Aalto University
MASTER’S THESIS 2020

Deep learning for spoken language
identification

Matias Erik Lindgren

Thesis submitted in partial fulfillment of the requirements for
the degree of Master of Science in Technology.
Espoo, on 26th April 2020.

Supervisor: Professor Mikko Kurimo
Advisor: PhD Tommi Jauhiainen

Aalto University

School of Science

Master’s Programme in Computer, Communication and In-
formation Sciences



A’, Aalto University AbStraCt

Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Matias Erik Lindgren

Title
Deep learning for spoken language identification

School School of Science

Master’s programme Computer, Communication and Information Sciences
Major Computer Science Code SCI3042
Supervisor Professor Mikko Kurimo

Advisor PhD Tommi Jauhiainen
Level Master’s thesis Date 26th April 2020 Pages 10+91 Language English

Abstract

This thesis applies deep learning based classification techniques to identify
natural languages from speech. The primary motivation behind this thesis is
to implement accurate techniques for segmenting multimedia materials by the
languages spoken in them.

Several existing state-of-the-art, deep learning based approaches are discussed
and a subset of the discussed approaches are selected for quantitative experimen-
tation. The selected model architectures are trained on several well-known spoken
language identification datasets containing several different languages. Segmen-
tation granularity varies between models, some supporting input audio lengths of
0.2 seconds, while others require 10 second long input to make a language decision.

Results from the thesis experiments show that an unsupervised representation
of acoustic units, produced by a deep sequence-to-sequence autoencoder, cannot
reach the language identification performance of a supervised representation,
produced by a multilingual phoneme recognizer. Contrary to most existing results,
in this thesis, acoustic-phonetic language classifiers trained on labeled spectral
representations outperform phonotactic classifiers trained on bottleneck features
of a multilingual phoneme recognizer. More work is required, using transcribed
datasets and automatic speech recognition techniques, to investigate why phoneme
embeddings did not outperform simple, labeled spectral features.

While an accurate online language segmentation tool for multimedia materials
could not be constructed, the work completed in this thesis provides several
insights for building feasible, modern spoken language identification systems. As
a side-product of the experiments performed during this thesis, a free open source
spoken language identification software library called “lidbox” was developed,
allowing future experiments to begin where the experiments of this thesis end.

Keywords language identification, machine learning, deep neural networks, speech
analysis

ii



A' Aalto-yliopisto Tiivistelma
| |

Aalto-yliopisto, PL 11000, 00076 Aalto www.aalto.fi

Tekija

Matias Erik Lindgren

Tyén nimi

Syvaoppiminen puhutun kielen tunnistamisessa

Korkeakoulu Perustieteiden korkeakoulu

Maisteriohjelma Computer, Communication and Information Sciences

Paaaine Computer Science Koodi SCI3042

Valvoja Professori Mikko Kurimo

Ohjaaja FT Tommi Jauhiainen

Tyo6n laji Diplomityo Paivays 26.4.2020 Sivuja 10+91 Kieli englanti

Tiivistelma

Tama diplomity6 keskittyy soveltamaan syvid neuroverkkomalleja luonnollis-
ten kielien automaattiseen tunnistamiseen puheesta. Tdmén tyon ensisijainen
tavoite on toteuttaa tarkka menetelmé multimediamateriaalien ositteluun niissa
esiintyvien puhuttujen kielien perusteella.

Tyossa tarkastellaan useampaa jo olemassaolevaa neuroverkkoihin perustuvaa
lahestymistapaa, joista valitaan alijoukko tarkempaan tarkasteluun, kvantitatii-
visten kokeiden suorittamiseksi. Valitut malliarkkitehtuurit koulutetaan kayt-
tden eri puhetietokantoja, sisdltien useampia eri kielii. Kieliosittelun hienojakoi-
suus vaihtelee kiytettyjen mallien mukaan, 0,2 sekunnista 10 sekuntiin, riippuen
kuinka pitkén aikaikkunan perusteella malli pystyy tuottamaan kieliennusteen.

Diplomityon aikana suoritetut kokeet osoittavat, ettda sekvenssiautoenkoodaa-
jalla ohjaamattomasti 16ydetty puheen diskreetti akustinen esitysmuoto ei ole
riittava kielen tunnistamista varten, verrattuna foneemitunnistimen tuottamaan,
ohjatusti opetettuun foneemiesitysmuotoon. Tassa tyossa havaittiin, ettd akustis-
foneettiset kielentunnistusmallit saavuttavat korkeamman kielentunnistustark-
kuuden kuin foneemiesitysmuotoa kayttavat kielentunnistusmallit, miké eroaa
monista kirjallisuudessa esitetyista tuloksista. Diplomityon tutkimuksia on jat-
kettava, esimerkiksi litteroituja puhetietokantoja ja puheentunnistusmenetelmia
kéayttéden, jotta pystyttiisiin selittdmééin miksi foneemimallin tuottamalla esitys-
muodolla ei saatu parempia tuloksia kuin yksinkertaisemmalla, taajuusspektrin
esitysmuodolla.

Taméan tyon aikana puhutun kielen tunnistaminen osoittautui huomattavasti
haastellisemmaksi kuin mité tyon alussa oli arvioitu, eiki tyon aikana onnistut-
tu toteuttamaan tarpeeksi tarkkaa multimediamateriaalien kielienosittelume-
netelmad. Tasta huolimatta, tyossi esitetyt lahestymistavat tarjoavat toimivia
kaytdnnon menetelmii puhutun kielen tunnistamiseen tarkoitettujen, modernien
jarjestelmien rakentamiseksi. TAmén diplomityon sivutuotteena syntyi myos pu-
hutun kielen tunnistamiseen tarkoitettu avoimen ldhdekoodin kirjasto nimelta
“lidbox”, jonka ansiosta tamén tyon kvantitatiivisia kokeita voi jatkaa siitd, mihin
ne tAmén tyon paiatteeksi jaivit.

Avainsanat kielen tunnistaminen, koneoppiminen, syvat neuroverkot, puheanalyysi

1ii



v



Preface

I want to thank Professor Mikko Kurimo for offering me a position at the
speech recognition research group and for providing valuable advice on
speech recognition techniques. I also want to thank PhD Tommi Jauhiainen
for all the helpful comments to several revisions of this thesis and for
running the text language identification experiments. Special thanks
also to D.Sc. Reima Karhila for providing me with scripts for applying his
multilingual phoneme recognizer in my experiments.

This thesis is funded by the European Union’s Horizon 2020 research
and innovation programme under the MeMAD project (grant agreement
No 780069). The experiments completed during this thesis were performed
using computer resources within the Aalto University School of Science
“Science-IT” project.

Espoo, 26th April 2020 Matias Erik Lindgren



Preface

vi



Contents

Abstract

Abstract in Finnish

Preface

Contents

List of abbreviations and symbols

1. Introduction
1.1 Researchquestions. .. ....................
1.2  Contributions of thisthesis . . . . ... .. .. .......
1.3 Thesisstructure ... ... ... ... .. .. .. ......

2. Definition of spoken language identification
2.1 Languages, dialects and language variants . . . . .. . ..
2.2  Cues for discriminating languages . . . . .. ... ... ..
2.3 Languagesinspeechandtext ................

3. Machine learning and speech
3.1  Machine learning formulation . . ... ... ... .....
3.2  Speechrepresentations . . ... ...............
3.3 Evaluationmetriecs . . . . ... ... ... ... .......
3.4 Optimizationmethods . . . . ... ... ...........
3.5  Voice activity detection . . . . ... ... ... .......

4. Datasets
41 OGI-11L(1994) . . . . . . . . . e
42 MGB-3(2016) . . . . . . . . . e
4.3 SBS(2018) . . . . ... e
44 YTN-Aalto2019(2019) . . . . . . . . .. .. . . ...,
45 AP19-OLR(2019). . . .. . . . . . . . . e

ii

iii

iv

vii

ix

11
11
15
22
25
25

29
30
31
33
34
36

vii



Contents

4.6 Other notabledatasets . .. ... ..............

5. Existing work
5.1 Phonotactic approaches . . ... ... ... .........
5.2 Language embeddings . . . .. ... ... ... .......
5.3  Acoustic-phonetic approaches . . . . ... ... ... ....
54 Large-scaleSLI. ... ... ..................
6. Models and building blocks
6.1  SLI from tokenized speech . . ... ... ..........
6.2 RNNbasedSLI ... ... ...................
6.3 CNNs for variable length input. . . . .. ... .. ... ..
6.4 CNNs with RNNs or time-attention . . . . ... ... ...
7. Experiments and results
7.1 Experiment settings and preprocessing . . . . ... .. ..
7.2  Reproducing referenceresults . ... ... .........
7.3 TLI based experiments . .. ... ..............
7.4 BNF based experiments . . . .. ...............
7.5 Otherapproaches. . . .. ... ................
7.6 Comparingallresults . .. ..................
7.7 OnlineSLI. . ... ... ... ... .. ... ... ....
8. Future work
8.1 Extending the experiments . . . ... ... .........
82 OtherSLImodels. . ... ... ................
9. Conclusions
References

viii

39
39
42
44
46

49
51
56
57
59

63
63
65
67
69
72
74
75

79
79
80

83

85



List of abbreviations and symbols

Adam Adaptive moment estimation

AP19-OLR Asia-Pacific Oriental Language Recognition 2019 (dataset)
BGRU Bidirectional GRU

BLSTM Bidirectional LSTM

BNF Bottleneck features

Cavg Average detection cost

CNN Convolutional neural network

CTC Connectionist temporal classification

DCT Discrete cosine transform

DNN Deep neural network

EER Equal error rate

EERavg Average EER

EM Expectation maximization

w Discriminant function with hidden weights W
Fiavg Average F1-score

FC Fully connected (layer)

FNR False negative rate

FPR False positive rate

GMM Gaussian mixture model

GRU Gated recurrent unit

LDC Linguistic Data Consortium

LM Language model

LRE Language recognition evaluation

LSTM Long short-term memory

LVCSR Large vocabulary continuous speech recognition
L Target set of natural languages

MFCC Mel-frequency cepstral coefficients

MGB-3 Multi-Genre Broadcast news (dataset)

MLA Multi-level (time) attention

MLE Maximum likelihood estimate

NB-TLI Naive Bayes text language identification
NIST National Institute of Standards and Technology

1X



List of abbreviations and symbols

NN
OGI-11L
00S
PPRLM
PR
PRLM
PTN
RNN
ReLU
SBS
SDC
SGD
SLI
SNR
SS
STFT
TLI
VAD
XdB
Xmag
X Mel
XMFCC

XBNF
YTN

YTN-Aalto2019

Neural network

Oregon Graduate Institute 11-language (dataset)
Out-of-set (language)

Parallel PRLM

Phoneme recognizer

Phone recognition followed by language modeling
Phonetic temporal neural model

Recurrent neural network

Rectified linear unit

Slavic Broadcast Speech (dataset)
Shifted-delta-cepstral (features)

Stochastic gradient descent

Spoken language identification

Signal-to-noise ratio

SparseSpeech (autoencoder)

Short-time Fourier transform

Text language identification

Voice activity detection

Decibel-scale spectrum matrix

Magnitude spectrum matrix

Log-scale Mel-spectrum matrix

Mel-frequency cepstral coefficients matrix

BNF matrix

YouTube News (dataset)

YTN dataset instance collected during this thesis



1. Introduction

This thesis studies different deep learning based approaches for detect-
ing natural languages from speech data. Several state-of-the-art spoken
language identification (SLI) models are discussed and compared. Effi-
cient SLI systems are useful as pre-processing or filtering tools in several
applications, such as rapid selection of correct single-language speech ap-
plications or quickly connecting human callers to correct operators in mul-
tilingual emergency services (Muthusamy et al. 1994). While humans are
capable of recognizing familiar languages with high accuracy, the task of
distinguishing between several unfamiliar languages can be surprisingly
challenging. Human listening experiments have shown (Zhao et al. 2008)
that when adults attempt to recognize an unfamiliar language, brain activ-
ity is higher in areas responsible for recognizing low-level acoustical cues
such as different sound patterns or intonations. On the other hand, when
humans are listening to familiar languages, brain activity moves towards
areas responsible for recognizing language semantics such as grammar.
Automating the process of correctly detecting languages from speech sig-
nals is the central topic in SLI and this thesis.

Researchers have been experimenting with several approaches to SLI
at least since the early 1990s (Muthusamy and Cole 1992). Recently, a
multilingual speech-to-text system for ten languages solved the SLI prob-
lem as a useful side-effect from its internal, multilingual representation
of phoneme sequences (Watanabe et al. 2017). However, much like it does
not make sense for humans to learn new languages only for the purpose
of recognizing them, automatic language identification systems must bal-
ance the trade-off between speech representation complexity and language
identification difficulty (Li et al. 2013). This thesis shows that SLI is a
simple and intuitive problem to formulate, but surprisingly complex and
challenging problem to solve.



Introduction
1.1 Research questions

This thesis investigates several different, state-of-the-art SLI architectures
by aiming to reproduce their original results. Specifically, we choose three
SLI models and reproduce the results reported by the original authors
on three SLI datasets. In addition, a grid search over five voice activity
detection (VAD) configurations and two normalization techniques is per-
formed to compare the effect of these hyper-parameters when attempting
to reproduce the results. Furthermore, we use two additional datasets, five
in total, and train all chosen SLI models on all datasets. These results
are then compared to see whether some of these architectures work well
on all datasets or if they work only on the reference dataset. We also in-
vestigate if it is possible to perform SLI on text tokens discovered in an
unsupervised manner or whether a phoneme representation is required
for accurate results.

1.2 Contributions of this thesis

Several state-of-the-art SLI models were implemented in TensorFlow (Abadi
et al. 2015), trained on their reference datasets to reproduce their cor-
responding original results, and then trained and evaluated on all other
datasets. The sequence-to-sequence autoencoder proposed by Milde and
Biemann (2019) was trained on several datasets to produce an unsuper-
vised acoustic unit representation of speech. The feasibility of using this
unsupervised representation to replace supervised phoneme representa-
tions in SLI was investigated by applying a text language identification
(TLI) model by Jauhiainen et al. (2019b) on the acoustic units. In order
to manage a large amount of different experiments with different data
pre-processing requirements, an open source SLI toolbox! was developed
during this thesis. In addition, a YouTube News (YTN) dataset instance
called YTN-Aalto20192, containing 1200 hours of broadcast news speech,
was collected using the data collection program proposed by Bartz et al.
(2017). Finally, a brief code review was performed on the open source We-
bRTC voice activity detection® (VAD) implementation to gain insight on
the theoretical foundations of its VAD approach.

1
2
3

https://github.com/matiaslindgren/lidbox (visited on 2020-04-16)
http://urn.fi/urn:nbn:fi:1b-2020041701 (visited on 2020-04-23)
https://webrtc.googlesource.com/src/+/7a709c0e85eb938a052b74fb39ebcaf5981f84be/common_
audio/vad (visited on 2020-01-27).


https://github.com/matiaslindgren/lidbox
http://urn.fi/urn:nbn:fi:lb-2020041701
https://webrtc.googlesource.com/src/+/7a709c0e85eb938a052b74fb39ebcaf5981f84be/common_audio/vad
https://webrtc.googlesource.com/src/+/7a709c0e85eb938a052b74fb39ebcaf5981f84be/common_audio/vad

Introduction
1.3 Thesis structure

Chapter 2 defines spoken language identification (SLI) and provides a brief
discussion of differences between languages and language variants. Chap-
ter 3 formalizes SLI as a machine learning based classification problem
and compares different speech feature representations that enable deep
learning based SLI approaches. Chapter 4 introduces all speech datasets
that are used in the experiments performed during this thesis as well as
some other interesting datasets. Chapter 5 provides a literature study on
existing SLI approaches, many of which have directly influenced the work
done during this thesis. Some of these existing results are reproduced
and serve as comparable reference points. We also discuss models that
were not originally proposed for SLI, but are used in this thesis as building
blocks to provide new SLI models. All models used for the experiments in
this thesis are discussed in Chapter 6. Even though many of these mod-
els are also discussed in Chapter 5, a separate, more detailed, chapter
was dedicated for all models used in the thesis experiments to distinguish
them from existing work that was not reproduced during this thesis. The
results from all completed experiments are discussed in Chapter 7 and
suggestions for additional experiments or other future work is discussed
in Chapter 8. Finally, we conclude the thesis in Chapter 9 by discussing
how the experiment results answered our research questions presented in
Section 1.1.



Introduction



2. Definition of spoken language
identification

Spoken language identification® (SLI) can be viewed as a multiclass classi-
fication problem of assigning natural language labels onto audio signals
of arbitrary length, based on the unique acoustic structure of each lan-
guage (Muthusamy and Cole 1992). In other words, SLI is about automat-
ing the process of detecting natural languages from speech. While this
formulation intuitively encapsulates SLI, a more rigorous statistical frame-
work is required before quantitative analysis may be performed. This topic
is discussed later in Chapter 3. Instead, let us begin by discussing the
terminology of what language is and is not, since these definitions are not
entirely obvious.

2.1 Languages, dialects and language variants

It is estimated that between 4000 to 8000 different languages exists in the
world (Schultz and Kirchhoff 2006, p. 7; Kamusella 2016). Even though
only 5% of these languages are spoken by as much as 94% of the world’s
population, there are still hundreds of widely spoken, mutually unintelligi-
ble languages (Schultz and Kirchhoff 2006, p. 8). However, the distinction
between languages, dialects, and other language variants is not clearly
defined. Schultz and Kirchhoff (2006, pp. 5-7) used a definition where
dialects are regional variants of a language that have undergone lexical
and grammatical modifications, while accents are regional variants that
differ only by pronunciation. In other words, all language variants, e.g.
dialects or accents, of a single language are considered mutually intelligi-
ble, whereas different languages are not. However, they also suggest that
sometimes the terminology of dialects and language varieties might be am-
biguous. Indeed, it is not difficult to find several examples of such ambigui-
ties. For example, while regional Arabic dialects share a common phonetic
inventory and characters, the dialects are mutually unintelligible (Ali et al.

! Some authors use the term language recognition instead of language identification, but
in this thesis these terms are considered interchangeable and “identification” is preferred.



Definition of spoken language identification

2016; Shon et al. 2018). In contrast, Croatian and Serbian are considered
to be two different South Slavic languages, but are linguistically so close
that even native speakers might have difficulties distinguishing between
these languages (Mateju et al. 2018). Similarly, Moldovan is considered
a mutually intelligible dialect of Romanian, but due to political reasons,
Moldovan was declared as an independent language (Schultz and Kirch-
hoff 2006, pp. 6-7). Ren et al. (2019) wrote that some regional Chinese
dialects contain several cognate words or words with similar pronuncia-
tions, making it difficult even for humans to distinguish these dialects.

Sometimes the terminology of dialect or language might be mislead-
ing, especially when two language variants are linguistically different.
For example, even though Brazilian and European Portuguese have sig-
nificant differences, they are considered two varieties of the same lan-
guage (Zampieri and Gebre 2012). In contrast to Ren et al. (2019), Schultz
and Kirchhoff (2006, p. 6) suggested that several mutually unintelligi-
ble regional Chinese varieties exist, which would make them languages,
rather than dialects.

To alleviate these ambiguities, one might hope to define a language
similarity measure, which could be used to compare language variants
in a quantitative manner. However, Ringbom (2007, pp. 5-13) argued
that while attempts have been made to define objective, cross-linguistic
similarity measures, a generally accepted method for objectively measuring
language similarity does not exist. Furthermore, he suggested that our
native languages might influence how we perceive the similarity of a
language pair, making it difficult to define a similarity measure in the first
place. Since measuring objective similarity of different languages is non-
trivial, such information will not be utilized in this thesis. In other words,
if two samples have been labeled differently, then any prior knowledge
about language groups, dialects or language variants deducible from the
language label will not be used to influence the language identification
result.

Finally, it is worth noting the difficulty of constructing a universal defini-
tion for language, even though we all might have a familiar understanding
of what language means to us. For example, Riasénen (2013, pp. 1-3) wrote
that it is not understood how infants learn that languages consist of com-
bining meaningless units, such as phones, to form meaningful words. He
also noted that researchers have struggled for decades to find methods
for describing the complex mapping from abstract, linguistic messages to
physical speech signals.

This thesis will not focus on the qualitative analysis of language, but
rather how to automate the discovery of a mapping from pre-labeled audio
signal representations to natural languages. In order to accomplish this,
we will now discuss how language differences appear in speech signals.



Definition of spoken language identification
2.2 Cues for discriminating languages

In order to distinguish between different language pairs in speech, we
must be aware of the various cues that imply language difference. Li et al.
(2013) used a two-fold taxonomy for language cues: pre-lexical information
and lexical semantic knowledge. They suggested that humans are able to
accurately identify languages from speech that they understand, since in
this case they can utilize lexical knowledge such as words and syntax to
identify the language. More intuitively, if one understands what is said,
then it must be obvious what language is spoken. In contrast, when we are
listening to unfamiliar languages, we must rely on pre-lexical cues such as
sequences of sound or prosody to distinguish between languages.

Human SLI Zhao et al. (2008) performed an experiment where 18 native
Mandarin Chinese speakers were tasked to identify two familiar languages
(Mandarin and English) and two unfamiliar languages (Japanese and
Italian). When speech samples of these four languages were played to
the participants, their brain activations were measured to detect which
areas of the brain are active when attempting to recognize each language.
The study shows how areas in the human brain responsible for processing
lower-level acoustic cues such as prosody, become less active when higher-
level information is available. In other words, when a participant was
listening to speech in a familiar language, their brain favored lexical
knowledge of the language over simpler pre-lexical cues. Conversely, when
they were listening to an unfamiliar language, the brain areas responsible
for recognizing pre-lexical information were more active. On a similar
note, Ramus and Mehler (1999) discussed that bilingual children who
are still learning their native languages are able to somehow distinguish
between languages, before they have learned to speak them. This suggests
that language identification is possible without lexical semantic knowledge.

Lexical and pre-lexical knowledge Lexical semantic knowledge may sig-
nificantly improve the accuracy of neural network (NN) based SLI. For
example, Watanabe et al. (2017) proposed a multilingual speech-to-text
system, capable of recognizing speech in 10 different languages. When the
system produces correct text output for some input speech, it simultane-
ously detects also the correct language by its internal, lexical representa-
tion. However, it is worth noting that the SLI problem is solved as a useful
side-effect since the primary goal of the system is multilingual speech
recognition, Li et al. (2013) argued that in general, it is not cost effective to
solve the large vocabulary continuous speech recognition (LVCSR) problem
if it is desirable to only solve the SLI problem. From a computational cost
perspective, it is significantly cheaper to only rely on pre-lexical cues to
perform SLI. More intuitively, it might not be feasible for a person to learn
how to speak a large set of different languages if the objective is only to



Definition of spoken language identification

accurately distinguish between those languages.

Pre-lexical cues might include sequences or patterns of phonemes, i.e.
phonotactics, or simply the presence of a specific set of phonemes, i.e.
acoustic-phonetics, which can both be used to narrow down the set of
candidate languages (Li et al. 2013). There are countless examples of
pre-lexical cues for SLI, and only a few are listed here to give an intuitive
idea of why they might work in practice. For example, Hawaiian has a
significantly smaller inventory of unique vowels and consonants compared
to German, which has more complex patterns of permissible phoneme
sequences (Schultz and Kirchhoff 2006, p. 14). Phoneme /x/ does not occur
in French and Italian but does occur in Dutch and German (Schultz and
Kirchhoff 2006, p. 234). In Japanese, the liquid consonant /r/ cannot appear
after stop consonants, while this is common in English and French (Ramus
and Mehler 1999). Similarly, consonant clusters /fl/, /pr/, and /str/ are
common in English, but do not appear in Mandarin Chinese (Li et al.
2013). On the other hand, the cluster /sr/ does not occur in English, but
is common in Tamil (Muthusamy et al. 1994). The German word “spiel”
begins with a consonant cluster /sh p/, which can occur in English only
at the boundaries of two separate words, such as in the compound word
“flashpoint” (Zissman 1996).

It is important to note that such pre-lexical information is rarely en-
gineered manually into a SLI model. Rather, these examples suggest it
is feasible to assume SLI models may be able to learn the correlations
between different languages and phoneme patterns in an unsupervised
manner, assuming such correlations and patterns are learnable from the
chosen speech representation. Indeed, explicit utilization of pre-lexical
cues, such as phonotactics, has been studied extensively in the past and
is discussed in Section 5.1. We also return to the topic of different speech
representations in Section 3.2.

