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Abstract 

Industry 4.0 technologies provide digital solutions for the automation of manufacturing. In 

circular economy-based models, the resources stay in the system as it experiences one of the 

10R (Refuse, Rethink, Reduce, Reuse, Repair, Refurbish, Remanufacture, Repurpose, 

Recycle, and Recover) processes. These 10R processes require the development of advanced 

manufacturing capabilities; however, 10R processes suffer from various challenges and can 

be effectively overcome through Industry 4.0 technological applications.  Although literature 

has indicated the use of various Industry 4.0 technologies, little information is available about 

firms’ views on the degree of Industry 4.0 application in the 10R based advanced 

manufacturing area and its ability to achieve sustainable development. The current study 

aspires to examine how great an effect Industry 4.0 adoption has on 10R advanced 

manufacturing capabilities and its outcome on sustainable development under the moderating 

effect of an Industry 4.0 delivery system. Practice-based view and Dynamic capability view 

theories are used to conceptualise the theoretical model. The research team statistically 

validated the theoretical model considering 124 data points that were collected using an 

online survey with a structured questionnaire. The findings point out that the path degree of 

Industry 4.0 adoption and 10R advanced manufacturing capabilities are statistically 

significant. 10R advanced manufacturing capability is found to have a positive influence on 

sustainable development outcomes. The Industry 4.0 delivery system has a moderating effect 

on the path degree of I4.0 implementation and 10R advanced manufacturing capabilities. This 

paper explores an emerging phenomenon and establishes new links which serve to enrich and 

advance literature in this area.  
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1. Introduction 

Globally, manufacturers are facing a scarcity of resources due to unsustainable manufacturing 

and resource utilization practices (Bell et al., 2013; Gould and Colwill, 2015). In recent 

times, manufacturers engaged in international markets are adopting various green initiatives 

for sustainability outcomes which can attract more customers (Kawai et al., 2018). Through 

corporate social responsibility programs, manufacturers are trying to return something useful 

to society (Kolk and Van Tulder, 2010). However, most companies are failing to achieve 

sustainable development goals due to their failure of sustainable remanufacturing, recycling, 

and reusing operations. These failures are due to their lack of flexibility, visibility and poor 

resilience (Kouedeu et al., 2014; Jiang et al., 2016).  

Industry 4.0 (I4.0) technologies can be used to effectively aid digital transformations 

of an organisation to achieve sustainable development goals (de Sousa Jabbour, 2018b). It is 

worth examining how I4.0 adoption can help manufacturers enhance advanced manufacturing 

capabilities and further meet their sustainable development goals. The current study focuses 

on a contemporary research area, I4.0, which has become a popular topic within the research 

community. The fourth industrial revolution has brought an advancement in digital 

technologies, which will completely change traditional manufacturing architecture 

(Telukdarie et al., 2018). However, I4.0 technologies pose a challenge because they are 

relatively new and manufacturing companies face difficulties such as skill gaps, financial 

constraints and operational complexities in I4.0 projects (Sung, 2018; Raj et al., 2019).  To 

overcome these challenges, a proper I4.0 delivery system needs to be developed (Bag et al., 

2018b). I4.0 provides firms with increased visibility. Managers can access supply-and-

demand-related real-time data from a supply chain network through the I4.0 system 

dashboards. This could provide a great opportunity for organization learning (Tortorella et 

al., 2020) and the ability to run production lines using recycled, refurbished and 

remanufactured components. Operations can easily be optimised with the implementation of 

I4.0 systems and a standard operating process aligned with I4.0, which provide several 

options to optimise business processes and significantly reduce resources and lead times 

(Chuks and Telukdarie, 2018; Bag et al., 2020 a,b).  

In volatile business environments, companies practicing remanufacturing and 

recycling face problems such as high levels of uncertainty, supply-related bottlenecks, 

production losses, excess inventory, and delayed sales order dispatch, which affect the overall 
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operations performance (Inderfurth, 2005). Uncertainties largely influence the decision-

making quality of managers. This also leads to an increase in spending levels, thus reducing 

profit margins. A supply crisis majorly impacts manufacturing schedules and increases 

backlogs, leading to production loss and lower customer satisfaction levels. A lack of 

visibility causes difficulty in performing accurate sales forecasting of 

remanufactured/recycled products. To avoid losing customer orders, firms maintain slack 

resources, i.e. stocking all high lead time related inputs/raw material. The disadvantage to 

stocking these items is a blockage of working capital. Further, with increasing technological 

changes, an increased chance of stock becoming obsolete at some point of time can also 

result in huge financial losses. A delay in sales order dispatch and the inability to meet 

customers’ requested dates can result in customer dissatisfaction. Such delays that impact 

customer business can lead to an opportunity loss and can also result in the loss of customers 

(Bag et al., 2018a). However, manufacturing companies that successfully adopt I4.0-enabled 

technologies can improve both their top and bottom line simultaneously. As per the PWC 

report (2016), after adopting I4.0, companies can expect a betterment of more than 10% in 

terms of efficiency. These companies can also expect an operations cost reduction of more 

than 10% when they adopt smart manufacturing technologies, which can integrate planning 

and scheduling activities. Predictive maintenance also helps to significantly lower machine 

downtime and avoid production delays. Manufacturing companies with a high degree of I4.0 

adoption when applying front-end and base technologies will attain operational flexibility, 

operational efficiency and operational effectiveness (Karimi et al., 2007; Frank et al., 2019). 

Manufacturing companies play a big role in sustainable developments; however, it is 

also a big concern for high technology-oriented manufacturing firms (Law and Gunasekaran, 

2012). The proper selection of product design, services and transportation can lower global 

warming while allowing firms to become competitive in the international market 

(Gunasekaran and Gallear, 2012). This is possible through the development of advanced 

manufacturing capabilities using 10R-based manufacturing approaches such as refuse, 

rethink, reduce, reuse, repair, refurbish, remanufacture, repurpose, recycle and recover 

options that can provide opportunities for cleaner production in the circular economy based 

business model and help firms to achieve a competitive edge over their competitors 

(Kirchherr et al., 2017). A positive relationship exists between competitive strategies and 

manufacturing strategies (Amoako-Gyampah and Acquaah, 2008). I4.0 creates value by 

allowing better flexibility and visibility (Rymaszewska and Gunasekaran, 2017), but a low 

level of infrastructure and information is generally available to detail the expectations from 
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firms that belong to different emerging economies with regards to the potential for I4.0 

technologies to cause performance improvements (Dalenogare et al., 2018). Small and 

medium sized firms lack understanding of I4.0 technological applications (Frank et al., 2019). 

