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domains in many different fields. However, many common problems are inher-
ently ill-posed and lack a unique answer hence requiring a regularization pass
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different families of models capable of learning distributions given samples exist,
they commonly resort to approximations or surrogate training objectives.

In this thesis we solve image-related inverse problems with a family of probabilis-
tic models known as conditional normalizing flows. A normalizing flow consists
of repeated applications of invertible transformations on a simple prior distri-
bution rendering it into a more complex distribution with direct and tractable
probability density evaluation and efficient sampling. We show that a conditional
normalizing flow is able to provide plausible, high-quality samples with visible be-
nign variance from a conditional distribution in image superresolution, denoising
and colorization tasks. We quantify the success of the model as well as its short-
comings and inspect how it internally addresses the conversion of white noise into
a realistic image.
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Havainnoista oppimiseen optimoinnin avulla perustuvat mallit kykenevät ratkai-
semaan monia ongelmia huomattavasti tehokkaammin, kuin klassiset staattisiin
päätössääntöihin perustuvat mallit. Perinteisesti mallit antavat yleensä kuitenkin
vain yhden vastauksen, vaikka useilla ongelmilla saattaa olla monta keskenään
yhtä hyväksyttävää vastausta. Tämän takia on tarkoituksenmukaista mallintaa
todennäköisyysjakaumaa kaikista mahdollisista vastauksista yksittäisen vastauk-
sen sijaan.

Tässä diplomityössä tutkitaan normalisoivien virtausten malliluokan soveltamis-
ta digitaalisiin kuviin liittyviin käänteisongelmiin. Normalisoiva virtaus muun-
taa yksinkertaisen todennäköisyysjakauman neuroverkoilla parametrosoiduilla
kääntyvillä funktioilla monimutkaisemmaksi jakaumaksi, siten että havaintojen
uskottavuudesta saadaan kuitenkin tarkka numeerinen arvo. Normalisoivat vir-
taukset mahdollistavat myös tehokkaan näytteiden ottamisen niiden mallinta-
masta monimutkaisesta todennäköisyysjakaumasta. Työssä määritetään, kuin-
ka hyvin virtausmallit onnistuvat tehtävässään ja kuinka ne muodostavat us-
kottavia kuvia kohinasta. Työssä todetaan, että ehdollisten normalisoivien vir-
tausten avulla voidaan tuottaa korkealaatuisia näytteitä useissa kuviin liittyvissä
käänteisongelmissa.
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Chapter 1

Introduction

In very general terms, machine learning is the process of fitting a function
to best match some observed or measured data. It is in principle not any
different from, say, the familiar task of fitting a line on the relationship
between current and voltage in an electrical circuit in order to estimate the
resistance of a component. To find a good fit, two constraints must be
satisfied: the observations must be explainable by the choice of the model
(here, a straight line with an unknown slope and intercept) and some measure
of error must be minimized (the line should interpolate the observations well).
Not every problem is solved using a linear model in low-dimensional space.
Indeed, often the dimensionality of the data can be in the order of millions
(e.g. images or videos, see Figure 1.1), the relationships between the variables
can be highly non-linear and no closed-form model derived using physical
arguments and principles is available. It is reasonable to think a system (e.g.
the electrical circuit) as a black box. We can make individual measurements
and try to disassemble the box to reason about the system within (to find
clues about U = RI). The system can, however, be so complex that our
reasoning is of little use and measurements are all we have.

Even with a model with perfect predictive and expressive power, some
problems remain unsolvable to a degree. Many problems naturally have only
a single solution. The classification of an object can be either a teapot or a
bunny but it cannot be both at the same time. Some problems, however, can
have multiple solutions. If the task is to colorize a black-and-white image,
plausible colors for an apple in the image can include red and green hues,
but probably not blue colors. One can try to solve an ill-posed, multi-valued
problem like the colorization via finding a single answer that minimizes some
averaged error metric like the mean or mode. However, even though the
acquired answer is the best with respect to some error measure, it might be
uninteresting or somehow perceptually low-quality. The mean color of an

7



CHAPTER 1. INTRODUCTION 8

Figure 1.1: Function approximation. a) Finding the best fit line for the
relationship between current and voltage is not difficult. Physical principles
may help to find a closed-form formula. b) Finding a function that estimates
the air temperature from an image requires a mapping from high-dimensional
space to a single number. The system is much more complex and physical
reasoning is of little use.

apple is probably some shade of brown but we do not want our model to
only yield rotten apples! Another, more general means for solving an in-
verse problem such as the one defined above involves probabilistic modeling,
that comprises of approximating the distribution of plausible solutions. In-
dividual estimates minimizing various error metrics can still be obtained by
finding, say the mean of the distribution or the most likely answer given the
distribution.

Modeling probability distributions involves very similar requisites to those
of ordinary function approximation. It is crucial to choose the right type of
distribution for the right problem. Too simple a distribution may completely
miss the intricacies of the data. One also needs to find the optimal param-
eters for the distribution, very much like finding the best slope in the resis-
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tance measurement. Fitting a distribution qualitatively, however, is much
more difficult than finding the line of best fit and a quantitative measure for
the quality of the fit is essential. The stochastic nature of the data poses
additional challenges. Maybe the measurements are an extremely poor rep-
resentation of the true underlying distribution. What if we have only ever
seen rotten apples?

Machine learning provides tools that have empirically been found to be
extremely versatile function approximators (some are even so-called universal
approximators). In particular, this suggests that the models are able to
present functions much more complicated than linear models. Solving the
function approximation problem computationally also allows one to specify a
much more well-defined measure of error than how “good” a line qualitatively
looks to the eye with respect to the points of data. The solution of the
machine learning model is found by minimizing the assigned error measure
given the the observations, rendering the function approximation problem
into an optimization problem with respect to the parameters of the model. In
simple cases the optimization can be carried out in closed form by analytically
finding the root of the derivative of the loss-function. However, one often
needs to apply iterative optimization methods such as gradient descend to
find even a local minimum of the loss function.

Versatile function approximation is also extremely useful in probabilistic
modeling. It provides a remedy for the difficult modeling choice of decid-
ing on the parametric form of the employed distribution. Models are often
trained by maximizing the likelihood of the training data (or rather, minimiz-
ing the negative logarithmic likelihood) with gradient descent with respect
to the parameters of the machine learning model. Some model types evalu-
ate likelihoods explicitly and without approximations, while others resort to
optimizing lower bounds, or choose only to work with likelihoods implicitly.

In this thesis we study the application of a family of models called nor-
malizing flows (NFs) on several inverse imaging problems. Even though the
roots of normalizing flows originate in the 1990’s, they have only recently been
rediscovered and found to be competitive in the field of generative model-
ing. A normalizing flow consists of a composition of invertible functions with
tractable Jacobian determinants which can be efficiently computed. The
flow model transforms a complex target probability distribution into a sim-
ple (usually Gaussian) distribution, or vice-versa a simple distribution into a
complex target distribution, due to invertibility. Instead of minimizing some
error metric, the training target of a NF-model is usually the maximization
of the likelihood of the data under the parameters of the model. NF-models
have in the past been applied to modeling the distributions of various toy-
datasets in the conditional density estimation settings. Only very recently
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has there been reports of work on more complex, real-life datasets. In the
unconditional setting, normalizing flows have been demonstrated to be able
to generate photo-realistic human faces in high resolutions.

We employ a flow-model conditioned on images corrupted in various ways
and show that our model is able to recover plausible, high-quality samples of
the image with the corruption removed. Furthermore, we show that the sam-
ples have visible variation, yet remain faithful to the underlying corrupted
image. Results of a flow model conditioned with grayscale-images tasked with
colorization are given in Figure 1.2. We study extensively how the informa-
tion conditioning should be introduced into the model. Based on previous

Figure 1.2: Colorization with conditional normalizing flows. The leftmost
column is the network input and the other three correspond to samples from
the conditional distribution.

work, we know that flow models by themselves alone are not particularly ex-
pressive compared to other methods. Hence it is crucial to find configuration
that minimizes computational stress on the flow. We thoroughly examine
the internal operation of the proposed conditional normalizing flow in order
to understand how it converts image data into essentially white noise. In
particular, we study which parts or layers of the flow are important for suc-
cessful image restoration and whether sampling should be truncated. We aim
to find differences between the operation between conditional and uncondi-
tional normalizing flows. We also quantify how well the flow succeeds in its
task of decorrelating the elements of an image vector. We present examples
on how to drastically affect the internal operation of the model and how
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to render the model more lightweight by reducing the number of required
parameters.

The work in this thesis builds upon normalizing flows with coupling layers
[16] and invertible 1 × 1 convolutions [38]. It is the most closely related to
ideas of Ardizzone et al. [2, 3] who study the applicability of conditional
normalizing flows to inverse problems. Our method slightly deviates from
theirs by not employing a pretrained VGG-network [61] as a part of the flow.
We also apply the flow model to other inverse problems than colorization.
Closely related, parallel work concerning superresolution with normalizing
flows [73] appeared during the writing of this thesis.

The structure of this thesis is as follows. We begin in Chapter 2 by taking
a brief look at classical density estimation and probabilistic modeling. We
also give a brief introduction to deep neural networks. We then proceed to
describing some of the most common deep generative models including, for
example, variational autoencoders and generative adversarial networks. We
pay special attention to the family of normalizing flows, carefully depicting
their features and various implementations, referring to a comprehensive col-
lection of past work. In Chapter 3, we focus on conditional generative models
and their connection and applicability to inverse problems. We present our
methods and implementation details of the employed flow model and its
variations in Chapter 4. We aggregate the results of the characterization of
the model as well as its performance metrics in Chapter 5. Finally, we give
concluding remarks and discuss future work in Chapter 6.



Chapter 2

Generative Modeling

Machine learning has successfully been applied to various problems with a
single, deterministic solution. However, many problems are not one-to-one
and hence instead of having a single solution, the answer to the problem
is rather a probability distribution over a potentially infinite number of so-
lutions. The task of an appropriate model is to produce samples from the
distribution and potentially even estimate the underlying probability density
function (PDF). More specifically, solving the problem requires conditional
density estimation, since the solution is a distribution given some initial in-
formation. We will first introduce ordinary density estimation and afterwards
move to the conditional variant in a later chapter.

In this section we introduce some of the most common methods for prob-
abilistic modeling. We roughly divide the methods into classical models and
deep learning-based models. The division is very similar to the example
of function fitting in the previous chapter. While the modeling work with
nearly all the models featured in this chapter includes optimization, classical
probabilistic modeling often requires stronger assumptions and more expert
knowledge about the system that is being modeled. In traditional function
approximation this equals to the application of, say, physical reasoning about
the system. Deep learning-based models assume very little about the func-
tion and rather employ measurements to approximate it. Deep probabilistic
modeling operates exactly in the same way, merely replacing general func-
tions with with more constrained probability density functions.

Generative modeling refers to the ability to generate novel observations x
using the approximate probability distribution potentially conditioned with
some label y. It is in contrast to discriminative modeling where the aim is
to find the most plausible label y given an observation x.

12



CHAPTER 2. GENERATIVE MODELING 13

2.1 Classical Probabilistic Modeling

A proper probability density p(x) for a D-dimensional real-valued vector x
has the following properties

p(x) ≥ 0 ∀x ∈ RD, (2.1)∫
X

p(x)dx = Pr(x
′ ∈ X), (2.2)

which also implies that the integral over the entire space must be unity due
to the definition of probability. Having access to the PDF is not equivalent to
being able to acquire samples from the distribution. Indeed, samples (mea-
surements) are usually the only thing available from a distribution and the
modeling task is to find the density function that has the strongest support
of the measurements. This is known as density estimation [7].

Like with standard function fitting, essentially all natural systems are so
complex that we simply cannot have all necessary information about their
operation. This is illustrated in Figure 2.1. The system can be so overly com-
plex, that we cannot control all the possible variables and hence probabilistic
models are required to account for our lack of knowledge and control. The
systems can again be seen as black boxes that allow individual measurements
from the outside, but do no let us open the box and study the inside directly.

Figure 2.1: Distribution approximation. The variable ε is a random vector
and denotes the lack of knowledge and control of the variables of the system.
The contents of the system (left) are unknown and only samples of the true
distribution p are available. The modeling task is to find an approximation
q (right) that is as close to p as possible with some model f .

Properties of a good model A good density estimate or approximation
q(x) of an underlying true probability density p(x) maximizes the (expected)
likelihood of the observations. That is, the approximation q assigns high prob-
abilities (or probability densities in continuous models) to the more common
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measurements. The modeling task involves choosing a family of distributions
which hopefully contains the true p(x). Using just any family is not enough,
as it is reasonable to expect certain properties of the modeling distribution.
We could, for example, merely assign tiny boxes of large probability density to
the neighborhoods of all our data points (remembering proper normalization)
to achieve large likelihood for the observations. However, it is almost certain
that this setup fails to describe the true distribution since it is essentially dis-
continuous. A properly chosen model allows us to assess new measurements
quantitatively. It allows us to assign a number describing the likelihood
of the measurement under the chosen model by evaluating the PDF. Not
all models, however, yield directly a likelihood as some only provide a lower
bound and some do not even explicitly work with likelihoods. A probabilistic
model can often also be sampled to find novel, unseen data points. Sampling
usually happens by generating random numbers from a simple distribution
(the uniform distribution) and applying a function to transform the uniform
distribution into a more complex distribution. These elements of inference,
density evaluation and sampling are illustrated in Figure 2.2.

Figure 2.2: Elements of probabilistic modeling. a) Density estimation, infer-
ence. Choosing the PDF p(x) that best describes the data (here, probably
p3). b) Density evaluation. Measurement of likelihood of new observations
under the model. Can be, for example, used to find outliers in the data. May
not be possible to do exactly in all model types. c) Sampling or generating
new observations.

