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ABSTRACT:  

 

In contemporary literature there have been growing concerns regarding preservations of natural ecosystems. Given the global growth 

in awareness of global warming, the need for natural fire prediction models has grown rapidly. Using South Africa as a case study, 

we evaluate the potential of integrating several natural fire prediction models and geographical information system (GIS) platforms. 

Initially, natural fire prone regions in South Africa were spatially demarcated basing on municipal historical data records. Thereafter, 

the natural fire prediction models were applied/tested in parallel to identify the best prediction models that give optimum results in 

predicting natural fires. The models were assessed for accuracy using historical data. Preliminary results reveal locations in the North 

West, Mpumalanga and Limpopo province had the highest recorded potential for natural fires. In conclusion, the work demonstrates 

huge potential of prediction models in informing the likelihood of natural fire outbreaks.  Lastly, the work recommends the adoption 

of natural fire prediction models and the subsequent formulation and use of relevant future natural fire mitigation policies and 

techniques to avert disasters in time. 
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1 INTRODUCTION 

In contemporary literature, there have been growing concerns 

regarding preservations of natural ecosystems. Given the global 

growth in awareness of global warming, the need for natural fire 

prediction models has grown rapidly. The global choice of 

increasing capital expenditure to enhance global fire prevention 

suppression is part of the sustainable development goals (SDGs) 

that explicitly encourage the environmental conservation. 

Within the developing world context, this has been boosted by 

policy changes such as the fire exclusion policy (Stephens et al., 

2014).  

 

Looking at Sub-Saharan Africa which is prone to natural fires, 

the fire management decision-making processes is guided by 

research which seeks to unpack temporal and spatial fire 

ignition distribution whilst also identifying the key drivers 

which are attributed to environmental and human influences 

(Schneider et al., 2008; Elia et al., 2019). The era of remote 

sensing and big data has allowed for the monitoring, prevention 

and prediction of wildfire over vast spatial locations (Arroyo et 

al., 2008; Liu et al., 2012; Zhang et al., 2016). The monitoring 

and management of vegetation fire in the developing world is 

vital for developing polices practices that safeguard community 

livelihoods. This paper therefore aims to find effective 

predictive model measures based on remote sensing in the case 

of South Africa to monitor, manage and predict wildfires.  

 

 

2 RELATED WORK 

Recent literature has extensively addressed future fire 

projections for countries in both the developed and developing 

worlds.  Liang et al., (2008) have articulated how predictive 

models generally have biases towards current climate conditions 

as this is used systematically into the projections for future 

climate at regional scales. There is a need for adaptive models 

that measure the change and diversity of temperature and 

precipitation between the current and future climate. Additional 

to regional variations, the spatial characterization of distribution 

of wildfires is dependent on the spatial scale, which are 

influenced by top-down control interactions and these among 

others include climatic gradients and bottom-up controls such as  

weather, local fuel conditions and topography (Falk et al., 2011; 

Parisien et al., 2011; Liu et al., 2012). Several literature sources 

have also shown that the majority of studies on prediction of 

spatial fire occurrences have focused on a single scale which 

ranges from local (Guo et al., 2017; Syphard et al., 2008;), 

regional (Syphard et al., 2007; Su et al., 2019;) to national and 

global scales (Chuvieco and Justice, 2010; Botequim et al., 

2013). 

 

Various models have been utilized for the prediction of fire 

occurrences at regional and global scales (Johnson et al., 2004; 

Molthan et al., 2015; Mandel et al., 2016; Ahmadov et al., 

2018). To model global fires, Bowman et al., (2009) articulated 

the underlying requirement for long term predictions 

over timescales of decades to centuries to consider several 

dynamic factors such as vegetation typology, human activity 

and climate changes. Such long-term fire prediction models are 
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linked to sources of ignitions and vegetation biomass 

flammability (Arroyo et al., 2008). In cases involving large 

geographical areas, research has shown that it is more 

reasonable to find varied relationships rather than ones that are 

constant (Martínez-Fernández et al., 2013; Rodrígues et 

al.,2014; Nunes et al., 2016). Such relationships can be 

described with models that allow for local spatial variation of 

model coefficients which include Geographically Weighted 

Regression (GWR). The GWR is a spatial analysis technique 

that has encountered escalating attention in recent literature. A 

number of studies which use the GWR model mainly focus on 

the fire occurrence prediction, despite presence or absence of 

fire ignition points (e.g. Zhang et al., 2016; Rodrígues et 

al.,2014, Rodrígues et al.,2018, Guo et al., 2017;) or on fire 

density prediction (Koutsias et al., 2010; Nunes et al., 2016; Su 

et al., 2019). Point data on the other hand is used to represent 

locations of wildland fire ignition whilst surface data is 

generally used in representing environmental and human 

variables (sources). Additionally, the Auto-Regressive 

Integrated Moving Average (ARIMA) model has also been used 

for simulating wildfires in North America. (Preisler & 

Westerling (2007) used ARIMA for temperature forecasting fire 

risks over a monthly timeseries analysis, whilst (Safford & 

Miller 2012) conducted trend exploration in large high severity 

fires.  