Focus is required on these micro and medium sized firms as they are the backbone of 

economic development for any country (de Sousa Jabbour et al., 2019). Small and medium 

sized firms are consuming larger portions of resources and generating higher volume of 

wastes, therefore research focus is required to analyse different aspects of sustainability (de 

Sousa Jabbour et al., 2019).   

Firms apply various technologies to justify their investments in processes and novel 

technological applications (Raafat, 2002). Although literature has indicated use of various 

basic and advanced level I4.0 technologies, little is known about how firms see the degree of 

I4.0 application in the 10R based advanced manufacturing area to exploit sustainable 

development outcomes. To remove the void in the literature, the current study aspires to 

examine how great an effect Industry 4.0 adoption has on 10R advanced manufacturing 

capabilities and its final outcome for sustainable development. 

Based on the preceding discussions the research team aims to answer the question below. 

 

RQ1: How great an effect I4.0 adoption has on 10R advanced manufacturing capability and 

sustainable development? 

 

Literature indicates that the stronger the delivery system, the better the degree of 

implementation and the more positive the outcome in manufacturing operations (Bag et al., 

2018b). The I4.0 delivery system involves top management support, training and project 

resources, support of research institutes, and universities facilitating adoption of I4.0 

technologies (Bag et al., 2018b). The literature also indicates that a large demand exists for 

information and communication technology adaptation among the segment of small and 

medium enterprises in South Africa (Cant and Wiid, 2016). This gap can be bridged using 

I4.0 technologies (Frank et al., 2019), which can easily connect the shop floor to the top floor 

(Telukdarie et al., 2018). However, there is a lack of awareness around I4.0 and its related 

terms such as internet of things (IoT), industrial internet of things (IIoT), and supply chain 

4.0. To many in the business world, the interaction between these terms remains unknown 

(Glas and Kleemann, 2016). Moreover, small and medium enterprises consider themselves 

inefficient when it comes to implementing new technology with respect to manufacturing 

scheduling and control areas (Moeuf et al., 2018). Large manufacturing firms face various 
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challenges, from sustainable development policies for final products to the real-time 

production scheduling of manufacturing resources (Zhang et al., 2018a). Few studies have 

been completed that are related to the sustainability of the 10R advanced manufacturing 

capability while also considering Industry 4.0 (Prause and Atari, 2017). The potential of I4.0 

to aid in developing sustainability-related research is in an early stage of its existence and 

requires more attention from future researchers (Bag, 2018b).  The current study attempts to 

answer the second question as under. 

 

RQ2: Does I4.0 delivery system play a moderating role on the relationship between degree of 

I4.0 adoption and 10R advanced manufacturing capability? 

 

The theoretical relevance of the current study is its focus on three interesting concepts, one in 

the domain of information technology (I4.0); the second in that of operations management 

(10R advanced manufacturing), and the third in environmental management (sustainable 

development). Practice Based View (PBV) and Dynamic Capability View (DCV) theories are 

used as theoretical support to explain the links, which the research team believes is the unique 

contribution in this study.  

Section two detailed the main constructs that are central to this study, such as I4.0 

adoption, 10R advanced manufacturing capability, and sustainable development. Further, the 

research team presents the two key theories (Practice-based view and Dynamic capability 

view) used to develop the research framework. In section three, the research team presents 

the hypotheses followed by research methodology applied in this study. The data analysis and 

findings are in section five is followed by the discussion of the results; and the final sections 

present the theoretical and practical usefulness of the study. 

 

2. Review of Literature 

In this section, the research team describes the key constructs and theories used to develop 

the research framework. 

2.1 Industry 4.0  

Industry 4.0 (I4.0) research in operations management is gaining momentum as 

digitalization is considered a priority among manufacturing companies (PWC report, 2018). 

A report by Deloitte published in 2014 indicated that enabling Industry 4.0 technology would 

lead to global supply chain operations becoming more competitive (za-Africa-industry-4.0-

report). Industry 4.0 tools can be used to integrate all of the key functions in order to share 
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common data, information, and knowledge throughout the supply chain (Dalenogare et al., 

2018; Dev et al., 2019). They can also be applied to automate critical operations activities. 

However, the key impact of Industry 4.0 is its ability to produce and access real-time 

information to allow increased visibility and to mitigate risks in the supply chain network 

(Telukdarie et al., 2018). The unstructured data generated from various sources, such as 

intelligent digital sensors (temperature, pressure, flow, weight, density and power utilisation 

in a manufacturing environment) connected via wireless networks and mobile devices (from 

sales, procurement, planning and control, stores team) with special applications, can generate 

a high volume of data which can then be analysed in a central control room to further extract 

key information for quality decision making. This can improve the accuracy of forecasts, 

supplying a greater degree of visibility, higher resource efficiency, asset utilisation, and 

improved throughput times (Telukdarie et al., 2018). 

Smart manufacturing uses systems based in Internet of Things (IoT) and artificial 

intelligence (AI) to plan machine loadings and vehicle routing, control production flows, and 

schedule deliveries and vehicle movements. According to Čolaković and Hadžialić (2018), 

IoT-based applications enable a seamless integration of the virtual world with the physical 

world. IoT uses a combination of devices to produce data, send it to other devices and then 

further send it to the cloud. This data is useful when it comes to management decisions and 

data mining completed by business analysts who extract key information from data.  

Decision making is one function of data quality and stakeholder commitment that is 

important for data quality and analytics (Hazen et al., 2017). This is why big-data-based 

research is gaining importance as supply chains see an increasing complexity (Hazen et al., 

2016). Hazen et al. (2014) suggested a method for scrutinizing and managing data quality in 

supply chain management, while Dubey et al. (2016) investigated the role of big data and 

analytics in enhancing sustainable manufacturing. In a recent study, Dubey et al. (2017b) 

stated that there was a positive relationship between big data and predictive analytics and 

social/environmental performance. Huge volumes of data are constantly being generated by 

business logistics operations (Wang et al., 2016). The critical information and knowledge 

gained from the shop floor/inbound logistics/outbound logistics can be used for new services 

and applications (Dev et al., 2019). Machine-to-machine communication systems are an 

advanced technology, which enables the exchange of wireless data between IoT equipment 

and the gateway. Further, with the use of the internet, data flows from the gateway to a 

remote repository in the control room (Montori et al., 2018). However, machine-to-machine 

communications in smart manufacturing have different traffic features and cause distinctive 
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problems. Smart technologies such as advanced manufacturing systems (additive 

manufacturing), advanced process control, and advanced machine control are used to monitor 

and control smart production lines. The main focus of I4.0 technological enablement in 

manufacturing is the improvement of operational flexibility, operational efficiency and 

operational effectiveness in order to enhance operational performance (Karimi et al., 2007). 