SLI model taxonomy Lets briefly discuss three common SLI approaches
that attempt to distinguish languages in different ways. Li et al. (2013)
distinguished between two major approaches to SLI: phonotactic and
acoustic-phonetic. Phonotactic SLI models usually use a phoneme recog-
nizer (PR) to produce a phoneme sequence from the input speech, followed
by a language classifier which aims to then detect unique patterns and
structures in the sequence that might uniquely identify one or more tar-
get languages. This approach is called phoneme recognition followed by
language modeling (PRLM), which is usually applied using several PR
models of different languages and several LM models, in which case it is
called parallel PRLM (PPRLM) (Zissman 1996). While phonotactic models
tend to be highly accurate at recognizing languages, their performance is
usually constrained by the output quality of the PR model, which could
perform poorly on noisy or mismatching data (Fernando et al. 2018).
Acoustic-phonetic SLI models, on the other hand, aim to distinguish



Definition of spoken language identification

each target language in the acoustic domain, without an intermediate,
explicit step that decodes the audio into a sequence of phonemes or similar
discrete tokens. This approach relies on the assumption that each language
has a unique acoustic structure that can be detected from an utterance
representation (Muthusamy and Cole 1992). Discriminative acoustic-
phonetic models are probably the easiest way of building a SLI model,
since they only require labeled audio files for training. However, the
amount of training data required might be impractically large before
satisfactory recognition accuracy can be achieved (Lopez-Moreno et al.
2014). While phonotactic models usually provide good SLI performance,
they are also computationally demanding and difficult to utilize in real-
time applications (Torres-Carrasquillo et al. 2002; Tang et al. 2018b).

In addition to these two different approaches, we highlight a third ap-
proach which is based on language embeddings. One intuitive example
of this is the embedding of individual languages as low-dimensional vectors
into some vector space, where the angular proximity of two vectors imply
similarity of the languages that these “language-vectors” encode (Gelly
and Gauvain 2017). We return to the topic of different SLI approaches in
Chapter 5.

2.3 Languages in speech and text

While this thesis focuses mainly on language identification from speech
data, we also make some use of text language identification (TLI). TLI is the
problem of detecting natural languages from text documents, with research
dating back to at least the 1960s (Jauhiainen et al. 2019a). Although
related, TLI should be considered a separate problem from SLI, since the
goal of SLI is to predict languages from audio input, rather than text input.
Some SLI models utilize textual information during the training phase, e.g.
transcriptions of the audio input, in order to learn a refined representation
of the speech input, usually making the SLI problem easier (Tang et al.
2018b; Ren et al. 2019). However, a distinguishing feature between SLI
and TLI is that SLI models are assumed not to have access to any text
data during inference and must predict the language class only from audio
signals. While SLI and TLI might have the same target set of languages, in
this thesis we make the assumption that the sets of input data for SLI and
TLI are always disjoint during inference. Therefore, SLI and TLI should
be considered two separate problems. However, this does not constrain
the use of SLI only on speech data and TLI only on text data. In fact, it is
possible to construct highly accurate SLI models by combining the use of
speech and text representations (Watanabe et al. 2017).



Definition of spoken language identification

10



3. Machine learning and speech

This chapter focuses on formalizing some of the intuitive definitions of
SLI discussed in Chapter 2. In addition, we review some commonly used
feature representations of speech signals and discuss how these represen-
tations are used in machine learning based speech analysis applications.
Section 3.1 formalizes the notion of speech representation analysis, while
Section 3.2 provides a more intuitive overview of how those representa-
tions are obtained in practice. In Section 3.3 we discuss some common
evaluation metrics used for architecture-independent comparison of SLI
models. Section 3.4 briefly discusses some numerical optimization meth-
ods used in machine learning and we conclude by discussing voice activity
detection (VAD) in Section 3.5.

3.1 Machine learning formulation

Since this thesis focuses on solving SLI problems using a machine learning
based approach, a statistical formulation of SLI must be established. We
begin by outlining the sample space, discuss some simplifying assumptions,
and then formulate the relationship between observations and language
classes. This relationship is simplified and encapsulated into a statistical
model which is computationally feasible for the machine learning applica-
tions discussed later in this thesis. The resulting formulation serves as a
mathematical framework, independent of the tools applied in practice.

Much of the terminology used in this section is based on the work by Gau-
vain and Lee (1994, p. 291), Bishop (2006, Section 1.5), Li et al. (2013, pp.
1139-1141), and Pohjalainen (2014, Section 3.1).

Sample space Let X = [x1,Xo,...,x7] € RT*F denote an i.i.d. random
variable of an acoustic feature representation of a single speech signal,
where the feature representation contains 7' > 0 time frames and F > 0
channels. Let y € L denote a random variable of a natural language from
a finite and non-empty target set L := {L;, Lo,..., Ly}. For simplicity,
it is assumed only a single language can be present in any time frame

11



Machine learning and speech

x; € X. In addition, it is assumed every time frame of all acoustic feature
representations always contain speech in some language in L. However,
it is unlikely that this assumption can be guaranteed in practice. Fur-
thermore, it would be meaningless to assign natural language labels to
non-speech time frames. In this thesis, it is assumed that such frames can
be detected with probability 1 by applying VAD (discussed in Section 3.5).
As a consequence, all non-speech frames can be removed and our initial as-
sumption holds. On the other hand, one might argue that this simplifying
assumption leads to a non-trivial amount of errors if X represents noisy or
poorly recorded audio signals. While current state-of-the-art VAD models
may reach very low misclassification rates (Lin et al. 2019; Vafeiadis et al.
2019), the assumption that these models will classify all frames correctly
is too strict. Nevertheless, considering that SLI from noisy input was fea-
tured in a recent, state-of-the-art SLI challenge by Tang et al. (2019, task
2), the topic of noisy SLI will be considered out of scope for this thesis.

Statistical model With these definitions and simplifying assumptions,
SLI can be formulated as a multiclass classification problem of assigning
correct language labels y to every time frame x; of an acoustic feature
representation X. One could encapsulate the binary relation between
all possible acoustic feature representations X and all possible natural
languages y within the joint probability distribution p(X,y). Then, discov-
ering p(X,y) would yield a perfect solution to all possible SLI problems.
However, Bishop (2006, pp. 38—44) suggested that inferring a true joint
distribution from training data is in general a very difficult problem. As an
alternative, if the objective is only to make classification decisions, he noted
that it might be sufficient and computationally less demanding to find the
generative relationship of how observation X generates y by modeling the
class posterior distribution p(y | X). While such generative models have
many desirable properties, inferring non-trivial class posterior distribu-
tions requires statistical methods which are beyond the scope of this thesis.
In order to simplify our problem formulation even further, we apply Bayes’
formula on the class posterior distribution (Pohjalainen 2014, Eq. 3.2),
resulting in

_ p(X|yp(y)

Assuming p(X) does not depend on y, and assuming uniform prior distri-
butions for all target languages in L, we can use the maximum likelihood
criterion (Gauvain and Lee 1994, Eq. 2) to formulate the maximum likeli-

hood estimate (MLE) for a target language € L as

§ = argmaxp(X | y).
)

12



Machine learning and speech

Finding MLE solutions is a classical problem with many existing solutions,
such as the expectation maximization (EM) algorithm (Bishop 2006, pp.
450-455). Indeed, a common approach used in speech related machine
learning applications is to model the class specific probability density func-
tion p(X | y) using a Gaussian mixture model (GMM) of several Gaussian
distributions (Pohjalainen 2014, pp. 44-46; Yu and Deng 2015b). Then,
the expected means of each Gaussian component of the GMM can be dis-
covered using the EM algorithm, which yields a MLE solution.

Discriminant model While the GMM based approach has been a popular
approach in SLI (Li et al. 2013), this thesis will instead focus on deep
learning. Now, assume any discriminative SLI model can be represented
by a non-linear discriminant function fW : R”*f — R¥, such that the
mapping is entirely dependent on a finite set of real-valued weights! W.
The output of fW is a vector of language scores y = [y1, v, . . ., yn], where
N is the amount of languages in the target set IL. It is assumed that each
score ; € R encodes the certainty that language I; € L is present in the
utterance representation X € R7*¥ j.e. higher values imply presence
while lower values imply absence. Note that these scores might or might
not be probabilities since probabilities usually have no meaning when
using a discriminant function (Bishop 2006, p. 43). Given an utterance
X, let fW(X | y;) denote the predicted score for the presence of language
L; in X. Now, we want to discover values for W such that the predicted
language classes

§ = argmax fWV (X | y) € L
L
always correspond to the true language class of X. In order to discover
fW, we can search for values of W through minimizing the multiclass
cross-entropy error (Bishop 2006, Eq. 4.108), defined as

M N
E(W) ==Yyl fV(Xpnly), (3.1)

m=1 [=1
where each observation X,, is from a dataset {X;,Xs,..., X} € RMXTXE,

Note that the word “dataset” is used here synonymously with a sample
of size M, drawn from the population of all possible speech signal rep-
resentations R7*¥", In Equation 3.1, it is assumed that VI : y € [0,1]
and VI, m : fW (X)) € (0,1], which implies £(W) > 0. Since the error
function E(W) is differentiable, we can use an optimization method to
discover the values for W that minimizes the error function. From a more
general point of view, Goodfellow et al. (2016b) formulates this approach
as empirical risk minimization. Here, the goal is to discover the empiri-

1 Commonly also called hidden weights.

13



Machine learning and speech

cal distribution p(X,y) (e.g. fW), instead of the true joint distribution, by
minimizing some risk function (e.g. Equation 3.1) using a finite training
dataset. However, they point out that discovering p using this approach
does not guarantee that p is an accurate generalization of the actual, joint
distribution.

Even though Equation 3.1 can be used for measuring the performance of
fW during training, it is rarely used for evaluating SLI model performance
on a test set. Some commonly used performance metrics that can be used
with any SLI model, not only deep learning based models, are discussed in
Section 3.3.

Deep learning model Since this thesis focuses on deep learning based
SLI models, we should briefly mention the concept of layers and how
a deep learning model can be represented using the discriminant model
framework. Let fW : RT* — R" denote some deep learning based model
and assume it is constructed from L intermediate, or hidden, layers defined
as

Wi | pTxF
11.R —>A1,

\\%
2 22A1—)A2,

W
3 3:A2—>A3,

ZVL : AL_1 — RN.

Each layer 7 has an independent set of hidden weights W;, an input space
A;_1 and an output space A;. In this thesis all input and output spaces
are assumed to be finite-dimensional, real vector spaces. This particular
example is a feed-forward NN, or DNN (Goodfellow et al. 2016a), although
many different architectures are also used. We return to the topic of
different deep learning based SLI models in Chapter 6.

Deep learning and the amount of data One crucial assumption for apply-
ing deep learning to SLI is that it is assumed each SLI problem can be
solved with a discriminative model, without explicitly modeling any proba-
bility distribution. It is known that feed-forward NNs are highly capable
of approximating continuous functions to arbitrary accuracy, as long as
the networks have a sufficient amount of hidden units (Bishop 2006, p.
230; Yu and Deng 2015a, Section 4.2). However, it should be noted that
our assumption is viable only if a sufficient amount of training data exists,
since the performance of deep learning models is highly dependent on the
amount of training data, regardless of model complexity or the novelty of
its implementation (Goodfellow et al. 2016¢, pp. 421-422). Furthermore,
the exact threshold for “sufficient” amount of data is difficult to define in
an objective manner, although it is well known that increasing the amount

14



Machine learning and speech

of data improves SLI performance (Lozano-Diez et al. 2015; Snyder et al.
2018a; Shon et al. 2018).

Sometimes, it is possible to create new data samples by augmenting
the existing dataset. Ko et al. (2015) experimented with different speech
augmentation techniques for DNNs and evaluated the models on 5 different
LVCSR tasks. They found out that simple resampling through modifying
the speed of the speech signal to 90% and 110% of the original speed
was sufficient to yield a noticeable improvement, even compared to the
more complex augmentation techniques. Similarly, Shon et al. (2018)
noticed that SLI performance is significantly increased after performing
data augmentation by speed and volume modifications. Ma et al. (2019)
compared several time scale modifications ratios and noticed that the
largest SLI performance improvements can be achieved by modifying the
speed of the signal to 80% and 120% of the original speed.

3.2 Speech representations

Speech feature extraction is a vast, active research topic and cannot be
sufficiently summarized without greatly exceeding the scope of this thesis.
Furthermore, choosing the best, discrete representation for speech is non-
trivial and usually application specific. This section will provide only a
brief overview of the most common speech features, mostly focusing on
features used in the experiments discussed in Chapter 7.

Overview Audio signals are usually encoded as a waveform, a single-
dimensional time-domain representation where each sample is a single real
number. However, the waveform is rarely used directly in speech analysis
systems (Yu and Deng 2015¢, Section 3.6). Instead, the signal is converted
into a two-dimensional, frequency spectrum by applying the short-time
Fourier transform (STFT) (Pohjalainen 2014, Chap. 2). This spectral
representation is usually transformed with a frequency-domain warping
operation that emphasizes the frequencies important for human hearing.
Yu and Deng (2015c¢, Section 3.6) argued that a spectral representation,
containing both spatial (frequency) and temporal dimensions, enables more
accurate analysis of correlations and variability that occur within one of the
dimensions but not both. Sometimes, the discrete cosine transformation
(DCT) is applied on the spectrum to create a cepstral representation,
although this seems to be less common in contemporary SLI systems. This
is discussed in more detail at the end of this section.

Feature extraction procedure We will now briefly walk through how to cre-
ate a two-dimensional representation X € R”*¥ from a single-dimensional
audio signal s € RY, encoded as a waveform, containing S samples. Be-
fore we begin, it should be noted that per-sample mean-normalization is

15



Machine learning and speech

commonly applied on each X after feature extraction (Yu and Deng 2015a,
pp. 65—67). In this thesis, both mean-normalization as well as standard-
ization was experimented with, and it was discovered that normalizing
the variance to 1 is in fact not beneficial. These results are discussed in
more detail in Chapter 7, but for now, it is assumed all X have been mean-
normalized such that each of its frequency channels have zero mean.

Consider three audio signals chosen uniformly at random from the
YouTube News (YTN) dataset (discussed later in Section 4.4), each contain-
ing speech in Spanish, Mandarin Chinese, and German. Signals are shown
in Figures 3.1a, 3.2a, and 3.3a. Each signal is a waveform representation
of an approximately 5 second long signal, recorded at a sample rate of 16
kHz, which implies S = 5s - 16 kHz ~ 80 000. The first spectral representa-
tion we will compute is the magnitude spectrum. First, a 512-point STFT
with window length 25 ms and offset 10 ms is applied on each s. Then, we
take the absolute value of each window to get a real-valued representa-
tion Xpmag € R198%257 which is shown in Figures 3.1b, 3.2b, and 3.3b. It is
evident that this representation is too sparse, due to the larger values of
Xmag being disproportionately large compared to the smaller values. This
makes it difficult to compare the energies in different frequency bands. In
addition, auditory perception is more sensitive to changes on a logarith-
mic, rather than a linear scale (Pohjalainen 2014, p. 25). By mapping the
squared values of Xy, onto the decibel-scale, we get a decibel-scale spec-
trum Xgg € R*%%257 shown as spectrograms in Figures 3.1c, 3.2c, and 3.3c.
While a log-scale representation allows for easier comparison of energy
levels in different frequency-bands, we can see that most of the informa-
tion of a speech signal is contained within the lower frequencies, leaving
some sparsity in the higher frequency-bands. Furthermore, it is known
that human hearing is most sensitive in the lower frequencies, between
1 kHz and 5 kHz (Pohjalainen 2014, p. 24). One solution is to warp the
frequency-dimension to give more emphasis on lower frequencies. There
are several well-known psychoacoustic scales that are modeled after hu-
man hearing, such as the Bark, ERB, and Mel scales (Pohjalainen 2014, p.
25). The Mel scale is popular choice, and will be used in this example. Tak-
ing the natural logarithm of the squared values of X5, and warping the
frequency dimension by multiplying it with the 64 Mel scale filter banks?,
we get the log-scale Mel spectrum Xy € R4%%64) seen as spectrograms
in Figures 3.1d, 3.2d, and 3.3d. Note the significant reduction in sparsity
compared to the decibel-scale representation.

Another commonly used representation are the Mel-frequency cepstral
coefficients (MFCC) Xyrce € R*¥®*™ which are computed by applying

1 Tt might be good to point out that the term “filter banks” is commonly misused in SLI
literature. In the case of the Mel scale, Xy is obtained by multiplying the power spectrum
with Mel filter banks, a constant matrix that encodes the frequency channel mapping from
a linear scale to the Mel scale. However, Xy is not equal the Mel filter banks, even though
this incorrect use of terminology is common.

16



Machine learning and speech

the DCT on Xy . In this example, we select the m = 20 first coefficients,
although smaller values such as m = 13 are also common in literature.
This cepstral representation can be seen in Figures 3.1e, 3.2e, and 3.3e.
Note how the zeroth coefficient (energy) at the bottom overshadows the
distribution of values in coefficients ¢; to c¢i9. Some authors prefer to simply
drop the ¢ coefficient for this reason. While the MFCC representation is
very compact and a popular choice in speech related analysis, applying
the DCT is a lossy operation and might sometimes lead to slightly worse

performance compared to using a spectral representation, which we will
discuss next.

17



Machine learning and speech

i }J ""‘ w L “'*‘*W‘Mﬁ ‘W’“

(a) 5 second, 16 kHz audio signal s € R3°%42, Starting point for the segment in the original
source audio: https://youtu.be/wtBZRZOBfus?t=650 (visited on 2020-02-14).

3 ey 3 5,
- 1 -
- - L ﬁ.-u. - - -
— e 2 g P g, = = <5~ = = 1
o ——— e -~ = — e TS ie e e o
—— g — — = = =

(b) Magnitude spectrogram Xmae € R*¥®X257 of the signal in (a), extracted with a 512-point

STET from windows of length 25 ms and offset of 10 ms.

(c) Decibel-scale spectrogram Xgg € R*%8*257 with values ranging from -120 to 0 dB, with

the upper reference point being the square of the maximum value of the magnitude
spectrogram in (b).

L RE 3
i R o

(d) Log-scale Mel-spectrogram Xy € R*%8%64 extracted from the squared values of (b) by

warping the frequency dimension into 64 Mel-frequency bins in the Mel-band [20, 8000]
Hz and applying the natural logarithm on the values.

|I - lll |I|- = - [ I h { |-'T-- = | o T. I ||n||'||II|'I|'II- F
T T oty iy P 1 Vi
H:lll-. | . h I F‘lf q‘q = ™ . ||-..|| !:# -r-l- !-lﬂll a |i
M |I IIlIIW ‘I | - ill w‘ —_—— -

(e) 20 Mel-frequency cepstral coefﬁclents Xppoe € R198%20

Mel-spectrogram in (d).

extracted from the log-scale

Figure 3.1. Features extracted from a randomly chosen utterance from the YI'N dataset,
containing speech in Spanish. The utterance is shown as a waveform represen-
tation, 3 different spectral representations, and one cepstral representation
(red < 0 and blue > 0). All rows of each two-dimensional representation have
been mean-centered.

18


https://youtu.be/wtBZRZ0Bfu8?t=650

Machine learning and speech

| y ‘ A
Ao o o s Y s b e

(a) 5 second, 16 kHz audio signal s € R3%5%, The source audio is the first 5 seconds of
https://www.youtube.com/watch?v=mmx29HS2Ejc (visited on 2020-02-14).

= N
= - = -

pu— — - - e, -

(b) Magnitude spectrogram Xa, € R*98%257,
|.f
B é : i i
e i S .
EOYos 1 ?
R
&% .
5! e 2 ‘k:
?—I . ;‘:ﬁ " ) ?_ ; k_":‘ ._
; s M = ot .
> . ;."':" %£$ * & P, 3
£ .QL S I
T~ < _ i |
53.:__‘ =22=——=F =X =Sis:85 .5

R498>< 257

(¢) Decibel-scale spectrogram Xgg €

) Log-scale Mel-spectrogram Xy € R498%64,

| h

|‘|||i|'| I

i E-r,:.l%

(e) 20 Mel-frequency cepstral coefficients Xyrcc €

R498 x20 .

Figure 3.2. Features extracted from a randomly chosen utterance from the YI'N dataset,
containing speech in Mandarin Chinese. All feature extraction configurations
are exactly as described in Figure 3.1

19


https://www.youtube.com/watch?v=mmx29HS2Ejc

Machine learning and speech

ﬁr«wmm H Wbt M 'L “"W tlhir o O e

(a) 5 second, 16 kHz audio signal s € R%°%42, Starting point for the segment in the original
source audio: https://youtu.be/3uv9vIB4MRk?t=50 (visited on 2020-02-14).

-
- B —
] . e = =

’ o) i e - -

— - - B ————— " e -

R498 X257

(b) Magnitude spectrogram Xmag €

(c) Decibel-scale spectrogram Xgg € R498x257

R498 X 64 .

(d) Log-scale Mel-spectrogram Xy €

- b i

e u_‘.i__a'-.'l..i'.u_ A-.-U-t‘?_'u..'.&'"_? el

(e) 20 Mel-frequency cepstral coefficients Xyrcc € R498%20,

Figure 3.3. Features extracted from a randomly chosen utterance from the YIN dataset,
containing speech in German. All feature extraction configurations are exactly
as described in Figure 3.1

Arguments for and against MFCCs Fayek (2016) argued that while MFCCs
have been popular speech features in GMM based systems, decorrelating
the filter bank coefficients by applying a DCT might be unnecessary, since
DNN models are usually robust against correlated input. Furthermore,
he suggested that applying any linear transformations such as DCT or

20


https://youtu.be/3uv9vIB4MRk?t=50

Machine learning and speech

even the Fourier transform might discard some valuable, non-linear in-
formation from the audio signal. Nevertheless, he noted that the Fourier
transform might be too difficult for NNs to learn, making training on wave-
forms infeasible.

Mohamed (2014, Chap. 4) argued that there is no a priori reason to
assume MFCCs are a good, general feature type for all NN based architec-
tures. He wrote that MFCCs have mainly evolved alongside GMM based
models, which benefit from non-correlated features for several reasons,
such as performance and easier inference, whereas using MFCCs in NN
based approaches might even reduce performance.

Shon et al. (2018) noticed that MFCC features slightly outperform log-
scale Mel-spectra on an unaugmented dataset, but after augmenting the
training set by speed and volume modifications, the log-scale Mel-spectra
slightly outperformed MFCCs. They argued that this implies it might be
possible to perform SLI on raw waveforms if there is enough data, although
it is unknown in general how much data this would require.

Xu (2018, p. 35) suggested that while MFCCs have shown to work well
for phoneme recognition, the inherently lossy spectral representation of
MFCCs might be detrimental for general audio classification, beyond the
domain of speech.

Signal variability Since the main goal of SLI is to distinguish between lan-
guages, it is highly desirable to ensure a NN model is actually classifying
languages and not some unwanted correlations caused by background noise
or speaker variability. One notable, although not only, reason for speaker
variability is due to physiological differences in our vocal tracts. This can
be alleviated by applying a vocal tract length normalization (VTLN) trans-
formation on the speech representation (Wakita 1977; Zhan and Waibel
1997), although the benefit of applying VTLN seems to diminish when NN
models are used (Seide et al. 2011; Mohamed 2014, p. 105). Unwanted
correlations that distort the language-separating cues are not limited to
differences between speakers. Some other sources of unwanted variability
might be caused by additive noise, channel variability, and source variabil-
ity (Pohjalainen 2014, Chap. 4). In general, ensuring that speech analysis
models learn only from the most salient features of a speech representation
falls into the field of robust speech recognition, which is a non-trivial prob-
lem and an active research topic. While it might be possible to significantly
improve the performance of a SLI model by careful feature engineering
for increased robustness, this approach is considered out of scope for this
thesis.

21



Machine learning and speech

3.3 Evaluation metrics

Two commonly used metrics for evaluating SLI model performance within
the SLI community are the average equal error rate (EER;;) and aver-
age detection cost (Cy,yg), which are defined in this section. In addition,
we discuss the average weighted F score (F1i.ayg) for multiclass classifi-
cation, since it is used in Chapter 7 as an accuracy measure for report-
ing experiment results. The F; score is a commonly used metric also in
TLI (Jauhiainen et al. 2019a, p. 722).

