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Abstract

Remote sensing techniques are useful in the monitoring of woody plant species diversity in

different environments including in savanna vegetation types. However, the performance of

satellite imagery in assessing woody plant species diversity in dry seasons has been under-

studied. This study aimed to assess the performance of multiple Gray Level Co-occurrence

Matrices (GLCM) derived from individual bands of WorldView-2 satellite imagery to quantify

woody plant species diversity in a savanna environment during the dry season. Woody plant

species were counted in 220 plots (20 m radius) and subsequently converted to a continu-

ous scale of the Shannon species diversity index. The index regressed against the GLCMs

using the all-possible-subsets regression approach that builds competing models to choose

from. Entropy GLCM yielded the best overall accuracy (adjusted R2: 0.41−0.46; Root Mean

Square Error (RMSE): 0.60−0.58) in estimating species diversity. The effect of the number

of predicting bands on species diversity estimation was also explored. Accuracy generally

increased when three–five bands were used in models but stabilised or gradually decreased

as more than five bands were used. Despite the peak accuracies achieved with three–five

bands, performances still fared well for models that used fewer bands, showing the rele-

vance of few bands for species diversity estimation. We also assessed the effect of GLCM

window size (3×3, 5×5 and 7×7) on species diversity estimation and generally found incon-

sistent conclusions. These findings demonstrate the capability of GLCMs combined with

high spatial resolution imagery in estimating woody plants species diversity in a savanna

environment during the dry period. It is important to test the performance of species diversity

estimation of similar environmental set-ups using widely available moderate-resolution

imagery.
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Introduction

Natural environments provide vital ecosystem services such as primary energy, habitat to

fauna, maintaining of hydrological cycles, protection of biological diversity, medicinal benefits,

recreation, aesthetic values, etc [1–4]. Maintaining the heterogeneity and complexity of vegeta-

tion composition in these environments is therefore critical to ensure the sustained function-

ing of such ecosystems [3]. Unfortunately, anthropogenic activities and natural processes are

threatening biodiversity and associated ecosystem services, particularly in areas close to

human settlements [4–7]. An essential first step in the management of biodiversity is through

accounting and monitoring of vegetation composition existing in a given area of interest. In

Africa, inventories on plant species diversity are often out-of-date and/or unavailable [8]. Field

inventory for characterising vegetation composition is expensive, labour intensive and time-

consuming, and thus is inefficient in complex heterogeneous ecosystems [3,5,9–12].

Remote sensing overcomes the difficulties of field-based inventory and has become a pri-

mary tool in species diversity estimation and ecosystem structure assessments [9–11]. In par-

ticular, optical remote sensing utilises the sensitivity of spectra to biochemical and structural

characteristics to distinguish vegetation types [12]. Advances in spectral and spatial resolution

of remote sensing have allowed for more efficient species diversity estimation in different envi-

ronments including grasslands (e.g., [7,13], temperate forest (e.g., [14–16], wetlands (e.g.,

[17,18], tropical forest (e.g., [19–21] and savanna (e.g., [22–24].

The traditional remote sensing-based species classification approaches identify a defined

number of classes, irrespective of the spatial resolution of remotely-sensed data [9,21,22,25].

Such approaches, therefore, can underestimate the number of species that potentially exist in a

given environment. Statistical modelling approaches such as the Shannon diversity index offer

an alternative approach by converting categorical species data into continuous diversity scale

[25–27], thus eliminating the restriction on the number of species that can be estimated for a

given area [13,17,28–30]. A number of studies have applied continuous-scale metrics derived

from species count data to quantifying woody plant species diversity in the savanna vegetation

type [24,27,31–35].

Vegetation indices (e.g., Normalised Vegetation Index, NDVI) have been used as the com-

mon source of data to quantify vegetation species diversity on a continuous scale [24,28,36,37].

It should be noted that Vegetation Indices (VIs) primarily capture vegetation vigour or

amount rather than species diversity [9–11]. Thus, a plot with high species diversity but low

vigour (low index value) can be misinterpreted as having low species diversity while a plot con-

taining a single or few plants with high vigour can be misinterpreted as being species-rich

[10,38]. It is therefore important to test the performance of individual spectral bands rather

than relying on VIs, to quantify species diversity.

