
COPYRIGHT AND CITATION CONSIDERATIONS FOR THIS THESIS/ DISSERTATION 

o Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

o NonCommercial — You may not use the material for commercial purposes.

o ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

How to cite this thesis 

Surname, Initial(s). (2012). Title of the thesis or dissertation (Doctoral Thesis / Master’s 
Dissertation). Johannesburg: University of Johannesburg. Available from: 
http://hdl.handle.net/102000/0002 (Accessed: 22 August 2017).    

http://www.uj.ac.za/
https://ujdigispace.uj.ac.za/


Detecting Emotions from Speech using
Machine Learning Techniques

a dissertation presented
by

Tanmoy Roy
to

The Department of Electrical & Electronic Engineering Science

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in the subject of

Electronic Engineering

Johannesburg, Gauteng
May 2019



© 2019 - Tanmoy Roy
All rights reserved.



Thesis advisors: Professor Tshilidzi Marwala and Professor Snehashish
Chakraverty

Detecting Emotions from Speech using Machine Learning
Techniques

Abstract

Speech is an extremely effective form of communication method that makes us

unique among all the species on earth. Modern-dayArtificial Intelligence (AI) sys-

tems are now capable enough to strike a spoken communication with us using the

Automatic Speech Recognition (ASR) system because ASR systems are presently

in a very advanced stage. However, this human-machine speech communication

is still not natural enough as between two humans, because the AI agents can not

efficiently identify the emotional states of the speaker.

Speech propagates as a waveform and carries various information along with it

apart from the intended message of the speaker. Moreover, emotion is the state

of our mind which usually gets reflected in speech sound and different physical

expressions. So, speech signals carry information regarding the emotional state of

the speaker. The study of Speech EmotionRecognition (SER) explores various at-

tributes of the speech signal and employs different Machine Learning (ML) tech-

niques to identify the human emotions concealed in the speech signal efficiently.

The task of identifying emotions from the speech is difficult, and it is deceiving

even for human ears. More than twenty years of research could not bring con-

sensus among researchers regarding feature sets for SER. Even employing most

powerful classification techniques such as Support Vector Machine (SVM), Neu-

ral Networks (NN), and Deep Learning (DL) techniques could not provide sat-
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isfactory classification accuracy. So, following three significant difficulties in SER

research has come out during this research which are: 1. the lack of a standard fea-

ture set; 2. considering SER as a sequence classification technique similar to ASR

which should not be the case; and 3. the speech signal preprocessing still needs

more effective algorithms for better classification results.

This thesis tried to address the issues listed above. First of all, a new algorithm

viz. Wavelet Convolution based Speech Endpoint Detection (WCSED) is pro-

posed for more precise detection of speech endpoints to enhance classification re-

sults. Secondly, a new feature set, named as Subjective Emotional Gap Reduction

Technique (SEGRT), is developed which is designed specifically for SER.The ex-

isting feature sets aremostly borrowed fromASR feature sets. However, it is found

that the ASR and SERproblems are different so the feature sets should also be spe-

cific and that is why this new feature set is proposed. The SEGRT is an attempt to

reduce the subjective gap between features extracted from the utterance of different

speakers. And finally, the classification models used in SER so far has mostly con-

sidered SER as a sequence classification problem, such as HiddenMarkov Model,

but it is established here that SER should be a regular classification problem. So,

in order to support the above, results are also provided in detail by applying most

successful classification problems like Gaussian Naive Bayes, Support Vector Ma-

chines, k-Nearest Neighbors, and Feed-forward Neural Networks.
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Everything is energy. Match the frequency of the reality you
want and you cannot help but get that reality. It can be no
other way. This is not philosophy. This is physics.

Albert Einstein

1
Introduction

Emotions are ubiquitous to human life, and studies have shown that 90% time of
their everyday life, humans feel at least one emotion [1]. Once human experi-
ence any emotion, it guides their thoughts and behaviors [2], and to communicate
those thoughts, they express them in different forms, and speech is one of those
forms. Moreover, since emotions provoke thoughts to invoke speech, speech re-
flects the emotional state of the speaker. SpeechEmotionRecognition (SER) field
is the study of the methodologies for identifying the emotions concealed within
the speech signals.

Speech is an extremely efficient form of communication method that makes us
unique among all the species on earth. That is why present Artificial Intelligence
(AI) systems’ unique characteristic is their ability to execute spoken conversation
with humans efficiently. Examples like Siri, Cortana, and Alexa are the technical
marvelswhichnotonly canhearus comfortably; but they can reply touswith equal
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comfort as well. However, are these spoken conversations with AI agents natural
enough? To be specific, are these AI agents intelligent enough to read our moods
or feelings? The answer is still ’NO’. AI agents cannot read emotions expressed in
our speech. The first significant work on SER was reported way back in 1978 by
Williamson [3] but the challenge to detect emotions from the speech in realtime
is still on.

1.1 Emotion: The hidden forcewhich drives us

Recent research findings suggest that only ten percent of the life experience of hu-
mankind is devoid of any emotional experience, and when an emotion is experi-
enced, it guides peoples thoughts and behavior. Darwin [4] was one of the first
to make the case that the study of emotional expressions are beneficial and also
discussed the effects of emotions. However, only in the 1990s, Darwin’s [4] study
was recognized as an essential aspect of studies related to humankind. Subsequent
studies revealed that emotional states have diversified effect on our everyday life
[1]. In our life from the first day, different emotions play a significant role in our
survival and further progress, which researchers likeFreedmanet al. [5], Frank [6],
and Damasio [7] explored in detail.

1.1.1 How emotion influences our every move?

Thehuman brain controls everymove theymake fromblinking of eyes to applying
breaks while driving a car. Every external or internal stimulation (also called inter-
rupt) has to bemanagedby the brain. The interrupt could be an audio-visual input,
a change in the surrounding environment, an occurrence of a disease, or any other
event. The human brain has three different layers of neural anatomy laid down,
one layer on top of another during different phases of evolution [8]. The oldest
and deepest layer is called the reptilian brain (fig:1.1.1 [9]) and is responsible for
autonomic functions, such as heartbeat and breathing, as well as instinctual behav-
iors, such as the sucking reflex. The next layer is called the limbic system, and the
amygdala is the vital organ in this system. The amygdala is responsible for register-
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ing emotional stimuli and storing emotional memories. The limbic system is also
called the emotional brain since it is responsible for handling emotions. The out-
ermost layer is neocortex also known as rational brain consisting of a layer of gray
matter and responsible for conscious processing of sensory stimuli. Figure 1.1.1
shows three primary layers of the human brain and the location of the amygdala
along with the mention of the major functionalities of them in brief.

Neocortex or Rational brain
Most advanced

 Rational thinking

 Language, imagination, ideas

Reptilian brain
Instincts

 Body functions

Unconscious

Limbic system or 

Emotional brain
Emotions, feelings, dreams

 Habit, memories

 External interactions

Amygdala or 

Implicit memory
Registers emotions

Emotional memory

Recognizes threats

Figure 1.1.1: The figure shows three primary layers of the human brain.

Now the question is why human emotional states influence every move they
make? The internal structure of the human brain has the most vital clue [10–12].

• The limbic system or emotional brain and the neocortex or the rational brain
work in collaboration to respond toan incoming stimulation. Both thebrains
are interconnected, but the number of neural connections running from the
limbic system to the cortex is far greater than the number connecting the
cortex to the limbic system [10, 12] which results in a transfer of the influ-
ence of emotional states unconsciously from the emotional brain to the ra-
tional brain. Figure 1.1.2 shows how the emotional brain receives the stim-
uli before the rational brain, and due to a much stronger neural connection
from emotional to rational brain, the collective response gets significantly
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Figure 1.1.2: Figure shows the block diagram of the emotional brain influ-
ences the rational brain.

affected by the underlying emotional state.

• Moreover, the timing of neural signal’s arrival in the emotional and rational
brains is different; the emotional brain receives it first and gets activated
relatively early [10, 11].

These two structural arrangements of the human brain explain the influence of
emotional states in our every move.

1.1.2 Why is emotion detection important?

Emotion has a substantial influence on the cognitive processes in humans, includ-
ing perception, attention, learning, memory, reasoning, and problem-solving [13,
14]. So, detecting the emotional state of a person involved in critical activities like
flying an aircraft or driving a car can be a very significant input towards crisis man-
agement. Recent studies on Emotional Intelligence and its impact on leadership
and organization is an exciting new topic of research [15, 16].

Research confirms that different emotional states have a significant impact on
our health. Negative emotions like anger, anxiety, and depression not only affect
the functioning of the heart but also increase the risk of heart disease [17]. On
the other hand, positive emotions can help recover from cardiovascular ailments
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[18]. McAllister et al. [19] have shown that patients with genetic diseases can be
facilitated by managing emotional conditions. New evidence shows that positive
emotions may help limit cancer growth [20] while negative emotions could con-
tribute to cancer incidence [21, 22]. Research even demonstrated that emotions
could influence the onset, course, and remission of the disease [23].

Effects of specific emotions on human behavior during financial decision mak-
ing or economic judgment is an exciting topic of research. Research shows that
human emotional states limit human rationality [7, 24, 25], and that leads to the
proposal of artificial agents in the human decision making process [26].

So, the situationsmentioned above are fewof the life exampleswhere it is crucial
to track emotional states of the people for their benefit or benefit of the masses.

1.2 Speech Emotion Recognition: A Brief Overview

The Speech signal is the fastest and most natural method of communication be-
tween humans. That is why most AI systems incorporate various speech process-
ing systems like Automatic Speech Recognition (ASR), Speaker Recognition, and
Speech Synthesis. However, these systems are not natural or realistic enough be-
cause they cannotdetect theunderlyingemotional stateof the speaker. Thespeech
signal is a complex signal which contains information about the speaker and the
speaker’s emotional state, language, andmuchmore apart from the intendedmes-
sage. Humans extensively use emotions to express their intentions through speech
[27]. So, it is required to track the underlying emotional states of the speaker to
build betterAI systems andother relevant systems to functionmorenaturally [28].

1.2.1 Speech Production System

Different organs like the nose, throat, vocal chord, trachea, and lungs work col-
lectively to produce speech. While exhaling, the air within the lungs is pushed
through vocal chord using the trachea. The vocal chord vibrates in that process to
generate various sounds and those sounds advance through the air available in the
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vocal tract. That sound vibration then reaches the oral cavity through the pharyn-
geal cavity and depending on the position of the velum; those sounds come out
from the system either through themouth or both the nose andmouth. When the
velum is in the closed position, only oral sounds are produced, and when it is in
open position, both oral and nasal sounds are produced. Figure 1.2.1 [29] shows
the human speech production system andwhat are the organs involved in the pro-
cess. The lung creates the air pressure to vibrate the vocal chord, and the sound
produced by the vocal chord vibration comes out as oral or nasal sounds are called
human speech. Within the oral cavity, the tongue plays a vital role in generating
different sounds by moving extensively within the oral cavity while speaking. So,
this is, in brief, the human speech production system, and it is important to note
here that the underlying emotions drive the speaker tomodulate their vocal chord
vibrations differently for different emotions.

Lungs

Trachea

Vocal

Folds

Velum

Muscle Force

Air

Pharyngeal

Cavity

Oral 

Cavity

Nasal

Cavity

Oral

Sound

Nasal

Sound

Figure 1.2.1: The figure shows the human speech production system.

1.2.2 Speech Emotion Recognition: The Technique

SERprocess involvesmultiple steps before theunderlying emotional state of a spo-
ken utterance can be predicted. Figure 1.2.2 depicts the steps involved in SER.
Speech produced by an actor or recording of a natural conversation is the primary
input to an SER system. The recorded speech is then appropriately labeled based
on the psychological definition of different emotions. Labeled speech signals need

6



to be processed further to make those suitable for feature extraction. Noise re-
duction, endpoint detection, and silence removal are the pre-processing steps in-
volved.

Figure 1.2.2: The figure shows the steps involved in speech emotion recogni-
tion.

Speech Features

Speech is a complex signalwhich contains enormous amountsof informationcalled
speech features which can describe the signal. There are three broad categories
of speech features, which are prosody, voice quality, and spectral [30]. Prosody
features are also called continuous features and include the pitch or fundamental
frequency(F0), the signal energy, the articulation rate, the formants, and all other
variants of these features. Several research results concluded that prosodic features
provide a reliable indication of emotions [31–37].

The voice quality features such as harsh, breathy, or tense voice and type of
voice, correlate with different emotions [35, 37, 38]. However, there is disagree-
ment among researchers over different emotions expressed during different voice
quality, for example, some researchers suggested that tense voice has an associa-
tion with anger, joy, and fear; and soft voice has some association with sadness
[38]. On the other hand, Murray and Arnott [35] associated that breathy voice
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with both anger and happiness, whereas sadness is associatedwith ‘resonant’ voice
quality.

The spectral features can be extracted as the linear predictive coding (LPC)
[39], cepstral coefficients (like mel-frequency cepstral coefficients (MFCC) [40,
41], and linear predictive cepstral coefficients (LPCC)). These are the short-term
representation of the speech signal. MFCCand its advanced variants are very pop-
ular among SER researchers [42, 43].

Classification Techniques

Researchershave applieddifferent classification techniques forSER.HiddenMarkov
Model (HMM)was theworkhorse for speech related applications, and itwas even-
tually used for SER as well [44–49]. However, the classification accuracy achieved
by them was not satisfactory enough. So, other powerful classification techniques
like GaussianMixtureModel (GMM) [50–55] , Support VectorMachine (SVM)
[52, 56–60], k-NearestNeighbors (kNN)[61–64],ArtificialNeuralNetwork (ANN)
[52, 65–67] and more recently Deep Learning (DL) architectures [43, 68–72]
came into the picture to be used in SER. Classification performance has improved
but a real life solution is still not achieved. The main reason is that classification
performanceoncrossdatabases varies toomuch,whichmeans that amodel trained
using one dataset performs poorly when tested with another dataset and the accu-
racy is significantly low.

Challenges in SER

Emotional feeling and their expressions in humans are very subjective and can
vary significantly from one person to another. This reality is reflected in research
results as well as when speaker specific systems perform better than generic sys-
tems. Recognition rates are low in cross-corpora and cross-lingual research ini-
tiatives which need to be addressed for more acceptable and industry usable SER
systems. Recognition performance is high when the systems are designed on the
simulated speech database compared to the systems built on the natural or semi-
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natural databases. Binary classification accuracy is high while classifying high-
arousal and low-arousal emotions and multi-class classification with all the emo-
tions is still challenging. The scarcity of high-quality datasets with enough data
points for training is a significant concern for the SER field.