Delic and Eyers (2020) suggested that additive manufacturing can improve supply 

chain flexibility and supply chain performance. Further, Lucianetti et al. (2018) suggested the 

prerequisites of application of advanced manufacturing tools. Raj et al. (2019) mentioned that 

coordinated national level policy on I4.0 is essential for the diffusion of technological 

innovation. Without these policies, restricted applications may deprive firms from availing 

full benefits. It is clear that digital strategy and resources are essential for I4.0 applications. 

2.2 10R advanced manufacturing capability 

The foundation of a circular economy is built on extending both manufacturer responsibility 

and the accountability of end users. In a circular economy, the resources stay in the system 

for a long time and provide maximum value, and then at the end of its life cycle, components 

are recovered (Bag et al., 2020a). Developing advanced manufacturing capabilities requires 

research and developments (Ren et al., 2015; Chan et al., 2018). Advanced manufacturing 

using 10R-based approaches such as refuse, rethink, reduce, reuse, repair, refurbish, 

remanufacture, repurpose, recycle and recover can provide options for cleaner production and 

can help firms achieve a competitive edge over their competitors (Kirchherr et al., 2017). 

Digital technologies can be used to allay uncertainties in 10R manufacturing operations. 

Durach et al. (2017) discussed contemporary 3D printing based production steps and 

presented fifteen challenges. The advanced manufacturing technology of additive 

manufacturing and prototyping can help immensely in 10R manufacturing operations 

(Hannibal and Knight, 2018). Mativenga et al. (2017) declared cost reduction to be an 

influential driver and sustainer for composite waste recycling in South Africa. Cost control 

can be enhanced by adopting Industry 4.0 and vertical and horizontal integration of the firm 

to allow a flow of information. 10R manufacturing is a relatively new concept, thus further 

research is required to shed light into this important area. The basic concept of 10R principles 

is presented in Figure 1. 
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Figure 1. 10R principles (Source: Kirchherr et al., 2017; Potting et al., 2017) 

 

2.3 Sustainable development 

In September 2015, the member states of United Nations (UN) adopted the 2030 agenda for 

Sustainable Development (SD). SD focuses primarily on people, planet and prosperity. The 

2030 agenda includes 17 goals, 169 targets, and 231 indicators. Based on these global SD 

targets, each country is establishing their own targets on a national level. The vision for 

African Union is “Africa We Want”, which includes 8 principles, later transformed into 7 

goals of Agenda 2063 which is considered a vision-cum-action plan (Dlamini, 2015). South 

African manufacturers are aligning these 7 goals with business operational goals to enhance 

ecology, economy, and social equity (Mativenga et al., 2017).  

Markley and Davis (2007) stated that, as the current sources of competitive 

advantages deplete, firms must focus increasingly on new sources of competitive advantage 

for sustainability. Carter and Rogers (2008) introduced the concept of sustainability, which 

is basically the integration of social and economic parameters to allow a firm’s long-term 

economic viability. Winter and Knemeyer (2013) stated that current literature lacks 

sustainability-related studies focusing on an integrated approach. Cultural and economic 

factors also greatly influence sustainability developments in any country (Roy and Goll, 

2014). 

Therefore, identifying key sustainable supply chain drivers and understanding the 

inter-relationships among those drivers can be helpful for managers to use as a simple guide 

(Gimenez et al., 2012; Dubey et al., 2017b; Dubey et al., 2015) for integrating sustainability 

1 Refuse means making product redundant by discarding its function or by offering the same 
function with a completely dissimilar product

2 Rethink means making product use more intensive
3 Reduce means use of lesser natural resources in manufacturing

4 Reuse means use of discarded product by another user which is still in working condition 
and the original functionalities are present

5 Repair means repairing and maintenance of defective product so that it can be used with 
original function

6 Refurbish means restoring an old product to bring it up to date

7 Remanufacture means use parts of discarded product in a new product with the same function

8 Repurpose means use discarded product or its parts in a new product with a different 
function

9 Recycle applies recycling for processing materials to obtain the same or lower quality of 
product

10 Recovering use incineration of material for energy recovery
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aspects in business operations. Supply chain transparency was found to enhance social and 

environmental parameters (Dubey et al., 2017c). Literature indicates that lean practices can 

help both directly and indirectly in achieving supply chain sustainability (Ruiz-Benitez et 

al., 2019). Firms are gradually moving to a circular economy by applying recycling and 

remanufacturing based principles (Bag et al., 2018a). Trust building is important to operate 

business in a sharing economy (Govindan et al., 2020). It is clear that without complying to 

SD goals, firms are likely to perish in this planet. Next, we present the theories used to 

conceptualise the research framework. 

2.4 Underpinning theories 

Conceptual research methodologies provide momentous enhancements to a researcher’s 

ability to develop solid theories on operations management. The proposed theory may be a 

simple framework, but it must meet the Dubin's five basic needs for a theory nonetheless, in 

that it: offers an improved understanding; is interesting; consists of variables and their 

relations; contains no composite variables; and contains the boundary criteria (Meredith, 

1993).  

2.4.1 Practice Based View (PBV) 

The PBV perspective was proposed by Bromiley and Rau (2016). Having reviewed top 

Resource-Based View (RBV) papers, they contend that applying RBV in operations 

management research does not always help researchers align with their research objectives. 

RBV works on certain assumptions, such as those firms that are aiming to maximize profit 

margins and managers in firms that are strictly rational. Resource heterogeneity and resource 

immobility are two further assumptions in RBV (Barney and Arikan, 2001). 