 

The variations in spatial and temporal characteristics of fire in 

South Africa, according to various studies (Kruger et al., 2006; 

Strydom & Savage, 2016) indicate that the most frequent fires 

occur within the north-eastern regions of the country and 

mountainous areas such as Mpumalanga and Kwazulu-Natal as 

well as the Western Cape. A study by Strydon & Savage (2016) 

focused on an 11-year dataset where active fire hot spots were 

analysed using an open geographical information systems (GIS) 

source and the study culminated to the mapping of the national 

fire frequency. In a study by Goslar (2006) in Limpopo, South 

Africa, ground vegetation biomass detection and remote sensing 

imagery (ASTER and MAS - MODIS Airborne Simulator) were 

used for fire prediction taking into consideration the various 

seasons and NDVI into context which proved effective as a 

prediction model for wildfires in South Africa. In 1998, South 

Africa adopted the National Veld and Forest Fire Act (No. 101 

of 1998) as a tool for the management and monitoring of 

wildfires (Kruger et al., 2006).  The Working on Fire 

Organization in Cape Town discovered that 70% of the 

ecosystems covered in South Africa are on the risk of 

encountering a wildfire (www.workingonfire.org). In 2004, the 
Electricity Supply Commission (Eskom) which embodies South 

Africa's largest power company, executed South Africa’s first 

satellite-based fire information to help combat and monitor fires 

in South Africa (Özelkan, 2011). However, since then not much 

has been done to extend and provide new prediction strategies 

for wildfires that cover the entire country. Consequently, this 

paper seeks to add to existing literature by exploring the 

potential of modelling fire occurrences in South Africa using 

remote sensing data. 

 

3 METHODOLOGY 

The study relied on shapefile active fire data of Visible Infrared 

Imaging Radiometer Suite (VIIRS) and Moderate Resolution 

Imaging Spectroradiometer (MODIS) datasets for the study 

area, South Africa for the period 2012-01-01 to 2019-12-31. 

The data is available open source from the NASA archives. 

Although the data is already reprocessed to ensure calibration 

and algorithm refinements; the authors further cleaned the data 

to ensure only high confidence fire pixels with positive 

observations of natural fires were accessed in the analysis. The 

first process of data cleaning was removing all the fire mask 

pixel classes with a detention confidence level less than 80%.  

This was done to reduce redundant data and false recordings in 

the analysis. Consistently, only ‘presumed vegetation fire’ type 

classes were considered during the analysis. Table 1 outlines the 

dataset for MODIS and VIIRS datasets after preliminary data 

cleaning. 

 

 

Table 1: Dataset 

Column ID Column Name Unit Interpretation 

1 YYYYMMDD - Detection date in year (YYYY), month 

(MM), and day (DD) 

2 HHMM - Detection time hour (HH) and minute (MM) 

3 SAT A or NPP or T Satellite type: Aqua (A) or Suomi (NPP) or 

Terra (T) 

4 LAT Degrees Latitude at centre of fire pixel 

5 LON Degrees Longitude at centre of fire pixel 

6 T3 (MODIS) or T_14 

(VIIRS) 

Degrees Celsius Band 31 (MODIS) or Band 14 (VIIRS) 

brightness temperature of fire pixel 

7 FRP MW Fire radiative power 

8 CONF % High Detection confidence class (80 -100%) 

9 TYPE - Inferred hot spot type: 0=presumed 

vegetation fire 

10 DN - Day/night algorithm flag: day (D) or night 

(N) 

     Authors’ Compilation (2020) 

 
After data cleaning 92701 fire pixel points were retained for the 

VIIRS and 162221 fire pixel points were retained for MODIS. 

In addition to the dataset having a high-temporal-spatial-

resolution, this also enhances the dataset capability to numerous 

applications for varying timeframes. For the paper’s analysis the 

time-series analysis was conducted over yearly intervals, for 

other analysis this can also be carried out over months to assess 

seasonal trends. 

 

3.1 Statistical analysis 

GeoDa (version 1.14.1) was used to calculate Global Moran I 

and Local Indicators (LI) for auto correlation Local Moran I to 

show the distribution of fire incidences in South Africa. GeoDa 

was chosen as it provides a myriad of sophisticated functions 

for example spatial weights construction, sensitivity analysis 



 

and visualisation for spatial autocorrelation. Local Moran I 

using empirical Bayesian statistical function with 9999 

permutations where utilised to calculate the global and local 

Moran because Empirical Bayesian statistics reduces biases. A 

significant level of 0.05 was used to calculate the indices.  