1.2.3 Applications of SER

SER has an extensive scope of applicability in human life, ranging from medical
treatments, AI to entertainment.

1. Researchers are trying to improve the familiarity of HMI spoken commu-
nications through SER [52, 61].

2. Researchers are trying to read the emotions of autistic people [73, 74] for
better communication with them.

3. Patient assistant systems are being developed to help patients according to
their emotional needs.

4. Emotional state tracking through speech can help doctors or relatives to
manage patient’s condition remotely [75].

5. Smart calling agents could decide on the need to transfer a customer call to
a human agent depending on the mood of the customer [66, 76].

6. Consumer feedback could bemore realistic when there is prior information
about the emotional stateof the customer so that feedback timeandpractice
can be reviewed.

7. SER could immensely help drivers [52] and pilots [77] to manage critical
circumstances by reporting in real-time their emotional states to respective
authorities.

8. Virtual assistants like Siri, Alexa, and Google home will be more sensitive
to our moods and can become a more sensible human companion.
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9. Entertainment like gaming, virtual reality, and augmented reality will be
more lively with the introduction of the player’s emotion tracking feature
and concepts like interactivemovie [66] and story-telling [78]will bemore
popular.

10. Advent of virtual learning platforms will be beneficial if learners’ emotions
can be adequately tracked to regulate the learning content.

1.3 Motivations andContributions

Albert Einstein once said - ”Everything in life is vibration”. According to theQuan-
tum FieldTheory (QFT) of particle physics, absolutely everything is made of one
or a combination of more than one fundamental fields, and elementary particles
are tiny vibrations in these fields [79, 80]. The particles defining our whole exis-
tence are also continually vibrating, and that is why we exist with all our attributes
[81]. Change in emotional state changes the vibration pattern, primarily the fre-
quency of vibration [81]. One of the vibrations that we humans can generate con-
sciously is through our vocal chord as speech. So, the speech signal is one of the
closest formperceivedbyus, which can contain the existential vibrationof humans
along with the respective emotional state. That is why in this work the speech sig-
nal is considered as the most authentic source for tracking the emotional states of
human beings.

Presenthuman-computer interfacing (HCI) systemsare at a very advanced state
concerning interactivity and artificial intelligence. Present day humanoids and
voice assistants can converse with us fluently and intelligently. However, they are
not advanced enough to read our feelings or emotions. So, the initial motivation
of this study was the ongoing research worldwide to detect human emotions from
their speech so that HCI can become more natural.

SER has a wide range of applications spread across diversified fields such as
healthcare, transportation, customer relationshipmanagement, andentertainment.
The research in SER has been ongoing for more than twenty years, but the break-
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through is yet to arrive mostly because of the lack of consensus on speech features
and difficulty in getting enough well-labeled data points. The primary motivation
of this work was the challenge posed by the complexity of the SER systems. The
deficiency in SER specific feature set was the motivation behind coming up with
a new feature set. During this work, it is found that there is a lack of robust speech
endpoint detection algorithms which motivated a new endpoint detection algo-
rithm.

1.3.1 Contributions

One of the outstanding problems in trying to recognize emotions is that different
individuals may express the same emotion differently. Which means it would be
better if a separate reference point can be defined for individual speakers so that
emotion classification accuracy can be improved. This work tried to implement a
similar approach by using the neutral emotional state of the speakers as a reference
point for individual speakers and then identifyingother emotions around that neu-
tral state. The concept is new, and it is named as subjective emotional gap reduction
technique (SEGRT), which tries to reduce the subjective gap of the utterances of
different speakers. A novel feature extraction method has been proposed here to
incorporate the SEGRT concept mentioned above. Feature extraction for SER is
a challenging task, and there is no consensus among researchers on a single set of
features which works best. Different speech features such as pitch, energy, for-
mants, Mel-Scale Coefficients, and Predictive Coding are used for classification,
but results are still not satisfactory enough. In the proposed feature extraction
method, the digital speech signal is first transformed using discrete wavelet trans-
form (DWT) technique, and then distance or dissimilarity is computed on the
transformed coefficients between neutral and other emotional states. Thenew fea-
ture set is used for emotion classification using three different classification tech-
niques to establish that the feature set is giving better or competitive results com-
pared to the contemporary features. This novel feature set is then used with deep
learning architecture to compare the emotion classification accuracywith contem-

11



porary SER system results, and the proposed model fared well.
Speechpre-processing is oneof themost crucial stages of SERandother speech-

based applications like ASR. Precise detection of speech endpoints is an essential
pre-processing step which affects the performance of the systems where speech
utterances need to be extracted from the speech signal. Existing endpoint detec-
tion (EPD) methods mostly use Short-Term Energy (STE), Zero-Crossing Rate
(ZCR) based approaches, and their variants. However, STE and ZCR based EPD
algorithms often fail in the presence of Non-speech Sound Artifacts (NSAs) pro-
duced by the speakers. Pattern recognition and classification techniques are also
applied, but those methods require labeled data for training. In this work, a novel
algorithm is proposed to extract speech endpoints, and the algorithm is termed as
Wavelet Convolution based Speech Endpoint Detection (WCSED). WCSED de-
composes the speech signal into high-frequency, and low-frequency components
using wavelet convolution and then computes information-entropy based thresh-
olds for the two frequency components. The low-frequency thresholds are then
used to extract voiced speech segments, whereas thehigh-frequency thresholds are
used to extract the unvoiced speech segments by filtering out the NSAs. WCSED
does not require any labeled data for training and can automatically extract speech
segments. Experiments are carried out on two speech databases, and the results
are promising even in the presence of NSAs.

1.4 Organization of this thesis

This thesis is organized into six chapters. The first chapter is this present chapter
where a brief introduction to SER is presented, touching upon the key aspects of
this work.

Thesecondchapter is adetailed surveyof theSERstudy takenupby researchers.
In this survey, different components of an SER system are described. This chap-
ter includes the design criteria for emotional speech databases and description of
some prominent databases, description of features extracted for SER, prominent
classification techniques used for SER, and finally, some challenges in SER.
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Thethird chapter proposes a novel speech endpoint detection (SED) algorithm
named Wavelet Convolution based Speech Endpoint Detection (WCSED). Here
the problem is defined, and then the mathematics of the proposed WCSED algo-
rithm is discussed. After that, the databases used and the results are discussed. This
proposed method is already published as an article in a reputed journal [82].

The fourth chapter introduces a novel feature set for SER, which is based on
discrete wavelet transform (DWT).This feature extraction technique is described
in details, and then it goes on to discuss the classification techniques, experiment
environment, and results. This work is going to be published in IEEE conference
proceedings [83].

The fifth chapter presents an SER systemwhich uses a neural network as a clas-
sification technique. This chapter describes the model in detail and then goes on
to discuss the experimental setup and results. This work is going to be published
in Springer conference proceedings [84].

Finally, the sixth chapter concludes this thesis with remarks and future direc-
tions. This thesis has produced the following publications:

Journals:

1. T Roy, T Marwala, and S Chakraverty. Precise detection of speech end-
points dynamically: A wavelet convolution based approach. Communica-
tions in Nonlinear Science and Numerical Simulation, 2018.
doi:https://doi.org/10.1016/j.cnsns.2018.07.008.

Conferences:

1. T. Roy, T.Marwala, and S.Chakraverty. IntroducingNewFeature Set based
onWavelets for Speech Emotion Classification. 1st IEEE Conference on Ap-
plied Signal Processing (ASPCON) 2018. Accepted for IEEE Conference
proceedings book.

2. T. Roy, T. Marwala, and S. Chakraverty. Speech Emotion Recognition us-
ing Neural Network and Wavelet Features. 8th Wave Mechanics Vibrations
Conference 2018, NIT RKL. Accepted for Springer Conference proceedings
book.
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Book Chapters:

1. T. Roy, T. Marwala, and S. Chakraverty. Novel Advancements of Auto-
matic Emotion Recognition and its Role in the 4th Industrial Revolution.
Accepted InTheDisruptive Fourth Industrial Revolution: Technology, So-
ciety and Beyond, Edited by T Marwala, BS Paul. Springer.

2. T. Roy, T. Marwala, and S. Chakraverty. A Survey of Classification Tech-
niques in Speech Emotion Recognition. Accepted In Mathematical Meth-
ods in Interdisciplinary Sciences, Edited by S Chakraverty. Wiley.

3. T. Roy, T.Marwala, and S. Chakraverty. Deep Learning in Speech Emotion
Recognition: A Review. Proposed In Mathematical Methods and Vibra-
tions, Edited by S Chakraverty. Elsevier.
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The question is not whether intelligent machines can have any
emotions, but whether machines can be intelligent without
emotions.

Marvin Minsky, AI Scientist

2
Machine Learning Paradigms for Speech

Emotion Recognition: AnOverview

The initial study on emotion started as a study of psychology and acoustics of
emotions. The first detailed study on emotions was reported way back in 1872
by Charles Darwin [4]. Fairbanks and Pronovost [85] was among the first who
studied pitch of voice during simulated emotion. Since the late fifties, there has
been a significant increase in interest by researchers regarding a psychological and
acoustic aspect of emotion [3, 5, 86, 87]. However, in the year 1995 Picard [73]
introduced the term ”affective computing”, and after that, the study of emotional
states has become an integral part of artificial intelligence (AI) research. In this
chapter, a detail description of the critical aspects of speech emotion recognition
(SER) and present state of the SER research is provided in a few sections.

Thefirst discussion (2.1) of this chapter is on psychologicalmodels of emotions
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which are essential for labeling different emotions to speech utterances. These psy-
chological models are extensively used during emotion speech database prepara-
tion. Section (2.2) reviews the prominent speech databases used in SER. Then,
there is a detailed review of the speech features which have contributed signifi-
cantly to the SER research in Section 2.3. Section (2.4) discusses four of the most
prominent classification techniquesused inSER,namelyHMM,GMM,SVM,and
DNN. Section (2.5) depicts the difficulties faced by the SER researchers. Finally,
Section 2.6 summarizes this chapter and concludes.

2.1 Labeling Emotions: PsychologicalModels

Psychology of emotions can be viewed as a complex experience of consciousness
(psychology), bodily sensation(physiology), andbehavior (action-speech). Emo-
tions are relatively brief episodes of synchronized responses that produce notice-
able changes in the functioning of an organism. Such changes are brought about
by triggering significant events [88].

There are around 300 emotions identified by researchers [89, 90], but most re-
searchers agree on at least on some emotions, including anger, sadness, joy, fear,
shame, pride, surprise, disgust, and guilt [24, 91, 92]which are very strong andeas-
ily identifiable. Psychological emotionmodels are used as background for labeling
emotional data, and the two most prominent of such models are Basic Emotions
model and Valence-Arousal-Dominancemodel.
Basic Emotionsmodel was initially proposed by Ekman [91] and later enhanced

by other researchers [93, 94]. According to this model, any emotion is a combi-
nation of six primary emotions anger, disgust, fear, happiness, sadness, and surprise.
These six emotions are also referred to as archetypal emotions. Plutchik [95] ex-
tended the basic emotions model and added two more emotions as primary emo-
tions: anticipation and trust. His model is interestingly designed like a wheel of
emotions such that similar emotions are located side by side and very different
(bipolar) emotions on the opposite side. This model is called Plutchik’s wheel,
which is like a color wheel where the intensities of the different emotions are dis-
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playedbycolor saturation. Figure2.1.1 [96] showsopened representationofPlutchik’s
emotion model: the eight bipolar emotions are arranged according to their simi-
larity. The color saturation accentuates the intensities of the emotions, and the
combinations of the basic emotions are written in between. There is another cat-
egorical model called the Geneva Emotion Wheel (GEW) where two axes valence
and control split the emotions into four separate groups and neutral is at the center
[97, 98].

Figure 2.1.1: The figure shows opened representation of Plutchik’s wheel.

Thebasic emotionmodelwas built on the assumption that an independent neu-
ral sub-system serves every basic emotion. However, neuroimaging and physio-
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logical studies have failed to establish this theory [99]. More recently discrete di-
mensional models of emotion are gaining more importance. A two-dimensional
circumplex model proposes that all affective states arise from two independent
neurophysiological systems: one related to valence (a pleasure – displeasure con-
tinuum) and the other to arousal (activation-deactivation). That is varying degrees
of both valence and arousal represents different emotions [100, 101]. In another
approach, different underlying dimensions of affect are chosen: energetic arousal
and tense arousal (fig:2.1.2 [99]).

Figure 2.1.2: The figure shows the schematic diagram of the dimensional
models of emotions with common basic emotion categories overlaid.

Theintroductionof anotherdimension ”stance”,whichdefines attention-rejection,
into the 2-D model (fig:2.1.3 [102]) resulted in a 3-D representation of the emo-
tions [102, 103]. One interesting point raised by Schimmack and Grob [104] is
that in the 3-dimensional model, the axes are not necessarily orthogonal to each
other (fig:2.1.2) in actual affect data.
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Figure 2.1.3: The section (a) shows the valence-arousal 2-dimensional model,
and the 2-dimensional is extended to 3-dimensional section (b).

This psychological aspect of emotion is an essential step towards dataset cre-
ation or selection for SER research. The synthetic data creation process is required
to decide on the model to follow for labeling purposes. Two-dimensional emo-
tionalmodels are extensivelyused inmostof the synthetic SERdatasets, andmostly
the underlying emotions are re-created (enacted). The synthetic speech datasets
used for this work also use the 2-dimensional model where the basic emotions are
enacted.

2.2 SpeechDatabases

Researchers are trying to solve SER as amachine learning (ML) problem, andML
approaches are data-driven. That iswhy theSER researchdependsheavily on emo-
tional speech databases [105, 106] because there is no mechanism till date, which
can label a natural speech recording with proper emotion tag. Thus, any random
speech cannot be used directly for research. Moreover, the database naturalness,
quality of recordings, number and type of emotions considered, and speech col-
lection strategy are critical inputs for the classification stage because those features
of the database will decide the classification methodology [107–110].
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2.2.1 Dataset design

Thedesignof the speechdatabase has different factors [76, 108]. First of all, the ex-
isting databases can be categorized into three categories: (1) simulated by actors,
(2) semi-natural, and (3) natural. The simulated databases, created by enacting
emotions by actors, are usually well annotated, adequately labeled, and are of bet-
ter quality since the recordings are performed in a controlled near noise-free envi-
ronments. The number of recordings is also usually high for simulated databases.
However, acted emotions are not natural enough, and sometimes an expression
of the same emotion varies a lot depending on the actor, which makes the feature
selection process very difficult. A brief tabular description of 22 popular datasets
in the SER research is provided in table.2.2.1.