Bromiley and Rau (2016) proposed that PBV was a better choice for operations 

management scholars to elucidate the total set of firm and unit performance on the basis of 

exchangeable practices. In PBV, the dependent variables are adoption or usage of particular 

practices and analysing midway or end performance results at a firm or a plant level or other 

business units. The explanatory variable in PBV is what creates the difference at a firm, plant 

level or other business unit. The underlying assumption in PBV is that firms demonstrate a 

large deviation in performance within an industry; moreover, not every firm adopts every 

practice that may prove beneficial to them. As a result, the utilisation of practices can clarify 

performance deviation. The payback of individual practices may vary across an organisation 

as various moderators’ impact each and every practice. Thus, PBV can remove a number of 

problems linked with RBV. Similar to RBV, PBV is an umbrella concept under which a 

researcher may use alternate theories to present the primary concept that can clarify the 
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specific impact on competitive advantage or performance, and which is triggered by 

individual firm characteristics. 

In the present research study, authors argue that I4.0 is an individual practice that may 

be used by individual firms to enhance 10R advanced manufacturing capabilities. 

Furthermore, the research team considers the I4.0 delivery system a moderator that impacts 

the I4.0 practice and its outcome on the firm’s 10R advanced manufacturing operations. 

Enhanced operational excellence means improved operational flexibility, efficiency, and 

operational effectiveness which further determine the development of 10R advanced 

manufacturing capability to be able to run remanufacturing- and recycling-based production 

operations. I4.0 practices lead to the development of 10R advanced manufacturing 

capabilities, which is further supported using Dynamic capability view theory. 

2.4.2 Dynamic Capability View (DCV) 

Dynamic capability theory is used by previous researchers in operations management 

research, specifically for performing strategic choices under different business scenarios 

(Teece and Pisano, 1994; Teece et al., 1997; Barreto, 2010).  

Teece (2007) defined dynamic capabilities, stating that they “can be used firstly, to anticipate 

and mould opportunities and threats, secondly, to grab opportunities, and thirdly, to sustain 

competitiveness through improving, integrating, defending, and, fourthly, when required, 

reconfiguring the tangible and intangible assets of the firm”.  

Here, researchers argue that 10R advanced manufacturing capability is required to 

anticipate threats and to be able to make a strategic move before competitors, and also to be 

able to penetrate newer markets with remanufactured/recycled products at competitive 

pricing. The firm can reconfigure both tangible and intangible assets in 10R advanced 

manufacturing activities as per business requirements. 

 

3. Research Hypotheses 

The three research hypotheses are developed from the preceding discussion. 

3.1 Degree of I4.0 adoption and 10R advanced manufacturing capability 

International businesses practicing smart manufacturing focus mainly on three aspects to 

measure operational excellence: operational flexibility, operational efficiency, and 

operational effectiveness (Karimi et al., 2007). Smart production lines apply principles of 

flexible manufacturing systems that aid easy changeovers without having to wait a long time 

for an input (raw material/returned goods) and continue production of other products with 

available resources. This can save time and resources (energy, air, water), improve equipment 



11 
 

and manpower utilisation, and significantly save costs. However, the main contribution of 

implementing such a flexible system is in regard to resource efficiency and resource savings 

(Kumar et al., 2015; Malik et al., 2016). 

I4.0 implementation improves the process and product efficiency. I4.0-enabled 

technologies help to reuse the waste generated during the manufacturing stages. They can 

also help recover energy from scraps/rejects and production wastages. These advanced 

technologies also optimise business processes and result in a lower percentage of scarce 

resource usage required in unit product manufacturing (Kolber and Zuklke, 2015). 

Data integration in I4.0 systems provides increased visibility in the supply chain 

network (Xu et al., 2018). As technology advances, stock can become obsolete, thus smarter 

companies utilise I4.0 systems to avoid overstocking/understocking resources. I4.0 

technological enablement can be used to provide accurate sales forecasts and companies can 

then plan and schedule accordingly to meet customer requirements (Saucedo-Martínez et al., 

2018). I4.0 automation can improve the quality of business operations in a volatile 

environment and thus allows smart manufacturing firms to develop their ability to 

successfully apply the 10R manufacturing principles. This will provide a competitive edge to 

a manufacturer over its competitors (Chen et al., 2015; de Sousa Jabbour et al., 2018b). 

Therefore, we hypothesise: 

H1: Manufacturing companies which adopt I4.0 to a greater extent to apply front end and 

base technologies will demonstrate higher levels of 10R manufacturing capabilities. 

3.2 Moderating effect of I4.0 delivery system on the path degree of I4.0 implementation 

and 10R advanced manufacturing capabilities 

The I4.0 delivery system involves top management support, training resources, project 

resources, and the support of research institutes and universities (Bag et al., 2018b). Top 

management support in I4.0 projects ensures the success of projects. The interest of top 

management in the I4.0 project motivates juniors to participate more actively in projects and 

to manage it efficiently. Management reviews of I4.0 projects’ progress greatly help in 

achieving project goals (de Sousa Jabbour et al., 2018a). Training resources are an integral 

part of the I4.0 delivery system. In-house and external training for employees are necessary to 

keep them abreast of the technological advancements and process changes in order to easily 

fit into the I4.0 structure. 

Similarly, project resources are important to drive the I4.0 delivery system. In 

successful projects, the I4.0 project team is headed by an experienced and capable project 

manager (Lasi et al., 2014). Secondly, a logical and realistic schedule for I4.0 implementation 



12 
 

will generate better outcomes. Lastly, the application of appropriate project management 

tools and techniques while adopting I4.0 projects will provide a better operational output 

(Albers et al., 2016) which indicates that the level of I4.0 delivery systems influences their 

implementation. If the I4.0 delivery system is not properly developed within the company, 

the full extent of I4.0 activation cannot be achieved, which will lower the capabilities of 10R 

advanced manufacturing. Therefore, we hypothesise: 

H2: Manufacturing companies with a stronger (weaker) I4.0 delivery system have a greater 

(lower) level of operational excellence for a given level of I4.0 adoption. 

3.3 10R advanced manufacturing capability and sustainable development 

The changeover to a circular economy needs advanced technological applications (Cecconet 

et al., 2017). I4.0 architecture can fit the technical requirements necessary to set up a 

sustainable smart manufacturing unit to run production lines using 10R principles. The ability 

to build 10R advanced manufacturing capabilities can transform the traditional operations 

into a circular economy system. Globally every multi-national company is currently aiming 

for cleaner methods of production to achieve sustainable development goals (Fahy, 2002). 

Adopting 10R principles in the production line will help to develop a closed loop supply 

chain and enhance the longevity of resources. This will help engineering companies to 

improve environmental quality and increase economic prosperity and social equity, thus 

aligning with sustainable development goals (Zhang et al., 2018b). Therefore, we 

hypothesise: 

H3: 10R advanced manufacturing capability has a positive influence on sustainable 

development. 