The intuition behind both EER,,s and Cgyg is to find a threshold value for
predicted language scores, such that the binary decisions made separately
for each class minimize both the false positive rate! (FPR) and the false
negative rate? (FNR). Furthermore, Cavg uses separate FNR values for all
target-nontarget pairs to minimize skew from class imbalances, instead of
using one FNR for each target language. We begin with EER4y, since it is
the simpler one of these two metrics.

Equal error rate  Pohjalainen (2014, p. 46) defines equal error rate (EER)
as the point on a detection-error-tradeoff (DET) curve, parametrized by a
decision threshold, where FPR is equal to FNR. Similarly, Cheng and Wang
(2004) defines EER as the point where FPR equals FNR. On the other
hand, Alphonsa et al. (2017, Eq. 5) defines EER as the arithmetic mean
of FPR and FNR, which implies an assumption that the optimal decision
threshold has already been found and the FPR and FNR values have been
computed using this threshold. We'll discuss the issue of choosing the
decision threshold later in this section.

Some authors omit the EER formula completely. For example, Gonzalez-
Dominguez et al. (2014) describes EER as “the well-known metric”, with-
out providing a definition. Furthermore, since EER is a metric for binary
classification, it is usually implied that EER values reported for multiclass
classification of several language classes are averages of EER values com-
puted separately for each class. Some authors use the notation EER,y, for
average EER and this convention is followed also in this thesis.

Average detection cost One obvious problem with EER,y, arises if one
uses a dataset containing significant class imbalances. In this case, placing
equal weight for each EER value regardless of the amount samples per
class will make EER,y, sensitive for small changes in the EER values for
classes than contain only a few samples. One solution to this problem is
to compute a separate FPR for each target class, and a separate FNR for
each pair of target and nontarget classes. Then, each FPR is normalized by
the total amount of target classes and FNR is normalized by the amount
of target-nontarget pairs. One such metric is the Cayg, which has been

1 Also known as false acceptance rate (FAR), or type I error.
2 Also known as false rejection rate (FRR), or type II error.

22



Machine learning and speech

extensively used in the SLI community. Li et al. (2013, Eq. 32) defines the
average detection cost as

Cavg = mlssPtar Z Pmlss Ll

1
+ Cfa Ptar N

Mz

( Z Pfa Lla ) (32)

=1 m;él

where N is the amount of languages in the target set, P;ss(L;) is FNR for
classifying a target language L; as some nontarget language, P, (L;, L) is
FPR for classifying some nontarget language L,,, as the target language L;,
and {Cpiss, Ca, Ptar} are application specific parameters that have been
set to {1,1,0.5} during past NIST LRE! events. Setting Cpjss = 1, Cpa =
1, Piar = 0.5 slightly simplifies Equation 3.2 to

N N
Z miss Ll 7NZ N Z Pfa le . (3.3)

m;ﬁl

For clarity, it is good to note that FPR and FNR are binary metrics,
computed by comparing a given score to some fixed decision threshold.
If the score is less (greater) than the threshold, we record a negative
(positive). Cayg requires N different FNR metrics Ppiss(L;), one for each
language [, and N - (N — 1) different FPR metrics P, (L;, L,,,), one for each
language pair [ # m. The final result is then computed by averaging
over all these metrics, multiplied by the application specific parameters.
However, defining this fixed decision threshold is not trivial and depends
on the application. This will be discussed next.

Choosing a score threshold for decisions Assume we have a SLI model
which produces language scores y = [y1,v2,...,yn] € RY for N different
languages. Let 0,,;, denote the smallest possible language score, such that
Vi @y > Opin- Similarly, let .« denote the largest possible language
score, such that VI : y; < Op.x. Let 8 € R denote a language-independent,
global score threshold used for deciding whether a given score indicates a
positive or negative result. Then, setting 6 < 6,,;, would yield only positive
results, minimizing all FNR values but maximizing all FPR values because
Vi : y; > 0. Conversely, setting 6 > 0,,x would maximize all FNR values
but minimize all FPR values because VI : y; < 6. Now, the challenge is to
somehow choose the best value for 6 € [0,in, fmax| Such that we minimize
FNR and FPR at the same time. One commonly used approach described
by Li et al. (2013) is to select a fixed set of threshold values between 6,,;,
and Onax, then perform a grid search over all values in the set, computing

! National Institute of Standards and Technology (NIST) language recognition evaluation

23



Machine learning and speech

the Cayg for each 6. Then, the smallest Cayy value is chosen as the final
value. The same approach can also be applied to finding EER,yg, since it is
also defined by FPR and FNR metrics.

Although one might achieve reasonable results for a specific SLI task by
using this heuristic of probing the evaluation set using different values of
6 until Cayg is minimized, more systematic approaches are available. Li
et al. (2013) suggested that application-independent calibration might pro-
vide a better way to minimize Cgyg indirectly, making fusion of language
score predictions across different SLI models easier. Briimmer and Preez
(2006) provided a thorough analysis on speech-related classification deci-
sion theory, although this analysis is out of scope for this thesis and will
not be discussed here. Instead, this thesis uses the evaluation set probing
heuristic (Li et al. 2013). First, we choose a finite set of candidate thresh-
olds {0 : 0 € [Opin, Imax]}, evenly spaced between the smallest (6,,;,) and
largest (fmax) language scores produced by each SLI model. Then, Cgyg is
computed from the predicted language scores for each 6, after which the
smallest Cayg value is chosen as the final, reported Cayg value.

Average weighted F; score Even though most results in SLI literature
are reported using error metrics such as EER,yz; and Caye, a common
accuracy score used in other domains is the F; score. For completeness,
this score will be used in thesis in addition to the error metrics. In order to
allow the usage of a single metric for an arbitrary amount of languages,
we will use the average weighted F; score (Fi.avg), which is the average
over several F; scores, one for each language, weighted by the amount of
samples for each language. It should be noted that the weighted F; score
is a commonly used metric in many domains and is not in any way unique
to this thesis.

The binary F; score for a class I; is defined as the harmonic mean of
precision P(L;) and recall R(L;) (Jauhiainen et al. 2019a), i.e.

P(L))R(Ly)

M) = 25y T RILY:

In order to apply this binary metric on predictions with multiple classes,
F1(L;) is computed for each class L; and then averaged over all scores, with
each score weighted by the support S(L;) of the corresponding class, i.e.
the total number of true samples for that class in the evaluation set. Then,
we define the average weighted F; score for N classes as

1 N
Fiavg = > S(L)Fi(Ly). (3.4)
=1

(LRE), which will be discussed in more detail in Section 4.6.

24



Machine learning and speech
3.4 Optimization methods

The driving force at the heart of most deep learning architectures arguably
is the numerical optimization algorithm that updates the hidden weights of
a model to minimize the empirical risk, in hope that this will also improve
the prediction strength of the model (Goodfellow et al. 2016b). This section
provides a brief overview of the optimization methods that are relevant to
the experiments performed during this thesis.

Unless stated otherwise, the optimization algorithm used in all experi-
ments in this thesis is stochastic gradient descent (SGD) with Nesterov
accelerated gradients (Sutskever et al. 2013). Research into new optimiza-
tion methods is a very active field, with increasingly complex optimiza-
tion approaches emerging each year. For example, Kingma and Ba (2015)
proposed the adaptive moment estimation (Adam), along with a proof of
convergence and empirical evidence of superior performance over SGD.
However, Reddi et al. (2018) later showed a simple counter-example to the
initial proof of convergence, in which Adam fails to find the global opti-
mum for a single-dimensional, convex problem when hyper-parameters
are chosen in a specific way. They argue that while this particular instance
of non-convergence can be solved by updating the hyper-parameters cor-
rectly, such manual tuning defeats the purpose of an adaptive optimization
algorithm. As a solution, they propose an update to the Adam optimiza-
tion algorithm, named AMSGrad. Later, Zou et al. (2019) showed how the
performance of Adam and AMSGrad can be significantly improved using a
“generic Adam” algorithm, which is a generalization of weighted AdaGrad
with exponential moving average momentum. They also provide a compre-
hensive overview of known, common conditions that must be fulfilled for
non-convex optimization problems to converge with the Adam algorithm.

Choosing the best optimization method is a non-trivial task and like
choosing the best speech feature representation, also depends on the appli-
cation.

3.5 Voice activity detection

The last topic we discuss in this chapter is voice activity detection (VAD),
which is a common pre-processing technique in speech analysis. The
central part of VAD is deciding whether a given segment in an audio signal
contains speech or not. VAD is a non-trivial task, with solutions ranging
from simple energy based approaches to complex deep learning classifiers.
Some authors also use the term speech activity detection (SAD) instead of
VAD, but in this thesis it is assumed to be equivalent to VAD and will not
be used.

25



Machine learning and speech

w " * e 9 B | . Wl il

t

1

2

3

4

5

6

7

8
I s E
T-2
T-1
T

(a) VAD on overlapping windows, matching the size of STFT windows. In this case, feature
extraction can be performed on the full, unmodified signal and silence frames dropped
after the features have been extracted. Unfiltered log-scale Mel-spectrogram is shown
for comparison.

‘ .4 e e o 4 R e R

(Co T o 1 o | 1T 1T 1) = = = = = = = = = = = (1 1T 1 1T 17

‘ﬂ .4 e b I o 4 R

(b) VAD on non-overlapping windows and filtered signal.

Figure 3.4. Two different approaches for performing VAD on a 5 second utterance, with
0 denoting not speech and 1 denoting speech. The size of each window is
approximately 20 times larger compared to the actual size, in order to make
them visible in the figures.

Consider the audio signal shown in Figure 3.2a, and the log-scale Mel-
spectrum Xy extracted from this signal, shown as a spectrogram in
Figure 3.2d. Each feature frame of Xy, will share the language label
corresponding to the language that is spoken in the audio signal. However,
at the beginning of the signal, there is approximately one second of silence.
As discussed in Section 3.1, it is meaningless to add language labels on
frames without speech, and we would prefer to remove such frames. One
approach is to divide the audio signal into windows, such that their length
and offset equal the STFT windows. This results in T overlapping windows,
which map one-to-one to the feature frames of Xy. By computing a binary
VAD decision d; € {0,1} for each window ¢ (see Figure 3.4a), we get T’
decisions d € {0,1}”. Using these decisions, we can choose to either drop
or keep each frame of Xy, without modifying the original signal.

Alternatively, an audio signal could be filtered directly to remove non-
speech frames. An example is shown in Figure 3.4b.

26



Machine learning and speech

WebRTC VAD The WebRTC (2020) project implements a GMM-based
VAD algorithm, built on the assumption that the frequency domain of
each input signal can be divided into bands such that the decibel-scale
energy of each frequency band is normally distributed with different mean
and variance depending on whether the source signal contains speech or
noise. The open source code! of WebRTC VAD was analyzed during this
thesis and a simplified overview of its theoretical background will now be
discussed. Note that several details about numerical approximations and
smoothing methods have been omitted in this analysis.

The system uses a pre-trained GMM to produce binary VAD decisions
on short segments of the original signal, requiring all input segments to
have a duration of 10, 20, or 30 ms. It is up to the user to decide how
these decisions are combined and applied to the full signal. The system
uses 6 weighted frequency bands ranging from 80 Hz to 4000 Hz, with the
spectral weights and band boundaries listed in Table 3.1.

.

&  flow  Jhigh

6 80 250
8 250 500
10 500 1000
12 1000 2000
14 2000 3000
16 3000 4000

(o2, QTN CURE VR

Table 3.1. 6 frequency bands (Hz) and spectral weights «; for each band, used by WebRTC
VAD to output VAD decisions.

Let z; € R denote the decibel-scale energy of the ith frequency band for
some input segment x € R of duration 10, 20, or 30 ms. For each band,
the following speech and non-speech hypotheses are made:

h h ‘ .
Hy : oy ~ N (5P (05P9°M)?),  i.e. a; is speech,

Hy : x; ~ N (uBo'se, (ghoise)2y, i.e. x; is noise.
Now, assume we are given an input segment x = [z1, 22, ..., z¢) contain-
ing 6 frequency bands. The system performs a likelihood ratio test by
computing, for all frequency bands, a numerical approximation of the log-
likelihoods whether hypothesis H; holds or should be rejected, resulting in
the log-likelihood ratio

= Z log Pr(z; | Hy)

Q.
ot “log Pr(z; | Ho)

1 https://webrtc.googlesource.com/src/+/7a709c0e85eb938a052b74fb39ebcaf5981f84be/common_

audio/vad (visited on 2020-01-27).

27


https://webrtc.googlesource.com/src/+/7a709c0e85eb938a052b74fb39ebcaf5981f84be/common_audio/vad
https://webrtc.googlesource.com/src/+/7a709c0e85eb938a052b74fb39ebcaf5981f84be/common_audio/vad

Machine learning and speech
The log-likelihood ratio A is then used to perform the final decision

If A > ¢, do not reject H; (x is speech),
If A < ¢, reject Hy (x is not speech),

using a constant ¢ depending on the input segment length.

Value Mode

0 Quality

1 Low-bitrate

2 Aggressive

3 Very aggressive

Table 3.2. Effect of different aggressiveness values of WebRTC VAD.

In addition, the user may specify an “aggressiveness” level 0, 1, 2, or 3
(see Table 3.2), which affects the probability of rejecting hypothesis H;.
These four aggressiveness modes will be compared in the experiments
described in Chapter 7.

28



4. Datasets

This chapter provides an overview of five different speech datasets that
were used both for training and evaluating different SLI models during
the experiments performed in this thesis. All datasets have different char-
acteristics, which will be discussed in the sections below. These datasets
were chosen for this thesis because all of them have reference SLI mod-
els, with existing results available in the literature. These results will
be reproduced in this thesis and are discussed in Chapter 7. It is worth
noting that these five datasets represent only a small subset of all the
public SLI datasets that have comparable results in the literature. Some
other important datasets will be discussed in Section 4.6.

The first five sections in this chapter are dedicated to specific datasets,
ordered by time of release, with OGI-11L being the oldest dataset and
AP19-OLR the most recent dataset. OGI-11L is also the smallest dataset
with only 32 hours of data, while YTN-Aalto2019 is the largest with 1214
hours of data. The contents of each dataset will be summarized in a table
and two figures. Each table contains a column of original labels proposed
by the dataset authors, while the BCP-47 column contains closest valid
language tags, unless the original labels are already valid IETF BCP-47!
tags or if suitable tags are not available. Each pair of figures depict the
cumulative distribution of utterance durations in seconds for utterances
in the training and test sets. Each figure also contains quartile values
Q1,Q2,and Q3 in seconds, e.g. ()2 is the median utterance length.

! Internet Engineering Task Force Best Current Practices 47 (Phillips and Davis 2019).
Tags retrieved from IANA - Language subtag registry (2019).

29



Datasets

4.1 OGI-11L (1994)

Label BCP-47 Language Speech (hours)

ma zh Chinese 2.6
ge de German 2.9
en en English 5.2
fa fa Farsi 2.6
fr fr French 2.9
hi hi Hindi 2.6
ja ja Japanese 24
ko ko Korean 2.2
sp es Spanish 3.1
ta ta Tamil 2.8
vi vi Vietnamese 2.5
All 31.7

Table 4.1. 11 languages of the OGI-11L dataset.

Overview The first Oregon Graduate Institute (OGI) multi-language tele-
phone speech corpus consists of freely spoken monologues or read speech
in 10 different languages by 100 different speakers, recorded at a sample
rate of 8 kHz over the telephone (Muthusamy et al. 1992). The data was
collected by an automated telephone system, which played pre-recorded
questions for the participants, who then gave responses of varying length.
Most of the answers are rather short, except for the “story-before™ (stb) ut-
terances, which are between 45 and 50 seconds. The 10-language dataset
was expanded to 11 different languages by Cole and Muthusamy (1994),
and later to 22 different languages by Lander et al. (1995). This thesis
uses the same abbreviation as Li et al. (2013) and refers to the 11-language
dataset as OGI-11L, which is outlined in Table 4.1 and used in the ex-
periments described in Chapter 7. According to Li et al. (2013), the OGI
speech datasets can be considered the first large-scale data collection effort
towards producing a standard SLI dataset. The OGI datasets have been
used extensively in SLI experiments (Muthusamy and Cole 1992; Hazen
and Zue 1993; Zissman 1996; Torres-Carrasquillo et al. 2002; Martinez et
al. 2011; Alphonsa et al. 2017). The popularity and originality of OGI-11L
is the main reason why this dataset was included in this thesis.

Availability License purchased and data downloaded from the Linguistic
Data Consortium at the University of Pennsylvania? (LDC) on 2019-08-09.

! During the data collection of OGI, participants were asked to speak for 60 seconds about
any topic of their choosing. Shortly before the time was up, the recording system played a
short beep to indicate the recording is about to end. The “story-before” files contain the
recording up to that point (Muthusamy et al. 1992).

2 https://www.ldc.upenn.edu/LDC94517 (visited on 2020-03-18)

30


https://www.ldc.upenn.edu/LDC94S17

Datasets

Training-test split Since OGI-11L does not provide a fixed training-test
split, the approach followed in this thesis is based on the description by Ziss-
man (1996), where only the “story-before” (stb) utterances are used. First,
the amount of test data is chosen to be one hour of speech. Then, test set
speakers are drawn uniformly at random from all speakers, one at a time,
for one language at a time. For each chosen test speaker, all stb record-
ings that contains speech by that test speaker are chosen. From these
recordings, the first 30 seconds is partitioned into three non-overlapping
10 second test utterances, for each recording. All resulting 10 second ut-
terances are then added to the test set, and the chosen test speaker is
removed from the set of all speakers. When the total duration of all test
utterances reaches one hour of speech, the training set is all stb recordings
of the remaining speakers. No separate validation set is used. Note that
Table 4.1 includes all utterances in OGI-11L, whereas the total duration of
all stb recordings is only 15 hours, as seen in Figure 4.1.

Training set (14 hours) Test set (1 hours)
14 ]
0.75: Q3: 48.8 Qs: 10.0
0.50: Q2: 48.1 Q2: 10.0
0.25: Q1: 46.6 Q1:10.0
of : . . : . | e . .
30 35 40 45 50 9.6 9.8 10.0 10.2 104

Utterance duration (s) Utterance duration (s)

Figure 4.1. Cumulative distribution of utterance durations in OGI-11L and quartiles in
seconds. Most training set utterances are between 45 and 50 seconds, while
all test set utterances are exactly 10 seconds.

4.2 MGB-3 (2016)

Label BCP-47 Language Speech (hours)
egy arz Egyptian Arabic 16.4
glf afb Gulf Arabic 14.2
lav lav Levantine Arabic 14.3
msa arb Modern Standard Arabic 14.3
nor nor North African Arabic 14.6
All 73.8

Table 4.2. 5 Arabic dialects/languages of the MGB-3 dataset. Levantine Arabic and North
African Arabic do not have dedicated BCP-47 tags.

31



Datasets

Overview The third Multi-Genre Broadcast speech recognition challenge
(MGB-3) focuses on Arabic language speech recognition and Arabic dialect
identification of modern standard Arabic and 4 regional, Arabic language
groups (Ali et al. 2016). The speech data consists of 16 kHz recordings of
broadcast news from the Al Jazeera news channel, and the data has been
segmented into utterances of different lengths to avoid speaker overlap
and to minimize the amount of non-speech frames within samples (Bahari
et al. 2014). Due to significant similarities between these dialects, this
dataset poses a challenging, state-of-the-art level classification task (Shon
et al. 2018). MGB-3 was chosen for this thesis due to its state-of-the-art
difficulty and easy availability.

Availability Public, downloaded from GitHub! on 2019-08-14. Regarding
the naming convention of data directories, it is assumed dev.vardial2017
contains the validation set of MGB-3, train.vardial2017 contains the train-
ing set, and test.MGB3 contains the test/evaluation set.

Training-test split MGB-3 provides a pre-defined training-test split, with
an additional validation/development set. However, this thesis follows the
approach of Shon et al. (2018), who chose randomly 90% of utterances
from the validation set, created 4 new copies of each utterance, and in-
cluded this 5-fold augmented validation set into the training set. Table 4.2
shows durations of the unmodified dataset, while Figure 4.2 includes the
augmented training set and therefore appears to contain more data. The
remaining 10% of utterances in the validation set are not used.

Training set (99 hours) Test set (10 hours)
1] I
0.751 Qs: 18.9 Qs: 25.3
0.501 Q2: 10.5 Q2: 154
0.251 Q1:5.1 Q1:10.5
0 200 400 600 0 50 100 150 200 250
Utterance duration (s) Utterance duration (s)

Figure 4.2. Cumulative distribution of utterance durations in MGB-3 and quartiles in
seconds. Most utterances are between 10 and 20 seconds, although there are
a few outliers with significantly longer duration.

1 https://github.com/qcri/dialectID/tree/ee6e7e7ca84098eda75cda61892a0ccbd3d8dobd/data (Vis-

ited on 2020-02-10).

32


https://github.com/qcri/dialectID/tree/ee6e7e7ca84098eda75cda61892a0ccbd3d8d0bd/data

Datasets

4.3 SBS (2018)

Label BCP-47 Language Speech (hours)
bulgarian_bg  bg Bulgarian 20.8
belarusian_by be Belarusian 20.8
czech_cz cs Czech 20.8
croatian_hr hr Croatian 20.8
macedonian_mk mk Macedonian 20.7
polish_pl pl Polish 20.8
serbian_rs sr Serbian 20.7
russian_ru ru Russian 20.8
slovene_si sl Slovenian 20.7
slovak_sk sk Slovak 20.8
ukrainian_ua  uk Ukrainian 22.8
All 228.3

Table 4.3. 11 Slavic languages of the SBS dataset.

Overview The Slavic Broadcast Speech (SBS) dataset by Mateju et al.
(2018) consists of broadcast news speech in 11 different Slavic languages
(see Table 4.3), with an evaluation set consisting of 5 second utterances.
All audio files have a sample rate of 16 kHz, although some files had corrupt
file headers, which were fixed by performing a redundant resampling
operation from 16 kHz to 16 kHz with SoX - Sound eXchange (2015). The
automatic data collection methods that were used to create the original
dataset are described in more detail by Nouza et al. (2016). SBS was
chosen for this thesis due to its easy availability.

Availability Public, downloaded on 2019-11-14 from the URL! specified
by Mateju et al. (2018).

Training-test split The training and test sets are pre-defined by the di-
rectory structure. No separate validation set is defined. We can see from
Figure 4.3 that most test utterances are close to 5 seconds, while the train-
ing utterances are slightly shorter with a median length of 4 seconds.

1 https://owncloud.cesnet.cz/index. php/s/gXHKFs9UDEqe34G (visited on 2019-11-14)

33


https://owncloud.cesnet.cz/index.php/s/gXHKFs9UDEqe34G

Datasets

Training set (220 hours) Test set (8 hours)
1 4 4
0.751 Q3: 6.0 Qs3: 5.7
0.501 Q2: 4.0 Q2:54
0.251 Q1: 2.6 Q1:5.2
0 10 20 30 40 50 52 54 56 58 6.0
Utterance duration (s) Utterance duration (s)

Figure 4.3. Cumulative distribution of all utterance durations in SBS. Most utterances
have a duration of approx. 5 seconds.

4.4 YTN-Aalto2019 (2019)

Label BCP-47 Language Speech (hours)

chinese zh Chinese 202.7
english en English 200.1
french  fr French 200.0
german  de German 203.1
russian ru Russian 201.3
spanish es Spanish 207.0

All 1214

Table 4.4. 6 languages of the YouTube News dataset and the amount of speech per lan-
guage in the YTN-Aalto2019 instance used in this thesis.

Overview The YouTube News (YTN) dataset was collected by Bartz et
al. (2017) and contains mostly broadcast news speech in 6 different lan-
guages. The dataset is collected automatically from news channel profiles
on YouTube (2019) using the youtube-dl: Download videos from YouTube
(2019) tool. After the waveform is extracted from a downloaded video, it
is resampled to 16 kHz with a single channel and partitioned into non-
overlapping 10 second utterances. Note that the acoustic data collected
by Bartz et al. (2017) was not made public and could therefore not be used
in this thesis. Instead, the original data collection program was applied
during this thesis to collect a YT'N dataset instance for the purposes of
this thesis. We call this instance YI'N-Aalto2019. Whenever acoustic
data of YI'N is mentioned, we are referring to the acoustic data from
YTN-Aalto2019. During the data download procedure, it was noted that
the default download parameters of 1200 videos per language resulted
in significantly less speech in French compared to other languages. This

34



Datasets

was compensated by setting the upper limit on the amount of downloaded
French language videos to 2400, which yielded approximately 200 hours of
French data. Furthermore, in order to balance the amount of data across
all languages, 10 second utterances are picked uniformly at random from
the downloaded, partitioned data until each language has approximately
200 hours of data. It is worth noting that compared to the careful segmen-
tation of the MGB-3 dataset, the naive segmentation of YTN is likely to
create samples with a significant amount of noise, or samples that do not
even contain speech.