Semi-natural databases are also the collection of the enactions by professional
ornon-professional actors, but here the actors are trying tokeep it as natural as pos-
sible. Natural emotional databases are difficult to label because manually labeling
a big set of speech recording is a daunting task, and there is no method available
yet to label the emotions automatically. As a result, the number of emotions cov-
ered in a natural dataset is low, and the number of data points is also low. Natural
recordings usually depict continuous emotions, which can create hurdles during
the classification phase because of the presence of overlapping emotions.

2.2.2 Problems with emotional databases

TheFollowingare someproblems facedbySERresearcherswith emotional databases.

• Most available corpora do not supply enoughmaterial, and there is no stan-
dardization regarding various emotion elicitation and emotion annotation
methods [129]; as a result, classificationperformancevariesdrastically across
databases.

• Emotional datasets designed for SER or other research and applications are
mostly private, and there are price and privacy clauses involved. This sce-
nario is a big problem for SER research since well benchmarked suitable
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Table 2.2.1: Brief details of some emotional databases used in SER research sorted as per publication dates.

Corpus Name Type Emotions Lang Description

DES [111] sim AN,JO,SA,SU,NE dan 4 actors× 5 emotions (2 words+ 9 sentences + 2 passages)
Noam [112] sim AN,DI,FE,JO,NE,SA heb 60 Hebrew and 1 Russian actors
Pereira [113] sim AN,JO,NE,SA eng 2 actors× 5 emotions×8 utterances
INTERFACE [114] sim AN,DI,FE,JO,NE,SU,SA eng,slv English (186 utterances), Slovenian (190 utterances),

spa,fre Spanish (184 utterances), French (175 utterances)
KISMET [107] sim AP,AT,PRO,SO,NE eng 1002 utterances, 3 female speakers, 5 emotions
FERMUS III [115] sem AN,DI,JO,NE,SA,SU ger,eng 2829 utterances, 7 emotions,13 actors
LDC2002S28 [116] sim NE,PA,ANX,AN,DE,SA, eng 7 actors× 15 emotions× 10 utterances

EL,JO,IN,BO,SH,PR,CO
AIBO [117] nat AN,BO,JO,NE,SA ger 14 Speakers (7 Male + 7 Female)× 40 Commands
ESMBS [118] sim AN,JO,SA,DI,FE,SU chi 720 utterances, 12 speakers, 6 emotions
BabyEars [110] sim AP,AT,PRO eng 509 utterances, 12 actors (6 males + 6 females)
Emo-DB [119] sim AN,JO,SA,FE,DI,BO,NE ger 800 utterances (10 actors, 10 utterances)
MPEG-4 [120] mov JO,AN,DI,FE,SA,SU,NE eng 2440 utterances, 35 speakers
Call centers[76] nat AN,FR,JO,NE eng 7200 utterances
CLDC [121] sim JO,AN,SU,FE,NE,SA chi 1200 utterances, 4 actors
Natural [122] nat AN,NE chi 388 utterances, 11 speakers, 2 emotions
KES [123] sim NE,JO,SA,AN kor 5400 utterances, 10 actors
IEMOCAP [124] sem HA,AN,SA,FR,NE eng Audio visual and motion capture data of
VAM [125] nat HA,AN,SA,DI,FE,SU,NE ger 12 hours of audio-visual recordings of the German TV
IITKGP-SESC [126] sim AN,COM,DI,FE, tel 12000 utterances (15 sentences,10 artists, 10 sessions)

JO,NE,SAR,SU
the scripted dialog of 10 actors

NIMITEK [105] sem JO,SA,AN,FE,DI,NE ger 15 hours of audio visual data of 10 speakers
Belfast [127] sem FR,FE,DI,SU,AM,AN eng Contains 3 sets of data, each containing 570, 650 and

spa 180 video clips of 114, 82, and 60 actors respectively
talk show “Vera am Mittag”

RAVDESS [128] sim CA,HA,SA,AN,FE,DI,SU,NE eng 24speakers(12male,12female)×2sentences×8emotions
×2repeatations

Abbreviations {emotions# AM:amused,AN:anger,ANX:anxiety,AP:approval,AT:attention,BO:boredom,CA:calm,COM:compassion,CO:contempt,
DE:despair,DI:disgust,EL:elation,FE:fear,FR:frustrated,IN:interest,JO:joy,NE:neutral,PA:panic,PR:pride,PRO:prohibition,SA:sadness,
SAR:sarcastic,SH:shame,SO:soothing,SU:surprise}, {types# sim:simulated,sem:semi natural,nat:natural}, {languages# chi:chinease,dan:danish,
eng:english,fre:french,ger:german,heb:hebrew,kor:korian,slv:slovenian,spa:spanish,tel:telugu}
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dataset is scarce. That is why public datasets like Emo-DB become very
popular among SER researchers.

• Inmost simulateddatabases, enactedemotions arenotnatural enough, even
human recognition rates in some databases [118] are around 65%, which is
very low.

• Some datasets do not have quality recordings and do not provide critical
details like phonetic transcriptions, which create further hindrance towards
the usability of those databases.

2.3 Speech Features for SER

Speech signals carry an enormous amount of information apart from the intended
message. Researchers agree that speech signals also carry vital information regard-
ing the emotional state of the speaker [27]. However, researchers are still unde-
cided over the right set of features of the speech signals, which can represent the
underlying emotional state. This section contains the details of feature sets which
are heavily used so far in SER research and performed well in the classification
stage. There are three prominent categories in speech features used in SER : (1)
the prosodic features, (2) the spectral or vocal tract features, and (3) the excitation
source features. The following sub-sections will discuss these features in detail.

2.3.1 Prosody Speech Features

The human speech production system is a very sophisticated apparatus. Humans,
while speaking can utilize different tools available in this system for varying the
duration, pitch, and intensity of the spoken utterances, called prosody alteration,
to express their various feelings in words. Prosody features are the characteristics
of the speech sound generated by the human speech production system, for exam-
ple, pitch or fundamental frequency (F0) and energy. Researchers used different
derivatives of pitch and energy as various prosody features [130–132]. These are
also called continuous features and can be grouped into the following categories
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[35, 76, 93, 94]: (1) pitch-related features; (2) formants features; (3) energy-
related features; (4) timing features; and (5) articulation features. Several studies
tried to establish the relationship between prosody speech features and the under-
lying patterns of different emotions [33–37, 94, 133, 134].

Most of the early studies of SER considered the fundamental frequency (F0) as
the most prominent attribute which represents different emotions [86, 87, 135–
137]. After that, other important features for SER like energy, speech duration, for-
mants are also introduced by researchers along with F0 and their derivatives [61,
122, 135, 138, 138–140]. Several studies tried to establish the relationship be-
tween prosody speech features and the underlying patterns of different emotions
[33–37, 133].

2.3.2 Excitation Source Features

The features used to represent glottal activity, mainly the vibration of glottal folds,
are known as the source or excitation source features. These are also called voice
quality features because glottal folds determine the characteristics of the voice.
Some researchers believe that the emotional content of an utterance is strongly
related to voice quality [38, 94, 135]. Speakers have their unique voice quality
signature, and different voice qualities can convey relevant information like inten-
tions, attitudes, and emotions.

Human vocal folds vibrate to generate quasi-periodic impulse-like excitation
in the vocal tract system during speech production. Glottal vibrations or excita-
tion source signal can be extracted by using inverse filtering (IF) technique on the
speech signal to remove the vocal tract contribution [141]. The signal received
after inverse filtering speech signal is also called linear prediction (LP) residuals,
which contain only higher order relations. The relations present among the distant
speech samples are treated as higher-order relations, whereas the adjacent relations
are treated as lower-order relations.

Cowie et al. [94]groupedacoustic correlates, related tovoicequality, are grouped
into the following categories. 1. voice level: signal amplitude, energy and duration
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have been shown to be reliable measures of voice level; 2. voice pitch; 3. phrase,
phoneme, word and feature boundaries; 4. temporal structures.

Voice quality measures for a speech signal includes harshness, breathiness, and
tenseness. The relation of voice quality features with different emotions is not
a well-explored area, and researchers have produced contradictory conclusions.
For example, Scherer [38] associated anger with tense voice whereas Murray and
Arnott [35] associated anger with a breathy voice. Many SER researchers [56,
142, 143] extracted features from the glottal waveform for emotion classifications.
However, deriving the accurate transfer function by canceling out the effect of the
vocal tract system, and obtaining the closed phase duration of the glottal cycle
[144, 145] is a challenge.

2.3.3 Spectral Features

Spectral features are the characteristics of various sound components generated
from different cavities of the vocal tract system. They are also called segmental or
system features. Spectral features extracted in the form of 1. ordinary linear pre-
dictor coefficients (LPC) [39], 2. one-sided autocorrelation linear predictor coef-
ficients (OSALPC) [146], 3. shorttime coherence method (SMC) [147], and 4.
least-squares modified Yule–Walker equations (LSMYWE) [42].

However, the extracted spectrum is often needed to pass through a bank band-
pass filters [93]. The filters’ bandwidths are usually evenly distributed with re-
spect to a suitable nonlinear frequency scale such as the Bark scale [40], the Mel-
frequency scale [40, 148], the modified Mel-frequency scale, and the ExpoLog
scale [42] because a human being does not perceive pitch in a linear scale.

Researchers claim that the sequence of shapes of the vocal tract system also
carries emotion-specific information, along with the information related to the
sound unit [29]. The spectrum characterized by formant frequencies and their
respective bandwidths is extensively analyzed for emotional speech [36, 87, 149].
It is inferred that the first formant(F1) for angry speech has a higher mean than
the neutral speech [87]. Researchers [87, 150, 151] also observed association

24



among changes in the spectral component and glottal source excitation; for ex-
ample, higher F0 in angry speech tend to have smaller F1 amplitudes. Some studies
[58, 152, 153] have shown that properties of formants like magnitude and shift
vary across vowels for different emotional states.

There is a particular type of spectral features called the cepstral features which
are extensively used by SER researchers. Cepstral features can be derived from the
corresponding linear features like linear predictor cepstral coefficients (LPCC) is
derived from LP. Mel-frequency cepstral coefficients are one such cepstral feature
which along with its various derivatives is widely used in SER research [43, 72,
154–156].

2.3.4 Deep Feature Learning Methods

The advent of deep learning has proven to be a paradigm shift towards looking at
feature extraction stage in the machine learning process. The ability of DL meth-
ods to learn underlying representations from data has already proven to be very
robust to variability in data such as speech signals [157, 158]. One such feature
extraction technique Generalized Discriminant Analysis (GerDA) is proposed by
Stuhlsatz et al. [159] to learn discriminative features of low dimension. Han et al.
[160] used DNN to extract high-level features from raw data. Researchers [71,
161] also employ a 1-layer CNN trained with a Sparse Auto-encoder (SAE) to
extract affective features for speech emotion recognition.

End-to-end deep learning systems are becoming very popular among SER re-
searchers, where raw speech is fed into a deep neural network model. These end-
to-end SER models usually combine CNN with RNN where the CNN layer is re-
sponsible for feature learning. For example, some researchers [69, 162] proposed
end-to-endmodelswhere they stackedCNNlayersbeforeLongShort-TermMem-
ory (LSTM) layers. However, researchers suggested that shallow 1-layer or 2-layer
CNN structures may not be able to learn effectively the affective features which
are discriminative enough to distinguish the subjective emotions [70]. So, a deep
structure is recommended.
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Drawbacks of Deep Feature Learning

Feature set learned using DL methods usually needs a very high number of at-
tributes to be provided as input. Thatmeans global speech features such as energy,
F0, needs to be further broken down into different derivatives. Moreover, feature
sets learned through DL methods usually becomes very high in dimension, and it
runs into thousands sometimes [160, 163].

2.4 Classification Techniques

Speech Emotion Recognition (SER) deals with speech signals. The analog (con-
tinuous) speech signal is sampled at a specified time interval to get the discrete
time speech signal. A discrete time signal can be represented as follows:

C = {cl}l∈L, where {cl} = {c1, c2, ..., cl},

{cl} ∈ R
(2.1)

where L is the total number of sample points in the speech signal. First, only
the speech utterance section is extracted from the speech sound by using a speech
endpoint detection algorithm. In this case, an algorithm proposed by Roy et al.
[82] is used.

This speech signal contains various information that can be retrieved for fur-
ther processing. Emotional states guide human thoughts, and those thoughts are
expressed in different forms [2] such as speech. Theprimary objective of an SER is
to find the patterns in speech signals which can describe the underlying emotions.
The pattern recognition task is carried out by different machine learning (ML) al-
gorithms. Features are extracted from the speech signal C in two forms (1) local
features by splitting the signals into smaller frames and computing statistics of each
frame; and (2) global features by calculating statistics on the whole utterance.

Let, there be N number of sample points after the feature extraction process.
If local features are computed from C by assuming 10 splits, then there will be 10
data points from C. Now, suppose there is a total of 100 recorded utterances, and
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each utterance is split into 10 frames, then will be total (100 × 10) = 1000 data
points available. When global features are computed, then each utterancewill pro-
duce one data point. The selection of local or global feature depends on the fea-
ture extraction strategy. Now, suppose, N is the number of data points such that
n = 1, 2, 3, ..,N, where n is the index. If D number of features are extracted from
C then each data point is a D dimensional feature vector. Each utterance in the
speech database is labeled properly, so that it can be used for supervised classifica-
tion. So, the data set is denoted as

X = {xn, yn}Nn=1 (2.2)

where yn is the label corresponding to a data point xn andX ∈ RN×D. Once the
data is available the next step is to find a predictive function called predictor. More
specifically the task of finding a function f is called learning so that f : X → Y.
Different classification models take different approaches to learning.

Researchers used different types of classifiers for SER, but in most of the situa-
tions, a proper justification is not provided for choosing a particular classification
model. Two apparent explanations are that classifiers which are successful in ASR
are assumed to be working well in SER (like HMM), and secondly, those classi-
fierswhichperformwell inmost classificationproblems are chosen (like SVM, and
GMM) [29]. There are two broad categories of classifiers (figure: 2.4.1) used in
SER: the linear classifiers and the non-linear classifiers. Table.2.4.1 shows a list of
classifiers commonly used in SER along with literature references.
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Figure 2.4.1: Categories of classifiers used in SER along with some examples.

