phase in the graph processor separately in Sections 4.1 and 4.2.

4.1 Generation of Reaction Network
The reactions in a DSD system follow four rules: Rule Binding (RB), Rule Unbinding
(RU), Rule Three-Way Branch Migration (R3) and Rule Four-Way Branch Migration
(R4). We only consider reactions that conform to one of these rules. Reactions are
further categorised into two types: intra-species and inter-species reactions. All
four rules are applicable to intra-species reactions, whereas only RB is applicable to
inter-species reactions.

As shown in Algorithm 1, the RuleDSD graph processor (referred to as the graph
processor in the following sections) enumerates all possible reactions based on the
current species, meaning that it checks if the conditions for applying any of the four
rules are satisfied for each species and then checks if the combination of any two
current species satisfies the conditions of RB. The generation phase starts with a set
of initial species provided as user input in a labelling form and finishes when there
are no more reactions to be explored. Note that the checks for rules are performed
on strand graphs of species or combinations of species. Therefore, we refer ‘edges’ to
edges (existing edges) in strand graphs unless we define the scope of the discussion
is with respect to bond graphs in this section. In the case of an inter-species binding
check, the two separate strand graphs of the reactants are merged to one strand
graph preserving all the details.

When a rule is applied, a reaction is formed and the product(s) of reactant(s) will
then be put into the mapping phase. At the same time, the information of the
applied reaction is stored so that the full list of reactions can be further retrieved in
a PySB model. We discuss the implementations of the four rules in the following
subsections and the mapping algorithm in Section 4.2.1.

4.1.1 Rule Binding (RB)

Given a strand graph, the graph processor examines each admissible edge that is not
an existing edge (∀e ∈ A− E) eligible for binding. To check if two domains in an
admissible edge can be bonded together, the graph processor first needs to decide if
they belong to the same species. If the domains belong to the same species, they
must satisfy the following preconditions for binding: 1) both domains are free, i.e.,
they are not bonded to any other domains; 2) the two domains are not hidden in
different loops of bonds (see Figure 11 for examples); 3) the binding is antiparallel.

32

(a) Hidden domain in a
harpin loop.

(b) Hidden domains in two
strands.

(c) Hidden domains in mul-
tiple strands.

Figure 11: Illustration of hidden domains. We say domain X in (a), domains X1, X2
in (b) and domains X1, X2, X3, X4 in (c) are hidden and thus they are not available
for binding with other domains outside the loops.

If the domains do not belong to the same species, they should satisfy the additional
precondition such that they are toehold domains.

The condition difference between intra-species and inter-species binding is because
the execution of a DSD system is designed around a set of toehold-mediated strand
displacement steps, where inter-species binding reactions mainly involve short toehold
domains. Inter-species binding reactions between long domains are traditionally
discarded in the design phase, as they do not serve any useful purpose in the DSD
systems.

Intra-species Binding & Inter-Species Binding RB is involved in both intra-
species and inter-species reactions, and the two types of reactions shall be treated
separately. Here, we discuss how to categorise a binding as intra-species or inter-
species in a strand graph that contains more than one species.

Finding the number of species in a strand graph is equivalent to finding the number
of connected components in the corresponding bond graph. Therefore, the problem
can be viewed as finding a spanning forest of a bond graph. We give the definitions
of spanning tree and spanning forest as follows.

Definition 6. A graph F = (V ′, E ′) is a spanning forest of a graph G = (V, E) if
V ′ = V , E ′ ⊂ E, and each component of F is a spanning tree of a component of G
[2].
Definition 7. A graph T is a spanning tree of an undirected graph G if T is a tree
which includes all of the vertices of G.

One can use any graph traversal algorithm iteratively to obtain a spanning forest
of a given bond graph. Hence, one can store the covered vertices in one iteration

33

(a) Schematic domain-level representation.

(b) Bond Graph representation.

Figure 12: Representations of two example species. In (b), Solid lines represent edges
in a spanning forest of the bond graph and dashed lines represent edges that are not
in the spanning forest.

as vertices of a species. In the example in Figure 12, suppose we start the traversal
from vertex 1 and name the species by the iteration count, then vertices {1, 2, 3, 4}
belong to species 1 and vertices {5, 6, 7} belong to species 2. Such process can be
done when the bond graph is initialised.

When an admissible edge in the strand graph is examined, the graph processor can
then see if the vertices on the admissible edge are of the same species by looking
into the stored information in the corresponding bond graph. For example, the
admissible edge {(1, 2), (3, 2)} in Figure 12 will be categorised as an intra-species
binding because vertices 1, 3 are both in species 1, whereas the admissible edge
{(1, 2), (6, 2)} will be categorised as an inter-species binding because vertex 1 is in
species 1 and vertex 3 is in species 2.

Hidden Domains Hidden domains are the domains inside a loop of bonds (see
Figure 11). It is not possible for the hidden domains in a loop of bonds to bind
with domains that are outside of this loop because the loop forms a rather stable
structure. There are many algorithms available for finding loops in a graph, here we
give Algorithm 4 based on the spanning forest obtained earlier for loop detection.
Therefore, this task is performed on bond graphs. Note that we use adjacency list
(G.Adj in Algorithm 4) to represent the edges in the bond graph.

34

Alorithm 4 Detect Loop
Input: G: a bond graph; T : a spanning tree of G;
Output: loop: a list of all the loops in G.

1: function detect_loop(G, T)
2: loop = List()
3: for u ∈ T.V do
4: for e ∈ G.Adj[u] do
5: if e /∈ T.Adj[u] then
6: v = e.node2 ▷ get the vertex that u is connected to by e
7: path = search_path(u, v, G) ▷ search_path(u, v, G) returns all

the paths in lists from u to v in G
8: loop.insert(path)
9: end if

10: end for
11: end for
12: return loop
13: end function

Alorithm 5 Get Hidden Domains
Input: G: a bond graph; loop: a list of all the loops in G;
Output: hidden: a list of all the hidden domain in loop.

1: function get_hidden(G, loop)
2: hidden = List()
3: for i ∈ loop do
4: if i == 0 then
5: (pre, suc) = (len(loop)− 1, i + 1)
6: else
7: if i == len(loop)− 1 then
8: (pre, suc) = (i− 1, 0)
9: else

10: (pre, suc) = (i− 1, i + 1)
11: end if
12: end if
13: e1 = get_edge(i, pre) ▷ get the edge that connects i to its predecessor
14: e2 = get_edge(i, suc) ▷ get the edge that connects i to its successor
15: d = sort(e1.dom + e2.dom) ▷ sort the bonded domains on i that connects

i to its predecessor and successor
16: for d[0] < j < d[len(d)− 1] do
17: hidden.insert((i, j))
18: end for
19: end for
20: return hidden
21: end function

35

In short, for each edge in a bond graph that is not an edge of the spanning forest of
the bond graph, a pathfinding algorithm is applied to the bond graph (excluding the
edge) from one vertex to another in the edge, and the number of paths it returns is
the number of loops the edge is involved in. For example, the edge {(1, [3]), (3, [1])}
in Figure 12 (b) is not an edge of the spanning forest, which indicates that at least
one loop exists in the bond graph. Suppose we apply a pathfinding algorithm from
vertex 1 to 3, path [1, 2, 4, 3] will be found. This path is then stored as a loop in the
bond graph.

The next step is to find and store hidden domains in each loop. Since a loop is stored
in an ordered way, the graph processor simply needs to store the domains that are in
between the bonded domains that connect a vertex to its neighbours in the loop (see
Algorithm 5).

However, the above technique does not deal with hairpin loops and loops between
two strands as illustrated in Figure 11 (a) and (b). These two cases are treated
separately in RuleDSD. The graph processor can store the hidden domains in these
two special cases when the edges of the bond graph are initialised. Once there is an
edge that leads to a self-loop, it matches the pattern of a hairpin loop. When there
are multiple positions of a vertex connecting to the same vertex, loops between two
strands might occur.

Free Domains A domain cannot bind with two domains at the same time. There-
fore, the graph processor must know if both domains in an admissible edge are free
for binding. Such check can be easily done by looking into the edges of the strand
graph, i.e., any domain that is contained in an edge is not free.