Assuming a family of distributions is parametrized by parameters θ, the
best, likelihood-maximizing distribution if found by optimization. The opti-
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mization of likelihood is desirable in another sense as well. Namely, maxi-
mizing the data likelihood also minimizes the so-called Kullback-Leibler di-
vergence between the approximation and the true model

DKL(p(x)||q(x)) ≡
∫
X

p(x) log

(
p(x)

q(x)

)
dx

=

∫
X

p(x) log (p(x)) dx−
∫
X

p(x) log (q(x)) dx

= −H(p)− Ep(x) [log (q(x))] , (2.3)

where H is the entropy of p. The likelihood-maximizing distribution q∗ min-
imizes the second term of Eq. 2.3 and hence minimizes the entire expression
since the entropy H does not depend on q. The non-negative divergence
vanishes only when q(x) = p(x) ∀x ∈ X. The duality between likelihood
maximization and divergence minimization is demonstrated in Figure 2.3.
We now introduce some of the most common classical models for density
estimation.

Figure 2.3: Likelihood and divergence. Samples from and the PDF of the
true distribution p (blue dots and dashed line, respectively). The best ap-
proximation q∗ from the Gaussian family given the data (orange solid line)
assigns high likelihood to the samples. The KL-divergence is minimized. A
bad approximation q (green dotted line) assigns vanishing likelihood to the
samples and hence DKL(p||q) is large.
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Parametric models Simple parametric models provide a starting point
for density estimation. Choosing, for example, the Gaussian family and
finding the data-likelihood maximizing mean-vector and covariance matrix
analytically yields the best density function q∗ from the Gaussian family, like
in Figure 2.3. However, for a more complex true distribution p, the Gaussian
family might be completely inadequate and lack the required representational
power. We visualize this in Fig. 2.4 with 2-dimensional toy-data. The chosen
multivariate Gaussian fails to model the target distribution, completely miss-
ing the multimodality. The problem can remedied by expanding the search
to more complex distributions, such as mixture models.

Figure 2.4: Failure case due to usage of a distribution that is not expressive
enough. The contours represent points with equal values of the PDF. The
simple multivariate Gaussian (solid lines) fails to capture the multimodality
of the true mixture of Gaussians distribution (dashed lines).

Mixture models A mixture of Gaussians, a linear superposition of Gaus-
sian components, introduces mixing coefficients π, measuring the probability
of a sample coming from a particular component of the superposition. Some
problems render themselves naturally to mixture models. For example, the
distribution of the number of customers at a store at a given time of the
day on a random day can be considered as superimposed distributions of
the number of customers during the weekend and the weekdays. Mixture
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models can introduce so-called unobserved or latent variables if the mixing
coefficients are not directly observed. Here, the missing information could
be, for example, the day. If it is a weekday, the distribution most likely has
more mass in the late afternoon and early evening, whereas during the week-
end there is more mass during midday. Successful latent-variable models can
yield interesting information about a system, if structure can be identified
in the space of the latent variables. If we were completely unaware of the
concept of a weekend, employing a latent-variable model to the customer
data could potentially reveal us that there indeed is two sets of days that
have very different properties.

The general Gaussian mixture model is given by

q(x) =
∑
i

πiN(x|µi,Σi), (2.4)

where πi is mixing coefficient for which
∑
i

πi = 1. The mixing coefficients are

in fact prior probabilities of latent variables since Eq. 2.5 can be rewritten
as

q(x) =
∑
i

q(zi = 1)q(x|zi = 1) =
∑
z

q(z,x), (2.5)

that is, the latent variable z is marginalized out.

Graphical models The Gaussian mixture model is a special case of a
more general family of probabilistic models called Bayesian networks or di-
rected graphical models. Bayesian networks arise from a certain factorization
of a joint probability distribution which can be represented using a directed
graph. In general terms, the chain rule of probability states that every prob-
ability distribution p can be expressed as follows

p(x) =
∏
i

p(xi|x<i), (2.6)

where x<i = [x1, . . . , xi−1]. However, if some of the elements of the vector of
variables are independent and there are no cyclical dependencies, the above
equation reduces into

p(x) =
∏
i

p(xi|parent(xi)), (2.7)

where parent(xi) are the parents of xi in the directed acyclic graph (DAG)
that represents the distribution p. It is noteworthy that the complexity of the
distribution greatly decreases if each xi depends only on a constant number
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of other nodes. Due to the factorization, sampling from directed acyclic
graphical models is also relatively simple. Starting from the nodes that have
no parents, we can move through the graph, sampling from the corresponding
conditional distribution p(xi|parents(xi)). This technique is called ancestral
sampling. Samples from any marginal distribution of p can be acquired by
simply discarding the elements over which the distribution is marginalized.

Not all systems can be modeled with directed graphs, which are only fea-
sible in situations where there is a clear causal, one-directional interaction
with variables. Undirected models also known as Markov random fields allow,
as their name suggests, undirected edges in the graph modeling some prob-
ability distribution. Whereas undirected models are defined directly with
proper probability distributions, undirected models work with more loosely
constrained potential functions φ(·). When multiplied together, the func-
tions φ form an unnormalized probability distribution, which is normalized
by finding the partition function Z ≡

∫
x∈X

∏
i φidx. Special attention needs

to be paid to ensure that the partition functions exits (is finite) via choosing
non-divergent functions φ. [7, 21]

Energy-based models (EBM) employ unnormalized density functions p̃
with the form

p̃(x) = exp (−E(x)) , (2.8)

where E(·) is the energy function. Such parametrization ensures the non-
negativeness of the density function without any additional constraints and
consequently allows Monte Carlo estimation of the gradient of the log-partition
function of the unnormalized distribution p̃. Distributions of the form p(x) ∝
exp (−E(x)) are known as Boltzmann distributions inherited — like many
other concepts in probabilistic modeling — from statistical physics. Many
energy-based models are hence called Boltzmann machines. [21]

Non-parametric models Kernel density estimation provides an alter-
native, non-parametric method of estimating the probability density func-
tion. The method is based on the observation that given enough samples N ,
M = NP samples will be observed in the region X for which P =

∫
X
p(x)dx.

If the region X is small enough and with some volume V , the probability is
simply P ≈ p(x)V and hence

p(x) =
M

NV
. (2.9)

We can define a kernel function k to act as an indicator function yielding one
for values in the neighborhood of the origin and zero elsewhere. The kernel
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function centered at x can be used to count the number of observations near
the kernel

M =
N∑
i=1

k(x− xi). (2.10)

Combining this with Eq. 2.9 yields an estimate for the density function

p(x) =
1

N

N∑
i=1

1

Vk
k(x− xi), (2.11)

where Vk is the volume (integral) of the kernel. The functional form of the
kernel is a design parameter, but is often chosen to be the Gaussian. [7]

Limitations Classical algorithms for solving probabilistic latent variable
models often make strong assumptions about properties of the model. DAGs
simplify a probability distribution by assuming a causal process which results
into a more manageable factorization of the joint probability distribution.
Unfortunately, building such a graphic model is not always possible if the
process is too complex or not even directly observable.

The expectation maximization (EM) algorithm [14] — used to solve,
for example, the Gaussian mixture model — assumes that the posterior
q(z|x) = q(z,x)/q(x) is tractable (which it is with the Gaussian mixture
model). However, in a more general setting this might not be the case. Vari-
ational inference (VI) [33] approximates an intractable log-probability with
a tractable lower bound known as the variational lower bound or evidence
lower bound (ELBO), which is maximized instead. Generally, a mean-field
approximation is required, simplifying the intractable posterior distribution
with a distribution which generally factorizes in a certain way. Resorting to
variational approximation is a reason why some models fail to provide exact
values for data likelihood, as only a lower bound can be computed.

Deep generative models combine classical probabilistic inference with
modern deep learning based methods. A major problem with classical simple
parametric models is the arbitrariness in the choice of the family of distribu-
tions used in the modeling. Alternatively, this can be seen as the requirement
of having an expert to study the system and build a plausible, hand-tuned
probabilistic model. Neural networks can provide a remedy by vastly ex-
panding the family of distributions from which the optimal distribution is
searched. Modern deep learning techniques are also designed to work with
massive datasets efficiently, which is extremely important when modeling
high-dimensional distributions due to the curse of dimensionality.
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We dedicate the rest of this chapter to a brief look into deep neural
networks as well as an introduction to some of the most common deep gen-
erative models and their evaluation, starting with variational autoencoders
and generative adversarial nets. We pay special attention to the family of
normalizing flow models, the principal method of this thesis.

2.2 Deep Neural Networks

Deep (feedforward) neural networks are, as their name suggests, loosely in-
spired by neuroscientific observations about biological neurons. Mathemati-
cally, they are essentially not much more than repeated matrix–vector mul-
tiplication (or in more general terms, affine transformations) combined with
occasional non-linear activation functions such as the sigmoid or the hy-
perbolic tangent. A single fully connected or dense layer in a deep neural
network hence computes

x
′
= σ (Wx+ b) , (2.12)

where σ(·) is some activation function. The layer is called dense as all ele-
ments of x affect each element in x

′
via the weight matrix W . The dimen-

sionality of x
′

does not necessarily need to be equal to that of x. The depth
of the network is determined by the number of such layers composed one
after another. The width of the network depends on the dimensionality of
the intermediate values x

′
within the network. The non-linearities are cru-

cial for the representational power of the network. Without the activations,
the entire network could be reduced into a single affine transformation. It
can be shown, that a feedforward network with at least one intermediate or
hidden layer is a universal approximator, given that the hidden layer is wide
enough [29]. This means that, in theory, a wide enough neural network can
approximate any reasonably behaving (continuous, bounded) function arbi-
trarily well. The guarantee, however, only applies on the existence of such
network (or a set of parameters parametrizing a network) and in practice we
may fail to find the desired set of parameters.

Training a neural networks involves finding the optimal set of parameters
θ containing all the weights and biases in the layers of the network. The
task in supervised learning is to have the function fNN defined by network
approximate the data-generating function f as well as possible with respect
to a cost or loss -function `, given paired training examples of x and y =
f(x). We hope to minimize the expected loss over the data distribution,
that is, the loss should vanish on datapoints that we are the most likely
to encounter. Since we do not in general have a closed form for the true
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joint data distribution p(x,y), but rather only samples from it, we instead
minimize a quantity known as the empirical risk

Ex,y∼p(x,y) [` (fNN(xi),yi)] ≈
1

N

N∑
i=1

` (fNN(xi),yi) , (2.13)

where the summation is over the paired training examples. It is not guar-
anteed that a network trained with empirical risk minimization does well
with data not present in the paired training data. The dataset might be a
poor representation of the underlying distribution, especially if the dataset
is small in size. Additionally, the network can be overly expressive and learn
to memorize the training dataset, misleadingly yielding vanishing expected
loss. This is known as overfitting. Conversely, if the network is too simple
and lacks the required representational power, underfitting may occur.

A good set of network parameters is found iteratively using gradient de-
scent, a first order approximation of the high-dimensional loss landscape. At
each step of the iteration, a small step is taken in the parameter space into
the direction of the negative gradient of the cost-function with respect to the
network parameters. The task is in general not convex and hence there are no
guarantees of finding a global minimum for the cost. The gradient needed for
the gradient descent is efficiently found and evaluated using back-propagation
[57], a clever application of the chain rule of calculus.

The loss-function is in practice rarely evaluated for the entire dataset at
a time. Instead, the data is split into smaller random subsets called mini-
batches. Computing a noisy estimate of the gradient over a minibatch is still
correct on average, even though it is computationally much more lightweight,
leading into more efficient training. Gradient descend using the stochastic
gradients is still guaranteed to converge to a minimum given a couple of tech-
nical requirements for the step-size or learning rate used in the iteration [21].
The algorithm is known as the stochastic gradient descent (SGD). Extensions
to SGD include algorithms with adaptive learning rates [17] and application
of momentum — an exponentially decaying moving average of past gradients
— in the weight update step [37].

Working with high-dimensional data quickly leads into memory problems
due to the size of the weight matrices W scaling quadratically with the di-
mensionality. Allowing all elements of x to affect all elements of x

′
is not,

however, strictly necessary. For example, modeling the relationship of a pixel
in an image with all other pixels is mostly wasted effort, since the value of
the pixel is probably mostly independent from pixels that are far away. Here,
it is reasonable to model relationships only within a small, fixed neighbor-
hood of a pixel. Convolutional neural networks (CNNs) [44] do exactly this
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with the convolution (or rather, the cross-correlation) operation. In addition
to introducing sparsity to the connectivity, the convolution operation also
brings equivariance to translation, meaning that a translated input yields a
similarly translated output after the convolution. This is desirable, since an
image shifted with a pixel or two is still more or less the same image. As
a consequence of the equivariance, the shift does not introduce a large shift
in the output of the convolution. This happens naturally and does not need
to be learned, saving model capacity for other important aspects. With this
compact primer to neural networks, we now move to probabilistic modeling
with elements of deep learning.

2.3 Variational Autoencoders

An autoencoder, in general, is a function (often implemented with a neural
network) that attempts to perform an identity operation via an encoding–
decoding pass.

f(x) = Decode(Encode(x)) ≈ x. (2.14)

The operation is made non-trivial by restricting the model, for example, by
forcing it to use a lower-dimensional intermediate representation of the input
via the encoder [21].

The variational autoencoder (VAE) [40] employs variational methods on
a simple latent-variable generative model p(z)p(x|z) to find an approximate
posterior of the latent codes z, q(z|x). That is, instead of employing deter-
ministic functions, the encoder and decoder are probabilistic. The posterior
is referred as the recognition model or the encoder, while the likelihood p(x|z)
is the decoder (see Fig. 2.5). Each datapoint x produces a distribution of
latent codes z from which the datapoint could have been generated.

A variational approximation is required since the true posterior p(z|x)
is in general intractable due to the challenging marginalization integration
required for finding p(x). Applying the standard variational inference pro-
cedure and finding the variational lower bound L for the likelihood of the
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Figure 2.5: Variational Autoencoder. The model is sampled by first sampling
z ∼ p(z) followed by x ∼ p(x|z). The density function of x alone, p(x) is
intractable due to the need of marginalization of z and hence variational
methods are required.

observations x using Jensen’s inequality yields

log(p(x)) = log

∫
p(x, z)dz

= logEq(z|x)

[
p(x|z)p(z)

q(z|x)

]
≥ Eq(z|x)

[
log

(
p(z)

q(z|x)

)]
+ Eq(z|x) [log(p(x|z))]

= −DKL(q(z|x)||p(z)) + Eq(z|x) [log (p(x|z))]

≡ L(x), (2.15)

where p(z) is a known prior for z (e.g. a multivariate Gaussian). The first
term can intuitively be interpreted as a regularizer as it forces the recognition
model to follow the simple form of the prior. The latter term maximizes
the expected likelihood of the data over an encoder–decoder pass, that is,
minimizes the reconstruction error. The model is trained by maximizing
the lower bound L of the expected log-likelihood p(x) with respect to the
parameters of the likelihood p(x|z) and the approximate posterior q(z|x).