A further challenge associated with reliance on vegetation indices is that the indices logi-

cally work well in high-photosynthesis-activity periods of the year [38–40]. For instance,

[15,24,41] compared species diversity estimation in the dry versus wet season and found better

accuracies in the wet season. There is, therefore, a need to exploit the information offered by

individual bands of satellite imagery to assess species diversity in the dry season within the

savanna environment. While biodiversity assessment is ideal in the wet (vigorous seasons),

placing focus on the dry season has operational and ecological benefits. Operationally,

remotely-sensed data acquired during dry seasons are less affected by clouds and therefore

provide readily interpretable information [38]. Ecologically, dry season biodiversity assess-

ment is vital as part of continuous monitoring strategies such as phenological tracking [6,22]

and land degradation facing the savanna ecosystem [23,42].
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This study, therefore, aims to assess the performance of individual bands of WorldView-2

imagery in quantifying woody plant species diversity in a dry season within the savanna region

in South Africa. The study uses various GLCMs of the WorldView-2 bands as predictors to

estimate field-derived species diversity expressed in the Shannon diversity index. Our study

builds on [33] who extracted all eight GLCMs but only used one band (near-infrared) of a

Landsat image from the wet season of an American savanna to estimate plant species diversity.

Our study also differs from [43] that used fewer GLCMs and coarser spatial resolution (Land-

sat data). We apply the all-possible-subset regression approach to exploit the large number of

models that can be created using individual bands as predictors. This specific regression

approach provides alternative competing models from which a reasonable model can be

selected, therefore it was selected for this study. Satisfactory findings in this study have impor-

tant implications for conservation efforts that require vegetation species monitoring, irrespec-

tive of the season [44].

Materials and methods

Study area

The Klipriviersberg Nature Reserve (KNR), south of Johannesburg, South Africa, was used for

the study. The reserve was proclaimed for conservation purposes in 1984 and covers approxi-

mately 651 hectares (Fig 1). KNR, administered by the City Parks of the City of Johannesburg,

is a public park open to visitors at no cost. Different activities such as hiking and research

work are allowed in the reserve without the need or written permission from the management

provided that the regulations governing the reserves’ natural resources are observed at all

times. Vegetation types in the reserve include Andesite Mountain Bushveld and Clay Grass-

land which are associated with a savanna environment [45]. The altitude of the area ranges

between 1540 m in the south and 1790 m in the north, with a mean annual rainfall of 624–802

mm [46]. The study area experiences warm to hot summers and cold nights in winter, with a

mean annual temperature ranging between 17˚C and 26˚C in summer and 5˚C and 7˚C in

winter [47]. The geology types found in the area, which lead to the floristic structure of the

reserve, include quartzites, conglomerates and dolomites [48].

Field data

Fig 2 provides a summary of the methodology followed in the study to estimate woody plant

species diversity. Initially, a grid of 240 points distributed at approximately 170 m intervals in

the north-south and east-west directions were generated using the fishnet tool in ArcGIS

(ESRI1 ArcGIS 10.6, Redlands, California, USA). The point coverage was exported into a

Global Position System (GPS) (Garmin, GPSMAP1 64, Kansas, USA) and located in the field.

Points which did not have woody plant species in their vicinity were removed from the enu-

meration resulting in 220 number of points available for the survey. Field surveys were done

between May and June 2017, representing the dry winter season in the area [47]. A buffer with

a 20 m radius was created around each point; this size was specified to accommodate not only

multiple pixels of WorldView-2 imagery, but also coarser-resolution remotely sensed data that

will be used for further study. The plot size was also deemed large enough to contain as many

woody plant species as possible.

Unique woody plant species� 2 m height were recorded in each plot (Fig 2) guided by the

KNR field surveyors and the reserve’s species inventory database. The total number of distinct

species in all plots was 26, while the plot-level minimum and maximum count of distinct

woody plant species were 1 and 9, respectively. In addition to species uniqueness, the survey

recorded the total number of woody plants� 2 m in each plot. The species diversity was then
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converted to a continuous scale by applying the Shannon diversity index [49] for use in regres-

sion modelling. The Shannon index (Eq 1) is advantageous in that it incorporates the relative

abundance and evenness of species, and therefore does not favour common or rare species

[33,50]. The minimum, maximum, standard deviation of the Shannon diversity index in the

sampled plots were 0.15, 2.86 and 0.78, respectively.