Antiparallel For two strands of nucleotides binding together, the orientations of
the sugar-phosphate backbones of the strands have to be opposite to each other. This
antiparallel orientation is an important characteristic of a DNA helix, and it allows
the nucleotides to complement one another, which makes the helix structurally stable.
Since RuleDSD uses domains as the smallest units, it considers antiparallelism at
domain-level, i.e., two domains are antiparallel if bonds formed between them satisfy
the antiparallel property of the two corresponding strands.

As stated in Section 3.2.1, the positions of a vertex in a strand graph indicate
the domain positions in the strand from the 5’ end to the 3’ end. This universal
orientation setting enables the graph processor to check if a binding is antiparallel. In
inter-species binding, this check can be skipped because the strands that contain the
binding domains are not connected. This allows one of the strands to be placed in
either orientation and there is no restriction to place the other strand in the opposite
orientation.

We define the notion of connection path as follows. It plays a critical role in antipar-
allelism checking and can be obtained by performing a reformed BFS algorithm on

36

the bond graph.

Definition 8. A connection path P from a domain (X, Y) to another domain (X ′, Y ′)
in a strand graph G is a sequence of domains ((X, Y0), (X1, Y1), ..., (XN , YN)) such
that X0 = X, XN = X ′, and the set of every two consecutive elements in the sequence
correspond to the existing edges of G.

In intra-species binding, the two free domains can not bind together due to a violation
of antiparallelism if: 1) for both to-be-bonded domains, each has an adjacent domain
and these adjacent domains are in a connection path of the to-be-bonded domains;
and 2) the to-be-bonded domains are in the same direction from these adjacent
domains. Since the direction can be inferred from the domain position numbers, the
graph processor can easily perform this task.

In Figure 13 (a), the admissible edge e1 = {(1, 2), (2, 2)} is not eligible for binding
because:

1. Domains (1, 1) (adjacent to domain (1, 2)) and (2, 1) (adjacent to domain (2, 2))
are in the connection path ((1, 1), (2, 1)) from domain (1, 2) to domain (2, 2).

2. Domain (1, 2) is in the 3’ end direction from domain (1, 1), so is domain (2, 1)
from domain (2, 2).

In the contrary to e1, the admissible edge e2 = {(1, 2), (2, 1)} with the connection
path ((1, 1), (2, 2)) from (1, 2) to (2, 1) in Figure 13 (b) is eligible for binding, because

(a) (b)

(c) (d)

Figure 13: Illustration of antiparallel bindings.

37

domain (1, 2) is in the 3’ end direction from domain (1, 1), whereas domain (2, 1) is
in the 5’ end direction from domain (2, 2).

Although domain (1, 2) and domain (2, 2) in Figure 13 (a) can not bind together,
these two domains can be bonded together provided that free intermediate domain(s)
exist in at least one of strand 1 and strand 2 so that a loop can be formed (see (c)).
Such looping results in pseudoknotted DNA structures, a class of DNA structures
in which non-nested base-pairing occurs. As our named-pairing notation used for
representing species does not restrict such DNA structures, the RuleDSD modelling
covers DNA structures that may arise due to such looping.

Moreover, the free intermediate domain(s) in between a bonded domain and a to-
be-bonded domain can be twisted into any orientations so that the to-be-bonded
domain is close enough to bind with another free domain. Note that this twist is
feasible if the domain(s) in between is long enough. Since RuleDSD does not include
the length of the domain in nucleotides, we choose to set the twist by default feasible.

However, the twists might violate the previously defined anti-parallelism criteria as
shown in Figure 13 (d). The admissible edge {(2, 2), (4, 2)} is eligible for binding
even if:

1. Domains (2, 1) (adjacent to domain (2, 2)) and (4, 1) (adjacent to domain (4, 2))
are in the connection path ((2, 1), (3, 1), (3, 2), (1, 2), (1, 1), (4, 1)) from domain
(2, 2) to domain (4, 2).

2. Domain (2, 2) is in the 3’ end direction from its adjacent domain (2, 1), so is
domain (4, 2) from domain (4, 1).

One can easily extend this scenario to other scenarios of a similar system containing
even number (>2) of strands. The graph processor treats these scenarios as special
cases in rule binding. They can be detected by counting the length of the connected
path.

Toehold Binding Toehold domains are usually short in length of nucleotides such
that they can easily bind and unbind with their complementary domains. In the
case of inter-species binding, we only consider toehold binding. Recall that there is a
toehold attribute in the definition of strand graph in Section 3.2.1, this attribute
allows the graph processor to check toehold binding in a convenient way.

4.1.2 Rule Unbinding (RU)

The graph processor examines each existing edge (∀e ∈ E) in a given strand graph
eligible for unbinding. If a bond is between two toehold domains (which we call a
toehold type bond) and its two ends are not held close to each other (e.g., held by
an adjacent bond as shown in 14 (a)), the graph processor considers the bond as an

38

(a) (b)

(c) (d)

Figure 14: Anchoring of toehold type bonds. (a) Bond b3 is anchored because
the adjacent domains A, A∗ of T ,̂ T ∗̂ are also bonded to each other. (b) Bond b2
is not anchored because the adjacent domains A, A∗ of T ,̂ T ∗̂ are free. (c) Bond
b1 is not anchored because either of its adjacent bonds b3, b4 does not attach the
undergoing unbinding strands. (d) Bonds b1, b6 are not anchored. Although both of
their adjacent bonds b3, b4 attach the undergoing unbinding strands by a junction
(b3−b1−b4−b6), their anchoring here is with respect to toehold type bonds. Namely,
there are more than one toehold type bonds in the junction. We consider a toehold
type bond as a weaker bond, and thus we say b1, b6 are not anchored.

unbinding bond. For example, bonds b2 in Figure 14 (b), bond b1 in (c) and bond
b1, b6 in (d) are available for unbinding.

Since the function checking a toehold type bond is already prescribed for rule binding,
the graph processor can simply reuse it for rule unbinding.

Peterson et al. [30] describe a bond anchored when both ends of the bond are held
close to each other. A bond is anchored if one of its adjacent bonds connects the
same strands or it is involved in a junction. Notably, if the bond is in a junction,
it should satisfy the condition that the junction does not involve any other toehold
type bonds (see Figure 14 (d) for a counterexample).

To implement the anchoring inspection feature, the graph processor first checks if
there is an adjacent bond holding the two undergoing unbinding strands together
and then checks if there is a junction that contains the undergoing unbinding bond
when the previous check fails.

The first check for anchoring can be easily viewed from the bond graph. Given un-
binding domains (X1, Y1), (X2, Y2), the graph processor examines the list of domains
in vertex X1 that are bonded to domains in vertex X2, X1 is anchored to X2 if
(X1, Y1 − 1) is bonded to (X2, Y2 + 1) or (X1, Y1 + 1) is bonded to (X2, Y2 − 1).

39

The existence of a junction is the existence of a loop in the bond graph with the
condition that the bonds constituting the loop are adjacent to each other. Recall
that the graph processor stores the information of all the loops in the bond graph
for RB, here it simply reuses that information to test if the undergoing unbinding
vertices are in a loop and the edges constituting this loop are adjacent to each other
with respect to the positions in each vertex.

4.1.3 Rule Three-way Branch Migration (R3)

Three-way branch migration is a process in which an invading strand binds with
a base strand and displaces the incumbent strand that is bonded with the base
strand, the process is mediated by an already formed adjacent bond (usually toehold
type bond) between the invading strand and the base strand. Similar to the rule
binding, the graph processor examines each admissible edge that is not an existing
edge (∀e ∈ A− E) in the strand graph eligible for migration (R3 and R4). Particu-
larly for three-way branch migration, one domain in the admissible edge undergoing
examination is free and the other is bonded.

Three-way branch migration occurs if: 1) the bond that the admissible edge under-
going examination forms is anchored after the migration occurs, 2) the new bond
satisfies the antiparallel property of the DNA complex.

In Figure 15 (a), we see that after the migration occurs, the bond {(1, 2), (2, 3)} is
anchored because of b2 and satisfies the antiparallel property. Thus, we say that R3
is applicable to the admissible edge {(1, 2), (2, 3)}. Similarly in Figure 15 (b), R3 is
applicable to the admissible edge {(3, 3), (5, 1)}. The bond {(3, 3), (5, 1)} is anchored
after migration because the junction involving b1, b2, b4, b5 holds, and the strands

(a)

(b)

Figure 15: Illustrations of possible three-way branch migrations.

40

3, 5 are antiparallel.