The variational lower bound is maximized using stochastic gradient de-
scent which requires a (Monte Carlo) gradient estimate which can be shown
to exhibit large variance [50]. This problem is amended by reparametrizing
the recognition model with a differentiable function g(x, ε), with ε ∼ p(ε).
The function g can be parametrized with a neural network, for example, let-
ting g(x, ε) = µ + σ � ε, where µ and σ are outputs of a neural network
given x as the input. This technique is known as the reparametrization trick.
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The variational autoencoder, like many other likelihood-based neural den-
sity estimators, use neural networks to parametrize known and easy to work
with probability distributions. This allows the networks to be essentially un-
constrained since there few strict requirements about the outputs. As long
as the parametrized distributions and the prior are simple enough, sampling
new points is readily achievable. Conversely, only the lower bound for the
likelihood of the data is ever computed, which is not necessarily the case with
other methods. While the structure of the latent z can readily be explored
with the encoder and decoder, VAE-based models are generally inferior in
terms of sample quality compared with generative adversarial nets, which are
discussed next.

2.4 Generative Adversarial Nets

While most deep generative models approximate a probability distribution
explicitly by maximizing the likelihood (or its lower bound) of the data, gen-
erative adversarial nets (GANs) [22] learn a distribution implicitly. A GAN
is composed of two competing networks, a generator tasked with generation
of samples resembling those of the data distribution, and a discriminator (or
a critic) estimating the probability of a sample having been generated by the
generator or having been sampled from the true distribution (see Fig. 2.6).

Figure 2.6: Generative adversarial nets. The generator network G(·) trans-
forms latent vectors z into samples which are to be indistinguishable from
the true samples x. The task of the discriminator D(·) is to detect which
samples are generated by the generator and which originate from the true
distribution pdata. Note how no likelihood function is ever evaluated.

This results into a two-player minimax game where the generator at-
tempts to maximize the probability of the discriminator making a mistake.
The training objective can be expressed as

min
G

max
D

Ex∼pdata [log(D(x))] + Ez∼pz [log(1−D(G(z)))] , (2.16)
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where D(·) is the confidence of the discriminator for the sample coming from
the true distribution and G(z) is a sample generated by the generator with
random seed z. A GAN never evaluates the likelihood of the observed data
directly and hence sidesteps many of the related challenges. Conversely,
however, the latent code is not as accessible as it is, for example, in VAE-
based models. One can back-propagate through the generator, but no direct
inverse is available.

It can be shown, that the optimal generator and discriminator do exist
and they are found at the global optimum of Eq. 2.16. At the optimum,
the distribution of the samples produced by the generator network exactly
matches that of the true data distribution and the discriminator assigns equal
probability to the sample coming from the generator and the true distribu-
tion. Furthermore, given enough capacity for G and D, by alternatingly
updating the weights of the generator and discriminator networks, the opti-
mum is guaranteed to be reached in theory. However, in practice, training a
GAN can be notoriously difficult due to instability in the training. Conse-
quently, much work has been conducted to improve and stabilize the training
process [4, 35, 47].

While GANs achieve impressive results in many generative image-related
tasks [36, 74], they suffer from the well documented problem of mode col-
lapse. That is, instead of properly assigning probability mass to all plausible
points of data, they tend to underestimate the variance of the target distri-
bution in exchange of being able to generate high-quality samples. Models
trained with maximum likelihood (or equivalently KL-divergence minimiza-
tion) make the opposite choice of forming a distribution covering all the data
points but overestimating the variance and yielding low-quality samples much
more frequently. This behavior is sometimes called zero-avoidance.

2.5 Autoregressive Models

An autoregressive (AR) model requires deciding an ordering of the variables
of the problem. It models the probability distribution of each element of
the random vector with an aggregate of the values of the previous elements.
This family of techniques is well-suited for time-series analysis, where an in-
herent ordering for the data exists [9]. Unlike in variational autoencoders,
autoregressive models do not contain latent variables. As a result, intractable
marginalization is avoided and no variational methods are required. Instead,
autoregressive models present a probability distribution exactly and without
resorting to a variational lower bound using the chain rule of probability
(Eq. 2.6). The decomposition can always be made and in itself, makes no
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assumptions about the conditional dependencies of the probability distribu-
tion. The model is only limited by the choice of family of distributions of
the conditionals. There is also an inherent ambiguity that directed models
solved with causality arguments: not all vectors x possess a natural order-
ing. Time-series data does, but individual images do not and hence it is
not clear which ordering of the elements should be used in the expression
of the joint probability distribution. The required conditional probabilities
p(xi|x<i) can be each realized with a neural network which takes as input
the previously generated x<i and (in case of x being discrete, like image
pixel-values) outputs a probability distribution for xi.

The neural network used in the formation of the conditionals can be re-
alized by employing a masking scheme like in the masked autoencoder distri-
bution estimator (MADE) [20]. The aforementioned architecture uses binary
masking on a fully connected neural network to enforce the autoregressive
property. Other suggested architectures employ restricted Boltzmann ma-
chines [43, 70] and convolutional or recurrent neural networks [49]. While
autoregressive models tend to achieve better likelihood scores than other
models capable of direct evaluation of the data likelihood, they suffer from
slow O(D) sampling caused by the serial factorization of the probability
density.

2.6 Normalizing Flows

Autoregressive models permit an exact evaluation of the model probability
density function, but fail to naturally model unordered data. Normalizing
flows are another family of models for density estimation that allow con-
structing an explicit PDF without resorting to variational methods. They,
however, do not require the data to be ordered and are much more efficient
at generating samples compared to autoregressive models.

Flow-models in the context of density estimation have their roots in
whitening transformations, and Gaussianization [52]. Gaussianization at-
tempts to iteratively render the components of a random vector x as inde-
pendent as possible with an invertible transform f using an EM algorithm
[10]. Normalizing flows in their current form were conceptualized by Tabak
and Turner in 2013 [65]. They recognized that invertible transforms can be
composed into more expressive transformations and that there exists a duality
between density estimation and normalization (Gaussianization). The search
of the density estimate q(x) can be reformulated into the search of the best
normalizing mapping f(·). If the mapping perfectly transforms the target
distribution into a normal distribution, due to invertibility it also transforms



CHAPTER 2. GENERATIVE MODELING 27

a normal distribution into the target distribution.
A normalizing flow models a probability distribution using the change of

variables formula
qx(x) = pz(f

−1(x)) |Jf−1(x)| , (2.17)

where x = f(z) is an arbitrary invertible and differentiable function and
|Jf−1(x)| is the determinant of the Jacobian of f−1 with respect to x. The
Jacobian determinant can be thought as a regularizer that ensures proper
normalization of the PDF after the change of variables. It is a direct con-
sequence of the change of variables in multivariate integration. Similar con-
version factors appear, for example, in moving from the Cartesian coordi-
nate system into polar coordinates in multivariable integration. If f(·) =
(f1 ◦ f2)(·) ≡ f1(f2(·)) is a composite function as discussed earlier, the Jaco-
bian is simply the product of the Jacobians of the individual functions due
to the multivariate chain rule. Furthermore, the composition of invertible
functions remains invertible. These properties are employed in essentially all
modern normalizing flows. The study of normalizing flows for density esti-
mation usually concentrates in the search of families of functions f , which
are both expressive and efficiently invertible, but also yield a tractable Jaco-
bian determinant. In order to see why those properties are necessary, we first
need to understand how flow models are trained.

Training Similarly to classical parametric models for density estimation,
the training goal of a flow models is the minimization of a divergence-metric,
such as the KL-divergence (Eq. 2.3). As suggested previously, this is equiv-
alent to maximizing the likelihood of the observations under the distribu-
tion spanned by the model. Evaluating the expectation analytically is not
tractable but since the observations xi are assumed to be samples from the
true underlying distribution p, a Monte Carlo estimate for the expected like-
lihood L can be computed

L(q) ≈ 1

N

N∑
i=1

log (q(xi))

=
1

N

N∑
i=1

log
(
pz(f

−1(xi))
)

+ log (|Jf−1(xi)|) , (2.18)

where we have used Eq. 2.17 as the expression for q and xi ∼ p(x). If
the function f is implemented by a neural network and expressions for f−1

and Jf−1(x) are available for evaluation, can the likelihood MC-estimate be
minimized using standard stochastic gradient descend methods. Conversely,
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generating samples from the model requires evaluating f and being able to
sample from the prior pz(z). If the family of functions from which f is
chosen is rich enough and a global optimum in the training is found q is
exactly the same as p since the KL-divergence vanishes. Consequently, as
the mapping between x and z is bijective, the observations mapped into z
via f−1 perfectly follow the chosen prior distribution pz(z). The flow model
is normalizing since it maps a complex distribution into a simpler one (often
chosen to be the Gaussian or the normal distribution). We visualize the
normalization process in Fig. 2.7.

Figure 2.7: Normalizing flow with a change of variables. The simple Gaussian
distribution with density pz(·) is transformed with a invertible and differen-
tiable transformation f(·) into qx(·), which minimizes some divergence with
the (unknown) true data distribution pdata. Alternatively the inverse func-
tion f−1(·) can be thought to transform the complex distribution qx into a
normal distribution, that is, normalize it.

As opposed to autoregressive models, the computational complexity of
normalizing flows does not in general scale linearly with the number of dimen-
sions D during sampling. Instead, we are free to make a modeling decision
in the number of composed bijections K, which in general is much smaller
than D. The training of the model, however, requires the computation of
the Jacobian determinant, which in the general case is a restrictive O(D3)
operation. Most bijections used in flow models are specifically crafted to
have at most a linear time complexity with respect to D in the evaluation of
the Jacobian determinant. Another common goal is ensuring efficient invert-
ibility, usually by employing simple bijections such as affine transformations.
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We will now introduce in detail some methods for ensuring sub-cubic or oth-
erwise more manageable Jacobian determinants from the literature. Many
methods ensure that the Jacobian be triangular, significantly simplifying the
computation of the determinant.

Residual flows Linear-time determinant can be achieved, for example,
with clever use of the properties of the determinant. One can employ the
matrix determinant lemma for a family of residual transformations of the
form

f(x) = x+ uh
(
vTx+ b

)
, (2.19)

where x,u,v ∈ RD, and h is a smooth, differentiable element-wise non-
linearity [55]. According the the aforementioned lemma,

det(Jf (x)) = det

(
I + u

[
h
′
(vTx+ b)v

]T)
= 1 + h

′
(vTx+ b)uTv, (2.20)

which is clearly linear in D — only inner products between x, u and v need
to be computed. The matrix determinant lemma can readily be generalized
for matrices to find

det
(
A+UV T

)
= det

(
Im + V TA−1U

)
det (A) , (2.21)

where A in an invertible D ×D matrix and U and V D ×M matrices. In
the special case where A = I, the equality is know as Sylvester’s theorem
for determinants. The theorem is utilized in Sylvester normalizing flows [6]
to convert a prohibitive D×D matrix determinant computation into a more
manageableM×M matrix determinant, assuming M � D. The determinant
retains the cubic time complexity, but is only O(M3 + M2D), from the
determinant and V TU computations, respectively. Special attention needs
to be paid to the matrices U and V such that the equivalent of Eq. 2.19
with matrices instead of vectors, remains invertible.

Continuous-time flows The residual form of Eq. 2.19 is suggestive in the
sense that it yields the state of the flow after one layer in the form

xt+1 = xt + g(x), (2.22)

which can be seen as a step of the Euler method for solving ordinary dif-
ferential equations (ODEs). In the limit of adding more layers and taking
smaller steps the dynamics of the normalizing flow start to become speci-
fied by a differential equation defined by a neural network. Continuous-time
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normalizing flows do not have a well-defined notion of depth. They model
the change of the probability density function as a function of continuous
time using an ODE. The time derivative of the log-density is given by the
instantaneous change of variables [11]

∂ log(p(z(t)))

∂t
= −Tr (Jf (z(t))) , (2.23)

where Tr (Jf (z(t))) is the trace of the Jacobian. The log-probability of z
at time t can be acquired by solving 2.23, which can be done efficiently
with a standard numerical ODE solver. During training, gradient of the
log-likelihood with respect to the parameters θ of f is required. Fortunately,
having a differentiable ODE-solver is not necessary. It can be shown, that for
a scalar loss function L(z(t)) (such as the expected likelihood) the derivative
of the loss can be solved using the adjoint sensitivity method [8]:

dL

dθ
= −

t0∫
t1

(
∂L

∂z(t)

)T
∂f(z(t), t; θ)

∂θ
dt, (2.24)

which can be computed with another forward pass of an ODE solver. As
the gradients are given by another ODE, the solver can be treated as a
black box and it does not need to be differentiable. Using continuous time
dynamics lifts the prohibitive O(D3) determinant computation and replaces
it with the trace of the Jacobian. The Free-Form Jacobian of Reversible
Dynamics (FFJORD) [23] model employs stochastic estimation of the trace
of the Jacobian with Hutchinson’s trace estimate [32]. The trace is given by
computing the MC estimate of

Tr(A) = Ep(ε)

[
εTAε

]
, (2.25)

where ε is distributed with zero mean and identity covariance. The vector–
Jacobian product εTJ is computed with reverse-mode automatic differenti-
ation with O(D)-time complexity instead of explicitly computing the diago-
nal of the Jacobian yielding an O(D) complexity for the trace computation
without assuming anything about the form of the Jacobian matrix. While
continuous-time flows lift the computation of the troublesome Jacobian de-
terminant, they regardless somewhat suffer from scalability problems with
high-dimensional data.