Availability The original YTN dataset used by Bartz et al. (2017) is not
available. The instance used in this thesis, YT'N-Aalto2019, was down-
loaded on 2019-11-25 from news channels on YouTube! using the original
script? by Bartz et al. (2017). The metadata of YTN-Aalto2019 is available
online3, but access to the dataset is limited as of writing this thesis.

Training-test split YTN-Aalto2019 contains a training, validation, and
test set. These were created randomly from the 10 second utterances,
partitioned from the audio of all videos. First, the amount of test data and
validation data is chosen to be ten hours of speech per language. Then,
validation and test set videos are drawn uniformly at random from all
videos, one at a time. For each chosen test (validation) video, all its 10
second utterances are moved into the test (validation) set. When the
test set and validation set both contain ten hours of speech per language
each?, all remaining 10 second utterances will form the training set, which
contains approximately 1081 hours of speech.

Training set (1081 hours) Test set (67 hours)
14 ]
0.751 Q@s: 10.0 1 Q3: 10.0
0.50 1 Q2: 10.0 1 Q2: 10.0
0.251 Q1: 10.0 1 Q@1:10.0
O i

0 2 4 6 8 10 0 2 4 6 8 10
Utterance duration (s) Utterance duration (s)

Figure 4.4. Almost all utterances in YTN-Aalto2019 are exactly 10 seconds. The validation
set has 66 hours of speech but has otherwise same statistics as the test set.

! List of news channels used: https://github.com/HPI-DeepLearning/crnn-1lid/blob/
00bb15c391f692a8c65d073cb230254ca7acce/data/sources.yml (visited on 2020-02-07)

2 The script used for downloading the data: https://github.com/HPI-DeepLearning/crnn-1id/
blob/00bb15c391f692a8fc65d073ch230254ca7a7cce/data/download_youtube.py (visited on 2020-02-
07)

3 http://urn.fi/urn:nbn:fi:lb-2020041701 (visited on 2020-04-23)

* Approximately 66 hours of speech in total per set.

35


https://github.com/HPI-DeepLearning/crnn-lid/blob/00bb15c391f692a8fc65d073cb230254ca7a7cce/data/sources.yml
https://github.com/HPI-DeepLearning/crnn-lid/blob/00bb15c391f692a8fc65d073cb230254ca7a7cce/data/sources.yml
https://github.com/HPI-DeepLearning/crnn-lid/blob/00bb15c391f692a8fc65d073cb230254ca7a7cce/data/download_youtube.py
https://github.com/HPI-DeepLearning/crnn-lid/blob/00bb15c391f692a8fc65d073cb230254ca7a7cce/data/download_youtube.py
http://urn.fi/urn:nbn:fi:lb-2020041701

Datasets

4.5 AP19-OLR (2019)

Label BCP-47 Language Speech (hours)
ct-CN yue-CN Cantonese 25.7
id-ID id-ID Indonesian 23.9
ja-JP ja-JP Japanese 18.5
ka-CN kk-CN Kazakh 22.2
ko-KR ko-KR Korean 20.9
ru-RU ru-RU Russian 23.2
ti-CN bo-CN Tibetan 20.4
uy-CN ug-CN Uyghur 27.6
vi-VN vi-VN Vietnamese 24.7
zh-CN zh-CN Chinese 25.6
unknown N/A Mixed OOS languages 33.6
All 269.4

Table 4.5. 10 languages of AP19-OLR. In addition, the training set contains a group of
various out-of-set (OOS) languages.

Overview The Asia-Pacific Oriental Language Recognition challenge 2019
(AP19-OLR) consists of three SLI tasks for 5 languages spoken in China
and 5 additional languages that are spoken across eastern Asia (Tang et
al. 2019). The training data used in AP19-OLR consists of all data from
the three previous OLR challenges: AP16 (Wang et al. 2016; KingLine
Data Center 2016), AP17 (Tang et al. 2017), and AP18 (Tang et al. 2018a).
In addition, participants of AP19-OLR were allowed to utilize the free
Chinese speech corpus (Wang et al. 2015) in their experiments. However,
this dataset was not used in this thesis since including a large amount of
Chinese language speech would have created a significant class imbalance,
since the AP19-OLR dataset is already quite balanced (see Table 4.5). The
AP19-OLR challenge included three different SLI tasks: short utterance,
cross channel, and zero-resource. This thesis focuses only on the short
utterance task, where the duration of all test set utterances is exactly one
second.

Availability Restricted, access granted by the AP19-OLR challenge orga-

nizers!.

Training-test split Pre-defined splits with one training set, three valida-
tion sets and three test sets. The three evaluation sets are for the three
different tasks of AP19-OLR. This thesis will only use task one, which is
the short utterance task, and whenever we refer to the test set of AP19-
OLR, it is the short utterance task evaluation set.

L http://cslt.riit.tsinghua.edu.cn/mediawiki/index.php/OLR_Challenge_2019 (visited on 2020-

36


http://cslt.riit.tsinghua.edu.cn/mediawiki/index.php/OLR_Challenge_2019

Datasets

Training set (261 hours) Test set (5 hours)
14 ]
0.75 - Q3:5.6 1 Q3: 1.0
0.50 1 Q2: 3.6 - Q2: 1.0
0.251 Q1:2.9 1 Q1: 1.0
O 1 T T T T L T T T T T
0 20 40 60 06 08 1.0 1.2 14
Utterance duration (s) Utterance duration (s)

Figure 4.5. Cumulative distribution of all utterance durations in AP19-OLR. All test
set utterances are one second. Note that the training set contains also the
test sets of OLR challenges from previous years, which explains the notable
amount of 1 second training utterances.

4.6 Other notable datasets

In addition to the datasets utilized during this thesis, several other impor-
tant datasets exist and should be mentioned either due to their popularity
or relevance to this thesis.

NIST LRE National Institute of Standards and Technology (NIST) lan-
guage recognition evaluation! (LRE) is a series of popular SLI challenges
that have been organized since 1996. The most recent event took place in
2017 (Sadjadi et al. 2018), and the datasets from past events have been
used extensively in SLI experiments (Singer et al. 2003; Campbell et al.
2004; Tong et al. 2006; Navratil 2006; Glembek et al. 2008; Ng et al. 2010;
Martinez et al. 2011; Lopez-Moreno et al. 2014; Richardson et al. 2015;
Frederiksen et al. 2018; Snyder et al. 2018a; Padi et al. 2019). It is worth
noting that in 2015 there was a large mismatch between the validation
and test sets, as noted by Zazo et al. (2016a), Gelly et al. (2016), and He
et al. (2016b). As of writing this thesis, all NIST LRE datasets require
licenses to be purchased from the Linguistic Data Consortium at the Uni-
versity of Pennsylvania (LDC)?, before the speech data can be accessed.
Despite this limitation, the NIST LRE series have been a central part of
the SLI community for several years, and many important contributions
can be seen as directly or indirectly related to NIST LRE (Li et al. 2013).
One such, direct contribution is the Caye evaluation metric, which is dis-
cussed in Section 3.3.

03-20)
1 https://www.nist.gov/itl/iad/mig/language- recognition (visited on 2020-02-10)
2 https://www.ldc.upenn.edu/ (visited on 2020-02-10)

37


https://www.nist.gov/itl/iad/mig/language-recognition
https://www.ldc.upenn.edu/

Datasets

Common Voice Mozilla Common Voice (2020) is an open-source, free
collection of crowd-sourced datasets containing read speech in various
languages with highly varying channel conditions. All files are distributed
in MP3 format, accompanied with metadata for each dataset. Each dataset
has been validated by volunteers, who judge the correctness of utterances
by comparing the audio content to the textual prompt that was originally
given to the speaker and then apply a binary good/bad label for each
utterance. The sums of all binary labels for each utterance are included
in the metadata of all datasets. However, the amount of validated data!
varies greatly between languages. For example, English has 1118 hours
of validated data while Japanese has only 3 hours. Furthermore, most
datasets have considerable gender imbalances, which might contribute to
speaker variability, as discussed in Section 3.2.

ADI17 The MGB-3 challenge was later followed by MGB-5, which included
a dialect identification task with a significantly larger dataset than was
used in MGB-3. This dataset, Arabic Dialect Identification for 17 countries
(ADI17), contains 3000 hours of training data and 57 hours of validation
and test data (Ali et al. 2019). The test set is divided into 3 subtasks,
each with varying utterance lengths. ADI17 was collected from YouTube
(2019) using publicly available scripts?, which allows anyone to download
the dataset. However, considering the dynamic nature of the internet,
it is unlikely that a downloaded dataset will contain exactly the same
utterances as in the dataset used by the MGB-5 participants, which is
precisely the same problem as with YTN. While MGB-5 was not used
during this thesis, a natural extension to the experiments of this thesis
would be to compare how each model performs on MGB-3 and MGB-5.

1
2

https://voice.mozilla.org/en/datasets (visited on 2020-02-10)
https://github.com/swshon/arabic-dialect-identification (visited on 2019-01-28)

38


https://voice.mozilla.org/en/datasets
https://github.com/swshon/arabic-dialect-identification

5. Existing work

In Section 2.2 we briefly discussed the taxonomy of phonotactic, acoustic-
phonetic, and language embedding approaches to SLI. This chapter studies
some existing work, with examples of SLI models that fall into at least
one these three categories. Some of the discussed SLI models were im-
plemented during this thesis and will be discussed in Chapter 6. The
implemented approaches will be applied to datasets discussed in Chapter 4
and these experiments are discussed in Chapter 7.

5.1 Phonotactic approaches

——» [MODEL ron FARSt J = INTERPOLATED N-GRAM

ENGLISH LANGUAGE MODELS
PHONE ~[E118A--|  _ [MODEL FOR FRENCH]
RECOGNIZER LISH
Priongs L [MoDEL FoR TAMIL | \
——» [MODEL FOR FARSI

JAPANESE COMBINE &
PREPROCESSING PHONE fellfal-|  _ [mopEL FOR FRENCH| 3 | PICKMAX | . HYPOTHESIZED
RECOGNIZER | ~JAPANESE / LANGUAGE
PHONES L, [MODEL FOR TAMIL

——» |MODEL FOR FARS! 7 l”
AVERAGE
SR ANSH -flaiel-l _ [MoDEL FOR FRENCH CORRESPONDING

PHONE
RECOGNIZER SPANISH LOG LIKELIHOODS
o L

Figure 5.1. An example of a PPRLM approach (Zissman 1996, Fig. 3, cropped). Note how
none of the PR languages match those of the LMs.

Muthusamy and Cole (1992) trained several NN models for automati-
cally segmenting utterances into 3 ms time frames, such that each frame
has been assigned one of 7 language independent, phonetic categories. All
models were trained using speech data from the 10-language OGI dataset
(not OGI-11L), discussed in Section 4.1. They experimented with several
NN approaches, such as identifying all 10 languages using the same NN
and identifying one target language at a time from all languages. Their
10-language NN achieves an identification accuracy of 47.7%, while the
highest accuracy for identifying one language is for Tamil at 86.0% and the
lowest for English and French, both at 69.5%. In this thesis, several exper-

39



Existing work

iments were performed to identify all languages of the OGI-11L dataset
with a single network, using only spectral features as input. These results
suggest that it is possible to significantly outperform the 10-language NN.

Zissman (1996) compared the SLI performance of 4 different algorithms:
GMM, PRLM, PPRLM, and parallel phone recognition, which were all
applied to the OGI-11L dataset. PPRLM (see Figure 5.1) with additional
enhancements is reported to achieve an error rate of 21% on the OGI-11L
test set consisting of 10 second utterances. It is worth noting that error
rates for the PR models were measured as a normalized edit distance, while
SLI performance was measured using “March 1994 NIST guidelines”, but
a written definition of these guidelines could not be found at the time this
thesis was written. Therefore, an absolute comparison of these results
and the error rates reported in this thesis cannot be made, although the
confusion matrix depicting classification results on the 10-second test set
may give a reasonable approximation. The training-test split adopted
in this thesis for OGI-11L follows the approach described by Zissman
(1996), where the test set consists of only 10-second utterances. This is
defined in more detail in Section 4.1. As an interesting side note, Zissman
(1996) suggested that even though individual PR models may exhibit high
phoneme recognition error rates, it does not necessarily imply high SLI
error rates since a combination of several PR models can still provide
good SLI performance. This suggestion will be later investigated using a
multilingual PRLM model with varying degrees of mismatching languages
between the training data of the PRLM model and the SLI datasets. We
return to this topic in Section 6.1.

Torres-Carrasquillo et al. (2002) introduced a GMM-based SLI model,
using MFCCs with shifted-delta-cepstral (SDC) features for capturing
temporal information of adjacent cepstral coefficients, and compared it
to a PPRLM-based approach. They reported that replacing conventional
cepstral features with SDCs, as well as increasing the GMM order, both
improve SLI performance noticeably. By training a GMM of order 1024
with SDC features, they managed to match the performance of a PPRLM-
based approach, using the evaluation set of the CALLFRIEND speech cor-
pus (Canavan and Zipperlen 1996), containing 12 languages. The models
were also evaluated on the OGI-11L test set with 10-second utterances,
and the reported EER,y; values are approximately 29% for GMM and 21%
for PPRLM (Torres-Carrasquillo et al. 2002, deduced from Figure 7). The
NN models experimented with during this thesis have been evaluated on
the same OGI-11L test set, which makes these results directly compara-
ble with each other. It is also worth noting that the feature set resulting
from concatenating MFCCs and SDCs (MFCC-SDC) have since been used
extensively in several SLI experiments (Li et al. 2013; Lozano-Diez et al.
2015; Khurana et al. 2017; Zhang et al. 2019).

Tang et al. (2018b) proposed to utilize the frame-level bottleneck features

40



Existing work

Phonetic DNN
N O O e (0 A
t-2, ! 0
§_ —> L, L, t, — £ Zﬂ
c - t+2, " - _g_
t‘+A5
NN NN N \Iz
s N
o )
| LSTM memory block | N Z;
—_— —_ - - &
o
LID RNN
N\ /

Figure 5.2. PTN approach (Tang et al. 2018b, Fig. 3b). Note how the input of the SLI
classifier is an intermediate representation of the phones from a hidden layer
of the PR model, rather than the phone labels.

from a phone-discriminative model as input to an recurrent NN (RNN)
based SLI model (see Figure 5.2). They call this approach the phonetic
temporal neural (PTN) model. This is in contrast with traditional PRLM
models that use the token-level output (e.g. phone sequence from the PR)
as input to the SLI model. They argued that while i-vector (discussed in
Section 5.2) based SLI models have proven to be accurate, i-vectors require
long input utterances to accumulate enough distributional properties to
make a classification decision, making them infeasible for practical appli-
cations. PTN was applied in the experiments of this thesis and is discussed
in Section 6.1.

Ren et al. (2019) applied a two-stage training approach for solving a di-
alect identification task of 10 Chinese regional dialects using a phonotactic
approach. Their model consists of a convolutional NN (CNN) for feature
extraction, based on ResNet-18 (He et al. 2016a), and two bidirectional
long short-term memory (BLSTM) layers for sequence classification. They
used a two-staged training procedure, where the model is first trained two
solve a phoneme sequence annotation task using connectionist temporal
classification (CTC) (Graves et al. 2006), based on the transcribed training
data. In the second stage, weights of the CNN are frozen, and the BLSTM
is retrained to solve the dialect identification task using cross-entropy loss,
based on the language classes. They reported an accuracy of 87.7% on test
utterances less than 3 seconds, and 90.0% on test utterances longer than 3
seconds. Although this approach was not used in this thesis due to time
constraints, the end-to-end architecture proposed by Ren et al. (2019) con-
tains several similarities to the NN approaches used in this thesis, making

41



Existing work

it a natural continuation if the experiments made in this these is to be
expanded.

Augmented character set:
Language ID Latin Hiragana Cyrillic

(—*—\

[ e e H o s o e H S
T T ilmaln

X' ={x}, ..., x}} X2 ={x% ..., 2%}
(English utterance) Japanese utterance

Figure 5.3. Speech-to-text system with a multilingual character set, capable of recognizing
speech in 10 different languages (Watanabe et al. 2017, Fig. 1).

Watanabe et al. (2017) trained a multilingual speech-to-text system for
ten languages using an hybrid attention-CTC based approach. The set of
characters was chosen as the union of all character sets from each of the
ten languages (see Figure 5.3), allowing the model to jointly not only map
speech to text but also recognize the language. They noted that the system
is capable of reaching a SLI error rate of close to 0%, recognizing the
correct language from almost all input utterances. While this system was
not applied in this thesis in any way, the impressive performance of both
this system and the model by Ren et al. (2019) suggest that a CTC based
approach using transcribed speech data can provide superior performance
compared to other SLI models. This could prove a valuable fact to consider
when designing a practical SLI system.

5.2 Language embeddings

An embedding (or imbedding) can be viewed as an injective function f :
A — B, where some property of interest is retained in f(z) € B for all
z € A (Bishop and Goldberg 1968, pp. 40—41). From the point of view of
SLI, we would like to discover a model f such that it maps utterances =
into some low-dimensional space B, while retaining all language cues of x.
We will discuss two approaches commonly applied in SLI and begin with
the i-vector model.

i-vectors Although originally proposed for speaker verification, the i-
vector (short for “identity-vector”) utterance representation by Dehak et al.

42



Existing work

(2011a) has been extensively applied also to SLI. An i-vector representation
is defined by the language-dependent supervector M = m + Tw, where
m is a language-independent supervector (background model), T' is a low-
dimensional total variability matrix that contains speaker and channel
variabilities, and w is a latent variable assumed to be normally distributed
with zero mean and unit variance (Dehak et al. 2011b). The maximum a
posteriori mean estimate of w is called an i-vector. Dehak et al. (2011a)
also proposed a cosine kernel for comparing the similarity of two i-vectors
by angle rather than magnitude, in order to improve system robustness
against variability and to simplify the scoring process. Martinez et al.
(2011) trained a GMM with 2048 components for i-vector extraction, using
MFCC-SDC features as input, extracted from a dataset containing 54
languages. They reported that the i-vector based model outperforms a state-
of-the-art model with a 7% lower Cays. They also argued that an i-vector
based approach is beneficial from a computational cost perspective, as the
i-vector extractor can be trained independently from the SLI task, which
in turn can then be solved in the i-vector space produced by the i-vector
extractor. Tong et al. (2016) argued that using a low-dimensional vector
representation for utterances, instead of the original signals, eliminates
the need for separate speech pre-processing steps, therefore simplifying
the SLI task and allowing wider collaboration in SLI competitions.

Representation learning Another way to discover low-dimensional embed-
ding spaces in an unsupervised or semi-supervised manner is through rep-
resentation learning (Weston et al. 2008; Goodfellow et al. 2016d). In this
approach, a DNN model is trained to solve e.g. a classification task, which
results in the useful side-effect of learning different feature representa-
tions in each layer of the model (see Section 3.1 for layer definition). Then,
after training, we could choose f to be the concatenation of all hidden lay-
ers up to an arbitrary, intermediate layer. In other words, the output space
of this intermediate layer will be the embedding space B. This has been
successfully utilized in many problem domains, such as speaker identifi-
cation and SLI. The fundamental assumption behind these DNN based
approaches is that the classification performance of a DNN classifier is
assumed to imply how well the properties of each class has been embedded
into the hidden space of the DNN (Wang et al. 2017).

Gelly and Gauvain (2017) trained a BLSTM based language-vector ex-
tractor, which embeds perceptual linear predictive coefficients onto a hy-
persphere, guided by a cosine similarity based angular proximity loss func-
tion. This model was compared to a phonotactic and an i-vector model,
and all models were trained on the NIST LRE 2007 and 2015 datasets.
They reported that the language-vector model outperforms the baseline
i-vector model on both evaluation sets, and outperforms even the phono-
tactic model on the LRE 2015 evaluation set. Furthermore, a fusion of the
phonotactic model and the language-vector model leads to a significant re-

43



Existing work

duction in the error rates on both evaluation sets. They also point out that
the language-vector model requires significantly less trainable parameters
compared to the baseline models.

Snyder et al. (2018a) proposed a TDNN based approach, where the NN
is trained to solve a SLI task and then language embeddings are extracted
from the outputs of a fully-connected layer inside the network. They call
these embeddings x-vectors, which are designed to be used in a similar
way as i-vectors, for example using linear discriminant analysis or GMM
backends for classification. They reported significant SLI performance im-
provements over the baseline i-vector system when evaluated on the NIST
LRE 2017 (Sadjadi et al. 2018) evaluation set. The baseline SLI model
for the AP19-OLR competition by Tang et al. (2019) is based on x-vectors
and is applied in this thesis. In addition, an x-vector implementation was
created during this thesis (see Section 6.3) and was used in thesis experi-
ments discussed in Chapter 7. However, note that we do not make use of
the embedding capabilities of the x-vector model, but rather apply it as a
discriminant model, leaving the embedded vectors untouched. Neverthe-
less, training the x-vector architecture on a vast amount of data, containing
several different languages might provide a valuable, low-dimensional
language-vector representation. This might enable more accurate SLI
using some sophisticated statistical methods from outside the scope of this
thesis.

5.3 Acoustic-phonetic approaches

In this section, we study existing acoustic-phonetic SLI models, which are
trained using spectral or cepstral speech representations labeled by lan-
guage. These models rely on the assumption that each language has
a unique acoustic structure, which can be learned using a NN classi-
fier (Muthusamy and Cole 1992). Note that most authors performed sev-
eral experiments with both acoustic-phonetic and phonotactic approaches,
which makes it difficult to make a clear distinction between work done
using one of the approaches but not both. Some of the work discussed here
has significant overlap also with the previous sections of this chapter.
Lopez-Moreno et al. (2014) compared a baseline i-vector model to an 8-
layer DNN model, both trained on Google 5M SLI and NIST LRE 2009
datasets. The Google 5M SLI dataset was collected from voice search
queries and consists of 5 million utterances with average duration of
2.1 seconds, 87.5 hours per language, and 2975 hours in total. They
conclude that the DNN model outperforms the baseline model with an
70% relative improvement measured by Caye when trained on the Google
5M SLI dataset, and 43% relative improvement measured by EER,,
when trained on 8 languages chosen from the NIST LRE 2009 dataset.

44



Existing work

Furthermore, they trained and evaluated their models on the NIST LRE
2009 dataset with increasing amounts of training data, and noted that the
i-vector model outperforms the 8-layer DNN until there is approximately
20 hours of training data available per language, after which the DNN
model begins to perform better as the amount of data is increased.

Lozano-Diez et al. (2015) compared several CNN architectures to a base-
line i-vector model trained on the NIST LRE 2009 dataset and noted that
the i-vector model outperforms all CNN architectures. However, they point
out that all CNN models require at least 100 times less trainable pa-
rameters compared to the i-vector model. Also, performing a fusion of
the i-vector model with the CNN models performs better compared to
evaluating each model standalone, which suggests that the CNN models
are capable of learning language information not captured by the i-vector
model.

Zazo et al. (2016b) compared several LSTM architectures to a baseline
i-vector model trained on the NIST LRE 2009 dataset using a similar
subset of 8 languages as used by Lopez-Moreno et al. (2014). They reported
that 4 out of 5 LSTM architectures outperform the baseline i-vector model
when measured on EER,y,. Furthermore, they noted that all their LSTM
architectures have 5 to 21 times less trainable parameters compared to
the i-vector baseline.

Bartz et al. (2017) collected 1500 hours of speech data from online broad-
cast news videos in 6 different languages and partitioned each video into
non-overlapping 10 second utterances. 10% of the dataset is chosen ran-
domly for a held-out test set. They then extracted decibel-scale spectrogram
images for each utterance and trained a SLI model by classifying the spec-
trogram images using CNNs and BLSTMs. They reported that the CNN
model achieves an F; score of 91% on the test set and adding a BLSTM
layer (CNN + BLSTM = CRNN) did not yield significant improvements.
However, when replacing the simple CNN model with a larger, Inception-
v3 based architecture by Szegedy et al. (2016), they achieve an F; score of
95%, and adding a BLSTM layer improves the score to 96%. The CRNN
model was used during the thesis experiments, and is discussed in more
detail in Section 6.4.