Notably, after the three-way branch migration occurs in Figure 15 (a), R3 turns
applicable to the admissible edge {(1, 1), (2, 4)}. Considering the adjacency feature
of three-way branch migration, the graph processor analyses all the possible following
three-way branch migrations together with the first one as a one-step reaction. It
means that the product(s) of a three-way branch migration reaction are the final
product(s) in the state that no other three-way branch migrations can happen in the
direction of the bond that mediated the migration(s).

One can see that the preconditions and postconditions for R3 are functions that we
have discussed for RB and RU. Hence, the elaborations for the implementations of
R3 are omitted.

4.1.4 Rule Four-way Branch Migration (R4)

Four-way branch migration is a process in which two bonds are simultaneously
exchanged between two pairs of complementary domains, mediated by an adjacent
bond (usually toehold type) between the exchanging bonds (see Figure 16). The
graph processor examines each admissible edge that is not an edge (∀e ∈ A− E) in
the strand graph eligible for R4 as it does for R3. However, both domains on the
admissible edge should be bonded in order to initiate four-way branch migration.

Four-way branch migration occurs if: 1) one of the newly formed bonds is anchored
after the migration occurs, 2) the two new bonds satisfy the antiparallel property of
the DNA complex.

In Figure 16 (a), R4 is applicable to the species on the left-hand side. There are
two existing bonds b2, b5 that have the same pair of complementary domains and
they share the same adjacent bonds b1, b4. Therefore, it is feasible for b2 and b5
to exchange their strands so that there are two new bonds between the two pairs
of complementary domains, which are b2, b5 in the new species on the right-hand
side. Finally, the graph processor checks that the new bonds do not break the
antiparallel property in the DNA complex(es), meaning that the new species are
feasible. Nevertheless, this particular reaction in (a) is bi-directional because R4 can
be applied to the new species, whereas the four-way branch migration in (b) results
in two species, and thus is irreversible.

Four-way branch migration can be seen as a special case of three-way branch mi-
gration such that there are two invading strands in the former in contrast to one
in the latter. The two invading strands are bonded, and at least one of them is
able to initiate a three-way migration to form a new bond (the same new bond if it
were a four-way branch migration) if it is not bonded. This insight allows the graph
processor to use implementations of R3 for R4.

41

(a)

(b)

Figure 16: Illustrations of possible four-way branch migrations.

4.2 Species Mapping
Species are stored as the canonical labellings of their strand graphs in RuleDSD be-
cause they enable the graph processor to promptly test graph isomorphism. However,
analysing reactions in the DSD system requires strand graph representations, which
demands changes between strand graphs and their canonical labellings rapidly.

4.2.1 From a Strand Graph to Its Canonical Labelling

As one can tell from the reaction network generation, the reactions rules in a DSD
system are based on the strand graphs and we may apply changes to those strand
graphs if they satisfy the conditions of a rule. A change in a strand graph leads to a
new strand graph which represents one or more new species.

Precisely, the strand graphs that the generation phase produces after applying RU,
R3 and R4 may represent more than one species. Since the individual species in
the DSD system are the fundamental elements for reactions, it is crucial to separate
all the species in these strand graphs. We have shown in Section 4.1.1 how to find
the number of connected components (i.e., species) and vertices belonging to each
component in a strand graph. In Algorithm 6, we simply retrieve the related vertices
of every species in the strand graph and keep every part in the strand graph that
represents a species as a new strand graph.

After ensuring that each species has its own strand graph after generation, the graph
processor needs a mapping algorithm to determine if the generated species are new

42

Alorithm 6 Separate All Species
Input: G: a strand graph.
Output: lG: a list of strand graphs.

1: function seperate(G)
2: lG = List()
3: BG = BondGraph(G)
4: lsp = BG.get_all_species() ▷ get_all_species() returns a list of sets of

vertices such that each set contains all the vertices in a species.
5: for i = 1 to lsp.length do
6: lG = lG + G.keep_vertex(lsp[i]) ▷ keep_vertex(x) returns a strand

graph keeping only the vertices in x and their relevant information.
7: end for
8: return lG
9: end function

Alorithm 7 Canonical Labeller
Input: G: the strand graph of a species.
Output: cl: a canonical labelling of G.

1: function derive_canonical_labelling(G)
2: l = List()
3: for v ∈ G.V do
4: l = l + derive_labelling(v, G) ▷ derive_labelling() is defined by

Algorithm 3.
5: end for
6: l.sort() ▷ Sort list l with ascending order.
7: cl = l[0]
8: return cl
9: end function

in the DSD system. By Corollary 1 in Section 3.2.3, we know that there exists a
canonical labelling for each species in the DSD system. Namely, two species are
the same if and only if their canonical labellings are identical. Hence, the mapping
algorithm in RuleDSD simply calls a canonical labeller and compares its output with
all the canonical labellings of current species.

We present the canonical labeller for deriving a canonical labelling of a species in
Algorithm 7. A species can have at most N different labellings by the labelling
derivation algorithm (Algorithm 3) if it consists of N strands, i.e., its strand graph
has N vertices. There are many ways to find a unique labelling of a species. Here
we suppose that we find the alphabetically smallest labelling. This smallest labelling
is a canonical labelling because two labellings are the same if the two strand graphs
are isomorphic to each other and two isomorphic strand graphs have the same set of
labellings by Theorem 1, meaning that the smallest labelling in the set is identical
for the two isomorphic strand graphs.

43

The canonical labeller given by Algorithm 7 is not optimal as it derives all labellings
by using every vertex in the strand graph as a candidate starting vertex. Moreover,
there is no need to compare the labellings only when the derivations are finished
because the differences may emerge before the traversals end in Algorithm 3. We
provide several optimisation techniques for the canonical labeller as follows.

Candidate Set Cut The original candidate starting vertex set (candidate set)
for the canonical labelling includes all the vertices in a strand graph. However, if
we always choose a subset of the original candidate set as the candidate set and
this exact subset is chosen for every strand graph in an isomorphism class of strand
graphs, the alphabetically smallest labelling among the derived labellings using the
new candidate set is still a canonical labelling.

For example, we can choose the set of vertices that has the smallest colour as the
candidate set. Therefore, the labelling we choose for a strand graph in this setting
is the alphabetically smallest labelling that is derived from a vertex of the smallest
colour. It is obvious that two isomorphic strand graphs have the same smallest
colour, thus, their chosen labellings are the same. We also know that the same two
labellings imply graph isomorphism by Theorem 1. Hence, the labelling we choose
in this setting is indeed a canonical labelling of the strand graph.

Vigorously, one can choose the set that has the smallest size among all sets of vertices
of the same colour as suggested by [30]. In this case, it is possible to skip the
comparisons of the labellings in order to obtain the canonical labelling as there may
be one unique strand in the species.

One can also impose restrictions other than colour and size on the candidate set.
For example, we can prune the set again by the smallest number of edges concern-
ing the vertex. This can be easily achieved by checking the corresponding bond graph.

On-the-fly Comparison There are two layers of loops in Algorithm 3, the outer
loop (line 10 to 36) sets the current examination position on a specific strand and
the inner loop (line 13 to 29) further sets the position on a specific domain on the
strand. Even if we choose a set of vertices of the same colour as the candidate set,
we might still be able to differentiate the labellings after one iteration of the outer
loop. Therefore, we can compare the labellings after each outer iteration finishes in
the labelling derivation process, which we call on-the-fly comparison. Note that the
comparison here is between two strings that may have different lengths, the longer
string by convention is larger if the characters of the length of the shorter string in
the longer string matches the shorter string. We are choosing the labelling that has
the alphabetically smallest string (sub-labelling) in every executed outer iteration.
This labelling is still a canonical labelling as it is also unique for an isomorphism class.

Suppose we choose {1, 2} as the candidate set in Figure 17. After one outer iteration

44

(a)

(b)

(c)

Figure 17: Strand graphs of multiple example species.

in (a), we have sub-labellings ⟨A!1 B⟩ and ⟨A!1 B!2⟩ produced by inputting starting
vertices 1, 2 to Algorithm 3, respectively. The canonical labeller with on-the-fly
comparison chooses sub-labelling ⟨A!1 B!2⟩ because the ASCII code of ‘!’ is smaller
than ‘⟩’. Hence, the canonical labelling for the species in (a) is derived using starting
vertex 2, which is ⟨A!1 B!2⟩|⟨B∗!2 A∗!1 B∗ A∗!3⟩|⟨A!3 B⟩. In (b), the sub-labellings
produced after the first outer iteration are identical. Thus, the second outer iteration
is needed to determine which labelling should this species use as its canonical labelling.