 

4. Research Methods 

The proposed method is based on empirical research design. Empirical is defined as 

knowledge gathered from real world observations or experiments (Flynn et al., 1990). 

Empirical research is field based research designed to collect data from naturally occurring 

events. Field data can be useful when building a baseline for a longitudinal study and for 

developing parameters and distributions for mathematical modelling and simulation studies. 

Empirical data is very useful for theory building and theory verification in the field of 

operations management. Empirical study in operations management research consists of five 

key steps (Flynn et al., 1990). The steps followed are depicted in Figure 2. 
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Figure 2. Research steps (Source: Flynn et al., 1990) 

 

The first step deals with developing the theoretical foundation of the study. In this study PBV 

and DCV are used to develop the theoretical foundation of the research. The current study 

examines a research problem that involves theoretical verification. 

The second step involves the selection of a research design appropriate for both the 

research problem and the theoretical foundation of the study. The current study focuses on 

survey-based research design which is a commonly used method in operations management 

research. 

The third step is the selection of data collection methods which can involve one or 

more than one method. In the current study, a structured questionnaire is considered for the 

purpose of data collection. A large number of factors may bias survey-based research using 

questionnaires. Therefore, prior to commencing the survey it is important that the researcher 

design a reliable questionnaire consisting of valid constructs.  
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The fourth step is the collection of data. Sample selection, questionnaire emailing, pilot 

survey, final survey, data cleaning and analysis of non-respondents are part of this step.  

The fifth step consists of the selection of an appropriate statistical tool for data 

analysis. The key focus in theory verification research is hypothesis testing that is within a 

specified level of confidence. In the current study WarpPLS software is used to perform 

hypothesis testing.  

4.1 Survey questionnaire 

South Africa is an emerging economy and is currently witnessing an increase in consumer 

demands and spending levels. This country has rich mineral resource reserves which attract 

foreign investors. South Africa has world-class facilities with an increased number of 

research and development activities taking place in the advancement of manufacturing and 

digitalisation related areas (DTI report-Why invest in South Africa).  

The scales are adapted from previous studies such as the degree of I4.0 

implementation consisting of three items which is adapted from Frank et al. (2019); I4.0 

delivery systems consisting of four items are adapted from Karimi et al. (2007) and Sung 

(2018); 10R advanced manufacturing capability consisting of ten items is adapted from 

Kirchherr et al. (2017); and Sustainable development consisting of three items is adapted 

from Kirchherr et al. (2017) (refer Table 1). Two control variables including age of the 

organization and size of the organization are considered in this study. Firm age indicates the 

operating years since the firm’s establishment. The firm age is controlled, bearing in mind the 

ability of old firms to develop capabilities and process information more easily than new 

firms. Old firms are equipped with better information-collection and processing capability, 

therefore old firms achieve increased productivity performance in the dynamic business 

environment (Yu et al., 2018). Firm size can be measured by considering the number of 

workers employed at the firm. More workers are employed in larger firms. In large 

enterprises there is a larger availability of resource levels and capabilities (Gunasekaran et al., 

2017).  

4.2 Sample selection and data quality checking 

The sample is selected using the convenience sampling method from the Chartered Institute 

of Purchasing and Supply (CIPS), South Africa database. For the measurement of the items, 

the research team used a Likert scale (5-point) and initially a pilot run was performed among 

forty executives to see the appropriateness of the scale. Four items related to sustainable 

development construct were dropped from the initial scale as they were indicated to be 

redundant and could create multicollinearity issues. The final survey was conducted by 
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sending the Google form based questionnaire link online to 500 potential respondents. CIPS 

database is considered for selecting the samples. In the end, 124 questionnaires are returned, 

indicating a reply rate of 24.80 percent. In Table 2, the respondent details are presented which 

indicates that the highest responses were received from two sectors 

(Manufacturing/manufacturing-related services and automotive parts and associated 

producers) and, secondly, a large percentage of responses were received from persons 

working over thirty years in the industry. 

Further, an analysis is performed to discern the role of the respondent in the 

organisation as well as the size (small, medium or large) of the organisation. In Table 3, the 

results of the analysis are presented, wherein it is shown that the greatest number of responses 

are received from Senior Vice President/Vice President level and, secondly, that the 

maximum responses are received from medium-sized organisations with 300-500 employees. 

For this study, the research team gathered primary data which poses the risk of common 

method bias (CMB) (Podaskoff and Oragn, 1986). However, a robust method of designing 

the instrument using multiple scales was used to minimize the effect across each type of 

construct. Further, the research team used a conservative version of Harman’s one factor test 

(Podaskoff et al., 2003) which depicted that one of the factors explained 35.93% of the 

variance and was below the suggested limit. This concludes that the data is free from CMB.  

Non-response bias (NRB) test is also performed. The first wave and the second wave 

are compared using SPSS software. The survey was started in the second week of Jan 2019 

and the research team received forty responses during early February 2019. After performing 

one round of follow up; the research team received another eighty-four responses before the 

end of June 2019. The results of the comparison indicate there is statistically no significant 

difference between early and late respondents. It was also observed that there exists no 

significant difference between the profile of respondents and non-respondents. This confirms 

that the study is free from non-response bias (Armstrong and Overton, 1977). 

Table 4 provides the details related to model fit and quality indices such as APC, 

ARS, AARS and results indicate that they are statistically significant. AVIF and AFVIF 

values are satisfactory and indicate no threats related to multicollinearity (Kock, 2016). 

Finally, the research team checked the Tenenhaus GoF result which indicated large fit and 

that the model can be used for further analysis. 

 

5. Data Analysis and Findings  
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Structural equation modelling is a group of multivariate data analysis that can be used to 

assess the complex relationship between latent variables and indicators. SEM using partial 

least squares method is used extensively in the field of operations management. Leading 

researchers in this area such as Wamba et al. (2017); Dubey et al. (2019 a, b) have used this 

PLS-SEM technique in their research work. In PLS-SEM analysis any latent variable can be 

measured through many indicators. Researchers need to look at the path coefficients and 

corresponding P values for assessing the links. PLS-SEM is used in this study because it has 

the ability to estimate hierarchical models by eliminating the vagueness of prohibited 

solutions through means of its flexible assumptions (Hair et al., 2011). 