Autoregressive flows Normalizing flows can also employ the autoregres-
sive property by mixing variables such that each component only depends on
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the previous components. In fact, the property is very fitting for flow models
as it ensures that the Jacobian of the transformation is triangular and hence
the determinant merely the product of the diagonal elements. In general, an
autoregressive flow (AF) transforms a variable one element i at a time using

xi = τ (zi, c(x<i)) , (2.26)

where τ is an invertible transformer and c is the conditioner. The masked
autoregressive flow (MAF) [53] transforms a random vector z using an affine
transformer:

xi = zi exp (fsi(x<i)) + fbi(x<i), (2.27)

where fsi and fbi are scalar functions usually implemented with neural net-
works. The inverse is simply

zi = (xi − fbi(x<i)) exp (−fsi(x<i)) . (2.28)

Note how during mapping from z to x (i.e. sampling), the components of
x need to be necessarily computed serially because of the dependency chain
of previous xi. However, computing the inverse (probability density evalua-
tion) can be parallelized since the full vector x is available. The Jacobian is
triangular by design and the log-determinant is simply the sum of the scales
fsi(x<i). The inverse autoregressive flow (IAF) [39] makes an opposite choice
in terms of the computational trade-off by having the bijections fsi and fbi
depend on the vector z instead of x. Now, during the forward pass (sam-
pling), computation can be parallelized, since the full vector z is available.
Conversely, the inverse needs to be computed serially.

Coupling layers The non-linear independent components estimation (NICE)
[15] model uses coupling layers, somewhat resembling the operation of AF/IAF,
where at each step of the flow, the vector x is split into two parts xa,xb,
the first is used to compute bias-terms for the other and the other remains
unchanged:

[xa,xb] = split(x)

x
′

a = xa + g(xb)

x
′

b = xb

f(x) = concat(x
′

a,x
′

b). (2.29)

The function g can be implemented with an unconstrained neural network.
Regardless, the Jacobian retains a simple triangular form with ones on the
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diagonal. No serial computation is necessary either during training or infer-
ence and the inverse operation is nearly the same as the forward computation,
with only a sign flipped. The follow-up work real non volume preserving-flow
(RealNVP) [16] extends NICE by adding an additional neural network gs for
computing scales for x

′
a

x
′

a = xa � exp (gs(xb)) + g(xb). (2.30)

Here, the Jacobian is again a triangular matrix, but with elements on the
diagonal possibly deviating from unity. The block corresponding to xb is
the identity whereas the one corresponding xa is diagonal with elements
exp (gs(xb)). The log-determinant is hence the sum of the elements of gs(xb).
Attempting to solve the toy-problem visualized earlier in Fig. 2.4 with a sim-
ple RealNVP-like normalizing flow with ∼ 150 learnable parameters yields
much more promising results as shown in Fig. 2.8. The toy problem would
still be readily solvable with other, more flexible classical methods, such as
the EM-algorithm for a mixture of Gaussians. Figure 2.9 shows the results
of another RealNVP-like normalizing flow applied to a more complex dis-
tribution. While the reconstruction is not perfect, the model manages to
reproduce the distribution well. It is noteworthy, however, that the model in
both examples — like other models trained with likelihood maximization —
overestimates variance and generates samples that have vanishing likelihood
under the true model. The opposite is penalized heavily and hence the ap-
proximation q attains high density wherever the true distribution p has high
density.

Both NICE and RealNVP have the problem of choosing the partitioning
of x. While choosing equal sizes for the two parts is not guaranteed to be the
best option, it is often done to ensure proper mixing of information. More
involved partitioning schemes must be employed for example when dealing
with image data. An image can, for example, be partitioned spatially us-
ing a checkerboard pattern or splitting along the channel-dimension. The
Glow -architecture [38] attempts to remedy the partitioning problem with
invertible 1 × 1 convolutions. An ordinary partitioning corresponds to ap-
plying a permutation matrix and then splitting. Glow offers a way to learn
a continuous variation of this partitioning with the invertible convolutions
which essentially are matrix–vector products along the channel dimension.
As the convolution kernel is a learned parameter, the best partitioning can
at least in theory be found. Recent work extended the 1× 1 convolutions by
introducing invertible d× d convolutions interpreting the convolution (cross-
correlation) operation as matrix–vector multiplication and constraining the
matrix to be triangular ensuring efficient Jacobian determinant computation
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[27]. There has also been other work on masked convolutions applied to
normalizing flows [45, 63].

Figure 2.8: Mixture of multivariate Gaussians (top) approximated with a
RealNVP-like normalizing flow (bottom). The contour-lines denote points
with constant values of the PDF. While the flow-model is much more com-
plex in terms of the number of parameters and the fact that it requires
iterative optimization, it yields vastly superior results compared with simple
parametric models.
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Figure 2.9: Approximation of a Gaussian with mean µ(x) = [x, 2 sin(πx)],
x ∼ Uniform(−2, 2) using a RealNVP-like normalizing flow. The top panel
shows samples from the true distribution and the bottom panel samples from
the approximation created with a normalizing flow. The model has high
density wherever the true distribution has high density, but does generate
samples that have very low likelihoods under the true distribution (qualitative
outliers denoted with smaller dots in the bottom panel).
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Numerical inversion While many flow models use transformations with
deterministic analytic inverses and closed-form solutions for the Jacobian
determinant/trace, are those not strictly necessary as already seen with the
FFJORD trace estimate. In the literature, there are models that use iter-
ative, numerical (fixed-point, bisection search) methods to find the inverse.
The lack of analytic inverse often arises from using non-affine flows. Nearly
all flow-models introduced earlier in this thesis have employed affine transfor-
mations which have very simple analytic inverses but which can cause prob-
lems with lacking expressivity. Non-linear activation functions, often found
in neural networks, are absent in many flow models due to concerns about
invertibility or training instability. Regardless, a flow-model could theoret-
ically include non-linear (yet monotonically increasing) activation functions
such as the hyperbolic tangent or the leaky rectified linear unit. Compo-
sitions and conic sums of such functions also remain monotonic and hence
invertible. Employing transformations with non-trivial inverses in the con-
text of normalizing flows can be lucrative due to a potential increase in their
expressive power. Finding the inverse of the transformation is not neces-
sarily the only computational challenge since the Jacobian determinant also
becomes more complex.

The neural autoregressive flow (NAF) [30] replaces the affine transformer
τ(·) of AF/IAF with a deep neural network constrained to have non-negative
weights and monotonic activations. NAF retains the conditioner network c,
which is used to yield parameters for the transformer network. The block
neural autoregressive flow (B-NAF) [13] removes the conditioner and hence
renders the model more compact. It enforces the autoregressive property and
monotonicity by directly applying constraints on the weights of the trans-
former network.

Another line of work deals with integration-based flows. The integral of
any strictly positive function is clearly monotonic and hence integration can
be used to generate bijections for normalizing flows. Unconstrained mono-
tonic neural networks (UMNNs) [72] parametrize a strictly positive function
with an unconstrained neural network with a biased exponential linear unit
(ELU) activation at the end of the network enforcing positiveness. Evaluating
the bijection requires integrating the output of the network which is carried
out numerically using the Clenshaw–Curtis quadrature [12]. The inverse is
found using bisection search. The Jacobian is constrained to be simple by
employing autoregressivity and leveraging the simple partial derivatives of
the integral-function. Müller et al. [48] build piecewise continuous first and
second-order polynomials with neural networks and define the bijection with
the integral of the polynomial. Here, the simple parametric form of the in-
tegrand yields a closed-form solution for the evaluation of the bijection and
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no numerical integration is necessary at the cost of reduced expressibility.
Durkan et al. extend the above technique to piecewise cubic polynomials
[18].

Discrete flows Despite essentially all data on a digital computer being
discretized, discrete flows are not as prevalent in the literature. Discrete
data is rather dequantized by adding noise. The change of variables formula
(Eq. 2.17) applies only to continuous data and a different formula needs to
be employed in the discrete case as follows

p(y) =
∑

x∈f−1(y)

p(x), (2.31)

where f−1(y) is the set of elements x subject to f(x) = y [68]. If the
function f(·) is invertible, there is only one element in the set and the sum-
mation vanishes. Even though moving to a discrete domain brings the benefit
of the problematic Jacobian determinant vanishing from the equation, the
transition does not come without problems. Back-propagation through non-
differentiable discrete-output functions requires smooth approximations, like
replacing the argmax-operation with a sharp yet differentiable softmax. Al-
ternatively, the gradient of a discretization operation — like rounding — is
effectively ignored by using the straight through estimator (STE) [5]. Dis-
crete flows have seen use in lossless compression [28], where they are shown
to perform significantly better than classical lossless compression methods
(for image data) like PNG and moderately better than a VAE-based lossless
compression method Bit-Swap [41]. The discrete flows are employed to find
the probability mass function, which is in conjunction with a range-based
asymmetric numerical system (rANS) used to try to approach the theoreti-
cal limit of Shannon’s source coding theorem [60].

2.7 Comparison and Combinations

There is no method that is clearly better than others in all aspects. In fact,
most of the methods introduced in this chapter are not even directly numer-
ically comparable. Variational autoencoders only provide a lower bound for
the data likelihood and GANs never even work with likelihoods explicitly.
While autoregressive models usually yield superior likelihood scores com-
pared to flow-models, they suffer from slow sampling and ambiguity in the
ordering of the data-vector. Furthermore, a favorable likelihood-score does
not necessarily translate into high-quality samples.
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Relying only on the quality of the produced samples is equally ques-
tionable due to very different trade-offs between the models and the lack of
a proper quantitative definition for “high quality”. GANs generate qualita-
tively visually realistic samples, but often suffer from the absence of variation.
Likelihood-based models offer worse sample quality but tend to have much
higher variation. There has been work on creating metrics for evaluating the
quality of generative model samples, such as the Fréchet inception distance
(FID) [25] or the inception score (IS) [59]. Both of the metrics compact
the quality into a single number immediately losing the obvious trade-off
between realism and variation. More recent work has attempted to disen-
tangle the aspects of quality into two separate dimensions via the notion of
precision and recall, successfully demonstrating some of the shortcomings of
one-dimensional measures of sample quality [42, 58].

There have also been efforts trying to combine some of the aforemen-
tioned methods or their basic ideas to obtain the best of both worlds. Au-
toregressive flows are an example of this, which has already been mentioned.
Another method-combining approach, the Flow-GAN [24] mixes ideas from
normalizing flows and GANs by suggesting a hybrid loss combining likelihood
maximization with the adversarial loss given by Eq. 2.16. The generator of
the GAN is invertible (a normalizing flow) and hence allow the evaluation
of likelihood of data. Combining the two ideas, the authors show that with
only using an adversarial loss, poor likelihoods are attained but the sample
quality is high. Conversely, training with pure likelihood yields samples of
worse quality. The hybrid loss is suspected to regularize the training in the
sense of likelihood maximization and stabilized with respect to the adversar-
ial objective. Interestingly, the hybrid objective is found to sometimes yield
better test-likelihood scores than pure likelihood maximization.

Normalizing flows can also readily be combined with variational autoen-
coders. The representational power of a VAE is dependent on the form and
expressibility of the approximate posterior q(x|z), which in the simple case
is merely a multivariate Gaussian parametrized by a neural network. Since
normalizing flows provide means for spanning highly flexible distributions,
they are an excellent candidate for realizing the posterior distribution q.
While employing normalizing flows in VAEs does not change the fact that
only a lower bound is computed for the likelihood, they have been shown to
bring clear improvements over simple parametrized distributions in several
problems [55, 67].



Chapter 3

Inverse Problems and Bayesian
Thinking

Sometimes two separate events are not independent and knowing the outcome
of the first has an effect on the probability distribution of the other. The
chain rule of probability states that the joint probability distribution of two
random variables

p(x,y) = p(x|y)p(y), (3.1)

where p(x|y) is the conditional probability of x given y. The random vari-
ables are said to be independent if and only if

p(x,y) = p(x|y)p(y) = p(x)p(y), (3.2)

that is p(x|y) = p(x), denoting that knowing the value of y yields no infor-
mation on the distribution of x.

The ability to estimate conditional distributions and sample from them
is in the core of this thesis. In this chapter we draw a connection between
conditional density estimation and inverse problems. Furthermore, we show
how normalizing flows can readily be extended with conditioning to model
conditional distributions without resorting to hand-crafted distributions and
Bayes’ theorem. In the end of the chapter, we provide a simple example of
an implementation of a conditional normalizing flow on a toy problem.