However, a situation where there are multiple identical labellings that satisfy the
conditions for the canonical labelling may occur (see Figure 17 (c)). This is due to
the existence of automorphism in the strand graph and it may occur for all canonical
labellers. Nevertheless, we can simply choose either labelling that is left in the end
and it is a canonical labelling.

45

4.2.2 From a Labelling to Its Strand Graph

The transformation from a labelling to its strand graph can be seen as the initialisa-
tion of the strand graph. That is to say, the strand graph should contain the same
information as its corresponding labelling, which is also inferred by the fact that the
strand graph and the labelling are two representations used for a species in RuleDSD.
In the following, we show that a strand graph indeed contains the information its
labelling has.

A labelling l of a species clearly involves the number of strands in the species and
the lengths of each strand, which are V and length of its strand graph G. Since
the syntax of labelling l contains the domain-level information including domain
name and marks for toehold domains and bonded domains, one can easily obtain
functions domain, toehold and the set of edges E for G. To construct A for G, one
needs to match all complementary domains for every domain name in the labelling.
A labelling does not explicitly tell the colours of strands it contains. One can keep a
hash table globally where the sequence of domains of a strand disregarding the bonds
is the index value and the colour it represents is the data value. Therefore, colour
of G can be retrieved from the hash table by using each strand in the labelling as
the index. For simplicity, the graph processor saves the colours of the strands in the
labelling together with the labelling itself. Thus, colour of G can be retrieved directly.

The above paragraph illustrates the process of deriving a strand graph from a la-
belling. This process has no ambiguity as there cannot be two strand graphs with any
different attribute produced by one labelling. Thus, a labelling of a species uniquely
defines a strand graph. Since a strand graph has a unique canonical labelling, the
relation between a strand graph and the species it represents is exclusive.

4.3 PySB Model Generation
The graph processor generates the full reaction network for a DSD system, which
provides information to simulate the system. RuleDSD uses the PySB framework for
integration with the BioNetGen engine in order to simulate the generated reaction
network. Since PySB is designed for rule-based modelling for biochemical systems,
it easily enables a translation of the data structures the graph processor uses for
modelling the DSD system to a PySB model. The PySB model is further prompted
for a BioNetGen simulation.

There are three essential components in a PySB model, they are named Monomer,
Rule and Parameter in PySB. We discuss the initialisations of these components for
RuleDSD in the following paragraphs.

Monomers are the fundamental elements in the system whose behaviours form re-
actions in the system. In other words, monomers in a PySB model are indivisible.

46

Traditionally, monomers are the fundamental elements that constitute the species,
because PySB modelling approach is designed for those systems in which all the
possible species and reactions are not known before the initialisation of the mod-
els. In our case, despite that the species may be divisible in biological standards,
RuleDSD does not need to track down the details of a reaction in the level of
strands during simulation because it already has those details from its graph pro-
cessor. Thus, RuleDSD uses species instead of strands as monomers in a PySB model.

Parameters are constant numerical values that represent biological constants. They
are of needed for defining a Rule object. RuleDSD provides the reaction rates that a
user defines as parameters in a PySB model.

Rules define reactions between the complexes, which matches the definition of re-
actions in the graph processor. Therefore, RuleDSD writes each reaction from the
graph processor as an expression that encloses the reactants and products in PySB
syntax and then provides it together with its reaction rate to a PySB model as a
rule.

Hence, a PySB model that describes the reaction network for a DSD system is created
with a complete list of possible species and a list of corresponding reactions, as well
as the reaction rates. Note that the reaction rates are with respect to the rules in
DSD modelling, i.e., reactions enabled by the same rule shall have the same reaction
rate.

4.4 Simulation
The chemical kinetic theory for modelling reaction networks allows describing a set
of reactions in terms of ordinary differential equations (ODEs). Therefore, one can
simulate the chemical kinetic model by initialising a model with certain concentra-
tions on the initial species and use numerical integration to solve the set of ODEs
with respect to time. However, this approximation method is not useful if stochastic
noises are concerned, i.e., when the concentrations are small for the species. In this
situation, Gillespie’s stochastic simulation algorithm (SSA) [14] is recommended for
the simulation. BioNetGen (BNG) provides both simulation methods illustrated
above [41].

PySB integrates with BNG, and thus allows simulating a PySB model using BNG’s
simulation engines. In addition, one can integrate the ODEs by a SciPy integrator
supported by PySB.

RuleDSD provides two simulation methods for simulating DSD systems: BNG’s SSA
simulator and the SciPy ODE simulator. Both simulators are accessible to PySB
models which are obtained in the RuleDSD pipeline before simulation. The default
simulator for RuleDSD is BNG’s SSA simulator as the DSD systems usually develop

47

large reaction networks.

4.5 Visualisation
Simulation results are also retrieved by the PySB framework in RuleDSD. The
outputs of RuleDSD for a DSD system includes the plot providing the simulation re-
sults and the textual description of the reaction network given by the graph processor.

The textual description of a reaction network has the format illustrated in Figure
18. The first segment named “Species” shows all possible species in the reaction
networks, each species is assigned an index and is expressed in a format similar to its
labelling (only the separation mark ‘|’ for strands in the labelling is neglected because
a separation is indicated by a line break, this format is also applied for the input
species). The second segment named “Reactions” provides all the possible reactions,
each line presents a reaction, starting with its reaction type, then a readable formula
of the reaction using the index of species defined in the first segment, and ends
with a reaction rate. The third segment demonstrates an incidence matrix based
on the reaction network, its row denotes species and its column denotes the edge
from one species to another (0s denote no edges, 1s denote out-going edges and
-1s denote incoming edges). We further discuss the visualisation of results in Section 5.

Figure 18: The DSDPy generated textual description of a reaction network.

48

5 Results
In this section, we present DSDPy, a software package implementing the RuleDSD
pipeline. We provide user instructions for DSDPy as well as short discussions of its
functions. We also present modelling of two DSD systems using DSDPy.

5.1 DSDPy
The DSDPy tool simplifies modelling and simulation of DSD systems. DSDPy is an
open-source software that can be found at https://github.com/ashleylst/DSDPy.

There are two ways to use DSDPy. The traditional way is through the program-
ming interface provided by Python. Recently, an interactive graphical user inter-
face for DSDPy becomes available. The tool can also be used by an interactive
graphical user interface (GUI). Full documentation for usage can be found at:
https://dsdpy.readthedocs.io/en/latest/tutorial.html.

Here we provide a walk-through of its usage for generating and simulating the reaction
network of a simple DSD system. Suppose the DSD system has two single-stranded
DNA molecules as initial species, the first one has domains t (a toehold domain) and
a (a non-toehold domain), and the second one has complementary domains of t and
a. We write the species in expressions ⟨t̂ a⟩ and ⟨a∗ t̂ ∗⟩.

A description of the DSD system is read from an existing file or entered manually, as
shown on the top left of Figure 19. The description has three compulsory segments,
each separated by two hyphens. The first segment includes the initial species, each
separated by two forward slashes and is represented in a similar labelling form as
discussed in Section 4.5. The second segment provides further details of the initial
species, each line describes the name and then the concentration of a species. The
order of lines in the second segment strictly follows the order of species introduced in
the first segment. In our example, we name the first species ss1 and the second ss2,
both have initial population counts of 100. The third segment defines the reaction
rates for each rule in the DSD system. DSDPy allows an additional fourth segment
for simulation parameters. We set the simulation time to 5 seconds and the time
step to 5 for our example.

During the reaction network generation, users are able to intervene by pausing,
resuming and stopping the enumeration of all possible reactions. This interaction
enables users to pre-examine the reactions and species in a DSD system, which is
especially beneficial when the DSD system has a very large reaction network.

After a partial or full generation process is completed for the DSD system, a reaction
network is formed and will be demonstrated as a textual description including the
lists of species and reactions as shown in the text browser on the top right in Figure

https://github.com/ashleylst/DSDPy
https://dsdpy.readthedocs.io/en/latest/tutorial.html

49

Figure 19: The DSDPy graphical user interface.

19. Users can simulate this reaction network by using either a stochastic or a deter-
ministic simulation, and then the simulation results are plotted as a lineplot figure.