Shannon diversity index ¼ �
Xs

i¼1

pln ðpiÞ ð1Þ

where p is the number of plants of a species divided by the total number of all plants, ln is the

natural log, s is the number of species.

WorldView-2 image

WorldView-2 imagery covering the visible to near-infrared range of the electromagnetic spec-

trum was obtained for the same dry winter period (May−June 2017) as the field survey period.

WorldView-2 image has high spectral and spatial resolutions making it effective for fine-scale

woody plant species diversity estimation [51]. Specifically, the image has eight multispectral

Fig 1. Klipriviersberg Nature Reserve and the distribution of sampling plots used in the study.

https://doi.org/10.1371/journal.pone.0234158.g001
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bands between 0.40 and 1.04 μm at 1.8 m spatial resolution and a panchromatic band covering

0.45−0.80 μm at 0.5 m spatial resolution (DigitalGlobe, www.digitalglobe.com). The bands vary in

width with the yellow (0.59 and 0.63 μm) and red edge (0.71 and 0.75 μm) bands being narrower

than the others. The coastal band (0.40−0.46 μm) was excluded from the analysis due to its relative

sensitivity to atmospheric interferences [50]. Following a comparison of Dark Object Subtraction

(DOS), [52], Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLASH), [53] and QUick

Atmospheric Correction (QUAC), [54] methods that yielded similar reflectance values (Pearson’s

correlation, r = 0.99)). We applied the DOS method implemented in ENVI 5.3 ©2015 (Exelis

Visual Information Solution Inc., Boulder, Colorado). Subsequently, the spatial resolution of the

atmospheric corrected multispectral bands was pan-sharpened to 0.5 m. (Fig 2). The reliability of

our pan-sharpening was ascertained by comparing the results with the already pan-sharpened

image provided by the data supplier (DigitalGlobe, www.digitalglobe.com).

Woody vegetation extraction from WorldView-2 image

Pixels representative of woody vegetation plants were extracted prior to derivation of GLCMs

that were used in the regression analysis. Previous studies have shown the effectiveness of

Fig 2. Flow chart summarizing the methodology used in the study area.

https://doi.org/10.1371/journal.pone.0234158.g002
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NDVI thresholding to separate woody and non-woody plants (e.g., [55–57]. The approach

assumes that woody plants including trees, bushes and shrubs with relatively dense foliage

have greater NDVI than non-woody plants [57–60]. In this study, we computed WorldView-2

Improved Vegetation Index (WV-VI) [61] that combines the near-infrared 2 and the red

bands in a similar formula as the NDVI. The narrowly focused near-infrared 2 band (0.86−-

1.04 μm) used in WV-VI has a higher reflectance value than the traditional broad near-infra-

red band range used in the NDVI [62].

Parallel to WV-VI derivation, objects were created from the multispectral image of World-

View-2 using multiresolution segmentation, following the previous studies that showed good

woody plants identification capability using object-based classification [63–66]. The segmenta-

tion was applied in eCognition Developer1 9.01 (Trimble Germany GmbH, Arnulfstrasse

126, 80636 Munich, Germany). The WV-VI values were subsequently averaged per segment

[67]. After iterative and independent trials, segments with WV-VI� 0.4 were determined as

woody plants separating them from non-woody plants (Fig 2). Segments of woody plants and

non-woody features were confirmed by consulting with plot observations that were taken dur-

ing field surveys.

Gray Level Co-occurrence Matrix

GLCMs were quantified from individual bands of WorldView-2 imagery within woody seg-

ments. GLCM is a statistical method used to examine the texture of pixels within a specific

neighbourhood [68]. Since the statistic quantifies how often unique combinations of pixel

brightness values (gray levels) occur in an image, it signifies underlying physical variations in

the image and thus reveals the structural arrangements of the surface and their relationship to

the surrounding environment [69]. Typically, GLCM implements a matrix scenario and it is

computed by considering four different directions (0˚, 45˚, 90˚, and 135˚) between neighbour-

ing cells that are separated by a certain distance [68,69]. This study extracted eight GLCM sta-

tistics derived from each WorldView-2 band using ENVI 5.3 ©2015 (Exelis Visual

Information Solutions. Inc Boulder, Colorado).