Shon et al. (2018) trained a CNN based model on log-scale Mel-spectra
extracted from the MGB-3 dataset and achieved an Cgyg of 17.6%. They
noted that using log-scale Mel-spectra yields slightly better performance
than using MFCCs. Also, performing data augmentation by decreasing and
increasing the speed of audio signals, as well as decreasing and increasing
the signal amplitudes, is reported to improve the results. When combining
the CNN output with phonotactic information provided by a Hungarian-
language PR, the resulting fusion system achieved an C,yg of 12.5%. The
CNN model was used during the thesis experiments as a discriminant
model, without the PR component, and is discussed in more detail in

45



Existing work

Section 6.3.

Mateju et al. (2018) collected 230 hours of broadcast news speech in 11
different Slavic languages from the internet. In addition to the baseline
i-vector model, they trained three different NN models on the collected
dataset. Model input consisted of MFCCs, filter bank coefficients, as well as
bottleneck features produced by a DNN based phoneme classifier, trained
to recognize Czech language triphones. They reported that MFCCs are
slightly more accurate compared to filter banks, while bottleneck features
clearly outperform MFCCs in all SLI models, of which a bidirectional
gated recurrent unit (BGRU) based model was best. The BGRU model
was used during the thesis experiments, and is discussed in more detail in
Section 6.2.

Ma et al. (2019) compared i-vector and LSTM based SLI models, utilizing
bottleneck features from a DNN based phoneme classifier, trained to recog-
nize Mandarin Chinese language triphones. They evaluated the models
on the short-utterance task of the AP17-OLR dataset (Tang et al. 2017),
and reported that the LSTM based model trained on bottleneck features
outperforms the baseline i-vector model. Furthermore, the LSTM based
model performs even better when short test utterances are augmented
by time-scale modifications (80% and 120%) using a phase vocoder, which
does not degrade pitch or prosody information.

Miao et al. (2019) extended the x-vector TDNN proposed by Snyder et al.
(2018a) by adding a two-dimensional CNN to extract features from frame
level acoustic features, followed by an LSTM-layer for capturing temporal
correlations, as well as a time-frequency attention mechanism before the
pooling layer. They trained their system on the NIST LRE 2007 dataset
and reported significant C,yg reductions compared to all baselines.

Padi et al. (2019) argued that the language discerning information of an
utterance might sometimes be contained in a relatively short section of
the audio signal, which makes the usage of i-vectors infeasible, since this
short-term information might be lost if the whole utterance is represented
as a single i-vector. As a solution, they suggest to use an attention based
model which emphasizes the important sections of an audio signal. They
reported that their model is robust against noise and outperforms the
baseline models at all tested signal-to-noise ratio (SNR) levels.

5.4 Large-scale SLI

Since most NN approaches benefit from using more data (see Section 3.1),
it is usually desirable to try training with as much data as possible. For
example, Lopez-Moreno et al. (2014) noted that SLI based on large DNN
models becomes more accurate as the amount of data grows. However,
many simple approaches designed for small datasets become infeasible as

46



Existing work

the amount of data grows. While this big data aspect is not the main topic
of this thesis, a few interesting studies related to large-scale SLI should be
mentioned since training with a large amount of speech data often requires
alternative approaches.

Sak et al. (2014) compared large-scale deep LSTM architectures to DNN
models on an LVCSR task consisting of 1900 hours of speech and noted
how their 2-layer LSTM model achieves a word error rate (WER) of 10.9%
within 48 hours of training, while the best DNN model achieves a WER of
11.3% in a few weeks of training.

Mazzawi et al. (2019) studied ways to automate the search process of SLI
architectures and reported that an automatically discovered SLI model
can outperform a human designed SLI model with an accuracy increase
of 4% on a dataset containing 79 different languages. They suggest that
human designed, LSTM-based SLI models are usually biased towards
deep architectures with a large amount of parameters, while their NN
architecture search algorithm prefers shallow LSTM models with fewer,
but highly tuned hyperparameters. However, it is worth pointing out
that the architecture search process is computationally expensive, and is
reported to take one week using 15 parallel workers.

Wan et al. (2019) studied how to increase SLI accuracy of a large model
with a target set containing 79 languages by reducing the amount of lan-
guages the model needs needs to consider during inference. As a moti-
vation for their study, they noted that in a typical SLI system for North
American users, approximately 95% users speak no more than 2 languages.
They propose a generalization of the softmax loss function, called tuplemax
loss, which considers only a subset of labels during inference, as opposed
to softmax which always produces scores for all labels. They reported that
tuplemax loss leads a lower mean error rate at 2.33%, while softmax loss
leads to an error rate of 3.85%.

47



Existing work

48



6. Models and building blocks

This chapter provides an overview of different models that are either used
directly as SLI models, or combined to form SLI models. These SLI models
are used during the experiments described in Chapter 7. Some of the SLI
models have a one-to-one mapping to the datasets discussed in Chapter 4,
since these models were each originally designed for specific datasets. In
addition to training these models on the datasets they were designed for,
they are also trained on all other datasets in order to gain comparable
results. On the other hand, some of the models discussed in this chapter
were not introduced in Chapter 5 since these models were not originally
proposed and applied for SLI, but for other speech analysis tasks. All
results are discussed in more detail in Chapter 7.

Overview We begin with an overview of all SLI models and model com-
ponents which are used to build new SLI models in this thesis. Table 6.1
lists all models that are discussed in this chapter. Some of these models
were implemented during this thesis using TensorFlow (Abadi et al. 2015),
while following the architecture details as specified by the original authors
as closely as possible. The implemented models are BGRU, CNN, CRNN,
x-vector, LSTM for PTN, and multi-level time attention (MLA). Note that
by “reimplementing” it is meant here that these models were constructed
by merely combining existing TensorFlow layer implementations.

49



Models and building blocks

Model Proposed by Reference dataset
BGRU Mateju et al. (2018) SBS

CNN Shon et al. (2018) MGB-3

CRNN  Bartz et al. (2017) YTN

x-vector Snyder et al. (2018a) AP19-OLR

NB-TLI Jauhiainen et al. (2019b)

CTC-PR Karhila et al. (2019)

LSTM Hochreiter and Schmidhuber (1997)
MLA Yu et al. (2018)

PTN Tang et al. (2018b)

SS Milde and Biemann (2019)

Table 6.1. Original SLI models and building blocks. Note that Snyder et al. (2018a)
proposed the SLI x-vector model but did not report any results on the AP19-
OLR dataset. This was done later by Tang et al. (2019).

Some of these models have no reference dataset from Chapter 4 or might
not even be SLI models. Instead, they are used as building blocks to
construct SLI models, which are listed in Table 6.2.

Model Components
PRLM CTC-PR, NB-TLI
SSLM SS, NB-TLI

PTN CTC-PR, LSTM
SS-PTN SS, LSTM
x-vector (SS) SS, x-vector
x-vector (CTC-PR) CTC-PR, x-vector
MLA x-vector MLA, x-vector

Table 6.2. SLI models constructed by combining models listed in Table 6.1.

Neural network architecture format Each NN architecture is listed in a
table of layers (e.g. 6.3), where the shapes of input and output tensors
are specified for each layer (see Section 3.1 for the definition of layers).
Regarding the notation of layer input and output shapes, the shorthand
a/b:= | %] is used for division of integers a and b, assuming a > b > 0. The
input to the first layer of each NN model is assumed to be an utterance
representation X € R7*F with input shape T x F, and the output is
assumed to be a vector of language scores y € RY, with output shape N,
as discussed in Section 3.1.

If activation functions and batch normalization are shown after a layer,
they also denote the order of computation. E.g. “FC 512 + ReLU + BN”
denotes a 512-unit fully-connected (FC) layer with rectified linear unit
(ReLU) activation, followed by batch normalization (BN). Configuration
of convolutional layers is specified as “kernel xwidth x stride”. In case of
a 2-dimensional square kernel (“Conv2D”), the kernel size implies both

50



Models and building blocks

width and height.

6.1 SLI from tokenized speech

The models discussed in this section either tokenize speech by producing
token sequences from speech representations or use token sequences as
input for classifying languages. Within the scope of this thesis, token
sequences consist of either acoustic unit sequences, discovered in an unsu-
pervised manner, or International Phonetic Alphabet (IPA) based phoneme
sequences. Some of these models operate directly on tokenized speech,
which makes them TLI models, or indirectly by using the internal repre-
sentation of a speech tokenizer, such as the outputs of a hidden layer in a
PR model.

Multilingual phoneme recognition (CTC-PR) Karhila et al. (2019) proposed
a two-component system for scoring pronunciations of language learners.
The system consists of a multilingual, CTC-based phoneme recognizer
(CTC-PR) and a regression model for pronunciation scoring. This thesis
uses only the CTC-PR component (see Figure 6.1) for tokenizing speech
into IPA based token sequences. Note that some IPA phone combinations
that frequently occur together, such as diphthongs, are represented by a
single token in the CTC-PR output. Input to CTC-PR consists of log-scale
Mel-spectra with 60 Mel-frequency bins, Xy € R7*%0, extracted with a
512-point STFT from 25 ms wide windows with an offset of 10 ms. The
CTC-PR instance used in this thesis is an expanded version, trained on
three additional, Common Voice datasets: German, Spanish, and Italian.
In total, all languages that were used for training CTC-PR are Finnish,
Swedish, English in GB and US, German, Spanish, and Italian. It is worth
noting that Common Voice datasets do not distinguish between dialects
and language variants. Also, the CTC-PR instance used in this thesis was
trained by its original authors, not the thesis author. In this thesis, CTC-
PR is only used for extracting phoneme embeddings and to tokenize speech.

51



Models and building blocks

[ 2-dim CNN feature extractor ]
e RT’X(F—6)-96
A\ 4

[ 300-unit FC + sigmoid ]
c RT/ X300
A\ 4

[ GRU+CTC phoneme decoder ]

!

>>xnbe:monevone:megle:re:muinotmarer zana ...

Figure 6.1. Simplified architecture overview of the CTC-PR model. In addition to mapping
input speech representations to IPA phoneme sequences, we extract phoneme
embeddings as bottleneck features from the FC sigmoid layer between the
convolutional feature extractor and GRU layers.

Cuneiform TLI with naive Bayes (NB-TLI) Jauhiainen et al. (2019b) pro-
posed to apply naive Bayes and n-gram based TLI methods (NB-TLI) on
cuneiform texts in Sumerian and several dialects of Akkadian. The pro-
posed model uses character n-grams of different lengths as input, trains
language models for each language class, and predicts language scores
for unseen input by comparing the n-gram features of the input to each
trained language model. Whenever TLI is performed in the experiments,
the NB-TLI model is used. All input token sequences for the NB-TLI model
are space-separated strings of single characters.

PRLM The phone recognition followed by language modeling (PRLM)
implementation used in this thesis is similar to the traditional PRLM
approach of using a single language PR (Zissman 1996), except that the
PR model is replaced by the multilingual CTC-PR model. For the LM
model, NB-TLI is used. One important aspect to note is that the CTC-PR
model is pre-trained with a fixed dataset and is only used as a feature
extractor for producing text input for NB-TLI. This is in contrast with
the conventional approach of training PR models using transcribed data
in a language which is related to as many languages in the target set
as possible. For example, Shon et al. (2018) trained an Arabic language
PR model for MGB-3, Mateju et al. (2018) trained an Czech language PR
model for SBS, and Miao et al. (2019) trained an English language PR for
NIST LRE 2007.

52



Models and building blocks

SparseSpeech (SS) Milde and Biemann (2019) proposed a sequence-to-
sequence autoencoder called SparseSpeech (SS) for unsupervised acoustic
unit discovery (see Figure 6.2). The encoder and decoder both consist of 4
stacked 512-unit BLSTM layers, i.e. 8-layers in total. Sequence dropout is
applied on the encoder output, dropping frames randomly with probability
0.67, to ensure the decoder learns to replace missing frames based on
the time context. In addition, a memory subnetwork is placed after the
encoder as a sparsity and diversity enforcing bottleneck, before the output
is passed to the decoder. The memory subnetwork consists of a weight
matrix W € R32%32 bias vector b € R??, and memory values V € R32x32,
Its functionality is similar to a dot-product based attention model (Vaswani
et al. 2017), such that the encoder output X € R7*32 is used to form a
query Q = softmax(XW + b) € R7*32, This is then multiplied with the
memory values to produce QV, which is given as input to the decoder.
When SS is trained while applying sparsity and diversity enforcing loss
functions on Q, the representation learned for Q is a one-hot encoded
sequence. This in turn can easily be mapped to a sequence of integers
a=[a1,az,...,ar] € {1,2,...,32}7 by choosing the index i € {1,2,...,32}
of the greatest value of Q(t) € R3? at every time step t € {1,2,...,T}. The
elements of a are called acoustic units.

Note that the amount of unique acoustic units is 32 because this hyper-
parameter value was chosen for the thesis experiments based on the results
reported by Milde and Biemann (2019). Choosing a larger acoustic unit
space is possible by increasing this hyper-parameter value, but this would
create a larger model and require more computational resources.

All experiments that apply SS in this thesis use log-scaled Mel-spectra
with 40 Mel-frequency bins as input, Xy € R7*%°. Being an autoencoder,
the output of SS is a reconstruction of its input and is naturally of little
value in itself. However, Milde and Biemann (2019) noticed that the
acoustic units might in some cases provide better ABX discriminability
than MFCCs. Whether or not the unsupervised discovery of these acoustic
units can produce a representation that correlates with actual phones
is unclear. Therefore, this thesis explores the feasibility of using these
acoustic units in SLI as a replacement of phoneme sequences produced by
a PR model.

53



Models and building blocks

. le RT F
[ Encoder: 4-layer BLSTM ]
le RTXZOALS
| 32-unit FC ]
|€ RT><32

16 RT x(1024+32)

\4
17, 4, 12, 30, 30, 30, 30, 29, 29, ...

[ Decoder: 4-layer BLSTM
!

| 40-unit FC ]
le RT X F

Figure 6.2. Simplified architecture overview of the SparseSpeech sequence-to-sequence

autoencoder, given a Mel-spectrum input Xy € R7*F. This instance was
warmed up for 30 epochs and trained for 6 epochs on the YTN training set
(see Section 4.4). Temporal dropout is applied on the decoder input with
probability 0.67 but it is omitted here for simplicity.

SSLM This model is similar to PRLM described earlier, but CTC-PR is
replaced by SS. In other words, instead of using phone sequences as input
to NB-TLI, the input consists of space-separated strings of acoustic units,
represented by integers (see the integer sequence to the bottom-right
in Figure 6.2). In addition, VAD is performed by first computing which
acoustic unit most frequently is classified as non-speech and then dropping
all those acoustic units. The acoustic unit sequence produced by SS is of
length 7" and each acoustic unit maps one-to-one to each frame of the input
Xpel € RT*F, Therefore, if we compute VAD decisions d € {0,1}7 as
seen in Figure 3.4a, those VAD decisions also map one-to-one to each
acoustic unit. For example, if we label all VAD decisions d for every
utterance by the corresponding acoustic unit produced by SS, then we can

54



Models and building blocks

compute the frequency of non-speech decisions d; = 0 over all utterances
for every acoustic unit. The acoustic units with largest amount of non-
speech decisions is assumed to be a non-speech acoustic unit and all such
units can be dropped from the acoustic unit decoding.

W R NUA]

i

(a) (b) (©

Figure 6.3. Bottleneck features (BNF) Xpnr € R}***%°0 extracted from CTC-PR. The
BNFs are extracted from the last FC layer between the CNN front-end and
GRU layers, with non-negative values due to the sigmoid activation function.
Input consists of Xy € RT*60 (T > 123), shown above each BNF. All three
signals are the same as in the example discussed in Section 3.2, i.e. (a) Fig-
ure 3.1a, (b) Figure 3.2a, (c) Figure 3.3a.

PTN with CTC-PR embeddings As discussed in Section 5.1, Tang et al.
(2018b) proposed to use a hidden layer of a PR model to extract frame-
level input for a LSTM-based SLI model. In this thesis, we implement
PTN by using the output of a FC layer of CTC-PR as phoneme embeddings
(see Figures 6.1 and 6.3), which are then used as input to a single-layer
1024-unit LSTM. The bottleneck layer from which features are extracted
is the 300-unit, sigmoid-activated FC layer in CTC-PR between the CNN
feature-extractor and the CTC-layers. The 300-dimensional bottleneck
features (BNF) are partitioned into non-overlapping windows of 20 frames,
e.g. X € R?9%300 which are given as input to the LSTM model. Note that

55



Models and building blocks

the BNFs are phoneme embeddings, not language embeddings, since CTC-
PR is a phoneme classifier, not a language classifier.

In addition to using a LSTM model on fixed length windows, another
experiment is performed where the x-vector architecture (see Table 6.6) is
used on the full BNF sequence. This model will be called x-vector (CTC-
PR).

PTN with SS embeddings (SS-PTN) The SS-PTN model is similar to PTN,
except that CTC-PR is replaced by SS and phoneme BNF's are replaced
with the SS memory context vector X € R7*32 (see Figure 6.2, bottom
32 rows of the decoder input). In other words, each utterance is encoded
with SS and the output of the memory subnetwork, i.e. the context vector
appended to the encoder output, is used as BNFs.

In addition to using a LSTM model, we perform another experiment
with the x-vector architecture, similar to x-vector (CTC-PR), but with SS
embeddings. This model will be called x-vector (SS).

6.2 RNN based SLI

As discussed in Chapter 5, LSTMs and other RNN based models such as
GRUs have been popular choices for SLI models. When applied to SLI,
most RNN based models predict language scores on short time contexts, e.g.
consisting of 10-30 spectral feature frames. The final language decision
can be produced for example by reducing all window scores by averaging,
as seen in Figure 6.4.

e

Sliding window step

1

) Run LSTM on each of
i\ | ) " " " [ these sliding windows

Y i

Sliding window!

length [ : : |
E E E E } Distributions
\

Y
Average

Figure 6.4. Partitioning audio data of arbitrary length into fixed length utterances with a
sliding window (Wan et al. 2019, Fig. 2). The final language decision is based
on the average language likelihood or score of all windows.

BGRU Two bidirectional GRU (BGRU) layers and two FC layers. Pro-
posed by Mateju et al. (2018) for the SBS dataset, discussed in Section 4.3.
Input consists of 30 time frames of log-scale Mel-spectra with 40 Mel bins,

56



Models and building blocks

e.g. Xpyel € R39%40 extracted with a Hann window of length 25 ms and
step size of 10 ms. First, Xy € R7*% is extracted for each utterance.
Then, each Xy is partitioned into non-overlapping windows of 30 frames
each, such that the last window is dropped if it is shorter than 30 frames.
Finally, the model is trained on all windows. When predicting results for
an utterance of arbitrary length, the language scores of all its windows are
averaged to form the final language score vector.

Layer Input shape Output shape
1 Bidirectional GRU 512 units (concat) TxF Tx1024
2 Bidirectional GRU 512 units (concat) Tx1024 1024
3 FC 1024 + ReLU 1024 1024
4 FCN + softmax 1024 N

Table 6.3. BGRU architecture for N languages, where the inputs are log-scale Mel-spectra
of length T, containing F frequency bins. Note that the first BGRU layer returns
full sequence, and the second layer returns only the last output of the sequence.

LSTM for PTN The PTN implementation in this thesis uses a single 1024-
unit LSTM layer for classifying languages from BNF input. Its layers are
listed in Table 6.4. Input consists of 20 frames of BNFs Xpnp € R20%F,
Final language scores for arbitrary length utterances are produced by
averaging over the whole utterance, as in the BGRU model, except that
PTN uses T' = 20 instead of T' = 30.

Layer Input shape Output shape
1 LSTM 1024 units TxF Tx1024
2 FCN + softmax 1024 N

Table 6.4. LSTM for PTN.

6.3 CNNs for variable length input

In this section we take a look at NN models that use spectral utterance
representations of variable length as input to a CNN feature-extractor
frontend. The output of the CNN is then reduced to a fixed length repre-
sentation by performing a reduction over the time dimension.

CNN Four temporal convolution layers, followed by global average pooling
and three FC layers. Proposed by Shon et al. (2018) for the MGB-3 dataset,
discussed in Section 4.2. All layers use the ReLU activation function,
except for the last FC layer, which uses softmax. Input consists of log-
scaled Mel-spectra with 40 Mel-frequency bins, extracted with a Hann
window of length 25 ms and offset 10 ms. All input are of arbitrary length,

57



Models and building blocks

and the result after the convolutions is pooled to a fixed size, before it
is passed through the FC layers. This thesis refers to the model shown
in Table 6.5 simply as CNN, although it should be noted that the term
convolutional neural network is in general a very broad definition and does
not uniquely identify this particular model outside the scope of this thesis.

Layer Input shape Output shape
1 ConvlD 500x5x1 + ReLU TxF Tx500
2 ConvlD 500x7x2 + ReLU Tx500 T/2x500
3 ConvlD 500x1x1 + ReLU T/2x500 T/2x500
4 ConvlD 3000x1x1+ ReLU T/2x500 T/2x3000
5 Reduce mean over time axis T/2x3000 3000
6 FC 1500 + ReLU 3000 1500
7 FC 600 + ReLLU 1500 600
8 FC N + softmax 600 N

Table 6.5. CNN architecture for N languages, where the inputs are log-scaled Mel-spectra
of length T, containing F frequency bins.

x-vector Snyder et al. (2018b) proposed a TDNN based architecture for
speaker recognition, which was adapted for SLI by Snyder et al. (2018a).
Two different implementations are used in this thesis. The first one is the
AP19-OLR competition baseline model by Tang et al. (2019), which they
based on the original x-vector architecture implemented using the Kaldi
toolkit by Povey et al. (2011). This model is called Kaldi x-vector. The
second implementation was completed during this thesis (see Table 6.6)
using temporal convolution layers instead of TDNNs and is called x-vector.
Experiments are performed using both implementations.

Layer Input shape Output shape
1 ConvlD 512x5x1+ BN + ReLU TxF Tx512
2 ConvlD 512x3%x2 + BN + ReLU Tx512 T/2x512
3 ConvlD 512x3x3 + BN + ReLU  T/2x512 T/6x512
4 ConvlD 512x1x1+ BN + ReLU T/6x512 T/6x512
5 ConvlD 1500x1x1 + BN + ReLU T/6x512 T/6x1500
6 Reduc'e mean and stddev. T/6x 1500 3000

over time axis and concatenate
7 FC512 + BN + ReLLU 3000 512
8 FC512 + BN + ReLU 512 512
9 FCN + softmax 512 N

Table 6.6. x-vector architecture for N languages, where the inputs are log-scale Mel-
spectra of length T, containing F frequency bins. The 512-dimensional output
of FC layer 7, before batch normalization and ReLU activation, are called “x-
vectors” by Snyder et al. (2018a).

58



Models and building blocks
6.4 CNNs with RNNs or time-attention

In this final section we discuss the CRNN model, which combines a CNN
front-end and uses a BLSTM layer for sequence classification, and a model
which combines the x-vector model with multi-level time attention.

CRNN Five 2-dimensional convolutional layers with batch normalization
and max pooling, followed by one BLSTM layer and a FC layer (see Ta-
ble 6.7). Proposed by Bartz et al. (2017) for the YTN dataset, discussed in
Section 4.4. The outputs from each unidirectional LSTM in the BLSTM
are concatenated, the convolutional layers use the ReLLU activation func-
tion, and the last FC layer uses softmax. Input consists of monochrome
decibel-scale spectrogram images X4g € R7*1? with 129 frequency bins
of frequencies up to 5 kHz, extracted with a Hann window at a resolution
of 50 pixels per second, corresponding to a window length of 25 ms and
step size of 20 ms. E.g. using 10 second utterances at sample rate 16 kHz,
T = 500 and F = 129, with values mapped onto the dynamic dB range
from -120 up to 0, with the maximum value of the power spectrogram as
the upper reference point. As an interesting side note, Bartz et al. (2017)
noticed that the Inception-v3 CNN architecture (Szegedy et al. 2016) per-
forms significantly better than their CRNN when trained and evaluated
on highly noisy data, and argued that the deeper structure of this CNN is
beneficial to learn languages, as opposed to noise. However, the Inception
architecture is not used in this thesis and instead we rely only the simpler,
CRNN model.