DSDPy has two highlighting features as a modelling tool for DSD systems. The first
being the desirable usability it provides. The task of modelling a DSD system involves
generating and simulating its reaction network, which is achieved by DSDPy with a
minimal setup of DSD system description as input. Although there are certain rules
a user should follow to provide the input, these rules are straightforward and do not
require any programming skills. Since DSDPy has an interactive interface, it opens up
the possibility for a controllable generation and simulation of a DSD reaction network.

The other major advantage of DSDPy is underlying programmability. DSDPy was
originally designed as a Python package that serves as a backend engine for modelling
DSD systems. Therefore, DSDPy implements the object-oriented programming
(OOP) concepts to address the reusability and flexibility of the code. It implies that
the modules and functions DSDPy contains are arranged carefully so that changes
can be easily made. Nevertheless, one can use DSDPy as a software package and
program with it conveniently.

50

The original design of DSDPy as a backend engine causes a problem with its design
of input. Currently, the input for DSDPy is compact, thus it can be puzzling to those
who are not familiar with the representations. Same can be said for the reaction
network it produces as output. Although only a short explanation is needed, DSDPy
has a potential to be integrated with a more user-friendly interface.

As any other rule-based modelling tool, DSDPy faces the challenge of combinatorial
complexity [19], i.e., the number of generated species might increase exponentially
after each iteration and lead to an explosion of species before the enumeration ends.
Since DSDPy chooses to generate the full reaction network before simulation, there
is a chance that the generation process enters a dead loop due to combinatorial
complexity. There are mainly two ways to address this problem, one being that
imposing restrictions on the reactions so that the reactions that could cause an
explosion of species (e.g., repeated binding reactions) are cut off, the other being
that adopting the simulation on-the-fly approach so that reactions with no available
reactants are not explored. DSDPy uses a threshold to limit the number of iterations
that can happen in the generation process, this nevertheless prevents an explosion of
species, but is at the cost of a complete reaction network. The preferable solution for
DSDPy might be using the simulation on-the-fly approach, though it would require
DSDPy to directly deal with simulation methods.

5.2 Modelling a DSD System of Three-way Initiated Four-
Way Branch Migration

This DSD system was introduced to demonstrate a new modelling feature imple-
mented in Visual DSD to address the problem of modelling the DSD systems with
secondary structures, including branches and loops [30]. It was taken partly from [34].

Figure 20 shows a handmade DSD reaction network from [30], such network can
be successfully produced by the Visual DSD tool. This DSD system has two initial
species and can generate up to six new species. Starting with a binding reaction,
the resulting species is available for a three-way branch migration and then forms
a Holliday junction and subsequently releases a single strand. The species with a
Holliday junction is available for a four-way branch migration, and then an unbinding
reaction further separates two double-stranded molecules from the species.

We provide the description of this DSD system as an input to DSDPy, with the same
reaction rates and concentrations defined in [30]. We name the initial species ss1
and ss2 as shown in Figure 21.

DSDPy generates two more species (sp_6 and sp_9 in Figure 22) than what was
reported in Figure 20. These two species are considered reachable in DSDPy because
two different four-way branch migration reactions can be applied to species sp_3,

51

Figure 20: The DSD system illustrated in Figure 1 d in [30].

Figure 21: Corresponding input describing the three-way initiated four-way branch
migration example DSD system for DSDPy.

whereas only one is allowed by Visual DSD. This divergence exists because RuleDSD
defines R4 as a pattern that matches not only species with closed junctions but also
freely branched species (see Figure 16). The additional four-way branch migration
reaction from species sp_3 to sp_6 further leads to species sp_9 as species sp_6 can
initiate an unbinding reaction. Other than these two extra species and the reactions
they are involved in, the DSDPy generated reaction network is identical to that
generated by Visual DSD.

52

Figure 22: DSDPy generated reaction network of the three-way initiated four-
way branch migration example. The arrows go from reactants to products, and
corresponding reaction rates are marked for the reactions. Each box denotes a species
with a species name in the grey box on the top right.

53

Figure 23: Results of a stochastic simulation of the three-way initiated four-way
branch migration example. The legends refer to the species in Figure 22.

We have run a stochastic simulation on the DSDPy generated reaction network, the
results are shown in Figure 23. We observe that the binding reaction of the two
initial species (ss1 and ss2) dramatically leads to the release of species sp_5, a
single-stranded species ⟨A⟩. The products of three-way and four-way branch migra-
tion reactions are the other major elements in the system after the binding reaction
happen (see species sp_4 in red and sp_7 in pink). Products from the unbinding
reaction of species sp_7 increase soon after the migration occurs (see species sp_8
in grey and sp_10 in light blue, these two lines coincide in the figure). Notice that
there are very few species sp_3, sp_6 and sp_9 in the beginning of the simulation,
and then they are transformed into other species.

5.3 Modelling a Single-layer Catalytic DSD System
This case study was reported by Kotani et al. as an example single-layer catalytic
DSD (SCD) system using three-way branch migration to maximize catalysis and
four-way branch migration to minimize leakage, i.e., waste species [22]. In the SCD
system shown in Figure 24, Substrate S1 and Catalyst C1 bind together and initiate
a three-way branch migration, producing Intermediate I1 and Product P1. I1 then
reacts with Substrate S2 similarly and produces Intermediate I2 and C1. I2 can initi-
ate a four-way branch migration to produce Product P2 and Product P3. In addition,
Reporter R is designed with a quencher strand ⟨3̂ ∗ d1∗ d2∗⟩ and a dye strand ⟨d1 d2⟩,
resulting in suppressed fluorescence. R can react with P3 and produce Reporter waste
Rw, releasing Dye strand D, which increases the fluorescence intensity for observation.

54

Figure 24: A handmade reaction network of the SCD system from [22]. The species
names are shown on the top of the schematic drawings.

We provide initial species S1, S2, C1 and R to DSDPy, then it generates hundreds of
species due to potential chain reactions. Therefore, we set an enumeration threshold
to the generation process. With a threshold value of 6, this catalytic system generates
26 species in addition to the initial species, the reaction network concerning the
species listed in [22] is shown in Figure 25. Notably, the release of P2 (sp_14) can
happen during a four-way branch migration at the same stage when I2 (sp_16) is
produced. Full details on the reaction network can be found in Appendix A.2. The
resulting reaction network shows that DSDPy not only ensures the correctness by
reproducing the handmade network from [22], but also explores unexpected products
that are not in the list of possible species of the handmade network.

We also run a stochastic simulation of the resulting reaction network (the corre-
sponding input file can be found in Appendix A.1), the plot concerning the possible
species listed in [22] is shown in Figure 26. We observe that the population counts
of S1 and C1 drop instantly when the simulation starts due to the binding reaction
between them. Similarly, the populations of S2 and R decrease at the same rate
because a binding reaction is also available for them. Species sp_8 (I1) and sp_9

55

Figure 25: A truncated reaction network of the SCD system generated by DSDPy.

56

Figure 26: Results (partial) of a stochastic simulation of the single-layer catalytic
system. The legends refer to the species in Figure 25. The full results are shown in
Appendix A.3.

(P1) emerge at the same time, but sp_8 slowly reacts with S1, whereas sp_9 remains
being produced. Although species sp_14 (P2) and sp_21 (P3) are the products of
the same four-way branch migration initiated by sp_16 (I2), sp_14 can participate
in other reactions as a reactant, which implies that there are significantly more sp_21
than sp_14 in the system. Species sp_14 reacts with R and produce sp_27 (Rw)
and sp_23 (D).

57

6 Discussion

6.1 Conclusion
In this thesis, we studied the DNA strand displacement mechanism and presented a
rule-based modelling approach to generate and simulate reaction networks of DSD
systems. The design of such modelling tool is presented as a software pipeline
RuleDSD and implemented as a Python package DSDPy.

We provide the workflow and concepts of RuleDSD in Section 3. The central idea of
RuleDSD is to represent DNA molecules, which we term species, as Strand Graphs
and Bond Graphs. These graphical structures enable RuleDSD to detect underlying
particular patterns so that it can match these patterns with the corresponding DSD
reaction types. Therefore, a full reaction network is generated after all the patterns
on all possible species have been explored. These patterns are termed rules in
the rule-based modelling approach. Section 4.1 introduces the algorithms used in
RuleDSD to define the rules for DSD systems. We also highlight the algorithm for
mapping a newly generated species with the species at hand in Section 4.2, as it
plays an important part in the generation of reaction networks.