WarpPLS version 6.0 software is used to perform the path modelling. To verify the 

connections of the model, causality assessment indices are estimated, and the values are 

provided in Table 5. All values are above the acceptable level of 0.70. The reliability of the 

instrument is analysed using composite reliability as well as Cronbach's alpha and Nunnally 

and Bernstein (1994) showcased that its value should be 0.70 or higher. The analysis in Table 

6 showcases that the composite reliability and Cronbach's alpha for all variables are above 

0.70 and thus reflect a high level of instrument reliability. 

As per the suggestion of Fornell and Larcker (1981), the discriminant validity is 

checked, and no abnormality related to association of construct with an incorrect variable was 

found. The results are presented in Table 7. The combined loadings and cross loadings are 

presented in Table 8. All of the standardised factor loadings were above a level of 0.50 and 

significant at P <0.001. 

In Figure 3, the model after statistical testing is presented.  
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Notes: Significance at the 5% level 
 

Figure 3. Model obtained post statistical testing (Source: WarpPLS output) 

The hypothesis testing results are provided in Table 9. All research hypotheses are supported 

based on the p values (all are below 0.05).  This supports, firstly, the relationship between 

I4.0 and 10R advance manufacturing capability and secondly, the direct relationships 

between 10R advance manufacturing capability and sustainable development. The 

moderating effect of I4.0 delivery system on the path I4.0 and 10R advance manufacturing 

capability is shown to be significant. Firm size and firm age are the control variables used in 

this study and neither of them showed any significant influence on 10R advanced 

manufacturing capability. Firm size is controlled during the data sorting stage (no response is 

obtained from firms having less than 100 employees). 

 

6. Discussion 

Globally, firms are focusing on developing sustainable production and consumption 

strategies to reduce their negative environmental and social impact. 10R-based advanced 

manufacturing capabilities can be developed to manufacture products in an environmentally 

friendly manner. However, a lack of visibility increases uncertainty and eventually results in 

low supply chain responsiveness. This is one of the main setbacks for any 10R-based 

advanced production line. Failing to accurately estimate demand due to a poor sales forecast 

and lack of visibility in the supply lines impacts the production scheduling and machine 

loading parameters. This impacts the sales order dispatches and ultimately increases customer 

dissatisfaction levels. A poor visibility of inventory levels throughout the supply chain means 

it is difficult to estimate the volume of old goods/non-functional goods/components-related 

stock that may arrive at the focal firm’s warehouse at any point in time. Moreover, poor 

demand visibility leads to stock remaining stagnant for an extended period of time, thus 

blocking the working capital. Technology is changing rapidly and may even lead to 

obsolescence of such stocks, which leads to a financial loss for the firm. The fourth industrial 

revolution has brought a digital revolution to the operations management world. I4.0 

technology enablement is used to apply front end technologies (smart supply chain, smart 

working, smart manufacturing and smart product) and base technologies (IoT, Cloud, Big 

data and Analytics) can provide a greater degree of visibility and enhance operational 

performance. The current study examined the extent of the effect I4.0 adoption has on 10R 

advanced manufacturing capabilities and sustainable development and, secondly, to study the 
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moderating role of the I4.0 delivery system on the relationship between the degree of I4.0 

implementation and 10R advanced manufacturing capability. The research findings are 

summarized in a framework which indicates that firms with a high degree of I4.0 

implementation lead to a positive development of 10R advanced manufacturing capabilities. 

Secondly, 10R advanced manufacturing capabilities are found to have a positive influence on 

sustainable development outcomes. Lastly, I4.0 delivery system is found to have a 

moderating effect on the relationship degree of I4.0 adoption and 10R advanced 

manufacturing capabilities. This suggests that firms should focus on the degree of I4.0 

adoption and 10R advanced manufacturing capabilities to enhance sustainable development 

outcomes and achieve their goals. However, serious focus on the development of 

infrastructure for I4.0 delivery systems is essential. This paper explores an emerging 

phenomenon and establishes new links which serve to enrich and advance literature in this 

area.  

6.1 Theoretical contributions 

The theoretical framework draws upon PBV and DCV Theory. The model is statistically 

tested considering samples from South African firms. WarpPLS software is used to perform 

PLS based structural equation modelling. The three research hypotheses are tested and found 

to be accepted in South African context. It is found that, firstly, firms with a high degree of 

I4.0 adoption that apply front end and base technologies will demonstrate a higher level of 

10R advanced manufacturing capabilities; secondly, it can be seen that firms with more (less) 

I4.0 delivery systems have a greater (lower) level of 10R advanced manufacturing 

capabilities for a given level of I4.0 adoption; thirdly, it is found that 10R advanced 

manufacturing capabilities have a positive influence on sustainable development. Therefore, 

I4.0 can enhance the operational performance in 10R advanced manufacturing and improve 

the circular economy performance by achieving sustainable development goals. Firms must 

focus on PBV, implementing I4.0, and using DCV theory to build dynamic capabilities for 

running 10R-based advanced manufacturing operations effectively. The data generated from 

wireless sensor networks must be collected, processed, and stored to ensure high quality 

decision making.  

PBV theory supports I4.0 as a unique method that may be used by individual firms to 

facilitate technological applications. Secondly, DCV theory supports the notion that 10R 

advanced manufacturing capability is required to anticipate threats and be able to make a 

strategic move before competitors, as well as being able to penetrate newer markets with 

remanufactured/recycled products at competitive pricing. The firm can also reconfigure both 



19 
 

tangible and intangible assets for 10R advanced manufacturing processes in line with 

business requirements. 

 

6.2 Practical implications 

There are four key messages for managers. Firstly, managers should focus on implementing 

the I4.0 technologies all the way from the shop floor to the top floor level. Within a company, 

managers must apply I4.0 technologies across the plant, divisional, and functional level. 

Secondly, careful attention must be paid to strengthening the I4.0 delivery systems. I4.0 

delivery systems such as top management commitment, training resources, project resources 

and support of research institutes and universities play an instrumental role in I4.0 adoption. 

It is important that appropriate project management tools and techniques are applied while 

undertaking I4.0 projects. This is made possible when experienced and capable project 

managers are leading the I4.0 project team. Such experienced team leaders need to design the 

I4.0 implementation schedule, which is logical and realistic. Skills development is required to 

fit the I4.0 system in the firm, which is made possible through collaborations between 

research institutes and universities in I4.0 projects generally facilitating skills development. 

The I4.0 delivery system must not be neglected by companies and must be embraced 

for strengthening the effect of the I4.0 delivery system on 10R manufacturing capabilities. 