38
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3.1 Bayesian Methods

Rewriting Eq. 3.1 immediately leads into Bayes’ theorem

p(x|y)p(y) = p(y|x)p(x)

p(x|y) =
p(y|x)p(x)

p(y)
, (3.3)

where p(y|x) is the likelihood, p(x) the prior and p(x|y) the posterior.
Bayesian methods incorporate prior beliefs of the distribution of some vari-
able x (the prior distribution) with observations of data y (the likelihood)
to perform inference about the distribution of the variable given the observa-
tions. In simple cases, the posterior distribution can be solved analytically,
given likelihood and prior distributions. This usually requires the prior and
the likelihood to be conjugate, meaning they come from the same family of
distributions. Conjugacy is necessary due to the p(y)-normalization term
in the denominator, which, in general, is the (usually intractable) marginal-
ization integral

∫
p(y|x)p(x)dx. Conjugacy allows the normalization term

to found by inspection, meaning that the (unnormalized) posterior follows
the form of a known probability distribution allowing the normalization con-
stant to be computed with a known formula given the parameters of the
distribution. [19]

Conditional density estimation (CDE) is the task of finding the distri-
bution of a variable x given the value of another variable y. In Bayesian
thinking, this equals to finding the posterior distribution of x given some ob-
servation y. Unfortunately exact Bayesian treatment is in general intractable
as even finding the likelihood model p(y|x), let alone the normalization con-
stant may be too difficult. If there is a functional dependency y = g(x) (not
necessarily a bijection), a method called approximate Bayesian computation
(ABC) can be used. A simple form of ABC generates samples from the pos-
terior using rejection sampling, by repeatedly sampling values of x, mapping
them to y via the known forward model g and accepting only those values
of x which map within distance ρ(·, ·) ≤ ε of the desired y [64]. ABC is
a likelihood-free family of methods for generating samples from a posterior
distribution [51], if a simulator for the forward-model y = g(x) is available.
They are hence a way of generating solutions for inverse problems which are
discussed next.
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3.2 Inverse Problems

Inverse problems are usually encountered in situations where an unobserved
quantity x is to be estimated based on measurements on a different observed
quantity y. The two quantities are related by some (possibly noisy) forward
model as

y = g(x, ε), (3.4)

where ε denotes a set of noise variables, not of the primary interest. In
the context of this thesis, image denoising can be given as an example of
an inverse problem. Given a noisy image y “measured” by a camera, what
are the corresponding clean, unobserved images x? Since there are likely
multiple clean pictures that could correspond to the noisy image, the solution
is a distribution of images. Here, the values ε are parameters related to the
unknown, stochastic photon capture process of the camera. Many inverse
problems are extremely ill-posed simply due to an information losing nature
of the forward process or due to the noise or uncertainty in the measurements.
Various regularization methods can be employed to reduce the ill-posedness
of the problem and to find a single, reasonable solution for the problem. In
this thesis, however, we focus on statistical methods for inverse problems,
and rather model uncertainty in the model with probability distributions.
Classical statistical methods for inverse problems directly apply Bayes’ law
(Eq. 3.3) by finding an appropriate likelihood model for the forward process
as well as specifying a prior distribution. In order to acquire samples, the
likelihood and prior distributions need to be very simple to ensure a tractable
posterior. Alternatively, expensive MCMC methods need to be employed. In
contrast, we parametrize the conditional distribution p(x|y) directly, without
applying Bayes’ theorem, as explained in the following section. [34]

3.3 Deep Conditional Modeling

Alike to unconditional density estimation, classical conditional density esti-
mation usually employs a fixed parametrized distribution for which optimal
parameters are found. Contrary to unconditional density estimation, the
outcome of the measurement is not completely determined by the unknown
random vector ε as part of the input, denoted as y is controlled by us, as
illustrated in Figure 3.1. Note how the modeling framework of Fig. 3.1 re-
sembles the forward model of Eq. 3.4. It is exactly the inverse, implementing
the mapping x = f(ε,y)!

Many methods and models introduced in Chapter 2 can readily be ex-
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tended to perform conditional density estimation and yield conditional sam-
ples in the generative process. In practice this often means that the neural
networks that are used to parametrize the distributions found in the density
estimation models are given the conditioning information in addition to their
regular inputs.

Figure 3.1: Conditional distribution approximation. The process is deter-
mined by vectors ε and y, out of which the latter can be controlled. The
modeling task is to approximate the true distribution p(·|y) (left), with q
defined by the function f (right).

Conditioning in GANs GANs can be conditioned by concatenating the
conditioning information into the latent noise of the generator network [46]
or by applying conditional normalization layers. These layers operate by ef-
fectively setting the 1st and 2nd order feature statistics (mean and variance)
of the image under generation into those of the conditioning image, within
the hidden layers of the generator network. Adaptive instance normalization
(AdaIN) [31] computes channel- and sample specific spatial mean and vari-
ance of a tensor, normalizes it with the computed values and finally rescales
the normalized values with those computed using the conditioning tensor
y. The spatially adaptive denormalization (SPADE) [54] method computes
the normalization similarly with AdaIN, but allows the scale and bias values
computed using the conditioning tensor to be spatially varying. The above
conditional normalization layers are not necessarily only to be used with
GANs. In fact, conditional RealNVP-style coupling layers operate strikingly
similarly by rescaling and shifting the input tensor based on the elements of
the input tensor as well as the conditioning tensor. The conditional RealNVP
layer lacks the explicit normalization step due to invertibility constraints, al-
though it might be possible that the layer learns to perform an (invertible)
operation close to that of spatially adaptive denormalization.
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Conditioning in VAEs and AR-models The conditional variational
autoencoder (CVAE) [62] augments the expression of the ELBO (Eq. 2.15)
by conditioning each distribution with the conditioner y. The conditional
PixelCNN [71], a conditional autoregressive model, likewise simply adds a
term dependent on the conditioning information into the long short-term
memory (LSTM) layers employed by its unconditional predecessor PixelRNN
[49].

Conditioning in NFs Flow-models have also recently been extended with
conditioning. A conditional distribution can be realized by partitioning
the flow into deterministic and sampled components y and z, such that
x = f(y, z) [2] as illustrated in Fig. 3.2. The model is trained by applying
a supervised loss for the part of f−1(x), corresponding to y. The remaining
part z is constrained to be distributed according to a simple prior, like the
Gaussian. Sampling happens by concatenating the conditioning information
y with the sampled z and applying f(·). At convergence, the model does not
only approximate p(x|y), but also learns to approximate the unknown for-
ward process. The method is shown to work with low-dimensional toy-data
but its generalizability to high-dimensional data is unknown. The super-
vised loss causes additional stress to the already heavily constrained invert-
ible transformation rendering work with more challenging data potentially
troublesome. There is also an implicit assumption about the dimensionality
of y. Solving, for example, a denoising task is not possible since the forward
process does not change the dimensionality, that is dim(x) = dim(y), and
the sampled part z vanishes in the model.

Another line of work uses external neural networks to parametrize the bi-
jections of the flow [3, 69, 73], sidestepping the need to partition the flow, but
also losing the ability to learn the forward model. In this thesis, we choose
to continue this line of work due to its roots residing in the state-of-the-art
models of unconditional density estimation with normalizing flows [38]. We
do not employ the partitioning scheme due to concerns about the its expres-
sive limitations. Taking one step further, the work in [69] goes as far as to
employ Bayesian neural networks in the generation of the flow-parametrizing
values introducing regularization and applying priors to the parameter dis-
tributions. A mean field Gaussian approximation is used in conjunction with
variational inference for the posterior of the network parameters.
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Figure 3.2: Normalizing flow conditioned via partitioning. The part y is
the deterministic conditioning information while the rest of the vector (part
corresponding to z) is sampled. Samples are acquired by concatenating y
and z and applying the transformation f(·).

3.4 Simple Conditional Flow

Conditioning can be readily implemented to the normalizing flow for the
toy-dataset introduced in the previous chapter. The RealNVP-architecture
computes the bias and scale vectors (Eq. 2.30) with neural networks g(·) and
gs(·). In the unconditional case its only argument is xb, that is the results of
the split operation. The flow-model can be conditioned with some additional
information y, which can be given to the neural network as additional input.
The conditional RealNVP-block simply computes

[xa,xb] = split(x)

x
′

a = xa � exp (gs(xb,y)) + g(xb,y)

x
′

b = xb

f(x) = concat(x
′

a,x
′

b), (3.5)

where the only difference with respect to the unconditional model is that the
neural networks gs and g additionally accept y as a parameter. Conditioning
the mixture of Gaussians toy-model with the discrete cluster indices correctly
recovers the individual Gaussians as visualized in Fig. 3.3. Recovering the
two components is a rather simple task, since the base distribution of the flow
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pz only needs to be offset horizontally given the conditioning information y
about the cluster membership.

Figure 3.4 illustrates a conditional variant of the more complex toy-data
distribution introduced the the previous chapter. Here, we let the forward
process be simply

y = g(x) = x1, (3.6)

that is, pick the first element of the vector x. We hence seek to model
the conditional distribution p(x|x1). We find that the conditional model
correctly yields samples at the correct location x1 but that the values x2
have too large a variance given the true distribution. The model, however,
is quite simple and not too much time was spent on optimizing the results.
A more expressive and tuned model would likely perform better.

Figure 3.3: Mixture of multivariate Gaussians (top) approximated with
a RealNVP-like conditional normalizing flow (bottom). Dashed lines cor-
respond to contours of q(x|cluster=left) and dotted lines to contours of
q(x|cluster=right).
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Figure 3.4: Conditional sampling in the toy-model with a 2-dimensional
Gaussian with sinusoidal mean. The full marginalized distribution is plot-
ted, with each color c in the colormap corresponding to samples from the
conditional q(x|x1 = c). Best viewed in color.



Chapter 4

Method

In this chapter we present our method for learning conditional probability
distributions with normalizing flows in the context of finding solutions for
inverse problems. The task of the model is to find the distribution of a “clean”
or uncorrupted unobserved variable x using only a corrupted observation y
of it. We assume that we are supplied with paired data of images x ∈ Rd×d×c1

and corresponding images y ∈ Rm×m×c2 with d× d× c1 ≥ m×m× c2.
We wish to learn the conditional probability densities for three different

tasks: superresolution, denoising and colorization. For each of the tasks,
we use essentially the exact same architecture, only changing the training
dataset. During inference, we need to be able to sample from the distribution
given only the corrupted values y as specified above. The dimensionality of
the tensor in the flow (x or z) is necessarily of the same dimensionality as
the uncorrupted samples, that is, of shape d× d× 3. Depending on the task,
the shape of y is given in Table 4.1.

Table 4.1: Forward processes of the inverse problems. In the experiments,
we use images with h = w = d = 128.

Task dim(x) dim(y) Notes on forward process

Superresolution d× d× 3 d/4× d/4× 3 4-times, Lanczos downsampling
Denoising d× d× 3 d× d× 3 zero-mean additive Gaussian σ ∈ [0.05, 0.3]
Colorization d× d× 3 d× d× 1 PIL-grayscale

The normalizing flow is trained using the standard maximum likelihood
approach by minimizing the conditional variant of Eq. 2.18 (that is, the
negative conditional log-likelihood) with respect to the parameters θ of the

46
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flow-defining function f

θ∗ = argmin
θ

− 1

N

N∑
i=1

log pz

(
f−1yi;θ(xi)

)
+ log

∣∣∣Jf−1
yi;θ

(xi)
∣∣∣ . (4.1)

We build upon the RealNVP [16] and Glow [38] -models with the use
of non-volume preserving coupling layers and invertible 1 × 1 convolutions.
We do not, however, implement the so-called actnorm-layers used in the
original Glow-architecture. There are also some differences in the reshaping
operations employed in the flow. We also employ somewhat more complex
U-Net-like autoencoders [56] in the scale and bias-term computing functions
in the coupling layers. In their place Glow has a few convolutional layers with
non-linearities in between. The most striking difference between our model
and Glow is the conditioning information preprocessing network, which is
discussed later. Ardizzone et al. employ a similar preprocessing network
[3], which however, is pretrained (a truncated VGG-network), while ours is
trained in conjuction with the flow.

4.1 Flow structure

Closely following the methodology of [38] we employ a multi-scale archi-
tecture consisting of blocks operating at different resolutions. Each block
corresponds to an invertible function and stacking such blocks corresponds
to composing several invertible functions into one. Since the function defin-
ing the flow is invertible, the total number of elements in the tensor cannot
change during the flow and hence, changing the resolution comes with a
corresponding change in the number of channels. To reduce computational
complexity, we split the tensor into two at each resolution and pass one half
directly to the end-result of the flow, as if there was a skip-connection. We
visualize the flow in Fig. 4.1. Each block is composed of a set of other
composable functions which we introduce next.

4.1.1 Coupling layers

We employ coupling layers following the ideas of [16]. The coupling layer
splits the tensor in two using two alternative splitting strategies: the so-
called checkerboard pattern, or channel-wise splitting. We visualize the split
types in Fig. 4.2. One of the part of the tensor resulting from the split is used
to compute shifts and biases for the other as defined in Eqs. 2.29 and 2.30.
The shift and bias terms are computed by a single, fully convolutional but
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Figure 4.1: Flow composed of blocks and splits corresponding to z = f−1y (x).
Each applies an invertible transformation conditioned with y and reshapes
the tensor. Finally, the tensor is split in two along the channel-axis.

otherwise unconstrained neural network. The shift term is exponentiated to
ensure positiveness for the computation of the log-determinant. We initialize
the weights of the last convolutional layer of the coupling network to zeros
such that at the beginning of training the network performs the identity
transformation. We visualize the coupling layer in Fig. 4.3.

4.1.2 1× 1 invertible convolutions

We apply the idea of 1 × 1 invertible convolutions of the Glow-architecture
to our normalizing flow. Invertibility implies that the convolution operation
cannot change the number of channels in the input tensor and hence the
convolution kernel is merely a c× c (invertible) matrix K. The convolution
corresponds to multiplying each d× d 1× 1× c tensor with the convolution
kernel. The inverse is naturally given by repeating the same operation but
using the inverse matrix K−1. The determinant of the Jacobian is given by
the determinant of the kernel-matrix K. However, since the matrix is used
to multiply each of the d× d vectors independently, the total determinant is
the product of d×d such determinants. We do not constrain the values of K,
since the computation of the determinant is only O(c3), which is comparable
to the convolution operations in the coupling layer neural networks which are
O(d2c2) with usually c < d2. It is possible, however, to parametrize K using a
LU-decomposition to achieve O(c) time-complexity for the determinant [38].

4.1.3 Downsampling

We support two invertible means for changing the resolution of the tensor
over the invertible transformation defining the flow. The simpler method is
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Figure 4.2: Split types for partitioning x for RealNVP layers. a) Checker-
board with concatenation. b) Split along the channel-dimension.

essentially a mere reshape. We reshape each 2 × 2 × 1 neighborhood of the
tensor into a 1 × 1 × 4 tensor. The operation is repeated for each channel
and the resulting c 1 × 1 × 4 tensors that are concatenated along the chan-
nel dimension producing a tensor with half the width and height and four
times the channels. The other methods involves Haar-wavelet downsampling,
following the approach of [3]. The wavelet transform decomposes all 2 × 2
neighborhoods into their mean, horizontal, vertical and diagonal differences.
This operation corresponds to using the first downsampling method and mul-
tiplying the result with an invertible 4 × 4 matrix as demonstrated in Fig.
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Figure 4.3: Convolutional neural network employed by the RealNVP-type
coupling layer. di denotes the resolution of the tensors x and y at the
ith level of the flow. We use a variable depth encoder–decoder structure
with skip-connections in the middle of the coupling layer. The outputs of
the network are the scale tensor s and the bias tensor b. The scale-terms
are exponentiated to ensure non-negativity for the computation of the log-
determinant of the Jacobian. a) Unconditional variant. b) Coupling layer
conditioned with y.