The GLCMs were quantified in three kernel sizes: 3×3, 5×5 and 7×7. These window sizes were

specified considering the spatial resolution of the image (0.5 m) and the varying canopy sizes of

woody vegetation observed during the field survey. In addition, plants were observed as isolated

individuals or in patches–as is common in savanna environments [28,32,33]. It is unclear how

such arrangements influence the detection capability of different window sizes. It is important to

ascertain that these kernel sizes exhibit variation and thereby may warrant different species diver-

sity estimations. A simple Pearson’s correlation analysis of GLCMs among the different kernel

sizes using Entropy and three selected bands (Green, Yellow and Near-infrared) resulted in

r� 0.5 for a number of comparisons, indicating the difference between the window sizes.

Statistical analysis

This study used an all-possible-subsets regression modelling approach to estimate the Shannon

diversity index derived from the field data using GLCM values (Table 1) derived from World-

View-2 bands at different window sizes (3×3, 5×5 and 7×7) as predictors. All-possible-subsets

regression tests all possible combinations of explanatory variables to develop estimation mod-

els from which favourable models can be selected [70]. A key advantage of the approach is that

it does not require significance-testing that can be influenced by certain values in the samples

that may or may not be representative of the population [70]. Instead, the approach provides

all alternative models from which decisions can be made based on knowledge of the popula-

tion from which the samples were drawn [70]. The all-possible-subset regression approach
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builds 2n - 1 models from n number of explanatory variables [71]. In this study, the alternative

models for estimating the Shannon diversity index were grouped and compared per GLCM

window size. That is, the seven bands (explanatory variables) within the 3×3 window had 127

competing models; a similar principle applied to 5×5 and 7×7 windows respectively.

By selecting the best model from the alternative models, in this study sought to achieve

good accuracy with few predictors [70] using a combination of statistical indicators. Firstly,

the Akaike Information Criterion (AIC) that measures the distance between a model and an

ideal but unobservable model that created the data was used to rank the models [72]. Secondly,

models were compared using adjR2 and RMSE values, which respectively provide an absolute

measure of the explanatory power of predictors and accuracy of a model. [5,73]. Thirdly, we

compared the errors of models with the smallest AIC values and explanatory variables per

GLCM and window size. This approach provides more insights than the above model-fit statis-

tics (adjR2 and RMSE) since it compares the direction and magnitude of errors of individual

samples. In doing so, it also allows the identification of samples that do not have comparable

estimates by competing models. The all-possible-subsets regression analysis was implemented

using lmSubsets package [74] for R [75].

Results

Effect of window size, predictors and GLCMs on species diversity

estimation

Table 2 lists the variables of the model that returned the smallest AIC value per GLCM and

window size. Each selection represented the best-case AIC out of 127 competing models. The

Table 1. A list of GLCM texture features extracted from eight WorldView-2 bands and used in this analysis derived from [69].

GLCM statistics and formula Description

Entropy ¼
XNg � 1

i;j¼0

g2ði; jÞIn gði; jÞ
Entropy measures the occurrence of random pair of pixels

Second Moment ¼
XNg � 1

i;j¼0

g2ði; jÞ
Second moment measures the occurrence of a common pair of pixels

Contrast ¼
XNg � 1

i;j¼0

ði; jÞ2gði; jÞ
Contrast measures change in gray level between adjoining pixels and the weighting on pixel pairs increases exponentially.

Correlation ¼
XNg � 1

i;j¼0

ði � mÞðj � mÞgði; jÞ=s2

Correlation measures the linear dependency of a pair of pixels in the image.