Although in the table.2.4.1, there are eight classifiers listed, but not all of them
become prominent for SER tasks. In the following subsections, four most promi-
nent classifiers (HMM, GMM, SVM, and DNN) for SER are discussed to depict
the SER specific implementation technique.

Table 2.4.1: List of literatures on SER grouped by prominent classifiers

No. Classifiers References

1. Hidden Markov Model [44–49, 58, 67, 118, 164]
2. Gaussian Mixture Model [50–55, 63, 107, 110, 156, 165, 166]
3. k-Nearest Neighbor [61–64, 167, 168]
4. Support Vector Machine [47, 52, 56–60, 169–174]
5. Artificial Neural Network [28, 52, 63, 65–67, 117, 175]
6. Bayes classifier [61, 67, 165, 176]
7. Linear discriminant analysis [64, 76, 177–179]
8. Deep Neural Network [43, 68–72, 154, 161–163, 180–184]

2.4.1 Hidden Markov Model

HMMs are suitable for the sequence classification problems that consists of a pro-
cess that unfolds in time. That is why HMM is very successful in ASR systems
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where the sequence of the spoken utterances is a time-dependent process. HMM
parameters are tuned in the model training phase to best explain the training data
for the known category. Themodel classifies an unseen pattern based on the high-
est posterior probability.

HMMcomprises twoprocesses. Thefirst process consists of afirst-orderMarkov
chain whose states capture the temporal structure of the data, but these states are
not observable that is hidden. The transition model, which is a stochastic model,
drives the state transition process. Each hidden state has an observation associated
with it. The observation model, which is again a stochastic model, decides that in
a given hidden state the probability of occurrence of different observations [185–
187].

Figure 2.4.2 shows a generic HMM where Si andOi are the states and observa-
tions respectively, i = 0, 1, ...T− 1. A is the transitionmodel andB is the observation
model. Assuming the length of the observation sequence to be T so that O =

O0,O1, ...,OT−1 is an observation sequence andN is the number of hidden states.
The state transition probability matrix is denoted by A, whereas the observation
probability matrix is denoted by B. Also, let π0 be the initial state probability for
the hidden Markov chain.

Figure 2.4.2: Schematic diagram of an HMM

In the training phase, the model parameters are determined. Here, the model is
denotedby λ, which contains three parametersA,B, and π thus λ = (A,B, π). The
parameters are usually determined using the expectation maximization (EM) al-
gorithm [188] so that the probability of the observation sequenceQ is maximum.
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Now, since the model λ is determined, the probability of an unseen sequence Ou

that is p(Ou|λ) can be found to get the sequence classification results.
SER researchers usedHMMfor a long time andused itwith various types of fea-

ture sets. For example, some researchers [44, 45, 67, 118] used prosody features,
and some others [45, 46, 118] used the spectral features. Researchers using the
HMM achieves the average SER classification accuracy is between 75.5%-78.5%
[47–49, 58, 118, 164], which is comparable with other classification techniques,
but further improvement possibilities are low. Moreover, that is why HMM has
been replaced by other classification techniques in later studies like SVM, GMM,
or DNN.

Difficulties in using HMM for SER

• HMM may follow two types of topology: fully connected or left-to-right.
Most ASR systems use the left-to-right topology [164], but this topology
will not work for SER because a particular token can occur at any stage of
the utterance. So, in the case of SER fully connected topology is more suit-
able [118]. However, the problem domain of SER is different from ASR,
and the sequence in the utterance is the most crucial attribute towards suc-
cessfulASR, but for SERsequence is not that essential. Thewhole utterance
represents the emotional state and not the sequence of words or silence.

• the optimal number of states required for SER is hard to decide because
there is no fixed rule of splitting the speech signal into smaller frames.

• The observation type could be discrete or continuous [185], but for SER,
it is hard to decide on whether to consider it discrete or continuous.

• In ASR every spoken word is broken into smaller phonemes which are very
neatly handled by theHMM.However, for SER, at least a word should start
making some sense, and even a set ofwords should be reasonable, which is a
verydifferent scenario thanASR. So, applyingHMMforSERposes another
challenge.
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2.4.2 Gaussian Mixture Model

An unknown distribution p(x) can be described by a convex combination of K
base distributions like Gaussians, Bernoulli’s or Gammas, using mixture models.
GaussianMixtureModel (GMM) is the special case of mixture models where the
base distribution is assumed to be Gaussian. GMM is a probabilistic density es-
timation process where a finite number of K Gaussian distributions of the form
N (x|μk, Σk) is combined , where x is aD-dimensional vector, i.e. x ∈ RD, μk is the
correspondingmean vector and Σk is the covariance matrix, such that [189, 190]

p(x|θ) =
K∑
k=1

πkN (x|μk, Σk) (2.3)

where πk are the mixture of weights, such that 0 ≤ πk ≤ 1,
∑K

k=1 πk = 1.
And θ denotes the collection of parameters of the model θ := {μk, Σk, πk : k =

1, 2, ...,K}.
Now, consider the datasetX = x1, ..., xN and it is assumed that xn, n = 1, ...,N,

are independent and identically distributed (i.i.d.) and drawn from an unknown
distribution p(x). The objective here is to find a good approximation of p(x) by
means of a Gaussian mixture model with Kmixture components and for that the
maximum likelihood estimate (MLE) of the parameters θ need to be obtained
[190, 191]. The i.i.d. assumption allow the p(X | θ) to be written [190] as fol-
lows:

p(X | θ) =
N∏
n=1

p(xn | θ) (2.4)

where, the individual likelihood term p(xn | θ) is a Gaussianmixture density as
in eq.2.3. Then, it is required to get the log-likelihood [189, 190]

log p(X | θ) =
N∑
n=1

log p(xn | θ) =
N∑
n=1

log
K∑
k=1

πkN (xn | μk, Σk) (2.5)
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So, the MLE of the model parameters θ that maximize the log-likelihood de-
fined in eq.2.5 need to be obtained. The maximum likelihood of the parameters
μk, Σk, and πk is estimated using the Expectation Maximization (EM) algorithm,
which is a general iterative scheme for learning parameters in mixture models.

GMMisoneof themostpopular classification techniqueamongSERresearchers,
andmany research works are based on GMM [50–55, 63, 107, 110, 156, 165]. Al-
thoughaverage accuracy achieved is not up to themark, aroundanaverage74.83%-
81.94%, but least training time of GMM among the prominent classifiers made it
an attractive choice as SER classifier.

GMMs are efficient in modeling multi-modal distributions [191] with much
less number of data points compared to HMMs. So, when global features are ex-
tracted from speech for SER, less number of data points are available but, GMM
works better in those scenarios [93]. Moreover, the average training time is mini-
mal for GMM [93].

Difficulties in using GMM for SER

GMMs cannot model temporal structure since xn are drawn i.i.d. GMM was in-
tegrated with the vector auto-regressive process to capture the temporal structure
in SER [192]. Deciding the optimal number of Gaussian component is a difficult
problem [193].

2.4.3 Support Vector Machine

SVM is fundamentally a two-class or binary classifier. The SVM provides state-
of-the-art results in many applications [194]. Possible values for the label or out-
put are usually assumed to be {+1,−1} so that the predictor becomes f : RD →
{+1,−1}where f is the predictor andD is the dimension of the feature vector. So,
given the training data set ofN datapoints {(x1, y1), ..., (xN, yN)}, where xn ∈ RD

and yn ∈ {+1,−1} and n = 1, 2, ...,N, the problem is to find the f with least
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classification error. Consider a linear model of the form

f(x,w) = wTx+ b (2.6)

to solve this binary classification problem, where w ∈ RD is the weight vec-
tor, and b ∈ R is the bias. Also, assume that the dataset is linearly separable in
the feature space and the objective here is to find the separating hyperplane that
maximizes the margin between the positive and negative examples, which means
wTxn+ b ≥ 0when yn = +1 andwTxn+ b < 0when yn = −1. Now, the require-
ment that the positive and the negative examples nearest to the hyperplane to be
at least 1 unit away from the hyperplane yields the condition yn(wTxn + b) ≥ 1
[190]. This condition is known as the canonical representation of the decision
hyperplane. Here, the optimization problem is to maximize the distance to the
margin, defined in terms of w as ∥w∥−1, which is equivalent to minimizing ∥w∥2,
that is [190]

argmin
w,b

1
2
∥w∥2

subject to yn(wTxn + b) ≥ 1,∀ n = 1, ...,N
(2.7)

Eq.2.7 is known as the hardmarginwhich is an example of a quadratic program-
ming. Themargin is called hard because the formulation does not allow any viola-
tion of margin condition.

The assumption of linearly separable data set needs to be relaxed for better gen-
eralization of the data because, in practice, the class conditional distributions may
overlap. This is achieved by the introduction of a slack variable ξn ≥ 0 where
n = 1, ...,N, with each training data point [195, 196]. Which updates the opti-
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mization problem as follows [190]

argmin
w,b,ξ

1
2
∥w∥2 + C

N∑
n==1

ξn

subject to yn(wTxn + b) ≥ 1− ξn
ξn ≥ 0

∀ n = 1, ...,N

(2.8)

where C > 0 trades off the size of the margin and the total amount of slack
that we have. This model allows some data points to be on the wrong side of the
hyperplane to reduce the impact of overfitting.

Various methods have been proposed to combine multiple two-class SVMs to
build a multiclass classifier. One of the commonly used approaches is one-versus-
the-rest approach [197] where K separate SVMs are constructed where K is the
number of classes and K > 2. The kth model yk(X) is trained using the data from
class Ck as the positive examples and the data from the remaining K − 1 classes
as negative examples. There is another approach called one-versus-one where all
possible pairs of classes are trained inK(K− 1)/2 different 2-class SVM classifiers.
Platt [198] proposed Directed Acyclic Graph SVM (DAGSVM).

SupportVectorMachine (SVM) is extensively used inSER[47, 52, 56–60, 169–
171]. Performance of SVM for SER task in most of the researches carried out
yielded nearly close results, and accuracy is varying around 80% mark. However,
Hassan and Damper [60] achieved 92.3% and 94.6% classification accuracy using
linear and hierarchical kernels, respectively. They have used a linear kernel instead
of non-linear RBF kernel because of very high dimensional features space [172].
Hu et al. [173] exploredGMM supervector based SVMwith different kernels like
linear, RBF, polynomial and GMM KL divergence and found that GMM KL per-
formed the best in classifying emotions.
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Difficulties with SVM

There is no systematic way to choose the kernel functions, and hence separability
of transformed features is not guaranteed. Moreover, in SER perfect separation in
training data is not recommended to avoid over-fitting.

2.4.4 Deep Learning

Deep feedforward networks, also called feedforward neural networks, or multi-
layer perceptrons (MLPs), are the pure form of deep learning models. The objec-
tive of an MLP is to approximate some function f∗ such that a classifier, y = f∗(x)
maps an input x to a category y. AnMLP defines a mapping y = f(x; θ) and learns
the value of the parameters θ that results in the best function approximation. Deep
networks are represented as a composition of different functions, and a directed
acyclic graph describes how those functions are composed together. For example,
there might be three functions f(1), f(2), and f(3) connected in a chain, to form
f(x) = f(3)(f(2)(f(1)(x))) where f(1) is the first layer of the network, f(2) is the sec-
ond layer, and so on. The length of the chain gives the depth of themodel, and this
depth is behind the name of deep learning. The last layer of the network is output
layer.

The training phase of neural network f(x) is altered to approximate f∗(x). Each
training example x has a corresponding label y ≈ f∗(x) and training decides the
values for θ such that the output layer can produce values close to y say ŷ. However,
thebehavior of thehidden layers arenot directly specifiedby trainingdata, and that
is why those layers are called hidden. The hidden layers bring the nonlinearity into
the system by transforming the input φ(x), where φ is a non-linear transform. The
whole transformation process is done in the hidden layers, which provide a new
representation of x. So, now it is required to learn φ, and the model now becomes
y = F(x; θ,w) = φ(x; θ)Tw, where θ is used to learn φ and parameters w maps
φ(x) to the desired output. The φ is the so-called activation function of the hidden
layers of the feedforward network [199].

Most modern neural networks are trained using the maximum likelihood es-

35



timate, which means the cost function J(θ) is the negative log-likelihood or the
cross-entropy function between the training data and the model distribution. So,
the cost function becomes [199]

J(θ) = −Ex,y∼p̂data log pmodel(y | x) (2.9)

where pmodel is the model distribution, which varies depending on the selected
model, and p̂data is the target distribution from data. The output distribution de-
termines the choice of the output unit. For example, Gaussian output distribu-
tion requires a linear output unit, Bernoulli output distribution requires a Sigmoid
function, Softmax Units for Multinoulli Output Distributions, and so on. How-
ever, the choice of hidden unit is still an active research area but rectified linear
units (ReLU) are the most versatile ones which work well in most of the scenar-
ios. Logistic Sigmoid and Hyperbolic Tangent are other two options out of many
other functions researchers are using.

So, in the forward propagation ŷ is produced, and the cost function J(θ) is com-
puted. Now, the information generated in the form of J(θ) is appropriately pro-
cessed so thatwparameters canbe appropriately chosen. This task is accomplished
in two phases, first computing the gradients using the famous back-propagation al-
gorithm, and in the second phase, thew values are updated based on the gradients
computed by the backprop algorithm. Thew values are updated throughmethods
like stochastic gradient descent (SGD).The backprop algorithm applies the chain
rule recursively to compute the derivatives of the cost function J(θ).

Different variants of deep learning exist now, but Convolutional Neural Net-
works (CNNs) [200, 201] and Recurrent Neural Networks (RNNs) [202] are
the most successful ones. Convolutional networks are neural networks that use
convolution in place of general matrix multiplication in at least one of their lay-
ers. Whereas, when feedforwardneural networks are extended to include feedback
connections, they are called recurrent neural networks. RNNs are specialized in
processing sequential data.

SER researchers have used CNNs ([43, 68–72, 161]), RNNs [69, 154, 163],
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or combination of the two extensively for SER. Shallow 1-layer or 2-layer CNN
structures may not be able to learn effectively the affective features which are dis-
criminative enough to distinguish the subjective emotions [70]. So, researchers
are recommending a deep structure. Researchers [72, 154, 180, 181] have studied
the effectiveness of attention mechanism.