4.4. The first method is essentially a permutation and hence has unit de-
terminant. The matrix of the second method is orthonormal and hence also
has unit determinant. Thus both the methods have vanishing log-Jacobian
determinants.
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Figure 4.4: Downscaling types. a) Simple reshape. b) Haar-wavelet down-
sampling. The simple reshaping is essentially the same operation but with
an identity matrix. Both types have unity Jacobian determinant.

4.1.4 Dequantization

Images are often stored on disk using 24-bit RGB values (8-bit unsigned
integers per channel) per pixel. The flow-model, however, operates on con-
tinuous distributions and hence the images need to be dequantized to avoid
arbitrarily high likelihoods [66]. Using Jensen’s inequality and a change of
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variables x
′
= x+ u, where u ∼ Uniform(0, 1) we can show that

Epdata(x
′ )

[
log pmodel(x

′
)
]

=
∑
x

P (x)

∫
u∈U

p(u) log p(x+ u)du

≤
∑
x

P (x) log

∫
u∈U

pmodel(x+ u)du

= EPdata(x)

[
logEp(u) [pmodel(x+ u)]

]
= EPdata(x) [logPmodel(x)] , (4.2)

where P denotes the respective discrete density functions and Pmodel(x) ≡
Ep(u) [pmodel(x+ u)]. By definition p(u) = 1 ∀u ∈ U and hence it vanishes
in the equations. The inequality shows that maximizing the likelihood of
the properly dequantized model maximizes a lower bound for the respective
discrete model. We note that using the uniform distribution is not neces-
sary and more expressive distributions can also be employed in the spirit of
importance sampling [26].

As a preprocessing step we transform (normalize) the RGB-values from
[0, 255] to [0, 1] by dividing with 256. Alternatively, if we choose some other
discretization of colors (e.g. 5-bit, 32 possible values for each channels), we
normalize using that value. This operation comes with a constant offset in
the log-likelihood. In the standard case of 8-bit colors the change of variable
formula Eq. 2.17 yields for elementwise division with 256 the log-Jacobian
determinant

log
∣∣∣Jf[0,256]→[0,1]

(x)
∣∣∣ = log

(
1

256

)D

= −D log (256) , (4.3)

or eight bits-per-dimension. If the discretization level is something else, the
offset changes correspondingly. Generally, training losses in likelihood-based
models trained with image data are given in the dequantized, non-normalized
space and hence adding the offset is important for allowing meaningful com-
parison.

4.2 Conditioning

We convert the flow model into a conditional flow model by feeding in the
corrupted observation tensor y into the model via the coupling layers. The
flow can be conditioned naively with simply using y as is. However, we
find it beneficial to preprocess the conditioning information with a separate
neural network following the U-Net [56] architecture. Ardizzone et al. take
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a similar approach in colorization of natural images with normalizing flows
[3]. However, they use a pre-trained network for the preprocessing task.
The preprocessing network can operate in two modes: one where only the
final output of the network is used to condition the flow (downsampled for
compatibility for lower-resolution layers) and other where the output is used
at the highest resolution of the flow but the conditioning information for
the lower flow-resolutions is obtained from the internal activations of the
U-Net at respective resolutions. The full flow network together with the
preprocessing U-Net are presented in Fig. 4.5.

4.3 Fully Regressive Variant

The invertible function f(·) (possibly parametrized with y) is designed to
operate on probability densities via the change of variables formula (Eq.
2.17). However, nothing prevents us from applying the function directly to
map the corrupted observations into clean images. The mapping is naturally
one-to-one (and still has a tractable Jacobian determinant) and hence is
much more constrained than those parametrized by more standard neural
network tasked with denoising, superresolution or colorization. Training the
flow-model with the supervised task of finding

θ∗ = argmin
θ

Epdata(x,y) [`(x, fθ(y))] , (4.4)

where ` is a loss function such as the L2-loss yields a baseline result and
potentially some insight on how the network operates. We do not expect,
however, the network to perform well in the task due to the aforementioned
constraints. Due to the function being one-to-one, in the case of superresolu-
tion and colorization where the shape of the image changes, the input-tensor
is naively (and deterministically) upscaled to the correct dimensions before
the application of f(·).
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Figure 4.5: Normalizing flow transforming z ∼ N(0, I) into x conditioned on
y. The U-Net preprocesses the conditioning information which is used in the
computation of the scale–bias terms in the RealNVP coupling layers. Each
resolution of the flow has R separate RealNVP blocks that each can employ
either the checkerboard or the channelwise -splitting scheme. Note that there
are no non-linear activation functions in the flow itself. While most activation
functions are invertible, they tend to introduce instability in the training
process. The figure depicts the forward-operation of the flow. In inverse
mode, the concatenations are replaced with splits, the convolutions with
convolutions using the inverse of the convolution kernel and the RealNVP-
layers with their inverses.



Chapter 5

Results

We test and validate the proposed method first by training fully regressive
reference networks (that is, using training loss expressed by Eq. 4.4) and
afterwards by training respective flow-models using the maximum likelihood
objective. We mostly resort to comparing the results qualitatively by vi-
sual inspection due to the inherent ambiguity of the answers of the inverse
problems. Using, for example, a pixel-wise L2-loss makes little sense as the
properties of a good answer are mostly perceptual. Our definition of visual
quality is twofold. We expect the results to be plausible realizations of an
inverse process, such that the sample, when corrupted again with the forward
process, resemble the original corrupted image. Additionally, we hope to see
variance in the samples, subject to the first visual quality criterion. The
variance is expected to increase for more ill-posed problems or samples. In
training, we use the FFHQ dataset [36], downscaled to 128× 128 resolution.
We train each network using 90% of the dataset and leave the remaining
fraction for the testset. All the the experiments are performed with images
that are not shown to the models during training (i.e. they are from the
testset). We implement the normalizing flow and the accompanying neu-
ral networks with TensorFlow [1]. We also make use of the python library
dnnlib, courtesy of NVIDIA1. We use the Adam-optimizer [37] with default
parameters β1 = 0.9, β2 = 0.999 and ε = 1 × 10−8. In the experiments, we
use an exponetially decaying learning rate with respect to the epoch T of the
form

LR(T ) = LRst + LRdec exp(−T/τ), (5.1)

with values LRst = 1× 10−6, LRst = 3× 10−4 and τ = 4. The batch size in
our experiments is 5.

1Under CC BY-NC 4.0, available at https://github.com/NVlabs/stylegan
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Experiments Rather than directly measuring the quality of the results, we
pay significant effort on understanding the internal structure of the family
of models. We study which parts of the flow contribute to producing the
eventual output image and which parts serve towards the Gaussianization
goal. We also study how well the model performs on its actual optimization
task of Gaussianizing the data distribution. For the rest of this chapter
we adopt nomenclature where we denote the flow layers with the lowest
resolution as the bottom layers of the flow and the high-resolution layers as
the top layers. Alternatively, we may call the bottom layers the latent-like
layers and the top layers the image-like layers as the parts of the flow reaching
the bottom layers have been processed more and have effectively lost their
natural image look.

We start by quantifying the expressive power of the flow by employing it
as a regressor, as introduced in Section 4.3. Standard likelihood maximiza-
tion does not explicitly ask the model to produce pictures close to the ground
truth images. Hence it is meaningful to ask, how well the flow model man-
ages to restore corrupted images if that is the primary optimization target.
We find that even direct optimization is not enough and hence it is perhaps
too optimistic to expect that likelihood-maximization would yield any bet-
ter results. This leads to the conclusion that additional model capacity is
required in the form of an additional preprocessing network. We show that
implementing such preprocessing network for the conditioning information is
indeed beneficial. Later, we also observe how flexibly the flow model adapts
to each of the three different tasks and how successful it is in Gaussianizing
the input image distribution. This is interesting, since it is the primary op-
timization target, when optimizing for data likelihood. Finally, we identify
which layers of the flow are the most relevant with respect to the appearance
of the output image, both with respect to the conditioning information y
and the normal-distributed variable z.
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5.1 Regressive Model

We train the regressive model using the multi-scale architecture down to
4 × 4 resolution. Each resolution has R = 14 conditional RealNVP-blocks
each containing two RealNVP-layers and a 1 × 1 invertible convolution. An
overview of the network parameters is given in Table 5.3 using the notation
of Fig. 4.5. Four variants are trained using two different loss functions
L1(a, b) ≡ |a − b| and L2(a, b) ≡ |a − b|2. The conditioning information
is preprocessed either by using the supplementary U-Net and its internal
activations or directly feeding the (possibly rescaled) conditioning tensor y
into the conditional RealNVP-blocks (an identity transform). Each network
is trained for a relatively short period of time, 12 hours. The results are
visualized by task in Figs. 5.1, 5.2 and 5.3 for superresolution, denoising and
colorization tasks, respectively.

Table 5.1: Regressive models. Preprocessing type refers to how the condi-
tioning information is preprocessed before given to the RealNVP-layers. The
fourth variant has a different value for R (number of RealNVP/invertible
convolution blocks per flow-resolution) due to problems with convergence.
The parameter Cout

preproc denotes the number of channels in the output of the
preprocessing network.

Model Variant R Cout
preproc Preproc. type Loss

Regr. 1 14 18 U-Net activations L2

Regr. 2 14 18 U-Net activations L1

Regr. 3 14 3 Identity L2

Regr. 4 12 3 Identity L1

To no surprise, we find that the function defining the normalizing flow
f(·) is not particularly good at directly mapping a corrupted sample into a
single clean estimate. It is highly constrained due to the invertibility and
determinant constraints. Furthermore the pixel-wise distance-based losses
introduce blurriness to the results. Halo-effects caused by the Lanczos down-
sampling procedure are greatly emphasized in the restored images in the
superresolution task, as seen if Fig. 5.1. Interestingly, providing additional
representational power in the form of the preprocessing U-Net, does not im-
prove the results in any task. The colorization results (Fig. 5.3) are rather
plain due to only a mean or median color being learned as a result of the
loss-functions.
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Figure 5.1: Regressive model variants for superresolution. The variants
Regr.2 and Regr.4, trained with the L1 loss seem to be performing worse
than the ones employing the L2 loss. The preprocessing network interest-
ingly has negligible effect on the quality: models Regr.1 and Regr.2 do
not yield better results than the remaining two.
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Figure 5.2: Regressive model variants for denoising. Minimizing the L2 loss
yields an average pixel value, which in the case of zero-mean Gaussian is the
clean signal. Hence the results look decent with the L2-loss variants (Regr.1
and Regr.3) seemingly slightly outperforming the other two.
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Figure 5.3: Regressive model variants for colorization. While the outputs
look reasonable, they lack variance and are closer to some average color
scheme, as expected.
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5.2 Form of Conditioning

We now turn our attention towards flow-models trained by maximizing the
likelihood of the training data under the distribution given by the change of
variables formula. While the functional form of the condition info preprocess-
ing network had little visible effect on the regressive models in the previous
section, we extend similar comparison here. In addition to sampling from
the conditional distribution p(x|y) for each of the tasks (Figs. 5.4, 5.6 and
5.8), we also find and estimate for the conditional mean

x∗ = Ex∼p(x|y) [x] ≈ 1

N

N∑
i=1

xi, (5.2)

where xi are sampled from p(x|y). We compare this single estimate with
the values acquired from the regressive models in Fig. 5.5. We could alter-
natively find the maximum a posteriori (MAP) estimate via optimization.
However, we found in preliminary experiments that the estimate is generally
not that great, potentially due to convergence to a poor local minimum in
the optimization process. Differences and similarities in the models are spec-
ified in Table 5.2. We sample using a reduced (truncated) standard deviation
σ = 0.85 in the superresolution and denoising tasks as it is found to increase
the quality of the samples. For colorization we use σ = 1.06 to increase
variance. We find that using a lower sampling temperature rapidly decreases
the variance and yields mostly brown images in the colorization task.

Model variants We employ three different conditioning information pre-
processing schemes. The most direct way is to give the conditioning tensor
as is to the RealNVP-layers (with possible naive up- or downsampling). This
is the identity preprocessing transform used in the regressive case, which we
will no denote as the Direct model variant. Alternatively, we can prepro-
cess the conditioning information with a separate U-Net, again like in the
regressive case. We can choose to either use the output of the U-Net and
downscale the result for the lower-resolution flow-layers (denoted as U-Net
downsampled or U-Net ds.) or use the internal activations of the U-Net
at the respective resolutions (U-Net activations or U-Net act.). We
will continue to use the aforementioned names for the conditioning types
throughout the rest of this chapter.

Observations We find that the preprocessing network is beneficial in terms
of visual quality of the results. However, used only in conjunction with down-
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scaling of the output of the U-Net, the results remain poor in the superres-
olution task (Fig. 5.4). The difference between U-Net downsampled and
U-Net activations is not as stark in the denoising task (Fig. 5.6), but
the latter seems to reproduce high-frequency details such as hair or teeth
marginally better. Using the preprocessing network also yields a significant
improvement in the loss, especially in the colorization task, as seen on Table
5.2. The preprocessing network seems to improve the quality of individual
samples but also the quality of the conditional mean as illustrated by Figures
5.5 and 5.7. The mean in the colorization task is perhaps not as interesting
but is given in Figure 5.9 for the sake of completeness.

Table 5.2: Model conditioning variants. The minimum loss value is an ex-
pectation over the validation set. The loss is the negative log-likelihood and
has units bits-per-dimension, smaller is better.