Variance ¼
XNg � 1

i;j¼0

ði ¼ mÞ2gði; jÞ
Variance measures dispersion of gray level values around the mean

Homogeneity ¼
XNg � 1

i;j¼0

1

1þði� jÞ2
gði; jÞ

Homogeneity measures image pixel similarity and it is sensitive to the presence of near diagonal elements in a GLCM

Mean ¼
XNg

i¼1

XNg

i¼1

i � Pði; jÞ
Mean measures the average GLCM of gray level values in an image

Dissimilarity ¼
XNg

i¼1

XNg

i¼1

Pði; jÞji � jj
Dissimilarity measures the amount of change in nearby pixels with the weighting on pixel pairs increasing linearly

where Ng is the number of gray levels, g(i, j) is the entry (i, j) in the GLCM, μ is the GLCM mean, σ2 is the GLCM variance and P is the proportion of occupancy of each

pixel value.

https://doi.org/10.1371/journal.pone.0234158.t001
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best model using entropy GLCM and a window size of 3×3 contained red, near-infrared 2, red

edge and yellow bands as predictors of Shannon diversity index. Within the same GLCM

group, the model developed using pixels in the 5×5 window used five bands as predictors.

Looking at the rest of the GLCMs and window sizes, the best model and second-best model

contained three bands as predictors. Contrast had the least number of predicting bands (one),

whilst dissimilarity recorded the greatest number of predictor bands (five). The best AIC mod-

els using dissimilarity GLCM had five predictors for each window size, while the best models

using mean GLCM used the same bands as predictors (green, red edge, yellow) for all window

sizes. It is also important to note from Table 2 the inclusion of the yellow band as a predictor

in the best-case models in five of the GLCM statistics.

Unfortunately, the AIC values given in Table 2 cannot be used to evaluate the relative per-

formances of the models across GLCM and window sizes. It is, therefore, necessary to use

other statistics such as adjR2 and RMSE to assess model accuracies and comparisons (Fig 3).

Entropy GLCM achieved the best accuracies in all three windows, according to adjR2 (> 0.40)

and RMSE (< 0.6). Specifically, entropy GLCM with a window size of 5×5 yielded the highest

adjR2 of 0.46 and RMSE of 0.58 when five variables were used as predictors. Dissimilarity

GLCM and a 7×7 window had the closest accuracy level to the entropy GLCM (adjR2 = 0.40;

RMSE = 0.62); however, the model used six bands as predictors. Homogeneity and mean

GLCMs showed the lowest prediction accuracies for all the window sizes and across the differ-

ent number of predictors.

Table 2. Predictor variables of models with the smallest AIC values for the eight GLCM statistics and three window sizes. Note that, the results presented here are

the best-case scenario (smallest AIC) of 127 models per GLCM and window size.

GLCM measure Window Predictor bands Smallest AIC per group of 127 competing models

3×3 Near-infrared 2, Red, Red edge, Yellow 212.45

Entropy 5×5 Blue, Near-infrared 2, Red, Red edge, Yellow 212.13

7×7 Near-infrared 1, Red, Yellow 213.66

3×3 Green, Blue, Yellow 253.20

Second moment 5×5 Blue, Yellow 248.98

7×7 Blue, Green, Yellow 250.29

3×3 Green, Near-infrared 2, Red edge 238.08

Variance 5×5 Blue, Near-Infrared 1, Near-infrared 2 234.70

7×7 Blue, Red edge, Green 234.59

3×3 Near-infrared 2, Red edge, Yellow 253.12

Correlation 5×5 Blue, Yellow 254.22

7×7 Yellow 255.66

3×3 Blue 241.30

Contrast 5×5 Green, Near-infrared 2, Red edge 253.40

7×7 Near-infrared 2 241.73

3×3 Near-infrared 2, Red edge 282.64

Homogeneity 5×5 Near-infrared 2, Red edge 282.60

7×7 Near-infrared 2, Red edge 282.43

3×3 Blue, Near-Infrared 1, Near-infrared 2, Red edge, Yellow 235.57

Dissimilarity 5×5 Green, Near-infrared 1, Near-infrared 2, Red, Yellow 229.81

7×7 Blue, Green, Near-infrared 1, Red edge, Yellow 226.10

3×3 Green, Red edge, Yellow 263.47

Mean 5×5 Green, Red edge, Yellow 263.15

7×7 Green, Red edge, Yellow 263.65

https://doi.org/10.1371/journal.pone.0234158.t002
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Fig 3 also shows an important trend in terms of accuracy across the number of predictors.