Researchers are applying end-to-end deep learning systems in SER [69, 162,
182–184], and most of them use arousal-valence model of emotions. Although
using end-to-end deep learning the average classification accuracy for arousal is
78.16%, which is decent, for valence it is pretty low 43.06%. Among other DNN
techniques, very recentlymaximumaccuracy of 87.32% is achieved by using a fine-
tuned Alex-Net on Emo-DB [70]. Han et al. [160] used Extreme Learning Ma-
chine (ELM) for classification where a DNN takes as input the popular acoustic
features within a speech segment and produces segment-level emotion state prob-
ability distributions, from which utterance-level features are constructed.

Drawbacks of Deep Learning

1. Implementation of Tensor operations is a complicated task, which results
in limited resources [199]. There are limited set of libraries like tensorflow
[203], theano [204], pytorch [205], mx-net [206], and cntk [207] which
provide the service.

2. Back-propagationoften involves summationofmany tensors together,which
makes thememorymanagement task difficult and often requires huge com-
putational resources.

3. Introduction of DL methods also increased the feature set dimension for
SER manifolds, for example, Wöllmer et al. [163] extracted total 4843 fea-
tures.

4. One crucial question is raised by Lorenzo-Trueba et al. [208] is how emo-
tional information shouldbe representedas labels for supervisedDNNtrain-
ing, e.g., should emotional class and emotional strength be factorized into
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separate inputs or not?

2.5 Difficulties in SER Studies

SERmystery is not yet solved, and it has proved to be difficult. Here are the promi-
nent difficulties faced by the researchers.

• The topic called emotion is inherently uncertain. Because the very experi-
ence of emotion is very subjective, its expression varies largely from person
to person. Moreover, there is little consensus over the definition of emo-
tion. These are the fundamental hurdle to proceed with the research [209].
For example, several studies [49, 50, 138, 165, 210–212] reported that there
is confusion between anger and happiness in emotional expression.

• SER is challengingbecauseof the affective gapbetween subjective emotions
and low-level features [70]. Also, the feature analysis in SER is less studied
[160], and researchers are still actively looking for the best feature set.

• Speaker and language dependency of classification results are a concern for
building more generic SER systems [213]. The same model gives very dif-
ferent classification resultswithdifferentdatasets. Studies reported the speaker
dependency phenomenon and tried to address that issue [138, 165, 178,
214] .

• Standard speech databases are not available for SER research so that new
models can be effectively benchmarked. Moreover, the absence of good
quality natural speech emotional databases is hindering the real-life imple-
mentation of SER systems.

• Cross-corpora recognition results are low [56, 155, 215]. This indicates that
existing models are not generalizing enough for real-life implementation.

• Classification between high-arousal and low-arousal emotions are achieved
more accurately, but for other cases, it is low, which needs to be addressed.
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Moreover, the accuracy of n-way classification with all the emotions in the
database is still very low.

2.6 Summary andConclusion

This chapter revieweddifferent phases of SER.Theprimary focus is on four promi-
nent classification techniques used in SER to date. HMM was the first technique
whichhas seen some success and thenGMMandSVMpropelled that progress for-
ward. Also, presentlyDL techniques,mainlyCNN-LSTMcombination, is provid-
ing state of the art classification performance. However, things have not changed
much in case of selecting a feature set for SER because the low-level descriptors
(LLDs) are still one of the prominent choices, although some researchers in recent
times are trying DL techniques for feature learning. The nature of SER databases
is changing, and features like facial expressions and body movements are being
included along with the spoken utterances. However, the availability of quality
databases is still a challenge.

This chapter is a survey of the advancements that happened so far in the SER
field. It is observed that the SER field is still facing many challenges, which are
barring research outputs from being implemented as an industry-grade product.
It is also noticed during this study that research work related to feature set en-
hancement is much less compared to the works done on enhancing classification
techniques. However, the available classification techniques in Machine Learning
(ML) field are in a very advanced state, and with the right feature set, they can
yield very high classification accuracy rates. Deep learning as a sub-field of ML
even achieved state-of-the-art classification accuracy in many fields like computer
vision, textmining, automatic speech recognition, to name a few. So, the classifica-
tion technique should not be a hindrance for SER anymore; only the appropriate
feature set needs to be fed into the classification system. Efforts have been made
in this work, towards finding the right feature set for SER and then applying the
appropriate classification method to classify the emotions.
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If you want to find the secrets of the universe, think in terms of
energy, frequency and vibration.

3
Precise Detection of Speech Endpoints
Dynamically: AWavelet Convolution

based approach

3.1 Introduction

Speech endpoints are the beginning and end points of the actual speech utter-
ance within the speech signal. Speech Recognition and its related field of research
has come a long way and has matured enough. However, the precise detection of
speech endpoints is still an important factor affecting the recognition performance
of Automatic Speech Recognition (ASR) systems. Lamel and Rabinar [216] ex-
plained the importance of accurate endpoint detection in speech recognition and
has shown that speech recognition performance dramatically reduces due to an er-
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ror in endpoint detection. Researchers like Li et al. [217] and Junqua et al. [218]
also reflect the similar view. Background noise and other sound artifacts which are
not the part of the actual speech utterance exists in the speech recordings. When a
recordingwith noise is used for analysis, the presenceof those noise distorts the re-
sults. Also, the silent sections before and after the actual utterance are not required
in the analysis for most of the cases, thus the requirement for precise extraction of
the speech utterance by separating it from those noises and silence sections.

Digitally recorded speech can be acquired from different sources such as tele-
phone recordings, studio recordings, and conversations recorded in the natural en-
vironment. All these recordings contain various noise depending on the record-
ing environment. Even the recordings in nearly noise-free environment contain
sound artifacts produced by the speaker during the recording. Examples of such
sound artifacts are mouth clicks and pops, heavy breathing, and lip smacking. In
this chapter, these sound artifacts are referred to as Non-speech Sound Artifacts
(NSAs). These NSAs need to be filtered out in most of the speech based applica-
tions for estimating good results because their effect is similar to noise in systems
like ASR.

Though the quest to find a solution for End-Point Detection (EPD) problem
started a long time ago in the 1970s, the search is still on because the correct solu-
tion is still not foundwhich can cater for all the challenging scenarios. Figure 3.1.1
shows examples of theNSAs present in speech recordings such as breathing noise,
mouth clicks, and pops.

Existing EPD methods frequently use Short-Term Energy (STE) and Zero-
Crossing Rate (ZCR) based methods and their variants. Rabiner and Sambur
[219] proposed a simple and fast algorithm to determine endpoints based on en-
ergy andZCR.Savoji [220] alsousedSTEandZCRas features, and their proposed
algorithm uses the knowledge-based heuristics for speech classification. Lamere
et al. [221] utilized the STE based approach with three energy thresholds, two
for beginning and one for ending. Energy and ZCR based algorithms work well
when there is no background noise, and no NSA type noise exists in the sound
recordings. Constant background noises present in speech utterances can be fil-

41



tered out using a suitable noise reduction algorithm for sound. However, segre-
gating the NSAs, present in the speech recordings, is a challenging task because
STE and ZCR based attributes are not enough to segregate speech from NSAs. It
is observed that the presence of NSAs nullifies the distinction in values for STE
and ZCR for speech and non-speech sections. Figure 3.1.2 shows how STE and
ZCR plots look like in the presence of heavy breathing noise. From the plot, it
is clear that there is not much visible distinction between the values of STE and
ZCR in the speech segment and noise segment. Also, Lamel and Rabinar [216]
have shown that energy based explicit approaches for EPD failed in the presence
of NSAs. While using a heuristic approach, they have classified the EPD problem
into implicit, explicit, and hybrid with respect to the speech recognition system.
In an explicit approach, EPD task is an independent module in the speech recog-
nizer, whereas, in an implicit approach, there is no separate stage in the recognizer
for EPD. The Hybrid approach has an EPD module at the initial phase, but after
recognition, the initial EPD results of EPD are updated. So, when the NSA type
noises are present in speech utterances, STE and ZCR based approaches are not
suitable for solving the EPD problem.
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Figure 3.1.2: This figure shows how STE and ZCR plots look like in the
presence of heavy breathing noise.

Figure 3.1.1: A speech signals containing breathing noise and mouth clicks
and pops along with leading and trailing silence section.

Researchers have applied pattern recognition (PR) andmachine learning (ML)
techniques to solve the EPD problem. Classification techniques such as Support
Vector Machine (SVM), Hidden Markov Model (HMM), Neural Network, and
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other suitable techniques for sequence classification are extensively used in differ-
ent algorithms. Atal and Rabinar [222] considered pattern recognition approach
usingEnergy of the signal, ZCR,AutoCorrelation coefficient, First predictor coef-
ficient, andEnergy of the prediction error as a feature set. They alsomentioned the
limitations of using PR techniques. First of all, the algorithm needs to be trained
for particular recording conditions. Second, manually locating voiced, unvoiced,
and silence for preparing training data is a tedious and time-consuming process.
HiddenMarkovModel (HMM) classification technique is applied byWilpon and
Rabiner [223] and has shown that the HMM-based EPD approach performs sig-
nificantlybetter in thenoisy environment compared to the energy-basedapproach.
Qi andHunt [224] used themultilayer feed-forward network with hybrid features
to classify voiced, unvoiced, and silence from the speech and achieved 96% classi-
fication rate. Kun andWang [225] applied SVM for speech segregation in compu-
tational auditory scene analysis (CASA) problem domain and considered pitch
and amplitude modulation spectrum (AMS) based features. Some researchers
[218, 226] tried to solve a problem similar to the EPD, which is the problem of
word boundary detection. Junqua et al. [218] used time frequency (TF) param-
eters along with adaptive threshold while Wu and Lin [226] used adaptive TF
(ATF) features with Self-Constructing Neural Fuzzy Inference Network (SON-
FIN) as a classification technique. However, the presumption to work for classifi-
cation techniques require properly labeled data for training, and the task of label-
ing data is a manual or off-line process. Since the manual intervention is required
in the classification approach for endpoint detection, it will be challenging to au-
tomate the whole EPD process. Lamel and Rabinar [216] also pointed out that
pattern classification approaches should not be readily applied in the EPD owing
to strong overlapping between the NSAs and the speech sounds. So, these are the
reasons to look for techniques other than classification.

Some researchers also proposedmethods other than those basedonEnergy and
ML for EPD and problems similar to that. Zhu and Chen [227] utilized the dis-
tance between autocorrelated functions and threshold as the feature set to find the
endpoints. They have assumed that there exist some leading and trailing frames
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in the speech recording, which can be considered as silence section. However,
this assumptionmight not hold for all speech databases or in real-world scenarios,
and the proposed algorithm relaxed these assumptions to a great extent. Li et al.
[217] proposed an optimal filter along with a three-state transition diagram for
endpoint detection. Ghanbari and Karami-Mollaei [228] used adaptive wavelet
packet threshold on noisy speech to enhance the speech signal for better voice ac-
tivity detection. Atanas [229] has shown that mean-delta feature for trajectory-
based endpoint detection of telephone speeches performs better than the energy
based features. Bhowmick and Chandra [230] used wavelet decomposition for
speech enhancement and designed an improved voice activity detector.

In this chapter, a new algorithm is proposed as an independent module and is
named as the WCSED (Wavelet Convolution based Speech Endpoint Detection)
which is developed based on the wavelet transform. It is worth mentioning here
that wavelets provide a powerful and remarkably flexible set of tools for handling
fundamental problems in science and engineering [231]. Researchers from var-
ious fields have applied wavelet technique effectively [232–235]. The WCSED
algorithm is a deviation from the energy and ZCR based approaches. It is formu-
lated by utilizing the simple fact that NSAs are high-frequency sound, and use the
concepts of wavelet convolution and entropy as a building block. First, the input
speech signal is decomposed into high-frequency (HF) and low-frequency (LF)
components using the wavelet convolutionmethod. It is observed (Fig 3.3.2) that
the NSAs are much more prominent in the HF components than in the LF com-
ponents.

Also, the voiced sectionsof a speechutterance are low-frequency sounds,whereas
unvoiced sections are high-frequency sounds. Thus it can be stated that the HF
components represent both the unvoiced speech and the NSAs, and the LF com-
ponents represent the voiced speech. Two sets of thresholds are computed based
on the entropy values for both the HF and LF components. The speech signal is
broken down into manageable frames to calculate the entropy of the decomposed
components. The LF thresholds extract the voiced speech segment, whereas the
HF thresholds are used to segregate the unvoiced speech segments from theNSAs.
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Results show that WCSED precisely extracts speech segments in the presence of
NSAs. Moreover, the proposed algorithm works with unlabeled data as there is
no training involved, which contributes to the easy automation of the EPD pro-
cess by the proposed algorithm. Also, in WCSED, threshold computation does
not assume that there exists a fixed number of leading and trailing frames, which
further improves the flexibility of the algorithm as far as the use of dataset is con-
cerned.

This chapter is organized into the following sections. Section 3.2 describes the
problem inhand. Section3.3describes theproposed solution indetail and relevant
concepts. Section 3.4 briefly describes the datasets used. In Section 3.5 results of
the algorithm and observations are elaborated. Finally, Section 3.6 concludes this
chapter and suggests possible directionswhich can be explored to extend or utilize
this work.

3.2 The Problem

In this section, the problem of speech endpoint detection is elaborated.

3.2.1 Difficulties in endpoint detection

Continuous speech signals are recorded, digitized, and stored as discrete-time sig-
nals, which aremostly used for speech-based applications such as theASR, Speech
Emotion Recognition (SER). Source of continuous speech signal can be recorded
in a natural environment or a specialized studio. A continuous-time signal xc(t)
is specified by an uncountable infinite number of signal values in every interval,
whereas a discrete-time signal S(n) consists of only one signal value in each sam-
pling interval. Since computer systems can not handle continuous-time signals,
xc(t) needs to be discretized to get the discrete signal S(n). Depending on the
requirement of the applications, the continuous speech signals are sampled at spe-
cific intervals to get the digitized signals. For thisworkpublisheddata-sets are used
which are recorded in controlled environments for research purpose. These data-
sets are stored in a digitized format that is in digital signal form.
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Apart from the speech segment, speech recordings contain twomore segments,
the silence section at the beginning and the endof the recordings and thenoise sec-
tion (see Fig.3.1.1). Speech databases from different projects are recorded with a
different degree of background noise. Here, speech databases which are recorded
in a quiet environment with negligible or no continuous background noise are
considered. Although there is negligible background noise, there are some un-
wanted sound artifacts generated during the recording by the speakers such as lip
smacking, heavy breathing, mouth clicks, and pops. Fig.3.1.1 shows the presence
of NSAs in speech recording.