Model R Cout
preproc Preproc. type Task type Loss

Direct 14 3 Identity Superresolution 2.882
U-Net downsampled 14 18 U-Net ds. Superresolution 2.866
U-Net activations 14 18 U-Net act. Superresolution 2.867

Direct 14 3 Identity Denoising 2.911
U-Net downsampled 14 18 U-Net ds. Denoising 2.902
U-Net activations 14 18 U-Net act. Denoising 2.896

Direct 14 3 Identity Colorization 2.114
U-Net downsampled 14 18 U-Net ds. Colorization 2.005
U-Net activations 14 18 U-Net act. Colorization 2.005

Judging the quality of the colorized images is somewhat difficult even
quantitatively. None of the models clearly produces colorized images of infe-
rior quality. All the model types have a tendency of recognizing and colorizing
the face in the image plausibly. However, they all struggle with the context
and continuity of the background. For example, the sky in the background
can change color abruptly, if it is not a single continuous area in the image
plane. This is highlighted in Figure 5.8.
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Figure 5.4: Effect of the form of conditioning on the superresolution task.
Three samples for each low-resolution input image (columns) are given for
each preprocessing technique Direct, U-Net Downsampled and U-Net
Activations (grouped rows).
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Figure 5.5: Effect of the form of conditioning on the superresolution task.
Mean over 5 samples is given for each low-resolution input image (columns).
The reference regressive model Regr. 1 (last row) only produces a single
answer and hence taking the mean is not useful. The mean results of the
U-Net Activations (highlighted with red) model are clearly the sharpest.
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Figure 5.6: Effect of the form of conditioning on the denoising task for all
three preprocessing techniques Direct, U-Net Downsampled and U-
Net Activations (grouped rows).
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Figure 5.7: Effect of the form of conditioning on the denoising task. Mean
over 5 samples is given for each corrupted input image (columns). The ref-
erence regressive model Regr. 1 (last row) only produces a single answer
and hence taking the mean is not useful. The mean results of the U-Net
Activations (highlighted with red) model are clearly the sharpest.
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Figure 5.8: Effect of the form of conditioning on the colorization task for
all three preprocessing techniques Direct, U-Net Downsampled and U-
Net Activations (grouped rows). All types share a similar failure case
(highlighted with red), with discontinuous background coloring.
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Figure 5.9: Effect of the form of conditioning on the colorization task. Mean
over 5 samples is given for each gray-scale input image (columns). The
reference regressive model Regr. 1 (last row) only produces a single answer
and hence taking the mean is not useful.
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5.3 Goodness of Fit

The regressive models explicitly minimize a distance between a ground truth
image and the network output. Minimizing the negative log-likelihood, how-
ever, only minimizes a divergence between two distributions, but not directly
between individual samples. Evaluating the quality of a handful of samples
does not directly measure how well the model has learned the data. Vice-
versa, successful Gaussianization does not necessarily guarantee high-quality
samples, as we are about to see. However, since likelihood-maximization
is the primary goal, a more direct question to ask is how well the model
learns to Gaussianize the given data. If the Gaussianization is perfect, clean
data transformed with the inverse flow f−1(·) is distributed according to
a unit Gaussian. Hence, mapping the validation dataset into z-space via
z = f−1(x) and computing the empirical mean-vector and covariance-matrix
should yield the zero-vector and a high-dimensional identity-matrix. Conse-
quently, sampling from a Gaussian defined by the aforementioned empirical
mean and covariance should yield results no different to sampling from the
standard zero-mean, identity-covariance normal distribution. Visualizing an
individual image in z-space should also yield something resembling white
noise since the components of the training target Gaussian are uncorrelated.
Figure 5.10 shows that this is indeed the case, the values of z computed
for an image from the validation set are effectively indistinguishable from
those of actual white noise. We split the z vector into pieces corresponding
to resolutions where the respective block of z is split/concatenated in the
multi-scale flow.

We transform N = 2000 validation set images into the z-space and com-
pute blocks of the full covariance matrix. Even though the resolution of the
images is relatively low, the size of the full covariance matrix would already
be (1282 × 3)2 = 2.42× 109 floats equaling 9 GB of memory assuming single
precision. Any larger image would already start to cause memory problems
on a standard workstation. Furthermore, since the computation of the empir-
ical covariance matrix involves an outer product, the computation becomes
restrictively slow for the full covariance matrix. Hence, we compute the
blocks for each resolution of the flow, that is split the z-vector into pieces
corresponding to the parts that are split from the flow at each resolution
exactly like in Fig. 5.10.

Observations Figure 5.12 visualizes the 4 × 4-resolution covariance ma-
trix for the U-Net activations model variant as well as a corresponding
unconditional model, where the RealNVP layers never receive any condition-
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ing information. We observe that the whitening process is mostly successful,
yet some traces of correlation remain as some structural patterns can be seen
in the matrices outside the diagonal (insets of Fig. 5.12). Similar patterns
can also be seen in the covariance matrices of other resolutions. This raises
the question, whether these failure cases could be exploited in the sampling
process. We study this later in section 5.4. Here, correlations between ele-
ments of different flow resolutions remain unexplored. They might, however,
contain interesting information about the flow model. We leave this explo-
ration for future work.

We also visualize the distribution of the covariance matrix values (Fig.
5.11) to understand how well the model manages to uncorrelate the dimen-
sions in general. The three shown conditional model types are trained for the
superresolution task. The unconditional variant is for reference. Vanishing
covariance does not guarantee independence but the lack thereof signals a
failure of the model. We find that all model types behave relatively simi-
larly, with essentially all the mass of each histogram gathered in the interval
[−0.1, 0.1] signaling near desired behavior.

Finally, we compute the empirical mean and covariance values of the 2000
validation set samples and sample according to Gaussians parametrized by
the mean and covariance of the test-data. We visualize the results in Figure
5.13. We find that that fitting a Gaussian to the empirical distribution via the
maximum likelihood parameter estimation and sampling according to those
distributions yields very similar results to those acquired using the standard
sampling scheme. This is an indication that the empirical distribution is
close to the unit Gaussian. Alternatively, it is possible that the conditional
models simply are very resilient against the choice of the value of z, as
long as the values remain reasonably small in magnitude. We do, however,
observe degradation of the results using the standard sampling method if the
sampling temperature σ is close to or larger than unity. Figures illustrating
this behavior are given in Appendix A.

The high-level conclusion of the tests in this section is that the optimiza-
tion process succeeds quite well overall in terms of the Gaussianization and
no obvious large faults are observed. Minor traces of correlation are, how-
ever, noticeable in the resulting values. This can potentially be a property of
the FFHQ dataset, which is extremely homogeneous. It may be very difficult
to find uncorrelated directions, since the pixels are so strongly correlated to
begin with. The correlation, however, potentially allows one to find interest-
ing directions in the z-space. Directions, that are so strongly entangled that
they are near impossible to separate, revealing intriguing properties of the
dataset.
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Figure 5.10: Visualization of a single validation set image mapped into
z space for each forward process (rows) and each conditioning method
(columns). Each image in the grid is divided into five columns of some-
thing resembling white noise with a narrow vertical black line splitting each
column. The values on the left of each narrow black line correspond to sim-
ulated white noise using pseudorandom numbers. The values on the right of
each black narrow line correspond to values of zr×r for resolutions r = 64 . . . 4
from left to right.
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Figure 5.11: r × r -resolution z-space covariance matrix values (columns)
for four different model types Direct, U-Net downsampled, U-Net
activations and Uncoditional (rows). Ideally, all but the diagonal ele-
ments should vanish and the distribution of the values is a spike around zero.
All models are relatively well-behaved and have distributions concentrated
around zero.
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Figure 5.12: 4×4 flow resolution covariance matrices for the superresolution
/ unconditional models (rows). Minor patterns of undesired correlation can
be observed in the covariance matrices of both models. Other resolution/task
-pairs are found to have similar patterns.
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Figure 5.13: Comparison of sampling methods. Rows labeled with A are
sampled using the standard zero-mean, identity-covariance Gaussian. Rows
labeled with B use mean and covariance computed using validation data.
In general, sampling according to the empirical parameter estimates yields
results no different from sampling according to the zero-mean unit Gaussian.
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5.4 Latent Structure

In the previous section we observed that even though the flow-model is tasked
with normalizing the input data distribution, traces of correlation between
the input vector elements remain. Since the components in the z space
are not entirely independent, the choice of how z is sampled could have a
non-insignificant effect on the resulting image. We now study the impact
of the choice of its values. We continue the line of work of the computa-
tion of encoded validation data covariance matrix from the previous section
by applying dimensionality reduction. We eigen-decompose the covariance
matrices corresponding to the 4 × 4 layer, find the the eigenvectors corre-
sponding to 5% of the largest largest eigenvalues, and sample along those
axes normally while heavily truncating the other directions, by settings the
smallest eigenvalues in the matrix decomposition to a small positive value ε.

We choose to only decompose the covariance matrix of the 4×4 -resolution
layer for computational efficiency and because intuitively, the deepest layer
and its input z4×4 should have the most significant effect on the resulting
image. We hypothesize this to be the case as this information is processed
the most. One would expect, that the high-resolution layers only add de-
tail to the output and the low-resolution layers define the general geometric
shape. Interestingly, little observable difference can be seen when employ-
ing the aforementioned sampling scheme on the superresolution task as seen
on Figure 5.14. Conversely, the truncation scheme has a large effect on the
unconditional model, rendering the images much cleaner.

In addition to applying the alternative sampling scheme, we also attempt
to see the effect of corrupting the values of z at various other layers of the flow.
We again decompose the vector z into parts corresponding to values that are
split/concatenated into the flow at various resolutions. We first encode a
clean image via z = f−1(x) and decompose the resulting z into components
z4×4 , z8×8, . . . ,z64×64. We sample new values for values of corresponding to
some layer zn×n while keeping the rest fixed at their computed, “true” values
and observe the changes in the resulting decoded image via x = f(z). We do
the re-sampling cumulatively starting from the lowest resolution layer and
visualize the results in Fig. 5.15. We repeat the experiment in the inverse
order in Fig. 5.16.

Observations Since only the deepest layers are affected by the change
of sampling technique, it seems that models trained for the superresolution
task mostly work on finer levels of detail, which considering the nature of the
task, is intuitively rather pleasing. The low-resolution information from the



CHAPTER 5. RESULTS 76

flow is mostly ignored as it comes directly from the conditioner y. In con-
trast, background artifacts are clearly suppressed in the images produced by
the unconditional model suggesting that some directions in z at the deepest
layers encode more relevant and structured information than others. Further-
more, we can conclude that the unconditional model is much more sensitive
to changes of the low-resolution latent code due to the lack of additional
information of y.

We note again that the conditional and unconditional model types have
very different behaviors. The image produced by the unconditional model
is for the most part, defined by the lowest-resolution layers, supporting our
previous results. This is seen the most clearly in Fig. 5.16, (rightmost
column) where the identity of the face produced by the unconditional model
remains the same up until all layers but the deepest have had their values of
z randomized. Sampling new values for z4×4 is enough to drastically change
the appearance of the image even though only a small fraction of values of z
is modified, as seen in Fig. 5.15.

The conditional superresolution model exhibits the opposite behavior by
being robust to changes and corruptions of z in the low-resolution layers. In
fact, values of z up to 32×32 resolution can be corrupted with little effect on
the decoded output image (Fig. 5.15) using the U-Net activations model
type, further supporting our belief that the superresolution models mostly
work at the high-resolution layers. Interestingly, the Direct model type
is much more vulnerable to the corruption already at low resolution layers.
In general, U-Net-based conditioning methods seemed to yield mostly blank
(seemingly uninformative, not natural image-like) conditioning information
into the deepest layers, signaling that the lower levels are completely ignored.
We hypothesize that fact that the Direct model transfers meaningful image-
information to the lowest resolution via naive downscaling might hurt its
performance. According to the more expressive U-Net type models, the best
action seems to be to ignore that information.
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Figure 5.14: Selective truncation scheme for resolution 4 × 4. Sampling
using σ > 0 only along principal axes with the top 5% largest eigenvalues.
The remaining directions have their eigenvalues set to a small ε > 0. The
conditional models are unaffected, but clear difference can be observed in the
Unconditional model (last grouped row). The conditional models are all
conditioned with the same image, and columns represent different samples.
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Figure 5.15: Layer-wise randomization of values z starting from the low-
resolution layers. In the top row, no part of z = f−1(x) has been corrupted
resulting in the original image. In the second row (labeled 4-4), z4×4 has
been replaced with random numbers distributed according to a zero-mean
unit Gaussian. In the third row (labeled 4-8), z4×4 and z8×8 have been
replaced and so forth.
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Figure 5.16: Layer-wise randomization of values z starting from the high-
resolution layers. Same as Fig. 5.15 but in inverse order. The quality of the
results of the conditional models suffer already after corruption of the 64-
resolution layer (second row). The unconditional model (right-most column)
encodes most of the information in the low-resolution layers and the identity
of the face clearly changes only after corrupting the 4 × 4 resolution values
(last row).
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5.5 Image Formation

We showed in the last section that unconditional and conditional (superres-
olution) flow-models operate differently concerning where and how the final
image is formed in the flow. We now present further evidence supporting
the aforementioned observations in the form of additional characterizations
of the normalizing flow. First, we visualize the internal activations of the
flow on several resolutions in Figure 5.18 by interpreting the post-activation
tensors as RGB-images (splitting along the channel dimension if more than
three channels). The figure shows how the normalizing flow invertibly trans-
forms the vector sampled from the Gaussian prior distribution into an image
and specifically, where exactly the image is formed.

The flow-model seems to learn task-specific strategies for finding plausible
solutions. In the superresolution task the model reasonably finds the sharp
edges of the image staring in the mid-resolution layers. This is intuitively
pleasing as the task mostly involves restoring sharp, high-resolution detail
in the image. The low-resolution condition image can be upsampled naively
with an interpolation technique or with a preprocessing neural network and
the high-resolution detail restored using the information of the flow. The
flow never has to construct the entire image only by itself. Similar behavior
can be observed in the other two model variants as well. Interestingly, the
lower-resolution layers begin to lack natural image-like properties. This is
in agreement with the results of the previous section where we found the
superresolution task to be quite robust to changes in parts of the latent
corresponding to the low-resolution layers. This may also explain why the
Direct model variant has the worst performance. Feeding image-like con-
ditioning information into the low-resolution layers may be detrimental as
the activations of the flow do not resemble natural images at the deepest
layers. Using a intermediate network for preprocessing can help shape the
conditioning into a form that is useful also at the lower levels of the flow.

Similar patterns can be seen in flow-models trained for the denoising task
(second row of Fig. 5.18). Image-like properties are lost towards lower-
resolution layers of the flow. Here, the objective of the model is not quite as
clear intuitively as it is with the superresolution task. Furthermore, there is
a clear difference between the Direct and the U-Net-based model variants
which explains also the disparity in the quality of the results.