In general, estimation accuracy increases rapidly for models that consist of three to five predic-

tors, after which the accuracies start to level off or decrease. For instance, accuracies of models

using the entropy GLCM peaked when five bands were used as predictors for the image using

a 5×5 window size while the accuracies remained almost constant for all models containing six

or seven predictors. The peak accuracies using the same entropy GLCM using 3×3 and 7×7

window sizes were reached when four and three predictors, were used respectively. The vari-

ance GLCM statistic that showed the third-best estimation capability after the entropy and

Fig 3. AdjR2 and RMSE of the best model per predictor category of GLCMs for images with 3×3, 5×5 and 7×7

window sizes.

https://doi.org/10.1371/journal.pone.0234158.g003
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dissimilarity statistic had models that peaked when two or three predictors were used for the

three window size kernels.

Focusing on species diversity estimation using entropy GLCM that showed the best accura-

cies (Fig 3), we illustrate the relationships between observed and predicted Shannon diversity

index in Fig 4. Similarities can be noted among estimations using the three window sizes: 3×3

(Fig 4A), 5×5 (Fig 4B) and 7×7 (Fig 4C). One similarity is that the observed versus predicted

correlations were generally comparable for the three images when compared against the ideal

1:1 correlation. The second similarity relates to the over and underestimation of the Shannon

species diversity for low and high values, respectively. A closer look, however, shows the best

correlation for 5×5 window size (Fig 4B). This is evidenced by the greater number of estima-

tions deviating from the regression lines in the cases of 3×3 (Fig 4A) and 7×7 window size

images (Fig 4C).

Comparison of competing models derived from GLCMs

Entropy GLCM with 5×5 window size from WorldView-2 image provided better estimates of

species diversity (Fig 4B compared to 4a and 4c), therefore it was used as the basis to evaluate

the performances of other competing models. Three categories of comparison were made

using estimation errors of all competing models as illustrated in Fig 5. The first category com-

pared estimation errors across predictor size using the best GLCM statistic with five predictors

as the reference. The results of this comparison clearly show strong similarities (r = 0.97–0.99)

between the best model combining GLCM, 5×5 window size and five predicting bands with

models containing fewer predictors, although the similarities show a decreasing trend as the

predictor size decreases (Fig 5A).

The second category of comparison was intended mainly to assess the effect of window size

on estimation residual (Fig 5B and 5C). The correlation of estimation errors of the best sce-

nario (Entropy 5×5) was 0.93 when compared with 7×7 window size and the same predictor

size (five predictor bands) while it improved when the predictors were fewer (r = 0.97 for three

predictors) (Fig 5B). On the other hand, the 3×3 window size and five predictors correlated

with the best scenario at r = 0.90 while the best similarity was observed when four predictors

were used in the 3×3 window size (Fig 5C).

The third category of comparison was made between the overall best model (entropy

GLCM using 5×5 window size image) against the best competing models from the other seven

Fig 4. Relationship between observed and predicted Shannon species diversity index. The predicted indices were estimated using entropy GLCM

derived from images using 3×3 (a), 5×5 (b) and 7×7 (c) window sizes. Note that the best estimations shown in the fig used four, five and three

predictors for 3×3, 5×5 and 7×7, respectively. Dashed lines show 1:1 correspondence.

https://doi.org/10.1371/journal.pone.0234158.g004
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Fig 5. Correlation of estimation errors between selected competing models: (a) correlation between best entropy GLCM model derived from 5×5 window with 5 bands

against entropy GLCM models from different number of bands within 5×5 window, (b) correlation between the best model against models derived from 7×7 window

size 5 competing models, (c) correlation between best model against models derived from 3×3 window size and 5 competing models, (d) correlation between best

entropy GLCM model derived from 5×5 window against seven other GLCM statistics. Underlining shows the same number of predicting bands (5) in different

windows. SM = second moment, Var = variance, Cor = correlation, Con = contrast, Hom = homogeneity, Dis = dissimilarity, Mn = mean, ba = bands.

https://doi.org/10.1371/journal.pone.0234158.g005
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GLCM statistics as shown in Fig 5D. The correlation between entropy GLCM and the other

GLCM statistics ranged between 0.70 (contrast GLCM) and 0.80 (second moment GLCM).