After the reaction network generation is finished, RuleDSD transfers the reaction
network information to a PySB model, which is simulated using either a determin-
istic or stochastic simulation as required by a user. Section 4.3 to 4.5 specify the
implementation details of the simulation process.

We presented DSDPy as a software tool in Section 5. We show that DSDPy has
the capability to model secondary structures such as loops and multiple branches
of DNA molecules and identify all possible reactions along with all possible species
given the initial species of a DSD system. We studied several DSD systems from
existing literature. In general, DSDPy based modelling and simulation comply with
the results from other state-of-the-art DSD modelling tools, such as Visual DSD.
However, in some cases such as the DSD systems presented in Section 5.2 and 5.3,
DSDPy generates additional species and more detailed reaction networks.

Altogether, DSDPy simplifies the modelling of DSD systems. Rule-based DSD
modelling approach enables the designs of human-readable languages for modelling
purposes. DSDPy further frees users from programming language knowledge and
allows them to work with fewer professional insights. For more experienced users,
DSDPy also offers opportunities to be tuned for individual and specific use as it is a
lightweight open-source Python package.

58

6.2 Future Work
The RuleDSD model currently covers only four types of basic DSD reactions: binding,
unbinding, three-way branch migration and four-way branch migration. Although a
variety of DSD systems from literature can be modelled using the present RuleDSD,
there are other relevant detailed reaction types in DSD systems, such as hairpin
closing, bulge closing and multiloop closing with respect to binding illustrated in [16].
In future, these additional reaction types can be included in RuleDSD by adding
corresponding rules.

As discussed in Section 5.1, DSDPy currently does not address the problem of combi-
natorial complexity because it uses a generate-then-simulate approach for modelling
DSD systems. However, a very small DSD system can lead to an unbounded reaction
network. For example, a system with strands ⟨â b̂ ⟩ and ⟨â ∗ b̂ ∗⟩ results in an ever-
growing reaction network as binding reactions happen endlessly. The evergrowing
reaction network would force DSDPy to stay in the generation process unless a user
pauses or terminates it. This may be an inefficient use of computational resources.
A preferred solution to this problem would be adopting a simulation-on-the-fly ap-
proach introduced by [11]. Such approach can not be implemented directly in the
present DSDPy because an external simulator is used. It would require a combined
implementation of generation and simulation in DSDPy.

In this thesis, we have focused on modelling domain-level DSD systems, but the
sequence-level information is not to be neglected because only that can fully explain
the biophysical reactions. As what was pointed out by [30], a strand graph may
define any arbitrary secondary structures without considering if they are biophysi-
cally plausible. For instance, a hairpin loop with bonded domains inside would not
be feasible unless the combined length of the bonded domains is longer than the
persistent length (the length which quantifies the bending stiffness) of the double-
stranded DNA molecules. DSDPy addresses the biophysical plausibility of strand
graphs by doing various checks before applying rules, but it does not yet consider
DSD systems at sequence-level. Namely, DSDPy decides the validity of a reaction
without acknowledging the possibility that such decision may be incorrect when the
lengths of domains are considered. To include sequence-level information in DSDPy,
one can use sequence design software such as NUPACK [54] to generate sequences
of nucleotides for each domain of a given DSD system. Additional checks can be
implemented to ensure complementarity of domains in the strand graphs. However,
detailed modelling at sequence-level would require rigorous verification and analysis
to check up to what extent the designs at domain-level and at sequence-level conform.

59

References
[1] Berleant, J., Berlind, C., Badelt, S., Dannenberg, F., Schaeffer,

J., and Winfree, E. Automated sequence-level analysis of kinetics and
thermodynamics for domain-level DNA strand-displacement systems. Journal
of the Royal Society Interface 15, 149 (2018), 20180107.

[2] Bollobás, B. Modern Graph Theory, vol. 184. Springer Science & Business
Media, 2013.

[3] Bui, H., Miao, V., Garg, S., Mokhtar, R., Song, T., and Reif, J.
Design and analysis of localized DNA hybridization chain reactions. Small 13,
12 (2017), 1602983.

[4] Chen, J., and Seeman, N. C. Synthesis from DNA of a molecule with the
connectivity of a cube. Nature 350, 6319 (1991), 631–633.

[5] Chylek, L. A., Harris, L. A., Faeder, J. R., and Hlavacek, W. S.
Modeling for (physical) biologists: an introduction to the rule-based approach.
Physical Biology 12, 4 (2015), 045007.

[6] Chylek, L. A., Harris, L. A., Tung, C.-S., Faeder, J. R., Lopez,
C. F., and Hlavacek, W. S. Rule-based modeling: a computational
approach for studying biomolecular site dynamics in cell signaling systems.
Wiley Interdisciplinary Reviews: Systems Biology and Medicine 6, 1 (2014),
13–36.

[7] Dabby, N. L. Synthetic Molecular Machines for Active Self-assembly: Pro-
totype Algorithms, Designs, and Experimental Study. PhD thesis, California
Institute of Technology, 2013.

[8] Danos, V., and Laneve, C. Formal molecular biology. Theoretical Computer
Science 325, 1 (2004), 69–110.

[9] Dirks, R. M., Lin, M., Winfree, E., and Pierce, N. A. Paradigms
for computational nucleic acid design. Nucleic Acids Research 32, 4 (2004),
1392–1403.

[10] Endy, D., and Brent, R. Modelling cellular behaviour. Nature 409, 6818
(2001), 391–395.

[11] Faeder, J. R., Blinov, M. L., Goldstein, B., and Hlavacek, W. S.
Rule-based modeling of biochemical networks. Complexity 10, 4 (2005), 22–41.

[12] Faeder, J. R., Hlavacek, W. S., Reischl, I., Blinov, M. L., Metzger,
H., Redondo, A., Wofsy, C., and Goldstein, B. Investigation of early
events in fcεri-mediated signaling using a detailed mathematical model. The
Journal of Immunology 170, 7 (2003), 3769–3781.

60

[13] Gautam, V., Long, S., and Orponen., P. RuleDSD: A rule-based
modelling and simulation tool for DNA strand displacement systems. In
Proceedings of the 13th International Joint Conference on Biomedical Engineering
Systems and Technologies - Volume 3 BIOINFORMATICS (2020), SciTePress,
pp. 158–167.

[14] Gillespie, D. T. A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions. Journal of Computational Physics
22, 4 (1976), 403–434.

[15] Gong, H., Zuliani, P., Komuravelli, A., Faeder, J. R., and Clarke,
E. M. Analysis and verification of the hmgb1 signaling pathway. In BMC
Bioinformatics (2010), vol. 11(Suppl 7), Springer.

[16] Grun, C., Sarma, K., Wolfe, B., Shin, S. W., and Winfree, E. A
domain-level DNA strand displacement reaction enumerator allowing arbitrary
non-pseudoknotted secondary structures. arXiv preprint arXiv:1505.03738
(2015).

[17] Grun, C., Werfel, J., Zhang, D. Y., and Yin, P. DyNAMiC Workbench:
an integrated development environment for dynamic DNA nanotechnology. Jour-
nal of the Royal Society Interface 12, 111 (2015), 20150580.

[18] Harris, L. A., Hogg, J. S., Tapia, J.-J., Sekar, J. A., Gupta, S.,
Korsunsky, I., Arora, A., Barua, D., Sheehan, R. P., and Faeder,
J. R. BioNetGen 2.2: advances in rule-based modeling. Bioinformatics 32, 21
(2016), 3366–3368.

[19] Hlavacek, W. S., Faeder, J. R., Blinov, M. L., Perelson, A. S.,
and Goldstein, B. The complexity of complexes in signal transduction.
Biotechnology and Bioengineering 84, 7 (2003), 783–794.

[20] Hlavacek, W. S., Faeder, J. R., Blinov, M. L., Posner, R. G.,
Hucka, M., and Fontana, W. Rules for modeling signal-transduction
systems. Science Signaling 2006, 344 (2006), re6.

[21] Holliday, R. A mechanism for gene conversion in fungi. Genetics Research 5,
2 (1964), 282–304.

[22] Kotani, S., and Hughes, W. L. Multi-arm junctions for dynamic DNA
nanotechnology. Journal of the American Chemical Society 139, 18 (2017),
6363–6368.