 

When calculating the Local Moran, I, we used the queen 

contiguity weights option to ensure that each fire incident has a 

neighbour and ensure a uniform distribution. The queen’s 

weight offers a histogram that is much more symmetric and has 

compact distribution of the neighbour cardinalities (Figure 1).  

 

 
Figure 1: Histogram of sample VIR data 

 

For the weights, each fire incident had a minimum ten 

neighbours and for each year we had histogram, connectivity 

map and graph (Figure 2).  

 

 
 

Figure 2: Sample connectivity map and graph for queen 

continuity weights on VIR data 

 

After running we would convert the points into theisen 

polygons for better visualisation of the clusters and label them 

High-High (HH, clusters of high fire incidences next to each 

other, High to low (HL, high incidences next to low incidences), 

Low-Low (LL,  low incidences of fire next to each other) and , 

Low-High, (LH, low incidences next to high incidence areas. 

 

4 RESULTS AND CONCLUSION 

The capabilities of exploring remote sensing data have greatly 

enhanced fire occurrence analysis. The results reveal variations 

of fire incidents.  2012 to 2014 VIIRS data shows variations of 

fire occurrences. Overall the local Moran I classification results 

show that using VIIRS data, in 2012, most fire clusters with a a 

with a high-high significance level occurs in the Western Cape 

(WC) (see figure 3). 

 

 
Figure 3: 2012 to 2014 VIIRS 

 

In 2013, most fires occurred in WC and Limpopo (LP) with 

high-low significance levels. In 2014, most of the fires recorded 

were in Northern Cape (NC) and WC with high-low 

significance levels. 2014 saw WC, NC and Free State (FS) with 

most fire occurrences, the significant levels ranged from high-

low to low-low (see figure 4).  

 

 
Figure 4: 2016 to 2019 VIIRS 

 

2016 VIIRS data shows that NC, WC, FS and North West (NW) 

has the most fire occurrences with high-high and low-low 

significance levels. 2017 data shows NC, EC and WC recording 

the most fires. The significance levels still ranged from high-

high to low-low. 2018 and 2019 data showed an increase in fires 

in NC and NW with Eastern Cape (EC) and Mpumalanga (MP) 

recording high-high significant levels for the LISA 

classification.  



 

 

 
Figure 5: 2012 to 2014 MODIS 

 

Figure 5 shows the MODIS data for the local Moran I from 

2012 to 2019. There is evidence that shows a prevalence of fires 

with a high significance levels of high-high in WC, NC, NW 

and some parts of FS for the year 2012. High-high significant 

levels were also appearing in some parts of the country like 

KwaZulu Natal (KZ) and Gauteng (GT) as well as MP. EC has 

significant levels of low-high. 2013 had low-low significant 

levels throughout the country and a high-low significance level 

in NC and WC. Furthermore, the same pattern was observed for 

2014 and 2015 for the MODIS data where NC, WC and FS 

recorded high-low and the rest of the provinces ranged from 

low-low to not significant.  

 

Figure 6: 2016 to 2019 MODIS 

 

When comparing both MODIS and VIIRS data it shows that 

2012 was the deadliest year of fire incidents with significant 

occurrences of high-high fire clusters.  

 

Figure 6 visualizes the 2016 to 2019 fire occurrences for both 

MODIS and VIIRS, shows that the western cape and northern 

cape are fire hotspots. This even more pronounced with MODIS 

data compared to VIIRS within the country owing to the very 

arid nature of these areas. The other localized fire hot spots are 

found in the other provinces, but the spatial spread is not as big 

as in the western cape and northern cape. The fires often destroy 

landscapes, infrastructure and livelihoods. 

 
Figure 7: 2012 to 2019 VIIRS and MODIS 

 

An analysis of trends from 2012 to 2019 for the VIIRS dataset 

reveals a dominant belt crossing from the LP, MP, EC and parts 

of WC and the NW which falls under the Low-low LISA 

classification. Whilst for the MODIS dataset most of the 

country falls under the Not Significant LISA classification with 

some parts in the NC and WC having portions of Low-low 

LISA classification. 

 

 

5 CONCLUSION 

The monitoring and management of fire occurrence is novel 

approach to meeting the SDGs whilst also ensuring the 

preservation of the natural environment. In the paper the authors 

have explored the potential of using VIIRS and MODIS datasets 

to visualise natural fire occurrences in South Africa. The results 

reveal locations in the Western cape, North West, Mpumalanga 

and Kwa-Zulu Natal provinces had the highest recorded 

potential for natural fires.  It is crucial to monitor the fire 

occurrences and also comprehend the drivers of fire 

occurrences. Fire also shapes the landscapes and also affect 

livelihoods, hence mapping map will assist in developing 

response mechanisms and sustainable land use planning. Lastly, 

the work recommends the adoption of natural fire prediction 

models and the subsequent formulation and use of relevant 

future natural fire mitigation policies and techniques to avert 

disasters in time. 
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