These correlations were considerably weaker than those observed in Fig 5A–5C. This is notice-

able from the error of entropy GLCM for 5×5 window size image falling mostly within the

-0.65–1.5 range whilst most of the error ranged between -2 and 2 for the competing models

developed from other GLCM statistics.

Discussion

This study aimed at assessing the performance of GLCM texture values derived from individ-

ual bands of WorldView-2 imagery in quantifying woody plant species diversity in a dry sea-

son. Many studies have focused on imagery at coarser resolutions (e.g., [33,35,37,43,59,76–

79]) that may ignore processes occurring at finer spatial resolutions (i.e. within pixel varia-

tion). The present study, therefore, adds to the body of knowledge by utilising finer resolution

imagery and smaller filed-plots, which may lead to different observations than studies using

coarser data. We converted the categorical species diversity information acquired through

field survey to the continuous Shannon diversity index scale. The all-possible-subset regression

approach that creates alternative estimation models was used in this study to correlate field

data (expressed in Shannon index) and remotely-sensed data. [51,79–81] utilised all-possible

subsets in species diversity estimation and reported its efficacy in evaluating all possible combi-

nations of explanatory variables to select the best model. We believe that this approach is useful

for exploring the suitability of the multiple sets of predictors (spectral bands, GLCM statistics

and image window levels) to estimate species diversity.

GLCMs vs. model performance

Generally, models with the best AIC ranking per window size and GLCM statistic had 3–5

bands as predictors (Table 2). Notably, the yellow band was part of the best model in most

GLCM and window sizes. The ability of yellow band in discriminating plant species in dry sea-

sons makes WorldView-2 imagery quite useful since a shortage of moisture in these seasons

renders foliage yellowish [32,82]. Comparison of GLCM statistics showed entropy GLCM to

be the best (Fig 4). This is not surprising given that difference in species types (mixed herba-

ceous−woodland plants) found in savanna creates heterogeneous environments that are capa-

ble of supporting diverse species [60].

Other better-performing GLCMs close to entropy in this study included dissimilarity, con-

trast and variance, all of which measure the degree of heterogeneity of the gray level and thus

are capable of measuring diversity [83]. Such better performance as observed by [80,83] can be

as a result of instantaneous changes in gray level values between neighbouring pixels; that por-

trays spatially contrasting pixel pairs. It is noteworthy to mention the weak estimation capabil-

ity of some of the GLCMs, particularly homogeneity and mean (Fig 3) which do not

specifically measure gray level dispersion. Homogeneity measures and represents the amount

of local similarity in the image window [76] while mean measures the average gray level values

in a window.

Importance of predictor size and window size on species diversity

estimation

Best estimations peaked when models contained 3–5 predictors for most GLCMs and window

sizes, after which accuracies remained unchanged or decreased slightly and progressively (Fig

3). Logically, multiple individual spectral bands, should be preferable for effective identifica-

tion of plant species composition [80,83–85]. This is justified by the fact that different species
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respond differently to incident radiant energy across the electromagnetic spectrum; hence a

large number of individual spectral bands leads to a higher chance of species discrimination

[9]. In connection to this, the better performance in quantifying species diversity in our study

compared to [31] whose study focused on southern Africa’s savanna region (in which our

study area also belongs) is attributed to the additional bands of WorldView-2 (red edge and

yellow bands). These additional bands are shown to be sensitive to variations in plant condi-

tion in dry periods [28].

Despite high accuracies achieved by entropy and dissimilarity GLCM statistics, it is worth

noting the higher number of predicting bands used in the latter statistic (Fig 3). The number

of predictors used in a model should, therefore, be taken into consideration in model selection

[71]. It was, therefore, important to evaluate accuracy across predictor size using directly com-

parable models developed using a GLCM statistic and window size, as illustrated in Fig 5A. A

specific comparison between the best model and those that contained fewer bands of entropy

GLCM at 5×5 window size showed little difference in accuracy, indicating the potential of

using simple models to estimate species diversity. In addition to model simplicity, knowledge

of good models that use few predictors (such as those shown in Fig 5A) is significant since

these models allow the use of suitable bands and they avoid those that show a high level of

uncertainty due, for instance, to atmospheric interference.