[23] Lakin, M. R., Paulevé, L., and Phillips, A. Stochastic simulation of
multiple process calculi for biology. Theoretical Computer Science 431 (2012),
181–206.

61

[24] Lakin, M. R., Youssef, S., Cardelli, L., and Phillips, A. Abstractions
for DNA circuit design. Journal of The Royal Society Interface 9, 68 (2012),
470–486.

[25] Lakin, M. R., Youssef, S., Polo, F., Emmott, S., and Phillips, A.
Visual DSD: a design and analysis tool for DNA strand displacement systems.
Bioinformatics 27, 22 (2011), 3211–3213.

[26] Lopez, C. F., Muhlich, J. L., Bachman, J. A., and Sorger, P. K.
Programming biological models in Python using PySB. Molecular Systems
Biology 9, 1 (2013).

[27] Nag, A., Faeder, J. R., and Goldstein, B. Shaping the response: the role
of fcεri and syk expression levels in mast cell signalling. IET Systems Biology 4,
6 (2010), 334–347.

[28] Oishi, K., and Klavins, E. Biomolecular implementation of linear i/o
systems. IET Systems Biology 5, 4 (2011), 252–260.

[29] Oury, N., Pedersen, M., and Petersen, R. Canonical labelling of site
graphs. arXiv preprint arXiv:1306.2405 (2013).

[30] Petersen, R. L., Lakin, M. R., and Phillips, A. A strand graph semantics
for DNA-based computation. Theoretical Computer Science 632 (2016), 43–73.

[31] Phillips, A., and Cardelli, L. A programming language for composable
DNA circuits. Journal of the Royal Society Interface 6 (2009), S419–S436.

[32] Pray, L. Discovery of DNA structure and function:Watson and Crick. Nature
Education 1, 1 (2008), 100.

[33] Qian, L., and Winfree, E. Scaling up digital circuit computation with DNA
strand displacement cascades. Science 332, 6034 (2011), 1196–1201.

[34] Qian, L., and Winfree, E. Parallel and scalable computation and spatial
dynamics with DNA-based chemical reaction networks on a surface. In Interna-
tional Workshop on DNA-Based Computers (2014), Springer, pp. 114–131.

[35] Richmond, T. J., and Davey, C. A. The structure of DNA in the nucleosome
core. Nature 423, 6936 (2003), 145–150.

[36] Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns.
Nature 440, 7082 (2006), 297–302.

[37] Seelig, G., Soloveichik, D., Zhang, D. Y., and Winfree, E. Enzyme-
free nucleic acid logic circuits. Science 314, 5805 (2006), 1585–1588.

[38] Seeman, N. C. Nucleic acid junctions and lattices. Journal of Theoretical
Biology 99, 2 (1982), 237–247.

62

[39] Seeman, N. C. Structural DNA nanotechnology. In NanoBiotechnology
Protocols. Springer, 2005, pp. 143–166.

[40] Seeman, N. C. Nanomaterials based on DNA. Annual Review of Biochemistry
79 (2010), 65–87.

[41] Sekar, J. A. P., and Faeder, J. R. Rule-Based Modeling of Signal
Transduction: A Primer. Humana Press, Totowa, NJ, 2012, pp. 139–218.

[42] Sherman, W. B., and Seeman, N. C. A precisely controlled DNA biped
walking device. Nano Letters 4, 7 (2004), 1203–1207.

[43] Shih, W. M., Quispe, J. D., and Joyce, G. F. A 1.7-kilobase single-
stranded DNA that folds into a nanoscale octahedron. Nature 427, 6975 (2004),
618–621.

[44] Shin, J.-S., and Pierce, N. A. A synthetic DNA walker for molecular
transport. Journal of the American Chemical Society 126, 35 (2004), 10834–
10835.

[45] Soloveichik, D., Seelig, G., and Winfree, E. DNA as a universal
substrate for chemical kinetics. Proceedings of the National Academy of Sciences
107, 12 (2010), 5393–5398.

[46] Spaccasassi, C., Lakin, M. R., and Phillips, A. A logic programming
language for computational nucleic acid devices. ACS Synthetic Biology 8, 7
(2018), 1530–1547.

[47] Voit, E. O. Computational Analysis of Biochemical Systems: A Practical
Guide for Biochemists and Molecular Biologists. Cambridge University Press,
2000.

[48] Watson, J. D., Crick, F., et al. A Structure for Deoxyribose Nucleic Acid.

[49] Watson, J. D., and Crick, F. H. Genetical implications of the structure of
deoxyribonucleic acid. Nature 171, 4361 (1953), 964–967.

[50] Winfree, E., Liu, F., Wenzler, L. A., and Seeman, N. C. Design
and self-assembly of two-dimensional DNA crystals. Nature 394, 6693 (1998),
539–544.

[51] Yin, P., Choi, H. M., Calvert, C. R., and Pierce, N. A. Programming
biomolecular self-assembly pathways. Nature 451, 7176 (2008), 318–322.

[52] Yurke, B., and Mills, A. P. Using DNA to power nanostructures. Genetic
Programming and Evolvable Machines 4, 2 (2003), 111–122.

[53] Yurke, B., Turberfield, A. J., Mills, A. P., Simmel, F. C., and
Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature
406, 6796 (2000), 605–608.

63

[54] Zadeh, J. N., Steenberg, C. D., Bois, J. S., Wolfe, B. R., Pierce,
M. B., Khan, A. R., Dirks, R. M., and Pierce, N. A. NUPACK: analysis
and design of nucleic acid systems. Journal of Computational Chemistry 32, 1
(2011), 170–173.

[55] Zhang, D. Y., and Seelig, G. Dynamic DNA nanotechnology using
strand-displacement reactions. Nature Chemistry 3, 2 (2011), 103.

[56] Zhang, D. Y., Turberfield, A. J., Yurke, B., and Winfree, E.
Engineering entropy-driven reactions and networks catalyzed by DNA. Science
318, 5853 (2007), 1121–1125.

[57] Zhang, D. Y., and Winfree, E. Dynamic allosteric control of noncovalent
DNA catalysis reactions. Journal of the American Chemical Society 130, 42
(2008), 13921–13926.

64

A Inputs and Outputs of the SCD System Mod-
elling

A.1 Input

Figure A1: The SCD system input to DSDPy.

A.2 Reaction Network of the SCD System
—–Species—–
1
<d1 b!1 a!2 2̂ !3>
<c!4 b*!1>
<2̂ *!3 a*!2 c*!4 1̂ *>

2
<1̂ !1 c!2 a!3>
<b!4 c*!2 1̂ *!1>
<2̂ * a*!3 b*!4 d2 3̂ >

3
<d1!1 d2!2>
<3̂ * d2*!2 d1*!1>

4
<1̂ c a>

65

5
<d1 b!1 a!2 2̂ !3>
<c!4 b*!1>
<2̂ *!3 a*!2 c*!4 1̂ *!5>
<1̂ !5 c a>

6
<1̂ !1 c!2 a!3>
<b!4 c*!2 1̂ *!1>
<2̂ * a*!3 b*!4 d2 3̂ !5>
<3̂ *!5 d2*!6 d1*!7>
<d1!7 d2!6>

7
<d1 b!1 a 2̂ !2>
<c b*!1>
<2̂ *!2 a*!3 c*!4 1̂ *!5>
<1̂ !5 c!4 a!3>

8
<d1 b!1 a 2̂ >
<c b*!1>

9
<2̂ * a*!1 c*!2 1̂ *!3>
<1̂ !3 c!2 a!1>

10
<d1 b!1 a 2̂ !2>
<c b*!1>
<2̂ *!2 a*!3 b*!4 d2 3̂ >
<1̂ !5 c!6 a!3>
<b!4 c*!6 1̂ *!5>

11
<d1 b!1 a 2̂ !2>
<c b*!1>
<2̂ *!2 a*!3 b*!4 d2 3̂ !5>
<1̂ !6 c!7 a!3>
<b!4 c*!7 1̂ *!6>
<3̂ *!5 d2*!8 d1*!9>
<d1!9 d2!8>