The problem here is to separate speech utterances from silence and noise seg-
ments. Silence can usually be separated by applying algorithms based on STE and
ZCRwhen there is negligible continuous backgroundnoise, andnoNSAs exists in
the recordings. However, STE based approaches fail to segregate the energy level
of speech and noise when noise exists in recordings. Moreover, noise and speech
segments of a recording do not contain any standard characteristics which can dis-
tinguish them. Also, human speech contains two types of sound, Voiced sounds
such as vowels (a,e,i,o,u) and unvoiced sounds such as k and p. The characteristics
of unvoiced sounds are very similar to noise, and that needs to be taken care of
while filtering out the noise. So the problem here is three folds:

• segregate speech from trailing and leading silence

• consider the presence of noise

• need to be careful not to consider unvoiced speech sounds as noise.

3.2.2 Problem Statement

We are considering discrete-time speech signals as input to our system. A discrete
time signal X can be mathematically represented as a sequence of numbers as fol-
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lows [236]:

X = {x[n]}, where x[n] = {x1, x2, ..., xn},

−∞ < n <∞,

(x1, x2, ..., xn) ∈ R

(3.1)

here n is an integer and x[n] is the sequence usually generated by taking a peri-
odic sample from an analog signal.

x[n] = {idle[k], speech[m], noise[l]},where n = k+ m+ l (3.2)

This sequence x[n] comprises of three sections (eq 3.2), the idle section idle[k],
the noise section noise[l] and the speech section speech[m] where n = k + l + m.
These sections are not distinguishable by mere evaluation of the values in these
sequences because no predefined ranges or thresholds of values exists.

The taskhere is to extract only the speech[m] section fromx[n]. It is assumedhere
that speech[m] contains a continuous sequence extracted from x[n]. But the noise[l]
and idle[k] sections can contain combination ofmultiple sequence fragments from
x[n]. So, the sequence of x[n] contained in speech[m] cannot be found in either
noise[l] or in idle[k].

So, the objective here is to look for pattern in x[n], that can distinguish speech[m]
from noise[l] and idle[k] and finally extract the speech[m] from x[n].

3.3 Proposed Solution

A solution based on wavelet convolution to the problem stated in Section 3.2.2
is proposed here. The pattern has been found in the speech signals that demar-
cate speech utterances from a non-speech section of the recording. The concept of
entropy is applied to get an approximation of information content in wavelet con-
volution coefficients. In the following subsections, these concepts are discussed
before formulating the actual solution.
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3.3.1 Convolution

Convolution is an important operation in signal and image processing domain.
It is a concept extensively used in linear algebra. Convolution is one of the cor-
nerstones of the wavelet transform concept, and continuous wavelet transform is
applied to solve the endpoint detection problem. In this section, the concept of
continuous convolution is briefly discussed.

Convolution operates with two functions, one is input, and another is kernel,
and produces a third function. First, the kernel is flipped (rotation by 180 ) about
its origin and is slid past the input to compute the sumof products at each displace-
ment. Let there be an input function f and kernel function g. Then the convolution
between f and g, denoted by h, is defined as follows [199]:

h(i) = (f ∗ g)(i) =
∫ ∞

−∞
f(i− j)g(j)dj (3.3)

where the minus sign accounts for the flipping of the kernel function g, i is the
required displacement, and j is a dummy variable that is integrated out [237].

3.3.2 Wavelets

The Concept of Wavelet decomposition is the key to solve the speech endpoint
detectionproblem in this algorithm. This sectiondescribes important and relevant
areas of the Wavelet concept in as much detail required for this work.

Why Wavelets?

Signals carry overwhelming amounts of data which needs to be extracted as infor-
mation. Often, the difficulties involved in the task of extracting relevant informa-
tion from those data become a hurdle for the field of study to which those signals
belong. Sparse representation of signals is an efficient way to look for relevant
information and patterns in signals. Sparse representation is achieved through
decomposing signals over oscillatory waveforms using Fourier or wavelet bases.
Speech signals too carry different types of data that need to be extracted as infor-
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mation for better results in various research areas and applications that use speech
signals.

Non-stationary signals are the signals whose frequencies, and other statistical
properties vary over time. Fourier Transform (FT) is not suitable for analyzing
non-stationary signals. Short Time Fourier Transform (STFT) was introduced
to overcome this shortcoming of FT. However, during the STFT process, while
transforming the time domain signal into the frequency domain, vital time infor-
mation is lost. This phenomenon of losing time information can be explained by
Heisenberg’s Uncertainty Principle [see [238]].

Wavelet analysis is best suited in this scenario where non-stationary signals are
analyzed to look for a change in frequency components over time. Speech is a
non-stationary signal. For this reason, wavelet decomposition is applied here to
find relevant frequency components in speech signals. Wavelets define a sparse
representation of well-localized piecewise regular signal through the coefficient
amplitudes, and few coefficients are required to represent that transient structure.
That sparse representation may include transients and singularities — this is why
wavelet analysis is vital in speech processing.

Wavelet Analysis

This section describes the method of wavelet analysis. Consider a finite energy
signal x(t) where the energy of x is defined by its squared norm and is expressed
as follows [238]:

∥x(t)∥2 =
∫ +∞

−∞
|(x(t))|2dt < +∞ (3.4)

So, the space on which the ∥x(t)∥2 norm is defined has to be square integrable
because the integral

∫ −∞
+∞ |(x(t))|

2dtmust exists. That space is denoted as L2(R)
is a Hilbert space and is the vector space of the finite energy functions and thus
x(t) ∈ L2(R).

Theobjective here is to decompose the signal x into a linear combination of a set
of functions which belongs to L2(R). Let us consider a function ψ(x) ∈ L2(R)
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whose dilation and translation forms a set of functions inL2(R) space [238]

ψτ,s(t) =
1√
s
ψ
(
t− τ
s

)
, where τ ∈ R, s ∈ R+ and s ̸= 0 (3.5)

τ and s are the translation and scaling (dilation) parameters respectively and s
cannot be negative since negative scaling is undefined [238]. Normalization by
1√
s ensures that ∥ψτ,s(t)∥ is independent of s. The family of functions ψτ,s is called

wavelets and ψ is called themother wavelet.
So, now the signal x can be represented as wavelet inner-product coefficients

[231]

⟨x, ψτ,s⟩ =
∫ ∞

−∞
x(t)ψτ,s(t)dt (3.6)

here both x and ψ are considered as real-valued signals. When ψ is a complex
wavelet, the right hand side of equation 3.6 will have complex conjugate of ψ as
ψ∗
τ,s(t). Themother wavelet, also referred to as thewavelet functionor the kernel func-

tion, has zero average, meaning
∫∞
−∞ ψ(t)dt = 0. Apart from satisfying zero aver-

age conditionwavelet functions has to satisfy twomoremathematical criteria. First
one is that thewavelet functionmust have finite energy: E =

∫∞
−∞ |ψ(t)|

2dt <∞,
which ensures that ψ is square integrable and the inner product in eq 3.6 exist. So
the second one is called the admissibility condition which eventually boils down
to the condition of zero average, stated earlier, which ensure that x can be recon-
structed again after decomposition. The wavelet function need to be selected care-
fully based on the type of analysis to be performed on the input signal because that
will help to identify regularities and singularities. The choice of themother wavelet
to be used in continuous wavelet transform is restricted only to the conditions of
finite energy and admissibility [239]. Wavelet function can be either orthogonal
or nonorthogonal and only the orthogonal functions form wavelet basis. That is
why the orthogonal wavelets give a compact representation of the signal and are
useful for signal processing. On the other hand, nonorthogonal wavelets produce
wavelet spectrum, which is highly redundant at large scales and aremore useful for
time series analysis [240].
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Here continuous wavelet transform (CWT) is used for the analysis, and the fo-
cus in on CWT. However, before going into details of CWT, here are two reasons
behind selectingCWToverDiscreteWaveletTransform (DWT) for this solution.
A discrete sequence of τ is complex to describe, and amplitudes of wavelet coef-
ficients are difficult to interpret since the regularity of a discrete sequence is not
well-defined [238]. Moreover, the purpose of the CWT is to extract information
from the signal, whereas DWT is good at reconstructing the signal. Here infor-
mation needs to be extracted from speech signals, and thus CWT is chosen. The
scaling parameter s in CWT can vary continuously overR and can take any value,
whereas values s are restricted in DWT. So, signal analysis at an arbitrary scale (or
frequency) is possible in CWT and not in DWT, which is an essential criterion
for the current problem.

Now, CWT of x(t)with respect to wavelet function ψ(t) at scale s and position
τ is the projection of x on ψ and is defined as inner product coefficients in eq 3.6
[238]:

C(τ, s; x(t), ψ(t)) = ⟨x, ψτ,s⟩ =
∫ ∞

−∞
x(t)ψτ,s(t)dt (3.7)

which measures the variation of x in the neighborhood of τ proportional to s
[238]. Calderon [241] has shown that CWT can be defined as a convolution op-
eration.

C(τ, s; x(t), ψ(t)) =
∫ ∞

−∞
x(t)ψτ,s(t)dt = x ∗ ψ̄(τ) (3.8)

where

ψ̄(τ) =
1√
s
ψ
(
−t
s

)
(3.9)

So, CWT extracts information by convolution and not exactly decomposes the
signal into sub-signals. For CWT, the reconstruction frame is less important and
problematic as well because the inverse wavelet transform for CWT is still not well
defined. This wavelet convolution operation is the foundation of the proposed
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solution. CWT must be discretized to be implemented on a computer. That is
what is done here by selecting a discrete set of relevant scales for analysis rather
than a continuous scale. The shifting (translation) has to be done continuously
over all the points of the signal to be analyzed through convolution operation as
defined in Eq 3.3.

3.3.3 Information Entropy

The concept of Entropy was introduced in physics as a thermodynamic state vari-
able. It provides an appropriate measure of randomness or disorganization in a
system and increases along with the randomness of the system. Here the Infor-
mation Entropy (IE) of each frame is computed for the speech utterances. IE of a
frame is the expected amount of information contained in that frame. Statistically,
it is defined as [242]:

E(X) =
N∑
i=1

p(xi)log10p(xi), (3.10)

whereX = {x1, x2, ..., xN} is a set of randomphenomena, and p(xi) is the prob-
ability of a random phenomenon xi. IE computation for a speech signal involves
breaking the signal into small frames and calculating IE for that frame. Also, for
the complete signal, a set of entropy values for each frame is retrieved which is the
entropy vector for that signal.

During this work, it is observed that IE of amplitude values of a signal continues
to be significantly high and stablewhen there is a decent disturbance in the system.
This observation is useful to keep track of voice activity in a signal recording and a
separate voice from silence. This phenomenon is also aligned with the basic prop-
erty of information entropy, which says that when the probability of the points in
the system is equal, then entropy will be high. In the silence section of the speech,
a particular set of values (which is 0 or approximately 0) appears very often which
makes those values highly probable and other points less probable and thus silent
sectionhas lowIE.Consider a silent frame f = {0.0001, 0.0001, 0.0001, 0.0001, 0.002, 0.004}

53



so, p(x = 0.0001) = 0.667 whereas p(x = 0.002) = 0.167 and p(x = 0.004) =
0.167 andwe getE(X) = 0.377 as per eq 3.10. On the other hand consider a frame
with speech utterance f = {0.4, 0.6, 0.9, 0.9, 0.6, 0.4} where p(x = 0.4) =

p(x = 0.6) = p(x = 0.9) = 0.333 and E(X) = 0.477. Here even with only
six values and assumed values, IE is higher by 0.1. In the real scenario with much
more values and possibilities, this difference becomes significantly higher.

So, from the current problem perspective described in Section 3.2.2 we can
write

E(speech[m])≫ E(idle[m]) (3.11)

In the proposed algorithm the concept of entropy is a key component in sepa-
rating speech section from silence.

3.3.4 Concept of Frame

Human speech generation apparatus that is tongue, lip and the other parts of our
vocal system involved in producing sound needs approximately 25-30 millisec-
onds gap between two uttered words because it needs that time to prepare the sys-
tem to produce the next sound. So, if it is required to break the signal into smaller
frames and the size should be chosenwithin that range. Frames are needed for this
algorithm, and it is fixed at 20ms and is termed as frame length. Also, the concept
of frame shift is used to define the actual shift of data points in the signal, which is
fixed at 10ms. The combination of frame length and frame shift is used to avoid the
effect of the abrupt split of waves during frame splits, to some extent.

3.3.5 Formulation of the Solution

Thefirst step to applying the wavelet decompositionmethod for analyzing a signal
is to select a suitable mother wavelet. Here Daubechies wavelet has been selected
for this algorithm, specificallyDB8 [243]. Daubechies wavelets are one of the pop-
ular wavelets among researchers for speech processing [244, 245]. The shape of a
DB8 signal is shown in Fig.3.3.1. Since continuouswavelet transform is considered
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here, the scaling and translation parameters s and τ can vary continuously overR
[239]. So, from continuous scales, an arbitrary set of scales is selected to cover the
possible frequency range of the human speech recording signals. Here an orthog-
onal wavelet function DB8 is convolved over the discrete input signal to get the
coefficient values at different scales (frequencies). Orthogonality of DB8 helps to
remove the redundancy of the wavelet coefficient.

Figure 3.3.1: Figure shows DB8 wavelet shape at scale 100

The objective here, as described in Section 3.2.2, is to find pattern in discrete
sequence x[n] (eq 3.1) to segregate speech segment from the rest of the sequence.
The wavelet convolution operation is applied to analyze the sequence x[n] and
search for consistent patterns. It is observed during the experiments that the pres-
ence of NSAs are prominent in the coefficient amplitude plot when the wavelet
scale is small (high-frequency) (Fig.3.3.2). It is equivalent to the fact that NSAs
has similarities with high-frequency wavelets since low scale value implies high-
frequency. However, it is observed that at higher scales (low-frequencies) theNSAs
are almost non-existent in the plot. Figure 3.3.2 shows the coefficient amplitudes
at different scales for a speech utterance with breathing noise. Scale 10 highlights
3200Hz frequency componentswhere breathing noise is very prominent. Scale 23
highlights 1391Hz frequency components where noise is most prominent com-
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pared to a speech utterance. Scale 50 highlights 640Hz frequency components
where the weak presence of noise can be seen. And finally, Scale 100 highlights
320Hz frequency components where the noise section is very weak compared to
the speech section. The phenomenon is well supported by the fact that NSAs are
usually high-frequency sounds and thus produce high coefficient values in convo-
lution with a low scale (high-frequency) wavelets. This observed phenomenon is
the backbone of this approach to solving the problem of speech endpoint detec-
tion.