Although the effects of the three window sizes (3×3, 5×5 and 7×7) were comparable for

entropy GLCM-based analysis, the two smaller window sizes had a marginally better effect on

the accuracy (Fig 4). This shows the importance of limiting the size in characterising species

diversity at a localised scale such as one considered in this study. Overall, window sizes also

did not have a consistent effect on species diversity estimation accuracy across GLCMs used in

the study (Fig 3). This observation is also noted by [86] who reported that GLCM statistics

have varied output with different window sizes. We illustrated a more focused comparison of

the 5×5 window (which was taken as the best) with the 7×7 (Fig 5B) and 3×3 (Fig 5C) window

sizes of the entropy GLCM. The better similarity of 5×5 with 7×7 than with 3×3, irrespective of

the predictor size, shows the need to use fairly large window sizes to reduce the effect of noise

commonly encountered in small windows [87]. It should be noted that the comparison of win-

dows can be conditioned to the GLCM statistics used. For instance, we can deduct from Fig 3

that all predictor sizes of 3×3 window size result in significantly low accuracies than those of

5×5 and 7×7 when dissimilarity GLCM is used, while the three windows yield comparable

accuracies for second moment and mean GLCMs.

Finally, the best model (namely, that used entropy, 5×5 and five bands) was compared against

the best models of all the seven GLCM statistics. This was done to assess how much these statistics

maintain the accuracy of the best model (Fig 5D). The comparisons generally showed low corre-

spondence between the best entropy-based model and those developed from the seven GLCM

statistics. However, this should not be construed as weak estimation accuracy for individual

GLCM statistics as some of them showed good accuracies (Fig 3). For instance, errors of dissimi-

larity and variance GLCMs had low correlation with errors of entropy GLCM (r = 0.72); however,

the three of them were the best predictors as shown in Fig 3. This implies that the models had

inconsistent performance on each sample, but their overall accuracies remain similar. This, in

turn, suggests the importance of identifying appropriate GLCM for species diversity assessment

in a vegetation environment such as the one considered in the current study.

Conclusions

This study explored the performances of eight GLCM statistical measures derived from reflec-

tance values of WorlView-2 individual bands to estimate species diversity during a dry season
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in a savanna vegetation type. An exhaustive analysis using the all-possible-subset regression

approach showed that entropy GLCM statistic performed better than other statistics in captur-

ing plot level species diversity expressed in the Shannon index scale. This finding agrees with

other studies and with expectations since the entropy GLCM statistic exploits the complexity

of pixel values within a particular window size. This suggests the preference of entropy in a

vegetation environment where there is a good deal of complexity that should not be underesti-

mated. Notably, the yellow band formed part of models that yielded best estimation accuracies

in most cases, confirming the importance of this band in discriminating species diversity, par-

ticularly in the dry season.

The study further evaluated the accuracies of predictor and GLCM window sizes in estimat-

ing species diversity. Predictor size had a remarkable pattern of influence on estimation accu-

racy. Model accuracy increased until three–five predicting bands were used but stabilised or

decreased as more predictors were used per model for most cases of GLCM. Accuracies of

models that used fewer predicting variables compared to the best models that used three–five

bands were fairly good, indicating the adequacy of limited bands in species diversity estima-

tion. The effect of window size on species diversity estimation varied with GLCM type used in

the extraction of representative value. This is due to the fact that the GLCM statistics inher-

ently determine the type and level of similarity or contrast derived from a gray-level neigh-

bourhood of pixels.

Although the findings might not be universal to all images and all vegetation environments,

this study provides important observations on the performances of high spatial resolution

imagery coupled with GLCM statistics for woody species diversity estimation in dry conditions

within a savanna environment. Such an approach should be investigated in different savanna

environments as well as other ecosystems that might have more diverse species types. Further-

more, it is worth factoring in external variables (e.g. topographic variables and climate data) in

classifying species diversity. It is also important to extend such a study by using higher spatial

resolution data than used in the current study. Availability of very resolution data are realized

in particular with the development of unmanned aerial systems. In addition, GLCM statistics

should also be tested for estimating species diversity at a broader scale using different moder-

ate resolution imagery.
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