12
<d1 b!1 a!2 2̂ !3>

66

<c!4 b*!1>
<2̂ *!3 a*!2 b*!5 d2 3̂ >
<b!5 c*!4 1̂ *!6>
<1̂ !6 c a>

13
<d1 b!1 a!2 2̂ !3>
<c!4 b*!1>
<2̂ *!3 a*!2 b*!5 d2 3̂ !6>
<b!5 c*!4 1̂ *!7>
<3̂ *!6 d2*!8 d1*!9>
<1̂ !7 c a>
<d1!9 d2!8>

14
<d1 b!1 a!2 2̂ !3>
<2̂ *!3 a*!2 b*!1 d2 3̂ >

15
<c!1 b*!2>
<b!2 c*!1 1̂ *!3>
<1̂ !3 c a>

16
<d1 b!1 a!2 2̂ !3>
<c!4 b*!1>
<2̂ *!3 a*!2 b*!5 d2 3̂ >
<b!5 c*!4 1̂ *>

17
<d1 b!1 a!2 2̂ !3>
<c!4 b*!1>
<2̂ *!3 a*!2 b*!5 d2!6 3̂ !7>
<b!5 c*!4 1̂ *!8>
<3̂ *!7 d2*!6 d1*!9>
<1̂ !8 c a>
<d1!9 d2>

18
<d1 b!1 a!2 2̂ !3>
<2̂ *!3 a*!2 b*!1 d2 3̂ !4>
<3̂ *!4 d2*!5 d1*!6>
<d1!6 d2!5>

19

67

<d1 b!1 a!2 2̂ !3>
<c!4 b*!1>
<2̂ *!3 a*!2 b*!5 d2 3̂ !6>
<b!5 c*!4 1̂ *>
<3̂ *!6 d2*!7 d1*!8>
<d1!8 d2!7>

20
<c b*!1>
<b!1 c*!2 1̂ *!3>
<1̂ !3 c!2 a>

21
<c!1 b*!2>
<b!2 c*!1 1̂ *>

22
<d1!1 b!2 a!3 2̂ !4>
<3̂ *!5 d2*!6 d1*!1>
<c!7 b*!2>
<2̂ *!4 a*!3 b*!8 d2!6 3̂ !5>
<b!8 c*!7 1̂ *!9>
<1̂ !9 c a>

23
<d1 d2>

24
<d1 b!1 a 2̂ !2>
<c b*!1>
<2̂ *!2 a*!3 b*!4 d2!5 3̂ !6>
<1̂ !7 c!8 a!3>
<b!4 c*!8 1̂ *!7>
<3̂ *!6 d2*!5 d1*!9>
<d1!9 d2>

25
<d1 b!1 a!2 2̂ !3>
<2̂ *!3 a*!2 b*!1 d2!4 3̂ !5>
<3̂ *!5 d2*!4 d1*!6>
<d1!6 d2>

26
<d1 b!1 a!2 2̂ !3>
<c!4 b*!1>

68

<2̂ *!3 a*!2 b*!5 d2!6 3̂ !7>
<b!5 c*!4 1̂ *>
<3̂ *!7 d2*!6 d1*!8>
<d1!8 d2>

27
<d1!1 b!2 a!3 2̂ !4>
<3̂ *!5 d2*!6 d1*!1>
<2̂ *!4 a*!3 b*!2 d2!6 3̂ !5>

28
<d1!1 b!2 a 2̂ !3>
<3̂ *!4 d2*!5 d1*!1>
<c b*!2>
<2̂ *!3 a*!6 b*!7 d2!5 3̂ !4>
<1̂ !8 c!9 a!6>
<b!7 c*!9 1̂ *!8>

29
<d1!1 b!2 a!3 2̂ !4>
<3̂ *!5 d2*!6 d1*!1>
<c!7 b*!2>
<2̂ *!4 a*!3 b*!8 d2!6 3̂ !5>
<b!8 c*!7 1̂ *>

30
<1̂ !1 c!2 a!3>
<b!4 c*!2 1̂ *!1>
<2̂ * a*!3 b*!4 d2!5 3̂ !6>
<3̂ *!6 d2*!5 d1*!7>
<d1!7 d2>

—–Reactions—–
RB 1 + 4 –> 5 rate=0.0003
RB 2 + 3 –> 6 rate=0.0003
R3 5 –> 7 rate=20.0
RU 5 –> 1 + 4 rate=0.1126
RU 6 –> 2 + 3 rate=0.1126
R3 7 –> 5 rate=20.0
RU 7 –> 8 + 9 rate=0.1126
RB 2 + 8 –> 10 rate=0.0003
RB 6 + 8 –> 11 rate=0.0003
R3 10 –> 12 rate=20.0
RU 10 –> 8 + 2 rate=0.1126
R3 11 –> 13 rate=20.0

69

RU 11 –> 8 + 6 rate=0.1126
RU 11 –> 10 + 3 rate=0.1126
RB 8 + 9 –> 7 rate=0.0003
RB 3 + 12 –> 13 rate=0.0003
R3 12 –> 10 rate=20.0
R4 12 –> 14 + 15 rate=20.0
RU 12 –> 16 + 4 rate=0.1126
R3 13 –> 11 rate=20.0
R3 13 –> 17 rate=20.0
R4 13 –> 18 + 15 rate=20.0
RU 13 –> 12 + 3 rate=0.1126
RU 13 –> 19 + 4 rate=0.1126
RB 3 + 14 –> 18 rate=0.0003
RB 3 + 16 –> 19 rate=0.0003
RB 4 + 16 –> 12 rate=0.0003
RB 4 + 19 –> 13 rate=0.0003
R3 15 –> 20 rate=20.0
RU 15 –> 21 + 4 rate=0.1126
R4 16 –> 14 + 21 rate=20.0
R3 17 –> 22 + 23 rate=20.0
R3 17 –> 24 rate=20.0
R3 17 –> 13 rate=20.0
R4 17 –> 25 + 15 rate=20.0
RU 17 –> 26 + 4 rate=0.1126
R3 18 –> 27 + 23 rate=20.0
RU 18 –> 14 + 3 rate=0.1126
R3 19 –> 26 rate=20.0
R4 19 –> 18 + 21 rate=20.0
RU 19 –> 16 + 3 rate=0.1126
RB 4 + 21 –> 15 rate=0.0003
RB 4 + 26 –> 17 rate=0.0003
R3 20 –> 15 rate=20.0
R3 22 –> 28 rate=20.0
R4 22 –> 27 + 15 rate=20.0
RU 22 –> 29 + 4 rate=0.1126
R3 24 –> 17 rate=20.0
R3 24 –> 11 rate=20.0
RU 24 –> 8 + 30 rate=0.1126
R3 25 –> 27 + 23 rate=20.0
R3 25 –> 18 rate=20.0
R3 26 –> 29 + 23 rate=20.0
R3 26 –> 19 rate=20.0
R4 26 –> 25 + 21 rate=20.0
RB 4 + 29 –> 22 rate=0.0003
RB 8 + 30 –> 24 rate=0.0003

70

—–Incidence Matrix—–
Omitted

A.3 Simulation Results of the SCD System

Figure A2: Simulation results of the the SCD System.

	Abstract
	Preface
	Contents
	1 Introduction
	1.1 Problem Statement
	1.2 Structure of the Thesis

	2 Background
	2.1 DNA
	2.2 Domain-level DNA Strand Displacement System
	2.3 Rule-Based Modelling

	3 Design
	3.1 Overview
	3.2 Preliminaries
	3.2.1 Strand Graph
	3.2.2 Bond Graph
	3.2.3 Canonical Labelling of Species

	4 Methods
	4.1 Generation of Reaction Network
	4.1.1 Rule Binding (RB)
	4.1.2 Rule Unbinding (RU)
	4.1.3 Rule Three-way Branch Migration (R3)
	4.1.4 Rule Four-way Branch Migration (R4)

	4.2 Species Mapping
	4.2.1 From a Strand Graph to Its Canonical Labelling
	4.2.2 From a Labelling to Its Strand Graph

	4.3 PySB Model Generation
	4.4 Simulation
	4.5 Visualisation

	5 Results
	5.1 DSDPy
	5.2 Modelling a DSD System of Three-way Initiated Four-Way Branch Migration
	5.3 Modelling a Single-layer Catalytic DSD System

	6 Discussion
	6.1 Conclusion
	6.2 Future Work

	References
	A Inputs and Outputs of the SCD System Modelling
	A.1 Input
	A.2 Reaction Network of the SCD System
	A.3 Simulation Results of the SCD System