Figure 3.3.2: Coefficient Amplitudes at different scales for a speech utter-
ance with breathing noise.

A set of scales has been selected to cover the intended range of frequency. The
frequency rangeof the human speech signal spread approximatelywithin the range
between 250Hz and 6000Hz [246]. However, it is observed that the NSAs are
prominent around 3000Hz and around 300Hz the presence of noise is very weak,
so here the selected upper limit as 3000Hz and lower limit as 300Hz. Two sets of
scales are selected to accommodate the selected frequency rangeusingDB8 mother
wavelet:

• scalehf includes set of high frequency range (low scale values)

• scalelf includes set of low frequency range (high scale values)
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At a low scale, wavelet coefficient values are much smaller compared to coeffi-
cient values at a high scale, and this is the reason why more scales are selected for
scalehf than scalelf.

It is assumed here that there exists a gap of fewmilliseconds between the NSAs
and the speech utterances. It is highly improbable that the speaker can produce
some NSAs precisely before and after the actual utterance without any time gap.
For example, the noise of breathing out cannot come out while speaking because
the voice is already coming out with exhalation, and if at all breathing noise comes
outwhile speaking it would distort the speech utterance. Similarly,mouth pop and
click sounds cannot be produced by the speaker while uttering a speech because
that will interrupt the utterance.

Now the wavelet transform of the discrete sequence x[n] (3.1) is performed,
which is defined as convolution of x with a scaled and translated version of ψ the
mother wavelet (DB8) [240] to generate set of coefficients as described in eq 3.8.

coefs = x ∗ ψ (3.12)

Coefficient sets are needed to be combined to get two vectors that can be used
for further processing. To achieve that sum or average strategy has been applied
depending on the loudness of the actual signal X. When loudness is higher than
a specific threshold value, the coefficient values are averaged; otherwise, they are
summed.

After the coefficients are combined into two vectors, namely coefhf and coeflf, the
entropy is computed for both the vectors. The coefficient vectors are broken down
into frames, and then entropy is computed using the formula defined in eq 3.10.
These entropy vectors are special in a sense that they represent high-frequency en-
tropy (say ceh) and low-frequency entropy (say cel) of the wavelet coefficients.

The entropy vectors ceh and cel are further used to calculate two sets of thresh-
oldsone forhigh-frequencyand theother for low-frequency. Low-frequency thresh-
olds are used to identify locations with the presence of speech utterance because
low-frequency components aredistinctly separate from idle[k] andnoise[l] sections.
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Then high-frequency thresholds are used to stretch those identified speech utter-
ance zones with proper voiced and unvoiced trails at the beginning and end of a
speech utterance.

3.3.6 The Algorithm

The proposed algorithm WCSED is designed to work independently. Systems
which require to extract speech segment fromspeech signals can incorporateWCSED
as a separate module. The steps of the proposed algorithm are listed in Algo 1 sec-
tion and the flow as a block diagram in 3.3.3. Here the pseudo code is provided in
the listing and the functions, in brief, are mentioned tomaintain the readability of
the algorithm.

WCSED algorithm consists of one main module and three submodules. The
mainmodule is calledWCSED, which accepts discrete time speech signal as input
and returns the extracted speech segment. The ”WaveConv” module is responsi-
ble for computing the CWT on the input signal and returns the coefficients. The
”GetEntropyVector” module computes entropy by breaking down the input se-
quence into segments and returns a vector. Finally, the points towards the edges
of the end-points are selected by considering the threshold values provided.

Assumptions for this WCSED algorithm are kept at the minimum to maintain
generality. The thresholding concept is applied, but the assumptions on leading
and trailing silence similar to Zhu and Chen [227] are relaxed because that would
restrict the scope of this algorithm to specific datasets. Thresholds are dynamically
calculated.

3.4 Datasets

In this study two speech databases are used one is Ryerson Audio-Visual Database
of Emotional Speech and Song (RAVDESS) [128] dataset and the other one is
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Algorithm 1WCSED algorithm
Input: Discrete-time signal S(n), where n is the length of the signal and Sampling
RateOutput: Extracted Speech Segment Sextr(k), where k <= n
1: functionWCSED(S(n), FS) ▷ S=discrete time signal and FS=sampling rate
2: FL← FrameLength
3: FSH← FrameShift
4: MW← Daubechies ▷mother wavelet
5: SC(m)← [HighFrequencyScales, LowFrequencyScales] ▷m number of

scales
6: COEFm×n ← WaveConv(S(n), SC(m),MW) ▷ coefficients
7: CE← GetEntropyVector(COEFm×n, FL, FSH)
8: thu, thl ← compute upper and lower thresholds
9: secal ← CE ≥ thl

10: poss ← IncludeEdges(CE, secal[start], back, thu)
11: pose ← IncludeEdges(CE, secal[end], front, thl)
12: Sextr(k) = S[poss, pose]
13: return Sextr(k) ▷The extracted speech

1: functionWaveConv(S, SC,MW) ▷ signal,scales,mother wavelet
2: CDm×n ← output matrix
3: for (m = 1;m <= lenght(SC);m++) do ▷ iterate through all the

scales
4: f← get the reference wavelet
5: CF1×n ← S ∗ f ▷ convolution gives the coefficients
6: CDm: ← diff(CF) ▷ take approximate derivative
7: return cd ▷ derivative of coefficients
1: functionGetEntropyVector(i, fl, fs) ▷ input sequence, frame len, frame

shift
2: len← length(i)
3: sp← 1
4: ep← sp+ fl− 1
5: while ep ≤ len do
6: entropyv ← Entropy(i[sp, ep]) ▷ calculate entropy
7: sp← sp+ fs
8: ep← sp+ fl− 1
9: return entropyv ▷The entropy vector
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WCSED algorithm cont...
1: function IncludeEdges(i, p, d, th)
2: edges← []
3: len← length(i)
4: if d = back then
5: init← p− 1; incr← −1; limit← 1
6: else
7: init = p+ 1; incr← 1; limit← len
8: for (cntr = init; cntr < limit; cntr = cntr+ incr) do
9: if i[cntr] ≥ th then

10: ec← ec+ 1
11: edges[ec]← cntr
12: else
13: break
14: pos← edges[length(edges)]
15: return pos ▷ last point near edge

Figure 3.3.3: Block diagram of the WCSED algorithm
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EMO-DB([119])which is aGerman language corpus. RAVDESSdatasetwas pri-
marily created in view of research areas related to Emotion Recognition in Speech
and Song. Only the speech recordings are used for this current work. While work-
ing on Speech Emotion Recognition, it is observed that the recordings contain
different sound artifacts generated by the speakers such as heavy breathing, mouth
clicks, pops, and lip-smacking. These sound artifacts are making endpoint detec-
tion task, and the need for a robust endpoint detection algorithm was felt. The
proposed algorithm is also tested on another speech database called EMO-DB,
which is a German language corpus.

3.5 Results andObservations

Theprimary objective ofWCSED algorithm is to automate the process of extract-
ing the speech segments precisely in the presence of the NSAs, and it has shown
promising results. It has successfully extracted the speech segments from almost
all the recordings. In very fewcases, a significant amount of speech couldnot be ex-
tracted, but the algorithmperformedpoorly in those rare cases. Thespeech record-
ings containing NSAs are efficiently processed by separating those unwanted arti-
facts from actual speech.

Some speakers pause for some few milliseconds between the words. Those
pauses should be included as a part of speech segment since pauses can add quality
to the speech recordingwhile extracting say emotional quotient, and the algorithm
did it well in those cases too.

Fig.3.5.1 and Fig.3.5.2 show the end result of the algorithm depicting the ex-
tracted segment along with corresponding entropy values.
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Figure 3.5.1: The Figure shows extracted speech along with corresponding
entropy. The breathing noise NSA is precisely discarded.

Figure 3.5.2: The Figure shows extracted speech along with corresponding
entropy. Speaker’s intentional voice sound is meaningfully included in the ex-
tracted speech.

The algorithm is tested on two speech databasesRAVDESS and EMO-DB, and
results are compared in detail. The experiment results are summarized in Table
3.5.1, where the percentage deviation is depicted. More than 20%of the total num-
ber of speech recordings are selected as sample for cross verifying with the results
received by applying theWCSEDalgorithm. Those samples aremanually checked
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for possible start-frames and end-frames of the speech segments in the record-
ings. Since WCSED algorithm extracts the speech segment based on frames, the
selected samples are also processed based on start and end frames. After manu-
ally extracting the frames of the samples, it is checked whether the start and end
frames are deviating from the frames as reported by the WCSED algorithm of the
corresponding speech recordings.

Table 3.5.1: Deviation Percentage based accuracy measure of WCSED

Average % of Deviation
Speaker RAVDESS EMO-DB
Gender Start End Start End

FEMALE 1.027 2.259 1.147 0.734
MALE 0.576 2.847 1.416 1.248

Average % of deviation 0.777 2.584 1.249 0.93

Simulations are executed ten times on the selected sample to check whether
there is any discrepancy for different simulations. However, it is observed that
in every simulation, the algorithm has produced the same results. The results are
cross verified in a few stages. First, the beginning and end frames are calculated for
the selected samples manually, and they are termed as manual-frames. The begin-
ning and end frames reported by the WCSED algorithm are termed as algorithm-
frames. Then the absolute deviation between the manual-frames and algorithm-
frames are computed. Manual-frames are considered as a baseline for the calcula-
tion of the frame length of the extracted speech. Then the percentage of deviation
in frames is computed compared to the frame length of the extracted speech.

By analyzing the deviations for RAVDESS, it is observed that the overall start-
frame deviation is 0.777% (means approximately 99.3% accurate), while the end-
frame deviation is 2.585% (means approximately 97.5% accurate). Thus, the al-
gorithm extracts the start frames more accurately than the end frames. This accu-
racy gap occurs because different speakers end their utterance with different styles
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Table 3.5.2: Frame Difference based accuracy measure of WCSED

Frame Difference % RAVDESS EMO-DB
Frame Difference Ranges Start End Start End

0 (Frames) 55.33 14.43 23.01 27.43
1-5 (Frames) 40.55 59.11 55.75 61.95
6-10 (Frames) 1.37 13.06 17.7 6.19
11-20 (Frames) 1.37 13.4 3.54 4.42
above 20 (Frames) 1.37 0 0 0

and varying pause or silence between spoken words. So, the overall accuracy of
the WCSED algorithm to detect start-frame is 99.3% (approx), and end-frame is
97.5%(approx). Similar way for EMO-DB the accuracy for start-frame is 98.8%
(approx) and for end-frame is 99.1% (approx). These differences of accuracy are
due to the recording environment and speaking style of the speakers.

Table 3.5.2 shows another measure of accuracy as coverage of the ranges of
frame differences between manually detected and WCSED results. It shows that
the differences are within five frames covering 95.88% and 78.76% in the start-
frames whereas 73.54% and 89.38% in the end-frames for RAVDESS and EMO-
DB respectively. In Table 3.5.2 the frame differences are not more than twenty
frames except on one case.

Table3.5.4 [229] compares the results obtainedbyAtanas [229]with theWCSED
algorithm, and WCSED is doing better because 0-20 frame difference range con-
stitutes a better share. The WCSED results are also compared with optimal fil-
ter based approach [217] in the Table 3.5.3 [217]. When up to 3 frame differ-
ences for start-frame are considered, on the RAVDESS database it is much bet-
ter (94.16%) than the filter based approach (74.78%) whereas on the EMO-DB
database (74.33%) it is almost the same. Overall the WCSED performs signifi-
cantly better. The Figures 3.5.3 and 3.5.4 show the histograms of the frame dif-
ferences for the RAVDESS and the EMO-DB respectively. It is clear from the two
figures that the frame-differences vary around zero, which is a sign of high accuracy
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for both the databases.
It is observed during testing that the deviations are different for female andmale

speakers. A factor that contributed to this phenomenon is possibly the loudness
variation in female and male speakers. Male voices in this recordings are usually
louder and more prominent than female voices.

Figure 3.5.3: Histogram showing the frame differences in start and end
frames computed by WCSED algorithm on RAVDESS database.
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Figure 3.5.4: Histogram showing the frame differences in start and end
frames computed by WCSED algorithm on EMO-DB database.

Table 3.5.3: Comparing WCSED start frame results with Optimal Filter and
Energy Model (OFEM) combination approach proposed by Li et al. where
they also tested with HMM for comparison.

Differences in number of frames 0 ≤ 1 ≤ 2 ≤ 3

WCSED on RAVDESS 55.33% 89.01% 93.13% 94.16%
WCSED on EMO-DB 23.01% 60.18% 69.91% 74.33%
OFEM 25.97% 57.84% 69.21% 74.58%
HMM 22.95% 54.82% 69.9% 76.52%
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Table 3.5.4: Comparison of the WCSED based results with trajectory-based
EPD approach proposed by Ouzounov. Ouzounov used three features called
Modified Teager Energy (MTE), Energy-Entropy (EE) and Mean-Delta (MD).

Start point End point
Frame Difference Ranges 0-10 0-20 0-10 0-20

WCSED on RAVDESS DB 97.25% 98.63% 86.6% 100%
WCSED on EMO-DB 96.46% 100% 95.58% 100%
Trajectory-based with MD 61.45% 95.8% 17.55% 82.44%
Trajectory-based with MTE 54.19% 95.8% 28.62% 88.54%
Trajectory-based with EE 55.34% 96.56% 18.32% 82.06%

Finally, the time complexity of the WCSED algorithm is directly proportional
to the length of the input signal. When the input signal length increases, the algo-
rithm will take more time to extract the speech utterance from the input signal.

3.6 Conclusion and Future directions

The proposed WCSED algorithm attempted to address four issues of speech end-
point detection problem. First, automating the process of the EPD. Second, dis-
carding theNSAs andextracting start and endpoints appropriately. Third, relaxing
the assumptions like the availability of labeled data which could hinder this algo-
rithm from working correctly across different speech databases and in real-world
applications. And finally, extract the end-points accurately. The results discussed
in Section 3.5 show great promise, and the WCSED successfully addressed the
issues mentioned above. Moreover eliminating the dependency towards labeled
data for EPD should significantly impact the ASR and related fields. Compari-
son of the WCSED accuracy results with similar works has also shown that the
WCSED is performing significantly better.