59



Models and building blocks

Layer

Input shape

Output shape

0 30 Ut W

Expand image channel

Time dim. to image cols
Conv2D 16x7x1 + ReLU + BN
Max pooling 2x2

Conv2D 32x5x1 + ReLU + BN
Max pooling 2x2

Conv2D 64x3x1 + ReLU + BN
Max pooling 2x2

Conv2D 128x3x1 + ReLLU + BN
Max pooling 2x2

Conv2D 256x3x1 + ReLLU + BN
Max pooling 2x2

Permute timesteps for RNN
Flatten image channels

BLSTM 256 units (concat)

FC N + softmax

TxF
TxFx1
FxTx1
FxTx16
F/2xT/2x16
F/2xT/2x32
F/4xT/4x32
F/4xT/4x64
F/8xT/8x64

F/8xT/8x128

F/16xT/16x128
F/16xT/16x256
F/32xT/32x256
T/32xF/32x256
T/32x(256-F/32)

512

TxFx1
FxTx1
FxTx16
F/2xT/2x16
F/2xT/2x32
F/4xT/4x32
F/4xT/4x64
F/8xT/8x64
F/8xT/8x128
F/16xT/16x128
F/16 xT/16x256
F/32xT/32x256
T/32xF/32x256
T/32x(256-F/32)
512

N

Table 6.7. CRNN architecture. L2 normalization is applied to the weight matrices of the
convolutional layers with a decay rate of 0.001. Note that the input spectrum
is converted to a monochrome image inside the model, eliminating the need to
perform explicit image conversions before training.

x-vector with multi-level time attention Yu et al. (2018) proposed a multi-
level time-attention (MLA) mechanism for general audio classification of
deep embeddings (see Figure 6.5). In this thesis, the x-vector architecture
seen in Table 6.6 is augmented by interleaving time-attention modules in
between the segmentation layers of the x-vector TDNN. In other words,
layers 7 to 9 in Table 6.6 are replaced by the MLA model from Figure 6.5b
such that T = 1. In addition, experiments are performed where the x-
vector stats pooling layer is removed, and time-pooling is performed within
the time-attention mechanism. In other words, layers 6 to 9 in Table 6.6
is replaced by the MLA model. In both cases, each “embedded mapping”
block consist of a single FC layer, equal to layer 8 in Table 6.6.

60



Models and building blocks

ooy
fc
fc
|
S
fc
input: (T, M) l '
fc: (M, H), relu f.
output: (T, H) l <

fc: (H, H), relu |

output: (T, H) l

fc: (H, H), relu fc .
output: (T, H)
¥ 1 fc
tfc;.(?,KK), softmax fe: (H, K), sigmoid | X L l
output: (T, K) 1 output: (T, K)

normalization

output: (T, ?(I)o?g ! 1 1 1

»(X)« concatenate
output: (T, K) output: (, L*K) 1

add fc: (L*K, L), sigmoid
output: (, K) 1 output: (, L) 1
(a) Yu et al. (2018, Fig. 1). (b) Yu et al. (2018, Fig. 2).

Figure 6.5. Multilevel-attention model for classifying input X € RT*Y into K classes
using L attention modules. (a) Single-level attention, consisting of a block of
FC layers (embedded mapping) and a time-attention module. (b) Multi-level
attention with time-attention modules interleaved between FC blocks. The
output of each attention module are concatenated.

61



Models and building blocks

62



7. Experiments and results

This chapter contains results for all SLI experiments performed during
this thesis. All models discussed in Chapter 6 were trained on all five
datasets discussed in Chapter 4. We begin by summarizing all experiment
settings shared by all models, such as common hyper-parameters. Then,
we discuss the values of evaluation metrics computed on each test set
with all trained models. Finally, we compare the performance of different
models by discussing all results.

7.1 Experiment settings and preprocessing

Validation and early stopping All models were trained until stopping on
the condition that the value of multiclass cross-entropy (Equation 3.1),
evaluated on the test set, had not improved within the past 10 epochs.
Instead of using a held-out validation set, partitioned from the training
set, the test set from each dataset was used for model validation. This is
an important factor that should be considered when analyzing the results.
Since there was access to the ground truth labels for each test set, it was
possible to perform early stopping depending on the performance on the
test set, instead of a separate development set. Therefore, when comparing
the results discussed in this chapter to closed task SLI competition results
such as AP19-OLR, one might expect that results in this thesis would
have been slightly worse compared to other participants, since ground
truth labels are revealed to all participants only after every participant
has submitted their predictions on the test set. On the other hand, Shon
et al. (2018) used 90% of the development set of MGB-3 for training in
order to learn the channel conditions of the test set, greatly improving
model performance on the test set. Similarly, the training set of AP19-OLR
contains development and test data of previous AP-OLR challenges, which
might contain channel information of the evaluation set of AP19-OLR.
It is also worth noting that only minimal hyper-parameter tuning was
performed, e.g. only to ensure convergence of the optimization methods. In

63



Experiments and results

other words, after a specific configuration of hyper-parameter values that
allows each model to converge to some minimum, no additional tuning
based on the test set performance was performed.

Voice activity detection Whenever VAD is mentioned, it refers to the We-
bRTC (2020) VAD implementation discussed in Section 3.5. Each VAD
value between 0 and 3 reported in this chapter equals the WebRTC VAD
aggressiveness values, as defined in Table 3.2. Whenever “None” is spec-
ified, it denotes that VAD was not applied in any form. When VAD is
applied to some input X € R”*F the VAD decisions d € {0,1}” are first
computed window-wise on the original signal s € R®, using the same win-
dow length and offset as in the STFT computation that produces X (see
Figure 3.4a). After X has been computed from s, every frame z; that We-
bRTC VAD marked as not speech (d; = 0) will be deleted, regardless of the
amount of consecutive speech or non-speech frames.

Feature normalization Before training, all features are normalized in var-
ious ways. Spectral features are normalized within a 1 to 3 second window
by applying channel-normalization on each channel, using two different
approaches. The first one is mean normalization by centering all channels
within the normalization window to zero mean. This is denoted by “m”
(mean) in the tables. The second normalization approach is mean-variance
normalization, where all channels within the window are normalized to
have zero mean and unit variance. This is denoted by “mv” (mean-variance)
in the tables. Whenever an utterance is shorter than the normalization
window, the normalization is applied over the utterance. Whenever the
normalization window overshoots an utterance at the beginning or the end,
it is padded by reflecting the values from the non-overshooting part of the
window. For example, assume we are given an utterance representation
X = [z1, 2,23, 24, . ..,27] € RT*F and choose a window length of 5. Let
X' € RT*F denote X after normalization. Then, each element of X’ are
computed from each 5-element window into X as follows:

2} = normalize([z3, T2, 71, T2, T3
(I
(I
(I

7, = normalize([zy, T3, T4, T5, T¢

r), = normalize([zy, 71, T2, T3, T4

mg:normalize 21, T2, X3, T4, T5

)
24])
5))
)

xlel = normalize([xT_g, Xr—2,TT7-1,XT, JJT_l])

x/p = normalize([x7_o2, x7_1, 27, T7_1, T7_3])

In contrast to how we normalize spectral features, BNFs are only normal-
ized by centering the means to zero, i.e. standardization is not performed.
However, three different normalization axes are experimented with and

64



Experiments and results

these are defined in Table 7.1.

Dimension Mean centering

Time Each channel over the time axis T’
Features Each time frame over the channel axis I
Both All values over the whole sample

Table 7.1. Three different normalization approaches for normalizing BNFs.

Score evaluation After the best model weights are discovered by early
stopping, each model will use these weights to compute NV language scores
for every utterance in the test set. Then, independent from the model
training pipeline, these language scores are used to compute the Cgyg
(Equation 3.3) and Fi.ays (Equation 3.4) score metrics. C,ys values are
the minimum C,yg value from 20 different C,yg values, computed using 20
different decision thresholds, generated evenly spaced from the smallest
(Omin) to the largest (0max) language scores produced by the model (see
Section 3.3). F1.4yg values are computed by choosing the predicted class for
a test utterance according to the maximum predicted language score.

7.2 Reproducing reference results

This section contains all results for models that have existing results in
the literature on a reference dataset from Chapter 4. CRNN on YTN is not
listed here since due to the size of the dataset it was decided not to perform
a grid search over all VAD and normalization configurations. Based on the
results from all other experiments, mean-normalization was chosen and
no VAD was performed. Its results is listed in Section 7.6.

CNN on MGB-3 The CNN model (Section 6.3) was trained on the MGB-3
dataset (Section 4.2) using 5 different VAD configurations and 2 different
normalization configurations. The best model was used to predict language
scores on the MGB-3 test set and evaluation metrics were computed from

the predictions. Cayg values are reported in Table 7.2a and Fy.4yg scores in
Table 7.2b.

65



Experiments and results

VAD m mv VAD m mv

None 0.205 0.194 None 0.630 0.631
0 0.204 0.217 0 0.631 0.589
1 0.197 0.210 1 0.643 0.597
2 0.205 0.222 2 0.631 0.588
3 0.223 0.223 3 0.588 0.595
Avg  0.207 0.213 Avg  0.624 0.600

(a) Cayg, less is better. (b) F1.avg, more is better.

Table 7.2. Evaluation results with CNN on the MGB-3 test set. VAD was either not used
or it was applied using 4 different aggressiveness settings. Normalization of
spectral bins over time axis: zero mean (m), zero mean and unit variance (mv).

We see that the best configuration measured by Cayz = 0.194 is mean-
variance normalized features (mv) without VAD. On the other hand, mea-
sured by F1_avg = 0.643, the best configuration is mean-normalized features
(m) with VAD level 1. However, when comparing results averaged over all
VAD configurations, mean normalized features (m) are better on average
at Cavg = 0.207 and Fy_5y5 = 0.624, compared to mean-variance normalized
features. Compared to the Cayg = 0.199 reported by Shon et al. (2018)
before performing speed and volume augmentation, our best result is 0.5
percentage points lower (better) than the reference result. They managed
to reduce their result to Cayz = 0.176 by augmenting the dataset, which
was not performed in this thesis.

x-vector on AP19-OLR The x-vector model (Section 6.3) was trained on
the AP19-OLR dataset (Section 4.5) using 5 different VAD configurations
and 2 different normalization configurations. The best model was used to
predict language scores on the AP19-OLR short utterance test set (task 1)
and evaluation metrics were computed from the predictions. Cayg values
are reported in Table 7.3a and F1.,y; scores in Table 7.3b.

VAD m mv VAD m mv

None 0.142 0.166 None 0.617 0.579
0 0.162 0.152 0 0.599 0.615
1 0.151 0.163 1 0.624 0.591
2 0.153 0.175 2 0.621 0.588
3 0.175 0.186 3 0.595 0.577
Avg 0.157 0.168 Avg 0.611 0.590

(a) Cayg, less is better. (b) F1.avg, more is better.

Table 7.3. Evaluation results with x-vector on the AP19-OLR short utterance test set.
VAD was either not used or it was applied using 4 different aggressiveness
settings. Normalization of spectral bins over time axis: zero mean (m), zero
mean and unit variance (mv).

The best configuration measured by Cayg = 0.142 is achieved with mean-

66



Experiments and results

normalized features without VAD, while the best F1.ayg = 0.624 is achieved
with mean-normalized features with VAD level 1, i.e. low-bitrate setting.
However, on average, mean normalized features give better results. Com-
pared to the baseline C,yz = 0.126 reported by Tang et al. (2019), our best
result is 1.6 percentage points higher (worse) than the reference result.
Note that the best result for the AP19-OLR short utterance task is reported
to be Cayg = 0.046, which is 9.6 percentage points lower (better) than our
best result.

BGRU on SBS The BGRU model (Section 6.2) was trained on the SBS
dataset (Section 4.3) using 5 different VAD configurations and 2 different
normalization configurations. The best model was used to predict language
scores on the SBS test set and evaluation metrics were computed from

the predictions. Cayg values are reported in Table 7.4a and Fy.ayg scores in
Table 7.4b.

VAD m mv VAD m mv

None 0.028 0.032 None 0.939 0.935
0 0.035 0.189 0 0.927 0.558
1 0.035 0.033 1 0.923 0.930
2 0.033 0.034 2 0.931 0.926
3 0.039 0.035 3 0.910 0.919
Avg  0.034 0.065 Avg  0.926 0.854

(a) Cavg, less is better. (b) F1.avg, more is better.

Table 7.4. Evaluation results with BGRU on the SBS test set. VAD was either not used
or it was applied using 4 different aggressiveness settings. Normalization of
spectral bins over time axis: zero mean (m), zero mean and unit variance (mv).

We can see that VAD is not beneficial in this experiment, since both Cgyg
and F1.avg reach their best values when VAD is not used. The best overall
configuration is mean-normalization without VAD, with Caye = 0.028 and
Fiavg = 0.939. On average, mean normalization is better than mean-
variance normalization. Compared to the Cayg = 0.013 reported by Mateju
et al. (2018), our best result is 1.5 percentage points higher (worse) than
the reference result.

7.3 TLI based experiments

This section contains results from PRLM and SSLM, which decode input
utterances into textual representations from which the language is de-
tected using NB-TLI.

PRLM The PRLM model (Section 6.1) was trained on all reference datasets
discussed in Chapter 4. All utterances from both the training and test

67



Experiments and results

sets of all datasets were decoded into phoneme sequences with CTC-PR,
outputting space separated strings of individual phoneme tokens, one line
of phoneme tokens for each utterance. Then, NB-TLI was trained sepa-
rately for each dataset, on all phoneme sequences in the training set of
each dataset. Finally, NB-TLI was used to predict language scores for all
phoneme sequences in the test set of each dataset. Cayg values are reported
in Table 7.5a and F;._ay¢ scores in Table 7.5b.

Dataset Cavg Dataset Fiavg

OGI-11L 0.385 OGI-11L 0.515

SBS 0.387 SBS 0.472

MGB-3 0.455 MGB-3 0.402

AP19-OLR 0.406 AP19-OLR 0.245

YTN-Aalto2019 0.362 YTN-Aalto2019 0.660
(a) Less is better. (b) More is better.

Table 7.5. Evaluation results with PRLM on all test sets.

We can see that results are overall poor, with C,y, values being higher
than the F_ayg scores for predictions on the AP19-OLR and MGB-3 test sets.
Compared to the results of PTN, which used CTC-PR phoneme embeddings
as input, these results might suggest that a significant amount of language
discriminability is lost when the phoneme embeddings are converted into
phoneme tokens by CTC decoding in the CTC-PR model.

SSLM The SSLM model (Section 6.1) was trained on all reference datasets
discussed in Chapter 4. However, the SS autoencoder was unable to
learn a reasonable acoustic unit representation for OGI-11L and instead
generated constant output of a single acoustic unit, “6”. Therefore, no
results are reported on OGI-11L with SSLM. For all remaining 4 datasets,
utterances were decoded to acoustic unit sequences with SS and classified
with NB-TLI. All utterances from both the training and test sets of all
datasets were decoded into acoustic unit sequences with SS, outputting
space separated strings of individual acoustic units (integers from 1 to
32), one line for each utterance. Then, NB-TLI was trained separately
for each dataset, on all acoustic unit sequences in the training set of each
dataset. In addition, VAD was performed on the acoustic unit sequences
by dropping all acoustic units that most frequently were classified as non-
speech by WebRTC (2020) VAD. In this experiment, VAD levels denote how
many most likely non-speech acoustic units were dropped (see Section 6.1
for a description on the VAD approach for acoustic units). Finally, NB-TLI
was used to predict language scores for all acoustic unit sequences in the
test set of each dataset. C,yg values are reported in Table 7.6a and F1_ayg
scores in Table 7.6b.

68



Experiments and results

VAD AP19-OLR MGB-3 SBS YTN-Aalto2019

None 0.395 0.482 0.399 0.449
1 0.406 0.483 0.397 0.445
2 0.420 0.481 0.388 0.481
3 0.429 0.482 0.396 0.443

(a) Cayg, less is better.

VAD AP19-OLR MGB-3 SBS YTN-Aalto2019

None 0.313 0.346  0.569 0.516
1 0.288 0.354 0.570 0.529
2 0.250 0.351 0.548 0.485
3 0.239 0.366 0.530 0.519

(b) F1.avg, more is better.

Table 7.6. Evaluation results on all test sets with SSLM by dropping different amount
of most likely non-speech acoustic units. I.e. VAD = 1 denotes the most likely
non-speech unit was dropped, 2 denotes two most likely and 3 denotes 3 most
likely non-speech units were dropped.

We can see that all results are worse than with PRLM. This is similar
to the x-vector BNF results, where we noted that using SS BNFs leads to
worse results compared to using CTC-PR BNFs.

7.4 BNF based experiments

This section contains results from all models which use BNFs, i.e. phoneme
embeddings from CTC-PR and memory context vectors from SS.

x-vector with BNFs In order to compare x-vector performance using dif-
ferent features in addition to spectra, BNFs (Xgnr € RT*F) were extracted
from CTC-PR (Section 6.1, PTN) and SS (Section 6.1, SS-PTN) for all
datasets described in Chapter 4. All utterances from both the training and
test sets of all datasets were decoded into BNF vectors with CTC-PR and
SS, one CTC-PR BNF vector and one SS BNF vector for each utterance.
Different normalization approaches were compared by mean-normalizing
over the time axis T and channel axis F, as described in Table 7.1. Then,
x-vector models were trained with all BNF vectors in the training set. Us-
ing the best models, language scores were predicted from BNF vectors in
the test set. Cayg values for x-vector with CTC-PR BNF's are reported in
Table 7.7a and Fi_ayg scores in Table 7.7b. Cay,e values for x-vector with SS
BNF's are reported in Table 7.8a and F1.avg scores in Table 7.8b. Note that
the SS autoencoder was unable to learn a usable acoustic unit representa-
tion for OGI-11L and no results are therefore available for x-vector with
SS BNFs.

69



Experiments and results

Norm. OGI-11L AP19-OLR MGB-3 SBS YTN-Aalto2019

None 0.200 0.246 0.269 0.040 0.089
Time 0.243 0.249 0.282  0.045 0.068
Features  0.187 0.228 0.261 0.044 0.076
Both 0.202 0.230 0.274 0.041 0.050
Avg 0.208 0.238 0.271  0.043 0.071

(a) Cayg, less is better.

Norm. OGI-11L. AP19-OLR MGB-3 SBS YTN-Aalto2019

None 0.561 0.382 0.485 0.879 0.829
Time 0.458 0.384 0.473 0.865 0.841
Features  0.580 0.421 0.522 0.875 0.819
Both 0.513 0.416 0.528 0.885 0.919
Avg 0.528 0.401 0.502 0.876 0.852

(b) Fi.avg, more is better.

Table 7.7. Evaluation results with x-vector, using CTC-PR phoneme embeddings, on all
test sets, mean-normalized over different axes.

We can see that the best results for OGI-11L (Cyye = 0.187), AP19-OLR
(Cavg = 0.228), and MGB-3 (Cayz = 0.261) are achieved by normalizing
each time step over the channels of the CTC-PR phoneme embedding
features. Best results for SBS (Cayg = 0.04) is achieved by performing
no normalization, while best results for YTN-Aalto2019 (Caye = 0.05) is
achieved by normalizing over the whole sample. We can see that none of
these results outperform the reference models discussed in Section 7.2.

Interestingly, it appears that phoneme BNF's extracted from CTC-PR still
provide reasonable language discriminability, even though CTC-PR was
not trained (see Section 6.1) on any of the languages being identified, e.g.
AP19-OLR, MGB-3, and SBS. For example, C,yg = 0.228 for AP19-OLR is
only 10 percentage points higher (worse) than the baseline, Cyyg = 0.261
for MGB-3 is only 7 percentage points higher (worse) than the baseline,
and Cgyg = 0.04 for SBS is only 3 percentage points higher (worse) than
the baseline.

70



Experiments and results

Norm. AP19-OLR MGB-3 SBS YTN-Aalto2019

None 0.199 0.307 0.088 0.196
Time 0.226 0.314 0.084 0.155
Features 0.202 0.312 0.086 0.188
Both 0.205 0.304 0.081 0.164
Avg 0.208 0.309 0.085 0.176

(a) Cayg, less is better.

Norm. AP19-OLR MGB-3 SBS YTN-Aalto2019

None 0.478 0.463 0.765 0.675
Time 0.403 0.445 0.773 0.687
Features 0.473 0.437 0.773 0.698
Both 0.478 0.443 0.778 0.660
Avg 0.458 0.447 0.772 0.680

(b) Fi.avg, more is better.

Table 7.8. Evaluation results with x-vector, using SS memory context vector BNFs, on all
test sets, mean-normalized over different axes. The SS autoencoder was unable
to learn a usable acoustic unit representation for OGI-11L.

We can see that using the SS memory context vectors as phoneme em-
bedding replacements do not provide better language discriminability
compared to CTC-PR phoneme embeddings. Most results, both by Cayg
and Fiavg, with SS BNFs are worse than the best results with CTC-PR
BNFs, regardless of which normalization configuration is used. However,
for AP19-OLR, Cay, is on average 3 percentage points better and F_ayq is
on average 6 percentage points better than with CTC-PR BNFs.

PTN The PTN model (Section 6.1) was trained on all reference datasets
discussed in Chapter 4. All utterances from both the training and test sets
of all datasets were decoded into BNFs with CTC-PR, one Xgnp € RT*300
for each utterance. All vectors were then partitioned over the T axis
into non-overlapping sequences of 20 frames each and a single, 1024-
unit LSTM model was trained on all 20-frame sequences separately for
each training set of each dataset. The best performing model was used
to predict language scores for all 20-frame sequences of each test set by
averaging over all 20-frame sequences within each test set utterance. Cyyg
values are reported in Table 7.9a and F1.,y; scores in Table 7.9b.

71



Experiments and results

Dataset Cavg Dataset Fiave

OGI-11L 0.305 OGI-11L 0.298

MGB3 0.307 MGB3 0.428

SBS 0.065 SBS 0.843

AP19-OLR 0.203 AP19-OLR 0.490

YTN-Aalto2019 0.101 YTN-Aalto2019 0.812
(a) Cavg, less is better. (b) F1.avg, more is better.

Table 7.9. Evaluation results with PTN on the all test sets.

SS-PTN The SS-PTN model (Section 6.1) was trained on all reference
datasets discussed in Chapter 4. However, as already discussed, the SS
autoencoder was unable to learn a reasonable acoustic unit representation
for OGI-11L and no results are reported on OGI-11L. For all 4 remaining
datasets, all utterances from both the training and test sets were decoded
into SS BNFs, one Xgnp € R7*32 for each utterance. The training and
evaluation using these SS BNFs was performed exactly as with PTN,
described above. Cyy, values are reported in Table 7.10a and Fi_ayg scores
in Table 7.10b.

Dataset Cavg Dataset Fiavg

MGB3 0.419 MGB3 0.198

SBS 0.164 SBS 0.613

AP19-OLR 0.235 AP19-OLR 0.371

YTN-Aalto2019 0.189 YTN-Aalto2019 0.674
(a) Cayg, less is better. (b) F1.avg, more is better.

Table 7.10. Evaluation results with SS-PTN on all test sets.

We can see that the results or worse than with PTN. This is the third
example of CTC-PR based features outperforming SS based features, both
as BNFs and as a textual representation.

7.5 Other approaches

MLA x-vector on AP19-OLR The MLA x-vector model (Section 6.4) was
trained on the AP19-OLR dataset (Section 4.5) with 2 to 5 levels (L) of
added attention modules added. In addition, the attention modules were
integrated to the x-vector model using 2 different configurations, as well as
using a reference configuration by increasing the size of the x-vector model
without using attention. The configurations are made as follows:

“With attention”: the global statistics pooling layer (x-vector layer 6) is

72



Experiments and results

used normally for reducing the time axis, with attention modules
being added after it as additional FC layers.

“Pooled attention”: the global statistics pooling layer is replaced with time
attention, such that the time axis is reduced by time attention as
proposed by Yu et al. (2018).

“Without attention”: MLA is not used, but instead L additional FC layers
(x-vector layer 8) are added after the global statistics pooling layer
to the standard x-vector architecture for comparing whether perfor-
mance improvements are from MLA or simply increased x-vector
model size.

Cavg values are reported in Table 7.11a and Fy_ay¢ scores in Table 7.11b.

L with att. pooled att. without att.
2 0.152 0.213 0.145
3 0.152 0.205 0.137
4 0.139 0.229 0.159
5 0.143 0.177 0.139
Avg 0.146 0.206 0.145

(a) Cavg, less is better.

L with att. pooled att. without att.

2 0.631 0.477 0.618
3 0.627 0.492 0.635
4 0.651 0.447 0.578
5 0.628 0.551 0.625
Avg  0.634 0.492 0.614

(b) F1.avg, more is better.