Thirdly, managers must focus on using I4.0 technological enablement in building capabilities 

for 10R advance manufacturing operations. I4.0 enablement will provide visibility, flexibility 

and agility to enhance operational excellence in 10R manufacturing. Finally, 10R advanced 

manufacturing capabilities must be used to efficiently utilise resources and to achieve a 

firm’s sustainable development targets. The resources will remain in the closed loop; thus, 

the life of the resources will be increased which is key to running circular economy 

operations. 

6.3 Policy implications 

I4.0 is like a great tectonic movement in the African continent. Disruptive I4.0 technologies 

such as artificial intelligence, big data, IoT and cloud computing have the potential to drive 

economic, societal and environmental changes. Africa’s education, health care and businesses 

have suffered tremendously in the past which has retarded the economic development to a 

great extent. Like South Africa, other African countries can equally exploit I4.0 to overcome 

developmental challenges. South Africa has aimed to fully harness the potential of advanced 

information and communication technologies by the year 2030 for economic growth. To 

create a holistic country level response strategy, South Africa has established a Presidential 
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Commission on I4.0. This commission is working on resources, capabilities, policy and 

legislation among other areas related to I4.0. The focus is towards the creation of adaptive 

culture to this technological shift. The target is also the development of competitiveness at an 

international level relating to key sectors. The study provides insight which can be helpful 

when framing new policies in the era of the fourth industrial revolution. A clear policy is 

required to manage the ethical, legal, and safety issues surrounding the use of 

robotic/automatic systems in parallel with human labours in 10R based smart manufacturing 

environments. Policy must also be framed for the authorisation and control of 

robots/automatic systems in such smart factories. A policy on sustainability must be available 

to be able to target specific sustainable development goals.  

6.4 Research limitations and future research directions 

The sample size is small (124) and most responses are received from the manufacturing and 

automotive sectors. Secondly, samples for an empirical study are collected from an emerging 

economy, namely South Africa. Therefore, the results can only be generalised in context to 

emerging economies but cannot be generalised for developed nations. From an operations 

perspective, managing human resources to fit in the I4.0 setup is a large challenge for top 

management. Research studies must attempt to find solutions to such problems. Moreover, 

the role of AI in managing 10R advanced manufacturing can also be studied for advancement 

of I4.0 and sustainability literature. 

 

 

Appendices 

 Table 1. Operationalization of Constructs 

Construct Factors Items Adapted from 

Degree of I4.0 
Implementation 

(DII) 

Global Scope 

All our plants located across different 
geographical regions have the capability to 
apply I4.0 front end technologies and base 

technologies  

Frank et al. 
(2019) 

Organization 
Scope 

All divisions in our organisation have the 
capability to apply I4.0 front end 

technologies and base technologies  

Frank et al. 
(2019) 
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Functional Scope 
Our organization has capability to apply I4.0 
front end technologies and base technologies 

at the functional level  

Frank et al. 
(2019) 

I4.0 Delivery 
System (IDS) 

Top Management 
Commitment 

Top management support in the I4.0 project 
is high 

Karimi et al. 
(2007) 

Top management shows a lot of interest in 
the I4.0 project 

Top management reviews I4.0 project 
progress on a regular basis 

Training 
Resources 

Time and resources are invested in training 
manpower for using I4.0 techniques 

Karimi et al. 
(2007) 

Internal users are provided with proper on 
the job training to apply I4.0 systems 

Training on I4.0 technology and processes 
are provided to employees  

Project Resources 

Appropriate project management tools and 
techniques are applied while adopting I4.0 

project  
Karimi et al. 

(2007) Experienced and capable project managers 
are in-charge of the I4.0 project team 

The I4.0 implementation schedule is logical 
and realistic 

Support of 
Research Institutes 

& Universities 

Local research institutes and universities 
provide sufficient support for developing 

I4.0 infrastructure development 

Sung, (2017) 
Collaboration between research institutes and 

universities in I4.0 projects generally 
facilitate skills development 

Collaboration between research institutes and 
universities for I4.0 projects will be useful 

for developing social relationships 

10R Advanced 
Manufacturing 

Capability 
(10R) 

Refuse 

Our firm focuses on making product 
redundant by abandoning its function or by 
offering the same function with a radically 

different product 

Kirchherr et al. 
(2017) 

Rethink Our firm focuses on making product use 
more intensive  

Kirchherr et al. 
(2017) 

Reduce 
Our firm focuses on lower resource 

consumption and improving manufacturing 
efficiency 

Kirchherr et al. 
(2017) 
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Reuse 

Our firm promotes reuse by another 
consumer of discarded product which is still 

in good condition and fulfills its original 
function 

Kirchherr et al. 
(2017) 

Repair 
Our firm does repair and maintenance of 

defective products, so it can be used with its 
original function 

Kirchherr et al. 
(2017) 

Refurbish Our firm restores an old product and brings it 
up to date 

Kirchherr et al. 
(2017) 

Remanufacture Our firm uses parts of discarded product in a 
new product with the same function 

Kirchherr et al. 
(2017) 

Repurpose Our firm uses discarded product or its parts 
in a new product with a different function 

Kirchherr et al. 
(2017) 

Recycle  Our firm recycles for processing materials to 
obtain the same or lower quality 

Kirchherr et al. 
(2017) 

Recover Our firm uses incineration of material for 
energy recovery 

Kirchherr et al. 
(2017) 

Sustainable 
Development 

(SD) 

Environmental 
Quality 

CE capability enable the transition towards a 
low carbon economy 

Kirchherr et al. 
(2017) 

CE capability protect and/or restore the 
environment by focusing on environmental 

quality aspects and improving resource 
efficiency 

Kirchherr et al. 
(2017) 

Economic 
Prosperity 

CE capability help to maintain, protect, 
transform and/or strengthen the economy 

Kirchherr et al. 
(2017) 

Social Equity 
CE capability protect, transform, strengthen 

and/or develop the society, human well-
being and/or jobs 

Kirchherr et al. 
(2017) 

(Source: Own compilation) 

Table 2. Respondent details 

Work Area 

Years of Work Experience 

<5 
years 

5-10 
years 

10-20 
years 

20-
30 

years 

>30 
years Total 

Manufacturing/ 
Manufacturing related 

services 
1 4 7 14 16 42 

Automotive Component 
and Allied Manufacturers 1 3 1 7 22 34 

Petrochemical 0 0 0 1 10 11 
Mines and Quarries 0 0 0 0 5 5 
Mineral processing 0 0 0 0 6 6 
Heavy Engineering 0 0 4 19 2 25 
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Electronic goods 0 1 0 0 0 1 
Education/ Research 0 0 0 0 0 0 