Conditional colorization and purely unconditional image generation seem
to employ a different strategy compared with superresolution and denoising.
They seem to transport image-like information in the activations all the way
from low-resolution layers. This can be seen in last row of Fig. 5.18 as rather
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well-defined patterns in the activations visible already at the lowest shown
resolution of 16 × 16. Furthermore, Figures 5.15 and 5.17 show that for
unconditional image generation and conditional colorization the values of z
corresponding to high-resolution layers have little effect on the final image —
in complete contrast to superresolution and denoising. These results indicate
that the overall color of an image and the general shape of a face can be
encoded in a relatively low-dimensional space (4 × 4 × 192, or even lower)
compared to the dimensionality of a full image (128×128×3). Color palette
and general shape are also perhaps more low-level detail that affect the entire
image. Superresolution and denoising mostly restore high-frequency detail,
which can be applied locally on the outermost layers of the flow without
detailed global context.

Figure 5.17: Layer-wise randomization of values z starting from high-
resolution layers for the colorization task. Opposite to the superresolution
task, the appearance of the final image is mostly decided by the low-resolution
part of z for each model variant. The colorization remains close to the
original (first row) up until the lowest-resolution values z4×4 (last row) are
corrupted.
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Figure 5.18: Flow intermediate activations. Each task-architecture pair in
the grid consists of 3-channel activation maps of resolutions 64, 32 and 16
from left to right. For the unconditional architecture there is no difference
between the task since the condition information is never shown and hence
the leftmost column has the same activations repeated three times.
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5.5.1 Unregularized Mixed Conditioning

We now take a different approach to studying the image formation process
of the normalizing flow. Instead of mutating the encoded values of z and
holding the condition information y static, we examine the opposite of using
a constant z and varying y. We mix condition information from two different
images A and B by computing h(yA) and h(yB), where h(·) is a preprocessing
method, and choosing the conditioning information for each layer of the
flow from either that of image A or image B. Figure 5.19 demonstrates the
difference between conditioning schemes.

Figures 5.20 and 5.21 show the results of condition information mixing
cumulatively from low to high-resolution and high to low-resolution, respec-
tively. We find that in addition to being robust against changes in the z-code
in the low-resolution layers, the flow mostly ignores the condition information
y in the low-resolution layers for all three variants. The outlines of Image B
start to appear only after the three bottom layers are conditioned with image
B instead of image A. Conditioning in the last and highest-resolution layer is
essentially the deciding factor in the final appearance, although minor traces
(outlines) appear already on the previous resolutions. The same effect can
be seen in the inverse order visualization.

Figure 5.19: Conditioning with multiple images at inference time. a) Stan-
dard conditioning where the flow f(·) is parametrized only with image yA

(possibly preprocessed with h(·)). b) Conditioning with two images A and
B. Both images are processed with the preprocessing network h(·) and the re-
sults are combined by choosing for each resolution r, whether to use h(yA)r×r
or h(yB)r×r.
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Figure 5.20: Condition information mixing in the superresolution task. The
top row (labeled as None) is generated by only conditioning with the respec-
tive image (image A). The bottom row (4-128) uses a different image B for
all the layers. The second row (4-4) is generated using image B on the 4× 4
-resolution layer and image A elsewhere. We cumulatively add image B row-
by-row to higher resolution layers until only image B is used for conditioning
(bottom row). The output image is mostly defined by the conditioning in-
formation on the outermost layer, although outlines start already bleeding
through few layers earlier.
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Figure 5.21: Condition information mixing in the superresolution task. Sim-
ilar to Figure 5.20, but in reverse order. We cumulatively condition the
image with information from image B starting from the high-resolution lay-
ers, starting from the second row, going downwards in the image grid. As the
outermost layers mostly define the appearance of the output, conditioning
layers of resolutions 128-64 is enough. Adding the conditioning information
to the lower layers merely improves the output quality.
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5.5.2 Regularized Mixed Conditioning

An interesting question is to ask whether it truly is a good solution for the
flow in the superresolution and denoising tasks to form the image almost
entirely at the top layers of the flow. We can try to regularize the flow
by stochastically blocking the conditioning information from reaching the
RealNVP-layers during training. In the previous experiments, all layers have
always received the correct conditioning information during training. This
should enforce the flow no to rely on being able to essentially copy the output
of the preprocessing network, but to start the process, on average, already
at lower layers of the flow. We employ the masking scheme during training
as follows:

Algorithm 1 Masking scheme for regularization. The flow of conditioning
information is blocked cumulatively to a number of layers ranging from none
to all of them.

Input:
y: corrupted conditioning image
Nlayers: Number of layers in the flow

1: procedure Masking(y, Nlayers)
2: h(y)4×4, . . . , h(y)128×128 ← LayerwiseSplit(h(y))
3: Nmasked ← RandInt(0, Nlayers)
4: for i, r in enumerate([4, 8, . . . 128]) do
5: if i ≥ Nmasked then
6: h(y)r×r ← 0

return [h(y)4×4, . . . , h(y)128×128]

Algorithm 1 cumulatively masks layers starting from the top layers of
the flow. Alternatively, the masking can be started from the bottom by
changing the direction of the inequality in the if-conditional. Starting the
masking from the top should yield more drastic changes in the behavior of the
flow if the image is formed on the top layers since the probability of masking
the top-most layer is much higher than by starting the masking cumulatively
from the low-resolution layers.

As expected, we see clear shift in the strategy of the flow-model in terms
where and how the image is formed, as demonstrated in Fig. 5.22. In the
superresolution task, the flow is no longer generating only sharp edges and
superimposing those with the output of the preprocessing network. Instead,
the activations resemble much more those of the denoising or the colorization
tasks. There is less change in the intermediate activations in the other two
tasks. However, a common characteristic in all the models is that the natural
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image-like look is retained also in the deeper layers of the flow.
Since there is a non-zero probability of having all conditioning information

being blocked from entering the flow, the regularized network is in fact a
hybrid between unconditional and conditional models. This can observed
in the outputs by selectively masking conditioning inputs during inference.
Instead of mixing the values of two separate natural images, we set image
B to a flat gray color to emphasize the semi-unconditional nature of the
model. The effect of employing a blank conditioning image for the mixing
is visualized in Figures 5.25 and 5.26, where blocking of the layers with the
most contribution results in an image of a face that no longer resembles the
original conditioning image y. Interestingly this does not seem to happen
in the denoising task, perhaps due to too large average corruption (noise
standard deviation) in the training data which on average produces blank
images.

The artifacts created by the semi-unconditional nature of the model can
also be observed in Fig. 5.23 where outlines of another image can be seen in
cases where the result is, in fact, only conditioned by a single image (first and
last rows). Similar artifacts are not present in the denosing task (Fig. 5.24),
which is in line with the lack of unconditionally generated faces in Figure
5.25 for the denoising column.

On average half of the of the conditioning layers are masked when mask-
ing is employed following Algorithm 1. Hence it is not surprising to see a
shift from image A into image B in the conditioning information mixing ex-
periment in Figures 5.23 and 5.24, for the superresolution and denoising task,
respectively.

Adding the masking regularization into the model does not seem to bring
any benefits. The results look across all tasks significantly worse than those
produced by unregularized models. This is not a total surprise as the regu-
larized task is more demanding in difficulty since the flow can no longer rely
on getting an almost correct answer from the preprocessing U-Net directly
to the output-resolution conditional layer. Resources need to be allocated
to ensure that similar information can be routed from the deeper layers as
well. Since the flow function already suffers from the lack of representational
power due to the constraints on invertibility and tractable Jacobian deter-
minant computation, increasing the task difficulty hurts the performance
significantly.
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Figure 5.22: Flow intermediate activations for regularized models. The acti-
vations resemble natural images much more that they do in the unregularized
models.
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Figure 5.23: Condition information mixing in the superresolution task for
the regularized model. The topmost layer of the flow no longer completely
dictates the appearance of the output for the Direct and U-Net down-
saled (first and second grouped columns) models, seen from the fact that
the image starts to morph from condition image A (first row) to condition
image B (last row) already after layers of resolution 4, 8 and 16. The U-Net
activations (rightmost grouped columns) model seems to be more robust
against the regularization and retains its old behavior.
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Figure 5.24: Condition information mixing in the denoising task for the
regularized model. Like with the superresolution task, topmost layer of the
flow no longer completely dictates the appearance of the output. Here, all
the model types clearly have differing behavior from the unregularized case.
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Figure 5.25: Condition information inference-time masking for all three tasks
for U-Net activations model type. Masking starts cumulatively from the
low-resolution layers (second row) until all conditioning information has been
masked (bottom row). In the top row, all layers receive conditioning informa-
tion (none is masked). Regardless of masking all conditioning information,
an image resembling a face is generated in the last row in the superresolution
and colorization tasks. The value of z is held constant in all images.
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Figure 5.26: Condition information inference-time masking for all three tasks
for U-Net activations model type. Masking starts cumulatively from
the high-resolution layers (second row) until all conditioning information is
masked in the last row. The value of z is held constant, hence the repeating
images in the columns. As noted above, the U-Net activations model type
retains its behavior of forming the image mostly based on the high-resolution
conditioning information, regardless of regularization.
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5.6 Model Compaction and Tuning

In the previous sections, we have seen much evidence that there exists one or
two resolutions whose RealNVP-layers have by far the most influence on the
resulting image. All models in the previous sections have also used a constant
parameter R between resolutions. That is, each resolution has had the same
number of RealNVP-layers. We now let the parameter vary between layers,
such that there is a larger number of layers on the important resolutions
and fewer on the resolutions of the least importance. Especially with models
where the outermost layer has the most influence, this should reduce the
number of parameters greatly. This is due to the fact that the coupling layers
are convolutional and the lower resolutions have more features/channels than
the high-resolution layers. We also modulate the image discretization level
(models labeled with B are trained with 5-bit images), which greatly affects
the negative log-likelihood values.

Table 5.3: Model compaction and discretization. U-Net activations is the
same model that has been used throughout the experiments. R denotes the
number of repeated RealNVP/invertible convolution layers per resolution.
Routermost is the respective value for the outermost (128-resolution) layer.

Model Variant R Routermost Discretization Num. Params. NLL

U-Net act 12 12 8 88.2 M 2.867
U-Net act 2A 5 20 8 50.3 M 2.924
U-Net act 2B 5 20 5 50.3 M 1.253
U-Net act 3A 3 18 8 36.1 M 2.866
U-Net act 3B 3 18 5 36.1 M 1.252

We observe that the value loss-function, in itself, is not that good of an
indicator of the sample quality. Model 3A achieves an equal negative log-
likelihood value as the original model, despite having a significantly lower
parameter count. Regardless, the results of the original model look signifi-
cantly better regardless of the sampling temperature (Figs. 5.27 and 5.28).
Despite not seeming to have a large contribution to the output in terms of
changes of the values of z and y, the lower layers of the flow remain impor-
tant. Reducing the parameter count on those layers does affect the quality
of the outputs. Conversely, using a lower discretization (5-bit images) level
renders the problem easier, effectively reducing the number of bins in the
underlying discrete distribution. The effect of 5-bit image discretization can
be seen both in the decreased loss and the increased quality of the results.
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Figure 5.27: Model comparison for superresolution using sampling tempera-
ture σ = 0.85.
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Figure 5.28: Model comparison for superresolution using sampling tempera-
ture σ = 0.63.



Chapter 6

Conclusion

Generative modeling has taken impressive leaps ahead during the past few
years thanks to advances in algorithmic design and the abundance of suffi-
cient computational resources. Regardless, no single model type is a silver
bullet — better than all others in every aspect. Despite the recent success
many open questions remain, for example concerning the evaluation metrics
and regularization methods.

We have shown that normalizing flows are capable of directly modeling
very high-dimensional conditional distributions, related to the solution space
of various imaging-related inverse problems, without having explicit informa-
tion of the underlying forward process. They hence provide an alternative
for regression-based learning algorithms that provide only a single solution to
the ill-posed problem. Using learning-based and data-driven techniques also
avoids complex, hand-crafted likelihood-models and priors. Furthermore,
there is no need to resort to expensive MCMC in the sampling. Training
with likelihood maximization sidesteps the problem of choosing a meaning-
ful similarity metric (pixel-wise distance, perceptual distance) in regressive
models. We note that negative log-likelihood is not a very good direct mea-
sure of the quality of the output images, but that it does provide a meaningful
guideline, at least asymptotically.

Our experiments have also shown interesting properties about both condi-
tional and unconditional flow models. We have identified differences between
how and where the model variants form the output images. We have shown
which layers of the flow are vulnerable to changes in either the variable z
or the conditioning information y. We have also observed limitations in
the representational power of the bijections of normalizing flows and found
benefit in employing additional networks for preprocessing the conditioning
information.
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Future work We see two parallel paths of future work on conditional den-
sity estimation with normalizing flow. First is the question of expressive
power of normalizing flows in general. Previous work has shown that flow
models usually achieve worse negative log-likelihood scores than autoregres-
sive models or VAEs. At the moment of writing, achieving high-resolution
samples with high quality requires extremely deep flow models with hun-
dreds of millions of parameters. Even then, the resolution of the samples
lacks far behind the megapixel level achieved by the state-of-the-art GANs,
implemented using only a fraction of the parameters required for a decent
flow-model. Training deep flow-models is also quite unstable and requires
dozens of high-end GPUs in order to be trained in a reasonable time. The
second path is more directly related to this work. As optimizing pure like-
lihood does not necessarily directly translate into high-quality conditional
output images, the training should be regularized, or biased in such a way
that natural-looking images were more common. Our attempts at regular-
ization did not quite manage to achieve this goal. Explicitly including some
information about the underlying forward process would be an interesting
continuation. Generalizing to domains other that pure image-to-image in-
verse problems would also be an interesting step forward. The framework of
flow models is quite flexible and readily extendible for non-image data.
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Figure A.1: Effect of sampling standard deviation in the superresolution task.
Each row is a different sample from a model with a set sampling standard
deviation (columns).
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Figure A.2: Effect of sampling standard deviation in the denoising task.
Each row is a different sample from a model with a set sampling standard
deviation (columns).
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Figure A.3: Effect of sampling standard deviation in the colorization task.
Each row is a different sample from a model with a set sampling standard
deviation (columns).
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Figure A.4: Additional results for the superresolution task.
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Figure A.5: Additional results for the denoising task.
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Figure A.6: Additional results for the colorization task.
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