Table 7.11. Evaluation results with MLA x-vector on the AP19-OLR short utterance
test set. 4 different attention levels (L) were used, with 3 different ways of
introducing the levels into the x-vector architecture.

Using 4 attention levels (L = 4) yields Cayg = 0.139, which is slightly
better than C,y; = 0.142 achieved without attention (Table 7.3a). How-
ever, by adding 3 regular FC layers to the original x-vector model, without
attention modules, we can see this extension alone reduces Cayg to 0.137
(column “without att.”). We can also conclude that replacing the statis-
tics pooling layer of the x-vector model with attention based pooling, as
described in Section 6.4, is not beneficial (column “pooled att.”). However,
using 5 attention levels is clearly better than using less levels.

73



Experiments and results

7.6 Comparing all results

The Cayg values of all evaluations mentioned above have been collected into
Table 7.12a. Similarly, all F1_ayg values have been collected into Table 7.12b.
There are several interesting details that we will now analyze.

Model AP19-OLR MGB-3 OGI-11L SBS YTN-Aalto2019
Kaldi x-vector 0.120 0.350 0.150 0.030 0.060
x-vector 0.142 0.212 0.196 0.026 0.037
x-vector (CTC-PR) 0.228 0.261 0.187 0.040 0.050
x-vector (SS) 0.199 0.304 0.081 0.155
CNN 0.164 0.197 0.218  0.020 0.086
PRLM 0.406 0.455 0.385 0.387 0.362
SSLM 0.395 0.482 0.397 0.445
PTN 0.203 0.307 0.305 0.065 0.101
SS-PTN 0.235 0.419 0.164 0.189
BGRU 0.161 0.363 0.368 0.028 0.087
CRNN 0.151 0.342 0.339 0.056 0.137

(a) Cavg, less is better.

Model AP19-OLR MGB-3 OGI-11L SBS YTN-Aalto2019
x-vector 0.617 0.616 0.556 0.942 0.948
x-vector (CTC-PR) 0.421 0.528 0.580 0.885 0.919
x-vector (SS) 0.478 0.463 0.778 0.698
CNN 0.579 0.643 0.491 0.946 0.827
PRLM 0.245 0.402 0.515 0.472 0.660
SSLM 0.313 0.366 0.570 0.529
PTN 0.490 0.428 0.298 0.843 0.812
SS-PTN 0.371 0.198 0.613 0.674
BGRU 0.592 0.332 0.098 0.939 0.844
CRNN 0.582 0.418 0.236 0.857 0.719

(b) F1.avg, more is better. The Kaldi x-vector baseline script did not implement evaluation
of F1.avg scores.

Table 7.12. Evaluation results with all models, using best configurations, on all datasets.
The SS autoencoder failed to learn an acoustic unit representation for OGI-
11L and results for all models that use SS are therefore missing for OGI-11L.

CNN-based models We can clearly see that CNN-based classification of
log-scale Mel-spectra performs best compared to all other approaches. The
set of models which perform best on at least one dataset consists of CNN,
x-vector, and Kaldi x-vector. The only exception is the F; 4y score from
x-vector (CTC-PR), which uses phoneme embeddings from CTC-PR instead
of a spectral representation as input. On the other hand, Kaldi x-vector
did not provide F1.5y¢ scores, which means we cannot say for certain if it
would outperform x-vector (CTC-PR) also by Fi_avg.

74



Experiments and results

CRNN on YTN We were unable to replicate the results reported by Bartz
et al. (2017) with the CRNN model on the YTN-Aalto2019 dataset. They
reported an average F; score of 0.91 on their YI'N instance, with the
lowest individual F; score for English at 0.88. We can see from Table 7.12b
that our Fy_5y¢ score with CRNN on the YTN-Aalto2019 dataset is only
0.72. However, since our YTN instance does not contain the same acoustic
data as used by Bartz et al. (2017), we cannot be sure if these results are
comparable.

CTC-PR outperforms SS In Chapter 1, we asked if it is possible to replace
supervised phonemes of the CTC-PR model by unsupervised acoustic units
of the SS autoencoder. By looking at the Cayg results in Table 7.12a, we can
see that on average, SS based features performed worse compared to CTC-
PR based features. For example, PRLM is better than SSLM on all datasets,
except for AP19-OLR, where SSLM is 1 percentage point better. Similarly,
using CTC-PR BNFs as input to x-vector is better than using SS BNF's, on
all datasets except for AP19-OLR, where SS BNF's are 3 percentage points
better. Finally, PTN is better than SS-PTN on all datasets.

One could assume that CTC-PR is worse than SS on AP19-OLR because
CTC-PR has not been trained on Asian languages. However, this does not
explain why CTC-PR is better than SS on MGB-3, which contains only
Arabic dialects, none of which are included in the training data of CTC-PR.
Furthermore, CTC-PR and SS have been trained using different datasets,
which means these results do not have satisfactory comparability. Further
experiments are required, where CTC-PR and SS are trained with the
same data, in order to conclude which model provides a representation
with the best language discriminability.

Note on OGI-11L While this is not shown in the results, we also experi-
mented with extracting spectral features for OGI-11L only from the nar-
rowband between 300—-3400 Hz, as suggested by Reynolds (1995). However,
all results from every model that used narrowband features for OGI-11L
were worse than any of the results which used spectral features extracted
from a wider band between 20-8000 Hz. Therefore, all results from the
narrowband experiments were omitted from the reports.

7.7 Online SLI

This section provides a brief overview of an real-time SLI model based on
the x-vector architecture (Section 6.3). The model was trained on the YTN-
Aalto2019 dataset (Section 4.4) and converted with the TensorFlow.js! tool
into a self-contained format, which can be executed in a web browser.
Audio input is recorded in real-time from the user’s microphone with

1 https://www.tensorflow.org/js (visited on 2020-01-31)

75


https://www.tensorflow.org/js

Experiments and results

the JavaScript AnalyserNode API!, which also implements a real-time
STFT. The spectral data is extracted with a 2048-point STFT from non-
overlapping 30 ms windows at 30 ms intervals, converted to Mel-scale
using 60 Mel-bins and stored in a buffer of spectral frames Xy € R7*60,
Whenever the buffer contains 7" = 100 frames, these are converted into
model input X}, € R100*%
over axis 7). Then, X}, is used as input to the JavaScript x-vector
model, which outputs prediction scores y € R for the 6 languages of the
YTN dataset. For every prediction event, the output scores are sorted in
descending order and the three most likely language classes are displayed.
A screenshot of the system in operation can be seen in Figure 7.1.

and each channel is mean-normalized (reduced

Disable predictions

Picture-in-Picture

75 ANS DE LA LIEERATION D' AUSCHWITZ AUSCHWITZ
EMMANUEL MACRON INAUGURE LE "MUR DES NOMS* 75 ANS APRES

Figure 7.1. Online SLI system running in a web browser. The real-time spectrogram plot
seen in the screenshot depicts a decibel-scale spectrogram of the STFT output
provided by the JavaScript AnalyserNode, which is converted to model input.
Here, the source audio contains speech in French, and was chosen uniformly
at random from the YTN-Aalto2019 dataset.

It is worth noting that the system is unstable, occasionally predicting
incorrect labels seemingly at random, which makes it unusable in a prac-
tical application. However, no quantitative evaluations were performed
using the YTN-Aalto2019 test set and it is therefore not possible to say in

1

https://webaudio.github.io/web-audio-api/#analysernode (visited on 2020-01-31)

76


https://webaudio.github.io/web-audio-api/#analysernode

Experiments and results

an objective manner how well the model performs. More work is required
to stabilize the system, for example by smoothening label transitions and
adding a real-time VAD module to filter out frames with low SNR. For a
stable and valuable application that could be used in practice, replacing
the model with a phonotactic approach might also be a good alternative,
assuming transcribed data is available.

77



Experiments and results

78



8. Future work

This chapter contains a brief overview of topics which could be considered
natural continuations to the work completed during this thesis.

8.1 Extending the experiments

As discussed in Section 3.4, the optimization algorithm used in all experi-
ments of this thesis is SGD, even though several other options were avail-
able. The main argument for choosing the, arguably more traditional, SGD
algorithm was the convergence issues of the newer algorithms, especially
when training LSTM models with BNF input using Adam. However, no ex-
haustive quantitative comparisons were actually performed and SGD was
chosen due to its stability during training. Therefore, replacing the SGD
algorithm with e.g. Adam would provide a straightforward experiment
setting for future work. One effect to investigate would be whether some
other optimization methods, such as Adam, converges faster to a global
optimum compared to SGD, while retaining the same SLI performance.
This would be beneficial since it would allow completing more experiments
per compute hour compared to SGD.

Another experiment setting to consider is using a different VAD approach.
As we saw in Chapter 7, most experiments either did not benefit from
VAD or the improvements were negligible. One possible reason for this
could be that the VAD windows (see Figure 3.4a) were too short. As
discussed in Section 7.1, VAD decisions were applied on each feature
time frame, corresponding to 25 ms of the original signal, dropping all non-
speech frames regardless of the time context. This could be detrimental
for SLI performance, since even short pauses in speech might convey
syntactic meaning and deleting such pauses could distort the language
cues. Therefore, one could experiment with setting a minimum threshold
of consecutive feature frames that must contain non-speech before the
frames will be considered for removal. This might help retain the most
meaningful information, while still removing significant sections of less

79



Future work

important, non-speech information.

Readers with more experience in deep learning might have noticed that
the experiments in this thesis focused mostly on reproducing existing re-
sults or comparing several different models, while little to no attention was
placed on improving the achieved results further by e.g. hyper-parameter
tuning or regularization. One interesting thing to try is channel dropout
on the frequency dimension, which might significantly increase the gen-
eralization strength of the model (Kovacs et al. 2017). In addition, data
augmentation was not performed in any way and it could also help, as
discussed in Section 3.1.

It’s also worth noting that the acoustic-phonetic models trained during
this thesis used different data than CTC-PR, since we used a pre-trained
instance of CTC-PR. Therefore, the results from experiments made with
CTC-PR, e.g. PRLM and PTN, cannot be used to compare the relative
performance of acoustic-phonetic and phonotactic models. For an accurate
comparison, CTC-PR should be trained using the same acoustic data as
the acoustic-phonetic models.

Milde and Biemann (2019) suggested that training SS on larger amounts
of data might improve the unsupervised representation learned from the
input space. Therefore, a straightforward experiment setting would be to
train SS on all datasets discussed in Chapter 4, extract SS BNF features
and acoustic unit sequences, and finally repeat all experiments made with
SS-PTN, SSLM, and x-vector using SS BNFs.

We saw in Section 7.5 that MLA x-vector could not outperform the regular
x-vector architecture. However, performance seemed to improve with each
added attention module. Further experiments are required, with larger
MLA x-vector models (L > 5 and attention based time pooling) before we
may conclude if adding MLA modules into the x-vector architecture is more
beneficial compared to simply increasing the size of the x-vector model by
adding regular FC layers.

8.2 Other SLI models

This thesis approached SLI from an end-to-end perspective, assuming SLI
is an multiclass classification problem solvable with discriminative deep
learning models. While some approaches such as the x-vector architec-
ture show promising results, acoustic-phonetic models are usually greatly
outperformed by phonotactic approaches, as we discussed in Chapter 5.
Even though we did not see promising results in Chapter 7 from PRLM or
PTN, the superior results reported by e.g. Watanabe et al. (2017) and Ren
et al. (2019) deserve more attention if the work done in this thesis is to
be continued. Another approach would be to retrain CTC-PR with new
datasets, while ensuring all acoustic-phonetic and phonotactic models are

80



Future work

trained on matching data.

At the time of writing this thesis, it is also an open research question how
to identify languages from audio signals without applying pre-processing
techniques (Fayek 2016; Shon et al. 2018). While SLI from raw audio might
still be considered uncharted territory, the deep learning based approaches
used in this thesis could provide a good starting point for classifying any
kind of speech representation.

As discussed in Section 5.2, we did not use the x-vector architecture to its
full potential and instead applied it as a discriminative SLI model. Snyder
et al. (2018a) showed that the x-vector model is more accurate when it is
trained on a large amount of speech data containing many languages, and
then a backend classifier is trained on the x-vectors x € R°'? extracted
from layer 7 (see Table 6.6) of the trained x-vector model. This opens up
interesting experiment settings, such as classifying the x-vectors using
probabilistic linear discriminant analysis (Prince and Elder 2007) or some
other backend classifiers. Furthermore, Leeuwen and Briimmer (2008)
showed how to adapt linear discriminant analysis based backend SLI
classifiers to small amounts of training data, which might enable better
SLI on small datasets such as OGI-11L.

81



Future work

82



9. Conclusions

This thesis discussed spoken language identification (SLI) and ways to
apply deep learning methods for SLI. Quantitative experiments were
performed and they provided answers to most of the research questions
discussed in Section 1.1, even though some results were inconclusive.

First, we conclude that we managed to reproduce results of three models
on three datasets within 2 percentage points, measured with Cgys. These
models and datasets are x-vector on AP19-OLR task 1, CNN on MGB-3,
and BGRU on SBS.

Second, we saw that mean-normalization of all spectral channels over the
time axis is on average more beneficial compared to mean-normalization
followed by variance-normalization. However, there was no single VAD
setting that worked well in all scenarios.

Third, we did not find one single model architecture that outperforms
all other models. However, the x-vector architecture (see Section 6.3) pro-
vided best results on 3 datasets out of 5. In addition, the CNN model
(see Section 6.3) provided best results for the other 2 datasets out of 5.
Since the CNN and x-vector architectures are structurally similar, we can
conclude that a design combining temporal convolutions, global statistics
pooling over the time dimension, followed by a DNN for language classi-
fication seems to be a good approach for classifying log-scale Mel-spectra
by language. However, in contrast to results from existing work discussed
in Section 5.3, phonotactic models used in this thesis, e.g. PTN, PRLM,
and x-vector with CTC-PR phoneme embeddings, did not outperform the
acoustic-phonetic models. This implies that our phonotactic models could
not reach an optimal level of performance and more work is required to
investigate why this happened.

Finally, in Section 7.6 we saw that all models that utilized acoustic unit
representations learned by the SS autoencoder, in fact produced worst
results in almost all experiments. We therefore conclude that it is unlikely
that the unsupervised acoustic unit representation could be used to replace
a supervised phoneme representation and still provide good language
discriminability.

83



Conclusions

84



References

Abadi, Martin et al. (2015). TensorFlow: Large-Scale Machine Learning on Heteroge-
neous Systems. Software available from https://tensorflow.org. URL: https://static.
googleusercontent . com/media/ research.google.com/en//pubs/archive/45166.pdf (visited on
2020-03-25).

Ali, Ahmed et al. (2016). “Automatic Dialect Detection in Arabic Broadcast Speech”. In:
Proc. Interspeech 2016, pp. 2934—2938. DOT: 10.21437/Interspeech.2016-1297.

Ali, Ahmed et al. (2019). “The MGB-5 Challenge: Recognition and Dialect Identification
of Dialectal Arabic Speech”. In: IEEE Workshop on Automatic Speech Recognition and
Understanding (ASRU).

Alphonsa, Alice Celin et al. (July 2017). “Spectral feature based automatic tonal and non-
tonal language classification”. In: 2017 International Conference on Intelligent Computing,
Instrumentation and Control Technologies (ICICICT). IEEE, pp. 1271-1276.

Bahari, Mohamad Hasan et al. (July 2014). “Non-Negative Factor Analysis of Gaussian Mix-
ture Model Weight Adaptation for Language and Dialect Recognition”. In: IEEE /ACM
Transactions on Audio, Speech, and Language Processing 22.7, pp. 1117-1129. 1SSN:
2329-9304. DOI: 10.1109/TASLP.2014.2319159.

Bartz, Christian et al. (2017). “Language identification using deep convolutional recur-
rent neural networks”. In: International Conference on Neural Information Processing.
Springer, pp. 880-889.

Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning. New York, NY,
USA: Springer. ISBN: 978-0387-31073-2.

Bishop, Richard L. and Samuel I. Goldberg (1968). In: Tensor analysis on manifolds. New
York, NY: The Macmillan. Chap. 1.

Briimmer, Niko and Johan du Preez (2006). “Application-independent evaluation of speaker
detection”. In: Computer Speech & Language 20.2. Odyssey 2004: The speaker and
Language Recognition Workshop, pp. 230—275. ISSN: 0885-2308. DOI: 10.1016/j.cs1.2005.
08.001.

Campbell, William M. et al. (2004). “Language recognition with support vector machines”.
In: Odyssey 2016, pp. 285-288.

Canavan, Alexandra and George Zipperlen (1996). CALLFRIEND speech corpus. Philadel-
phia: Linguistic Data Consortium.

Cheng, Jyh-Min and Hsiao-Chuan Wang (Dec. 2004). “A method of estimating the equal
error rate for automatic speaker verification”. In: 2004 International Symposium on
Chinese Spoken Language Processing, pp. 285—288. DOI: 10.1109/CHINSL .2004.1409642.

Cole, Ronald and Yeshwant Muthusamy (1994). OGI Multilanguage Corpus LDC94S17.
Web Download. Philadelphia: Linguistic Data Consortium.

Dehak, Najim et al. (May 2011a). “Front-End Factor Analysis for Speaker Verification”. In:
IEEE Transactions on Audio, Speech, and Language Processing 19.4, pp. 788-798. ISSN:
1558-7916. DOI: 10.1109/TASL.2010.2064307.

85


https://tensorflow.org
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf
https://doi.org/10.21437/Interspeech.2016-1297
https://doi.org/10.1109/TASLP.2014.2319159
https://doi.org/10.1016/j.csl.2005.08.001
https://doi.org/10.1016/j.csl.2005.08.001
https://doi.org/10.1109/CHINSL.2004.1409642
https://doi.org/10.1109/TASL.2010.2064307

References

Dehak, Najim et al. (Aug. 2011b). “Language recognition via i-vectors and dimensionality
reduction”. In: Proc. Interspeech 2011, pp. 857-860.

Fayek, Haytham (Apr. 2016). Speech Processing for Machine Learning: Filter banks,
Mel-Frequency Cepstral Coefficients (MFCCs) and What’s In-Between. URL: https://
haythamfayek . com/ 2016 /04 / 21/ speech - processing - for - machine - learning . html (visited on
2019-11-29).

Fernando, Sarith, Vidhyasaharan Sethu, and Eliathamby Ambikairajah (Sept. 2018). “Sub-
band Envelope Features Using Frequency Domain Linear Prediction for Short Duration
Language Identification”. In: Proc. Interspeech 2018 (Hyderabad, India), pp. 1818-1822.
DOI: 10.21437/Interspeech.2018-1805.

Frederiksen, Peter Sibbern et al. (Sept. 2018). “Effectiveness of Single-Channel BLSTM
Enhancement for Language Identification”. In: Proc. Interspeech 2018 (Hyderabad, India),
pp.- 1823-1827. DOI: 10.21437/Interspeech.2018-2458.

Gauvain, Jean-Luc and Chin-Hui Lee (Apr. 1994). “Maximum a posteriori estimation for
multivariate Gaussian mixture observations of Markov chains”. In: IEEE Transactions
on Speech and Audio Processing 2.2, pp. 291-298. ISSN: 1558-2353. DOI: 16.1109/89.279278.

Gelly, Gregory and Jean-Luc Gauvain (Aug. 2017). “Spoken Language Identification Using
LSTM-Based Angular Proximity”. In: Proc. Interspeech 2017, pp. 2566—2570. DOI: 10.
21437/Interspeech.2017-1334.

Gelly, Gregory et al. (2016). “Language recognition for dialects and closely related lan-
guages”. In: Odyssey 2016, pp. 124-131.

Glembek, Ondej et al. (2008). “Advances in phonotactic language recognition”. In: Proc.
Interspeech 2008, pp. 743-746.

Gonzalez-Dominguez, Javier et al. (Sept. 2014). “Automatic language identification using
long short-term memory recurrent neural networks”. In: Fifteenth Annual Conference of
the International Speech Communication Association, pp. 2155-2159.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016a). “Deep Feedforward Net-
works”. In: Deep Learning. MIT Press. Chap. 6, pp. 164—223. URL: http://www.deeplearningbook.
org (visited on 2020-03-11).

— (2016Db). “Optimization for Training Deep Models”. In: Deep Learning. MIT Press. Chap. 8,
pp. 271-325. URL: http://www.deeplearningbook.org (visited on 2020-03-11).

— (2016¢). “Practical Methodology”. In: Deep Learning. MIT Press. Chap. 11, pp. 416-437.
URL: http://www.deeplearningbook.org (visited on 2020-03-11).

— (2016d). “Representation Learning”. In: Deep Learning. MIT Press. Chap. 15, pp. 524—
554. URL: http://www.deeplearningbook.org (visited on 2020-03-11).

Graves, Alex et al. (2006). “Connectionist Temporal Classification: Labelling Unsegmented
Sequence Data with Recurrent Neural Networks”. In: Proceedings of the 23rd Interna-
tional Conference on Machine Learning (New York, NY, USA). ICML ’06. ACM, pp. 369—
376. ISBN: 1-59593-383-2. DOI: 10.1145/1143844.1143891.

Hazen, Timothy J. and Victor W. Zue (1993). “Automatic language identification using a
segment-based approach”. In: Proc. EUROSPEECH 1993, pp. 1303-1306.

He, Kaiming et al. (June 2016a). “Deep Residual Learning for Image Recognition”. In: The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

He, Liang et al. (2016b). “THU-EE System Description for NIST LRE 2015”. In: Proc.
Interspeech 2016, pp. 3294-3298. DOI: 10.21437/Interspeech.2016-791.

Hochreiter, Sepp and Jiirgen Schmidhuber (1997). “Long short-term memory”. In: Neural
computation 9.8, pp. 1735-1780.

IANA - Language subtag registry (2019). URL: https://www.iana.org/assignments/language -
subtag-registry/language-subtag-registry (visited on 2019-11-29).

Jauhiainen, Tommi et al. (Aug. 2019a). “Automatic Language Identification in Texts: A
Survey”. English. In: Journal of Artificial Intelligence Research 65, pp. 675-782. ISSN:
1076-9757.

Jauhiainen, Tommi et al. (June 2019b). “Language and Dialect Identification of Cuneiform
Texts”. In: Proceedings of the Sixth Workshop on NLP for Similar Languages, Varieties

86


https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html
https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html
https://doi.org/10.21437/Interspeech.2018-1805
https://doi.org/10.21437/Interspeech.2018-2458
https://doi.org/10.1109/89.279278
https://doi.org/10.21437/Interspeech.2017-1334
https://doi.org/10.21437/Interspeech.2017-1334
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.21437/Interspeech.2016-791
https://www.iana.org/assignments/language-subtag-registry/language-subtag-registry
https://www.iana.org/assignments/language-subtag-registry/language-subtag-registry

References

and Dialects (Ann Arbor, Michigan). Association for Computational Linguistics, pp. 89—
98. DOI: 10.18653/v1/W19-1409. URL: https://www.aclweb.org/anthology/W19-1409.

Kamusella, Tomasz (2016). “The History of the Normative Opposition of ‘Language versus
Dialect’: From Its Graeco-Latin Origin to Central Europes Ethnolinguistic Nation-States”.
In: Colloquia Humanistica 5. DOI: 10.11649/ch.2016.011.

Karhila, Reima et al. (Sept. 2019). “Transparent Pronunciation Scoring Using Articulatorily
Weighted Phoneme Edit Distance”. In: Proc. Interspeech 2019 (Graz, Austria), pp. 1866—
1870. DOI: 10.21437/Interspeech.2019-1785.

Khurana, Sameer et al. (Aug. 2017). “QMDIS: QCRI-MIT Advanced Dialect Identification
System”. In: Proc. Interspeech 2017, pp. 2591-2595. DOI: 10.21437/Interspeech.2017-1391.

KingLine Data Center (2016). AP16-OL7 Multilingual Database. URL: www.speechocean.com
(visited on 2019-11-01).

Kingma, Diederik P. and Jimmy Ba (May 2015). “Adam: A Method for Stochastic Opti-
mization”. In: 3rd International Conference on Learning Representations (San Diego, CA,
USA). URL: http://arxiv.org/abs/1412.6980.

Ko, Tom et al. (2015). “Audio augmentation for speech recognition”. In: Proc. Interspeech
2015, pp. 3586-3589.