Others 0 0 0 0 0 0 
Total 2 8 12 41 61 124 

(Source: Own Compilation) 

Table 3. Role in the organisation and employee strength 

Role in the 
Organisation 

Number of Employees 

Less 
than 
100 

101-
300 

300 - 
500 500 - 1000 

More 
than 
1000 

Total 

Board Member 0 0 1 0 1 2 
CEO/President/Owner/ 
Managing Director 0 0 0 1 1 2 

CFO/Treasurer/Controller 0 0 0 0 0 0 
CIO/Technology Director 0 0 0 0 2 2 
Chief Procurement 
Officer 0 0 2 3 6 11 

Senior VP/VP 0 0 75 0 2 77 
Head of business unit or 
department 0 1 0 1 5 7 

Manager 0 0 3 2 11 16 
Data Analyst 0 0 0 0 3 3 
Data Scientist 0 0 0 0 3 3 
Consultant 0 0 0 0 0 0 
Researcher 0 0 0 0 0 0 
Others 0 0 1 0 0 1 
Total 0 1 82 7 34 124 

(Source: Own Compilation) 

Table 4. Model fit and quality indices 

Model fit and quality indices Results 
Average path coefficient (APC)  0.400 
Average R-squared (ARS)  0.563 
Average adjusted R-squared 
(AARS)  0.555 

Average block VIF (AVIF)  5.00 
Average full collinearity VIF 
(AFVIF)  3.98 

Tenenhaus GoF (GoF)  0.355 
(Source: Own Compilation) 
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Table 5. Causality assessment indices 

Causality assessment indices Results 
Sympson's paradox ratio (SPR)  0.733 
R-squared contribution ratio 
(RSCR)  0.951 

Statistical suppression ratio (SSR)  0.700 
Nonlinear bivariate causality 
direction ratio (NLBCDR)  0.700 

(Source: Own Compilation) 

 

Table 6. Latent variable coefficients 

Latent variable 
coefficients DII IDS 10R SD FA IDS*DII 

R-squared     0.753 0.409     
Adj. R-squared     0.751 0.404     

Composite 
reliability 0.876 0.947 0.923 0.827 1.000 0.999 

Cronbach's alpha 0.788 0.939 0.907 0.720 1.000 0.999 
Avg. var. extrac. 0.703 0.600 0.546 0.545 1.000 0.975 

(Source: Own Compilation) 

 

Table 7. Correlation among latent variable with square root of AVEs 

Correlations DII IDS 10R SD FA IDS*DII 
DII (0.838)           
IDS 0.891 (0.774)         
10R 0.776 0.799 (0.739)       
SD 0.707 0.750 0.600 (0.738)     
FA 0.503 0.498 0.422 0.370 (1.000)   
IDS*DII -0.845 -0.919 -0.836 -0.686 -0.454 (0.987) 

(Source: Own Compilation) 

 

Table 8. Combined Loadings and Cross Loadings 

*: p-value for all the items was <0.001 

Loadings* DII IDS 10R SD FA IDS*DII 
DII1 (0.858) 0.062 0.033 -0.040 -0.145 0.206 
DII2 (0.819) 0.109 -0.016 0.118 0.039 -0.010 
DII3 (0.837) -0.170 -0.019 -0.075 0.111 -0.202 
IDS1 -0.590 (0.785) 0.018 -0.016 0.150 0.090 
IDS2 0.540 (0.763) -0.045 0.016 -0.098 -0.159 
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IDS3 -0.505 (0.784) -0.099 0.123 0.021 0.041 
IDS4 0.084 (0.758) 0.105 0.087 0.097 0.164 
IDS5 0.158 (0.772) -0.080 0.276 -0.163 0.073 
IDS6 -0.098 (0.766) -0.055 0.105 -0.036 -0.006 
IDS7 -0.039 (0.780) 0.042 -0.077 -0.002 -0.010 
IDS8 0.364 (0.745) -0.147 -0.072 -0.116 0.047 
IDS9 -0.355 (0.776) 0.227 0.138 -0.012 0.299 

IDS10 0.620 (0.791) -0.088 -0.283 -0.064 -0.246 
IDS11 -0.094 (0.772) 0.055 -0.045 0.167 -0.297 
IDS12 -0.058 (0.800) 0.063 -0.240 0.049 0.009 
10R1 0.491 -0.453 (0.673) -0.247 0.073 0.092 
10R2 0.153 0.045 (0.703) -0.310 0.262 0.256 
10R3 -0.144 0.508 (0.757) -0.188 -0.018 0.136 
10R4 -0.059 0.049 (0.706) 0.037 0.053 -0.453 
10R5 -0.564 0.240 (0.767) 0.155 -0.075 -0.036 
10R6 0.385 -0.137 (0.790) -0.091 -0.056 -0.210 
10R7 -0.254 -0.421 (0.774) 0.295 -0.123 0.043 
10R8 0.584 -0.513 (0.774) -0.243 -0.145 -0.128 
10R9 -0.113 0.460 (0.757) 0.279 -0.074 0.269 

10R10 -0.486 0.226 (0.676) 0.300 0.161 0.046 
SD1 -0.129 0.056 0.234 (0.777) 0.088 -0.041 
SD2 0.329 -0.469 -0.289 (0.744) 0.119 -0.357 
SD3 0.421 -0.128 -0.208 (0.670) -0.276 -0.049 
SD4 -0.564 0.517 0.228 (0.757) 0.037 0.436 
FA1 0.000 0.000 0.000 0.000 (1.000) 0.000 

(Source: Own compilation) 

 

Table 9. Hypothesis testing summary 

Hypothesis Beta and p 
value Findings 

H1: Manufacturing companies with high 
degree of I4.0 adoption to apply front end 
and base technologies will demonstrate 
higher level of 10R advanced 
manufacturing capabilities 

β=0.55 p<.01 Supported 

H2: Manufacturing companies with more 
(less) I4.0 delivery system has a greater 
(lower) level of 10R advanced 
manufacturing capabilities for a given 
level of I4.0 adoption 

β=0.13 p=.05 Supported 
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H3: 10R advanced manufacturing 
capability has a positive impact on 
sustainable development 

β=0.64 p<.01 Supported 

(Source: Own Compilation) 
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