Kovacs, Gyorgy et al. (2017). “Increasing the robustness of CNN acoustic models using
autoregressive moving average spectrogram features and channel dropout”. In: Pattern
Recognition Letters 100, pp. 44-50. 1SSN: 0167-8655. DOI: https://doi.org/10.1016/j .
patrec.2017.09.023.

Lander, Terri et al. (Sept. 1995). “The OGI 22 language telephone speech corpus”. In:
EUROSPEECH 1995: Fourth European Conference on Speech Communication and
Technology (Madrid, Spain), pp. 817-820.

Leeuwen, David A. van and Niko Brimmer (2008). “Building language detectors using
small amounts of training data”. In: Proc. Odyssey 2008.

Li, Haizhou, Bin Ma, and Kong Aik Lee (May 2013). “Spoken Language Recognition: From
Fundamentals to Practice”. In: Proceedings of the IEEE 101.5, pp. 1136-1159. ISSN: 0018-
9219. DOI: 10.1109/JPROC.2012.2237151.

Lin, Ruixi et al. (Sept. 2019). “Optimizing Voice Activity Detection for Noisy Conditions”.
In: Proc. Interspeech 2019 (Graz, Austria), pp. 2030—-2034. DOI: 16.21437/Interspeech.2019-
1776.

Lopez-Moreno, Ignacio et al. (May 2014). “Automatic language identification using deep
neural networks”. In: 2014 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 5337-5341. DOI: 10.1109/ICASSP.2014.6854622.

Lozano-Diez, Alicia et al. (2015). “An end-to-end approach to language identification in short
utterances using convolutional neural networks”. In: Proc. Interspeech 2015, pp. 403—407.

Ma, Zhanyu et al. (Jan. 2019). “Short Utterance Based Speech Language Identification
in Intelligent Vehicles With Time-Scale Modifications and Deep Bottleneck Features”.
In: IEEE Transactions on Vehicular Technology 68.1, pp. 121-128. DOI: 10.1109/TVT.2018.
2879361.

Martinez, David et al. (2011). “Language Recognition in iVectors Space”. In: Proceedings of
the Annual Conference of the International Speech Communication Association, INTER-
SPEECH, pp. 861-864.

Mateju, Lukas et al. (2018). “Using Deep Neural Networks for Identification of Slavic Lan-
guages from Acoustic Signal”. In: Proc. Interspeech 2018 (Hyderabad, India), pp. 1803—
1807. DOI: 10.21437/Interspeech.2018-1165.

Mazzawi, Hanna et al. (Sept. 2019). “Improving Keyword Spotting and Language Iden-
tification via Neural Architecture Search at Scale”. In: Proc. Interspeech 2019 (Graz,
Austria), pp. 1278-1282. DOI: 10.21437/Interspeech.2019-1916.

Miao, Xiaoxiao, Ian McLoughlin, and Yonghong Yan (Sept. 2019). “A New Time-Frequency
Attention Mechanism for TDNN and CNN-LSTM-TDNN, with Application to Language
Identification”. In: Proc. Interspeech 2019 (Graz, Austria), pp. 4080—4084. DOI: 16.21437/
Interspeech.2019-1256.

87


https://doi.org/10.18653/v1/W19-1409
https://www.aclweb.org/anthology/W19-1409
https://doi.org/10.11649/ch.2016.011
https://doi.org/10.21437/Interspeech.2019-1785
https://doi.org/10.21437/Interspeech.2017-1391
www.speechocean.com
http://arxiv.org/abs/1412.6980
https://doi.org/https://doi.org/10.1016/j.patrec.2017.09.023
https://doi.org/https://doi.org/10.1016/j.patrec.2017.09.023
https://doi.org/10.1109/JPROC.2012.2237151
https://doi.org/10.21437/Interspeech.2019-1776
https://doi.org/10.21437/Interspeech.2019-1776
https://doi.org/10.1109/ICASSP.2014.6854622
https://doi.org/10.1109/TVT.2018.2879361
https://doi.org/10.1109/TVT.2018.2879361
https://doi.org/10.21437/Interspeech.2018-1165
https://doi.org/10.21437/Interspeech.2019-1916
https://doi.org/10.21437/Interspeech.2019-1256
https://doi.org/10.21437/Interspeech.2019-1256

References

Milde, Benjamin and Chris Biemann (Sept. 2019). “SparseSpeech: Unsupervised Acoustic
Unit Discovery with Memory-Augmented Sequence Autoencoders”. In: Proc. Interspeech
2019 (Graz, Austria), pp. 256-260. DOI: 10.21437/Interspeech.2019-2938.

Mohamed, Abdel-rahman (2014). “Deep Neural Network Acoustic Models for ASR”. PhD
thesis. URL: http://hdl.handle.net/1807/44123.

Mozilla Common Voice (2020). URL: https://voice.mozilla.org/en (visited on 2020-02-10).

Muthusamy, Yeshwant K., Etienne Barnard, and Ronald A. Cole (Oct. 1994). “Reviewing
automatic language identification”. In: IEEE Signal Processing Magazine 11.4, pp. 33—-41.
DOI: 160.1109/79.317925.

Muthusamy, Yeshwant K. and Ronald A. Cole (1992). “Automatic segmentation and identi-
fication of ten languages using telephone speech”. In: Second International Conference
on Spoken Language Processing, pp. 1007-1010.

Muthusamy, Yeshwant K., Ronald A. Cole, and Beatrice T. Oshika (1992). “The OGI multi-
language telephone speech corpus”. In: Second International Conference on Spoken
Language Processing.

Navratil, Jiri (Sept. 2006). “Recent advances in phonotactic language recognition using
binary-decision trees”. In: Proc. Interspeech 2006 (Pittsburgh, PA, USA).

Ng, Raymond W. M. et al. (2010). “Prosodic attribute model for spoken language iden-
tification”. In: 2010 IEEE International Conference on Acoustics, Speech and Signal
Processing, pp. 5022—-5025. DOI: 10.1109/ICASSP.2010.5495070.

Nouza, Jan, Radek Safarik, and Petr Cerva (2016). “ASR for South Slavic Languages
Developed in Almost Automated Way”. In: Proc. Interspeech 2016, pp. 3868—-3872. DOI:
10.21437/Interspeech.2016-747.

Padi, Bharat, Anand Mohan, and Sriram Ganapathy (May 2019). “End-to-end Language
Recognition Using Attention Based Hierarchical Gated Recurrent Unit Models”. In:
ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 5966-5970. DOI: 16.1109/ICASSP.2019.8683895.

Phillips, A. and M. Davis (2019). Tags for Identifying Languages. URL: https://tools.ietf.
org/rfc/bcp/bepa7.txt (visited on 2019-11-29).

Pohjalainen, Jouni (2014). “Robust Methods for Speech Feature Extraction”. Doctoral
Dissertation, 96 + app. 109. ISBN: 978-952-60-6006-4. URL: http://urn.fi/URN:ISBN:978-
952-60-6006-4.

Povey, Daniel et al. (2011). “The Kaldi Speech Recognition Toolkit”. In: IEEE Catalog No.:
CFP11SRW-USB. URL: http://infoscience.epfl.ch/record/192584.

Prince, Simon J.D. and James H. Elder (Oct. 2007). “Probabilistic Linear Discriminant
Analysis for Inferences About Identity”. In: 2007 IEEE 11th International Conference on
Computer Vision, pp. 1-8. DOI: 10.1109/ICCV.2007.4409052.

Ramus, Franck and Jacques Mehler (1999). “Language identification with suprasegmental
cues: A study based on speech resynthesis”. In: The Journal of the Acoustical Society of
America 105.1, pp. 512-521. DOI: 10.1121/1.424522.

Rasédnen, Okko (2013). “Studies on unsupervised and weakly supervised methods in
computational modeling of early language acquisition”. PhD thesis, 74 + app. 122. ISBN:
978-952-60-5096-6 (printed). URL: http://urn.fi/URN:ISBN:978-952-60-5097-3.

Reddi, Sashank J., Satyen Kale, and Sanjiv Kumar (Apr. 2018). “On the Convergence
of Adam and Beyond”. In: 6th International Conference on Learning Representations
(Vancouver, BC, Canada). URL: https://openreview.net/forum?id=ryQu7f-RZ.

Ren, Zongze, Guofu Yang, and Shugong Xu (Sept. 2019). “Two-Stage Training for Chinese
Dialect Recognition”. In: Proc. Interspeech 2019 (Graz, Austria), pp. 4050-4054. DOI:
10.21437/Interspeech.2019-1522.

Reynolds, Douglas A. (1995). “Speaker identification and verification using Gaussian
mixture speaker models”. In: Speech Communication 17, pp. 91-108. 1SSN: 0167-6393.
DOI: https://doi.org/10.1016/0167-6393(95)00009-D.

88


https://doi.org/10.21437/Interspeech.2019-2938
http://hdl.handle.net/1807/44123
https://voice.mozilla.org/en
https://doi.org/10.1109/79.317925
https://doi.org/10.1109/ICASSP.2010.5495070
https://doi.org/10.21437/Interspeech.2016-747
https://doi.org/10.1109/ICASSP.2019.8683895
https://tools.ietf.org/rfc/bcp/bcp47.txt
https://tools.ietf.org/rfc/bcp/bcp47.txt
http://urn.fi/URN:ISBN:978-952-60-6006-4
http://urn.fi/URN:ISBN:978-952-60-6006-4
http://infoscience.epfl.ch/record/192584
https://doi.org/10.1109/ICCV.2007.4409052
https://doi.org/10.1121/1.424522
http://urn.fi/URN:ISBN:978-952-60-5097-3
https://openreview.net/forum?id=ryQu7f-RZ
https://doi.org/10.21437/Interspeech.2019-1522
https://doi.org/https://doi.org/10.1016/0167-6393(95)00009-D

References

Richardson, Fred, Douglas Reynolds, and Najim Dehak (2015). “Deep Neural Network
Approaches to Speaker and Language Recognition”. In: IEEE Signal Processing Letters
22.10, pp. 1671-1675. DOI: 10.1109/LSP.2015.2420092.

Ringbom, Hakan (2007). Cross-linguistic similarity in foreign language learning. Vol. 21.
Multilingual Matters. ISBN: 978-1-85359-935-4.

Sadjadi, Seyed Omid et al. (2018). “The 2017 NIST Language Recognition Evaluation”. In:
Proc. Odyssey 2018 The Speaker and Language Recognition Workshop, pp. 82—-89. DOI:
10.21437/0dyssey.2018-12.

Sak, Haim, Andrew Senior, and Francoise Beaufays (2014). “Long short-term memory
recurrent neural network architectures for large scale acoustic modeling”. In: Fifteenth
annual conference of the international speech communication association.

Schultz, Tanja and Katrin Kirchhoff (June 2006). Multilingual Speech Processing. 1st ed.
Elsevier Science and Technology, Burlington. ISBN: 9780120885015.

Seide, Frank et al. (Dec. 2011). “Feature engineering in Context-Dependent Deep Neural
Networks for conversational speech transcription”. In: 2011 IEEE Workshop on Automatic
Speech Recognition Understanding, pp. 24—29. DOI: 10.1109/ASRU.2011.6163899.

Shon, Suwon, Ahmed Ali, and James Glass (June 2018). “Convolutional Neural Network
and Language Embeddings for End-to-End Dialect Recognition”. In: Proc. Odyssey 2018
The Speaker and Language Recognition Workshop, pp. 98—-104. DOI: 16.21437/0dyssey.2018-
14.

Singer, Elliot et al. (2003). “Acoustic, phonetic, and discriminative approaches to automatic
language identification”. In: EUROSPEECH 2003 (Geneva, Switzerland), pp. 1345-1348.

Snyder, David et al. (June 2018a). “Spoken Language Recognition using X-vectors”. In:
Proc. Odyssey 2018 The Speaker and Language Recognition Workshop, pp. 105-111. DOI:
10.21437/0dyssey.2018-15.

Snyder, David et al. (Apr. 2018b). “X-Vectors: Robust DNN Embeddings for Speaker Recogni-
tion”. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 5329-5333. DOI: 10.1109/ICASSP.2018.8461375.

SoX - Sound eXchange (2015). URL: http://sox.sourceforge.net/ (visited on 2020-02-10).

Sutskever, Ilya et al. (2013). “On the Importance of Initialization and Momentum in
Deep Learning”. In: Proceedings of the 30th International Conference on International
Conference on Machine Learning (Atlanta, GA, USA). Vol. 28. ICML13. JMLR.org,
pp.- 1139-1147.

Szegedy, Christian et al. (June 2016). “Rethinking the Inception Architecture for Computer
Vision”. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp- 2818-2826.

Tang, Zhiyuan, Dong Wang, and Qing Chen (Nov. 2018a). “AP18-OLR Challenge: Three
Tasks and Their Baselines”. In: 2018 Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (APSIPA ASC), pp. 596—600. DOI: 16.23919/
APSIPA.2018.8659714.

Tang, Zhiyuan, Dong Wang, and Liming Song (Nov. 2019). “AP19-OLR Challenge: Three
Tasks and Their Baselines”. In: 2019 Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (APSIPA ASC), pp. 1917-1921. DOI: 16.1109/
APSIPAASC47483.2019.9023321.

Tang, Zhiyuan et al. (Dec. 2017). “AP17-OLR challenge: Data, plan, and baseline”. In:
2017 Asia-Pacific Signal and Information Processing Association Annual Summit and
Conference (APSIPA ASC), pp. 749-753. DOI: 10.1109/APSIPA.2017.8282134.

Tang, Zhiyuan et al. (Jan. 2018b). “Phonetic Temporal Neural Model for Language Identifi-
cation”. In: IEEE | ACM Transactions on Audio, Speech, and Language Processing 26.1,
pp. 134-144. 1SSN: 2329-9290. DOI: 10.1109/TASLP.2017.2764271.

Tong, Audrey et al. (2016). “Summary of the 2015 NIST Language Recognition i-Vector
Machine Learning Challenge”. In: Odyssey 2016: The Speaker and Language Recognition
Workshop (Bilbao, Spain), pp. 297-302. URL: http://www.isca-speech.org/archive/odyssey_
2016/pdfs_stamped/74.pdf.

89


https://doi.org/10.1109/LSP.2015.2420092
https://doi.org/10.21437/Odyssey.2018-12
https://doi.org/10.1109/ASRU.2011.6163899
https://doi.org/10.21437/Odyssey.2018-14
https://doi.org/10.21437/Odyssey.2018-14
https://doi.org/10.21437/Odyssey.2018-15
https://doi.org/10.1109/ICASSP.2018.8461375
http://sox.sourceforge.net/
https://doi.org/10.23919/APSIPA.2018.8659714
https://doi.org/10.23919/APSIPA.2018.8659714
https://doi.org/10.1109/APSIPAASC47483.2019.9023321
https://doi.org/10.1109/APSIPAASC47483.2019.9023321
https://doi.org/10.1109/APSIPA.2017.8282134
https://doi.org/10.1109/TASLP.2017.2764271
http://www.isca-speech.org/archive/odyssey_2016/pdfs_stamped/74.pdf
http://www.isca-speech.org/archive/odyssey_2016/pdfs_stamped/74.pdf

References

Tong, Rong et al. (May 2006). “Integrating Acoustic, Prosodic and Phonotactic Features for
Spoken Language Identification”. In: 2006 IEEE International Conference on Acoustics
Speech and Signal Processing Proceedings. Vol. 1. DOI: 10.1109/ICASSP.2006.1659993.

Torres-Carrasquillo, Pedro A. et al. (2002). “Approaches to language identification using
Gaussian mixture models and shifted delta cepstral features”. In: Seventh International
Conference on Spoken Language Processing.

Vafeiadis, Anastasios et al. (Sept. 2019). “Two-Dimensional Convolutional Recurrent Neu-
ral Networks for Speech Activity Detection”. In: Proc. Interspeech 2019 (Graz, Austria),
pp. 2045-2049. DOI: 10.21437/Interspeech.2019-1354.

Vaswani, Ashish et al. (2017). “Attention is All you Need”. In: Advances in Neural Informa-
tion Processing Systems 30. Ed. by I. Guyon et al. Curran Associates, Inc., pp. 5998-6008.
URL: http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf.

Wakita, Hisashi (Apr. 1977). “Normalization of vowels by vocal-tract length and its appli-
cation to vowel identification”. In: IEEE Transactions on Acoustics, Speech, and Signal
Processing 25.2, pp. 183-192. I1SSN: 0096-3518. DOI: 16.1109/TASSP.1977.1162929.

Wan, Li et al. (May 2019). “Tuplemax Loss for Language Identification”. In: ICASSP
2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 5976-5980. DOI: 10.1169/ICASSP.2019.8683313.

Wang, Dong, Xuewei Zhang, and Zhiyong Zhang (2015). THCHS-30 : A Free Chinese Speech
Corpus. URL: http://arxiv.org/abs/1512.01882.

Wang, Dong et al. (Dec. 2016). “AP16-OL7: A multilingual database for oriental languages
and a language recognition baseline”. In: 2016 Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference (APSIPA), pp. 1-5. DOI: 10.1109/
APSIPA.2016.7820796.

Wang, Shuai, Yanmin Qian, and Kai Yu (2017). “What Does the Speaker Embedding
Encode?” In: Proc. Interspeech 2017, pp. 1497—1501. DOI: 10.21437/Interspeech.2017-1125.

Watanabe, Shinji, Takaaki Hori, and John R. Hershey (Dec. 2017). “Language independent
end-to-end architecture for joint language identification and speech recognition”. In: 2017
IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), pp. 265-271.
DOI: 10.1109/ASRU.2017.8268945.

WebRTC (Apr. 2020). URL: https://webrtc.org/ (visited on 2020-04-26).

Weston, Jason, Frédéric Ratle, and Ronan Collobert (2008). “Deep Learning via Semi-
Supervised Embedding”. In: Proceedings of the 25th International Conference on Machine
Learning. Helsinki, Finland, pp. 1168-1175. DOI: 16.1145/1390156.1390303.

Xu, Zhicun (Dec. 2018). “Audio Event Classification Using Deep Learning Methods”. en.
MA thesis, pp. 67+6. URL: http://urn.fi/URN:NBN: fi:aalto-201812146460.

YouTube (Nov. 2019). URL: https://www.youtube.com/ (visited on 2019-11-26).

youtube-dl: Download videos from YouTube (Nov. 2019). URL: https://ytdl-org.github.io/
youtube-dl/index.html (visited on 2019-11-26).

Yu, Changsong et al. (2018). “Multi-level attention model for weakly supervised audio
classification”. In: DCASE2018 Workshop on Detection and Classification of Acoustic
Scenes and Events. URL: http://epubs.surrey.ac.uk/849626/.

Yu, Dong and Li Deng (2015a). “Deep Neural Networks”. In: Automatic Speech Recognition:
A Deep Learning Approach. London: Springer. Chap. 4, pp. 57-77. ISBN: 978-1-4471-
5778-6. DOI: 10.1007/978-1-4471-5779-3.

— (2015b). “Gaussian Mixture Models”. In: Automatic Speech Recognition: A Deep Learning
Approach. London: Springer. Chap. 2, pp. 13—21. ISBN: 978-1-4471-5778-6. DOI: 10.1007/
978-1-4471-5779-3.

— (2015¢). “Hidden Markov Models and the Variants”. In: Automatic Speech Recognition: A
Deep Learning Approach. London: Springer. Chap. 3, pp. 23-54. ISBN: 978-1-4471-5778-6.
DOI: 10.1007/978-1-4471-5779-3.

Zampieri, Marcos and Binyam Gebrekidan Gebre (Sept. 2012). “Automatic identification of
language varieties: The case of Portuguese”. In: Proceedings of the Conference on Natural

90


https://doi.org/10.1109/ICASSP.2006.1659993
https://doi.org/10.21437/Interspeech.2019-1354
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.1109/TASSP.1977.1162929
https://doi.org/10.1109/ICASSP.2019.8683313
http://arxiv.org/abs/1512.01882
https://doi.org/10.1109/APSIPA.2016.7820796
https://doi.org/10.1109/APSIPA.2016.7820796
https://doi.org/10.21437/Interspeech.2017-1125
https://doi.org/10.1109/ASRU.2017.8268945
https://webrtc.org/
https://doi.org/10.1145/1390156.1390303
http://urn.fi/URN:NBN:fi:aalto-201812146460
https://www.youtube.com/
https://ytdl-org.github.io/youtube-dl/index.html
https://ytdl-org.github.io/youtube-dl/index.html
http://epubs.surrey.ac.uk/849626/
https://doi.org/10.1007/978-1-4471-5779-3
https://doi.org/10.1007/978-1-4471-5779-3
https://doi.org/10.1007/978-1-4471-5779-3
https://doi.org/10.1007/978-1-4471-5779-3

References

Language Processing 2012 (Vienna, Austria), pp. 233—-237. URL: http://hdl.handle.net/
11858/00-001M-0000-000F-EC46-0.

Zazo, Ruben, Alicia Lozano-Diez, and Joaquin Gonzalez-Rodriguez (June 2016a). “Evalua-
tion of an LSTM-RNN System in Different NIST Language Recognition Frameworks”.
In: Odyssey 2016: The Speaker and Language Recognition Workshop (Bilbao, Spain),
pPp- 231-236. URL: http://www.isca-speech.org/archive/odyssey 2016/pdfs_stamped/45.pdf.

Zazo, Ruben et al. (Jan. 2016b). “Language Identification in Short Utterances Using Long
Short-Term Memory (LSTM) Recurrent Neural Networks”. In: PLOS ONE 11.1, pp. 1-17.
DOI: 10.1371/journal.pone.0146917.

Zhan, Puming and Alex Waibel (1997). Vocal tract length normalization for large vocabulary
continuous speech recognition. Tech. rep. CARNEGIE-MELLON UNIV PITTSBURGH
PA SCHOOL OF COMPUTER SCIENCE.

Zhang, Chunlei, Qian Zhang, and John H.L. Hansen (May 2019). “Semi-supervised Learn-
ing with Generative Adversarial Networks for Arabic Dialect Identification”. In: ICASSP
2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 5986-5990. DOI: 10.1109/ICASSP.2019.8682629.

Zhao, Jingjing et al. (Nov. 2008). “Cortical competition during language discrimination”. In:
NeuroImage 43.3. Copyright - Copyright Elsevier Limited Nov 15, 2008; Last updated -
2015-03-28, pp. 624—633. DOI: 10.1016/j .neuroimage.2008.07.025.

Zissman, Marc A. (Jan. 1996). “Comparison of four approaches to automatic language iden-
tification of telephone speech”. In: IEEE Transactions on Speech and Audio Processing
4.1, pp. 31-. ISSN: 1063-6676. DOI: 10.1109/TSA.1996.481450.

Zou, Fangyu et al. (June 2019). “A Sufficient Condition for Convergences of Adam and
RMSProp”. In: 2019 IEEE | CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 11119-11127. DOI: 16.1169/CVPR.2019.01138.

91


http://hdl.handle.net/11858/00-001M-0000-000F-EC46-0
http://hdl.handle.net/11858/00-001M-0000-000F-EC46-0
http://www.isca-speech.org/archive/odyssey_2016/pdfs_stamped/45.pdf
https://doi.org/10.1371/journal.pone.0146917
https://doi.org/10.1109/ICASSP.2019.8682629
https://doi.org/10.1016/j.neuroimage.2008.07.025
https://doi.org/10.1109/TSA.1996.481450
https://doi.org/10.1109/CVPR.2019.01138

	Abstract
	Abstract in Finnish
	Preface
	Contents
	List of abbreviations and symbols
	Introduction
	Research questions
	Contributions of this thesis
	Thesis structure

	Definition of spoken language identification
	Languages, dialects and language variants
	Cues for discriminating languages
	Languages in speech and text

	Machine learning and speech
	Machine learning formulation
	Speech representations
	Evaluation metrics
	Optimization methods
	Voice activity detection

	Datasets
	OGI-11L (1994)
	MGB-3 (2016)
	SBS (2018)
	YTN-Aalto2019 (2019)
	AP19-OLR (2019)
	Other notable datasets

	Existing work
	Phonotactic approaches
	Language embeddings
	Acoustic-phonetic approaches
	Large-scale SLI

	Models and building blocks
	SLI from tokenized speech
	RNN based SLI
	CNNs for variable length input
	CNNs with RNNs or time-attention

	Experiments and results
	Experiment settings and preprocessing
	Reproducing reference results
	TLI based experiments
	BNF based experiments
	Other approaches
	Comparing all results
	Online SLI

	Future work
	Extending the experiments
	Other SLI models

	Conclusions
	References