This algorithm can further be applied to different speech signal based systems
where utterances need to be extracted from the speech signals in the presence of
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different NSAs. For example, this algorithm can be applied in the preprocessing
stage of an ASR or an SER system.

Wavelet convolution (CWT) based approach to find consistent patterns in a
discrete time signal can be applied to solve similar problems in speech recognition
domain and other domains where patterns need to be identified from signals. The
CWT can be used to enhance the feature set of various classification problems.

Finally, some scope of improvement for the WCSED algorithm has been iden-
tified, which should be a subject of a future direction. It is mentioned in the result
section that the level of loudness of the speaker’s utterances could be an essential
factor to improve the end-point selection results. Further investigation and ac-
tion in that direction could yield more accuracy of this WCSED algorithm. The
WCSED could further be adapted to work in the online or real-time scenario to
enhance the scope and usability of the algorithm. These improvements will be
taken up as future advancements of the algorithm.
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Everything in Life is Vibration.

Albert Einstein

4
IntroducingNovel Feature Set based on

Wavelets for Speech Emotion
Classification

Speech Recognition research is in a very advanced stage at present, and exam-
ples like Siri, Alexa, and Google Home show that the speech recognition task is
already advanced and this field of study is surging ahead to address other unsolved
issues. However, one crucial aspect of human speech, which is still not appropri-
ately addressed in human-machine interaction is ”emotion”. Emotion recognition
from speech signal is a challenging task, and researchers are still looking for a well-
accepted solution.

Speech Emotion Recognition (SER) study applies different classification tech-
niques from Machine Learning (ML) field to classify different emotions of the
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speech utterances. Feature extraction from speech signals is a vital task of SER sys-
tems since the selection of features eventually affects classification performance.
Researchers have used different speech features and combinations of those so far
but yet not identified any combination of them as best. So, the quest for the best
feature set for SER is still unsolved.

Ayadi et al. [93] grouped the speech features into four categories as follows :
(a) Continuous - includes features like pitch, energy, and formants (b) Qualita-
tive - such as voice quality, harshness, breathy (c) Spectral - such as Linear Pre-
dictive Coding (LPC), and Mel-Frequency Cepstral Coefficients (MFCC) (d)
TEO-based - such as TEO-FM-Var, and TEO-CB-Auto-Env. Researchers have
tried most of the features in different combinations in SER systems for emotion
classification. Some SER systems use continuous features [31, 32, 94], and some
use spectral features [53, 160, 246, 247]. However, the adequate level of classifica-
tion accuracy is not yet achieved with different classification techniques using the
existing set of features.

The SER research efforts are mostly focused on finding suitable classification
techniques, and various techniques are used such as the Gaussian Mixture Model
(GMM) [53], Hidden Markov Model (HMM) [118, 248], Support Vector Ma-
chine (SVM) [246, 249] and very recently different Deep Learning (DL) archi-
tectures [160, 247] to name a few. However, comparatively, less focus is given to
developing SER specific features and using the same feature sets which are being
used for Automatic Speech Recognition (ASR) or their variants. These two prob-
lems, the ASR and SER, are different so their features should also be different.

Features likepitch, energy,MFCC, andLPCdescribe thepropertiesof the speech
sound well. So, these should be the right criteria when it is required to track vari-
ation in speech properties. However, the SER requires attributes of the speech
utterances, which can describe the emotional states of the speakers, which is not
described adequately by the existing features. That is why existing features are
not performing significantly well, and there is no universal consensus on a spe-
cific feature set among researchers [160, 247]. Some researchers even suggested
that MFCC features are not that effective in SER as it is in ASR [118, 250, 251].
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Presently the classification techniques are in a very advanced state which can ro-
bustly classify with the right set of data, specifically the advent of Deep Neural
Networks (DNN). However, applying DNNs in SER is still not showing enough
promise like in other fields.

So, there is a possibility that researchers are missing some phenomenon which
should be considered to represent the emotional content of speech utterances.
Emotion is a subjective experiencewhich is expresseddifferentlybydifferent speak-
ers, and that makes SER feature extraction a challenging task. That is where this
new feature concept comes into the picture which tries to extract the difference
between the emotional state and neutral state of the speaker. Here we are intro-
ducing a set of features which is a dissimilarity measure based on discrete wavelet
transform. The feature set is the speaker specific dissimilaritymeasure of the infor-
mation content of different emotional speech utterances from the same speaker’s
neutral speech utterance. This feature set is named as Subjective Emotional Gap Re-
duction Technique (SEGRT) because it tries to reduce the subjective gap between
the features extracted from the speech of two different speakers.

This proposed feature set does not preserve the sequential nature of the speech
signal and is more like global features. So, using the SEGRT feature set, the SER
problem is no longer mostly a sequence classification problem such as the one
based on the HMM. So, conventional classification techniques such as Support
VectorClassifier (SVC), K-NearestNeighbors (KNN), andNaive Bayes (NB) can
be applied instead of sequence classification techniques. Here SVC,KNN, andNB
are usedwith the SEGRT feature set to establish the relevanceof the feature set and
the results are supportive enough to claim that advancement of these features can
bring fruitful results in improving SER accuracy rate.
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4.1 Feature extraction

The proposed feature set is extracted from speech signals represented as discrete
time signals, let’s say S, which is defined as follows [236]:

S = {sn}n∈N, where {sn} = {s1, s2, ..., sn},

{sn} ∈ R
(4.1)

First, only the speech utterance section is extracted from the speech sound by
using the speech endpoint detection algorithm proposed by Roy et al. [82] and
another sequence is received

X = {xn}n∈N (4.2)

where {xn} is a subsequence of {sn} and assumeN be the length ofX. The pro-
posed Feature extraction technique uses the concept of Discrete Wavelet Trans-
form (DWT), Information Entropy, and Dissimilarity Measure. These concepts
are briefly discussed in the following subsections.

4.1.1 Discrete Wavelet Transform

Discrete Wavelet Transform (DWT) decomposes a signal into trend and fluctua-
tion sub-signals. So the number of sub-signals to be generated by the DWT de-
pends on the transformation level [231]. There are different types of DWTs, but
five Daubechies wavelet transforms db6, db8, db10, db12, and db14, are chosen for
this work. The trend signals highlights the trends at different level of decomposi-
tionof signalswhich enables trends tohelp infindingpatterns in a signal. While the
fluctuation signals help in locating any abrupt changes in the signal. The combina-
tion of trend and fluctuation signals provides a robust pattern recognition system
in a signal.

Here DWT of the signal X in eq.4.2 is taken till level 4. The transformation for
level 1 can be described as a mapping X 7−→ (t1|f1) where t1 and f1 are the 1-level
trend and fluctuation sub-signals respectively having length half of the length of
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X i.e. N/2. At the level-2 of DWT the trend sub-signal of level-1 i.e. t1 is further
broken down into trend and fluctuation signals so that t1 7−→ (t2|f2). And at level-
2 the transformation is defined as X 7−→ (t2|f2|f1) where t2 and f2 are the level-2
trend and fluctuation signals respectively with lengthN/4. So, in a similar way at
level-4 the DWT is defined as

X 7−→ (t4|f4|f3|f2|f1) (4.3)

where t4 and f4 are level-4 trend and fluctuation sub-signals respectively with
lengthN/16 and f3 is the level-3 fluctuation sub-signal with lengthN/8.

Thus, from each 4-level DWT of X, five sub-signals are retrieved, and from all
the fiveDWTwe have considered i.e. db6, db8, db10, db12, and db14we get 25 sub-
signals. These sub-signals will be further processed for actual feature extraction.

4.1.2 Information Entropy

Entropy provides an approximate measure of randomness or disorganization in a
systemand increases alongwith the randomnesswithin the system. Entropy is low
when there is ordered activity (like sine waves), and entropy is high when there is
random activity [252]. Information Entropy (IE) is an expected measure of the
information content in a signal. IE of a sequence Q of length n is defined as (see.
[242])

E(Q) =
n∑
i=1

p(qi)log10p(qi), (4.4)

whereQ = {q1, q2, ..., qn} is a set of randomphenomena, and p(qi) is the prob-
ability of a random phenomenon qi.

Here IE of the sub-signals, produced byDWT(eq.4.3), is computed to generate
IE sequence. IE sequence generation process involves breaking the sub-signal into
small frames and calculating IE for a frame using the formula shown in eq.4.4. Fig-
ure 4.1.1 shows how IE of 4-level db8 trend sub-signal for Happy and Angry emo-
tions are varying around the Neutral state for the same in the EMODB dataset.
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Figure 4.1.2 shows how IE of 1-level db8 fluctuation sub-signal for Happy and An-
gry emotions are varying around the Neutral state for the same in the EMODB
dataset. The entropy sequences are further used for dissimilarity measurement.

Figure 4.1.1: The figure shows how trend sub-signal for Happy and Angry
emotions are varying around the Neutral sub-signal.

Figure 4.1.2: The figure shows how fluctuation sub-signal for Happy and
Angry emotions are varying around the Neutral sub-signal.

And for the complete sub-signal, a set of entropy values for each frame is re-
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trieved which is the entropy sequence for that sub-signal.

t4 7→ {te4k}, fj 7→ {fejk} (4.5)

where j = {1, 2, 3}, m is the number of frames into which the sub-signals are
broken down, k = {1, 2, ...,m}, and te4k, as well as fejk are the entropy values at
the kth frame of the trend and fluctuation sub-signals respectively.

4.1.3 Dissimilarity Measure

The feature set for SER proposed in this chapter takes a unique approach by mea-
suring the dissimilarity between each emotional state of a speaker from the cor-
responding neutral state of the same speaker. Here dissimilarity is computed as
the Euclidean distance. Suppose, features are being extracted from an angry emo-
tional state utterance of speaker S1. For that, the neutral and angry state utter-
ances of speaker S1 are first broken down till IE sequences (similar to eq.4.5). So,
for both angry and neutral utterances, there will be 25 IE sequences each. Then,
Euclidean distance is computed between every 25 sequences of neutral and an-
gry utterances. Eq.4.6 shows an example of the Euclidean distance computation
between two trend IE sequences [189].

d({te4k}NU, {te4k}AN) =

√√√√ m∑
1

({te4k}NU − {te4k}AN)2 (4.6)

where NU denotes neutral state and AN denotes angry state, So, we have now
25 distancemeasures. Twomore values are computed from the IE sequences; one
is the covariance, and another is the correlation coefficient, which gives 50 more
features. Thus there are 75 values computed along with the gender of speaker and
length ratio between neutral and angry utterance and making the total number of
features to 77. So, for each emotional utterance of the speakers, there will be 77
attributes to be extracted as features and used for emotion classification.
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4.1.4 Feature Enhancement and Dimensionality Reduction

The speech signal is initially pre-processed with a noise reduction technique to
enhance the signal quality. Here for this work spectral subtractionmethod is used.
The speech signal is further enhanced using advanced speech endpoint detection
technique. Here, the endpoint detection technique used is the WCSED [82].

The SEGRT technique is applied to the pre-processed speech signal. However,
nodimensionality reduction technique is used inSEGRTprocess. Twomostwidely
used dimensionality reduction techniques principle component analysis(PCA) and
independent component analysis (ICA) are tried with SEGRT, but both of them
failed to enhance the dataset. When PCA is applied with SEGRT, the minuscule
variations at the samewavelet transform levels are overlooked, and the data points
of the same levels of different emotions are merged into single components. On
the other hand, applying ICA in SEGRT results in very few components which are
markedly different from one another. So, ICA is also not suitable for this analysis.

4.2 Classification Techniques

Here theproblemof classifying emotions is brokendown intomultiple binary clas-
sification problems. Three widely used classification techniques Support Vector
Classifier (SVC) with Radial Basis Function (RBF) kernel, Gaussian Naive Bayes
(GNB) and K-Nearest Neighbor (KNN) are deployed for this task. These three
classifiers take different approaches to solve the same two-class classification prob-
lem.

LinearSVCseparates twogroups (classes)bydetermining thehyperplane,which
maximizes the margin between two classes provided the two classes are linearly
separable in the feature space. However, that kind of linearly separable data are
rare, and mostly we deal with data which can be efficiently separated by nonlinear
region. For these situations, the SVC is applied with nonlinear kernel functions to
transform the data into higher dimensional space where the classes can be linearly
separable and perform the classification. GaussianRBF is a commonly used kernel
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for SVC [172]. SVC with RBF kernel tends to overfit but the introduction of the
”softmargin” concept, proposed by Cortes and Vapnik [196], added the flexibility
to regulate the extent of over-fitting on the model where harder margins are more
likely to overfit. For this work, SVC with RBF kernel is selected for classification
with carefully chosen hyper-parameters to manage model overfitting.

The Naive Bayes (NB) classifier is based on the Bayes theorem, and it is easy
to build a classification model using NB. NB classifier usually works with categor-
ical data and Bayes theorem equation is used to find the posterior probability of
the classes by computing the likelihood from the frequency. However, for numer-
ical data where attribute values are not categorical, numerical attributes can be as-
sumed to follow Gaussian distribution, and then the posterior probability can be
computed by finding the likelihood using the assumedGaussian distribution. This
approach of assuming a Gaussian distribution is called the Gaussian Naive Bayes.
Here the features are numerical, and GNB is applied.

The K-Nearest Neighbor is a simple but effective classification technique based
on distance or similaritymeasures. It is a lazy-learningmethod because there is no
pre-models existing, and almost all computations take place while classifying new
data points. A majority vote of its neighbors classifies a new data point, and the
number of neighbors to consider is selected before applying the KNN as k param-
eter. Selecting the right value for k is an essential criterion of using the KNN be-
cause that affects classification performance. The new data point is assigned to the
class, which gets majority votes from its neighbors. There are distance measures
likeEuclidean,Manhattan, andMinkowski for continuous variableswhile hamming
is for categorical variables to choose from depending on the feature set.

4.3 Experiment

Two emotion data sets are used for this experiment one is Ryerson Audio-Visual
Database of Emotional Speech and Song (RAVDESS) [128] which is an English
language dataset and the other one is the EMODB [119] which is a German lan-
guage corpus. Eight emotional states are considered for this work and the follow-
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ing short-codes for the emotions are used throughout this chapter: clam(CA),
happy(HA), sad(SA), angry(AN), fear(FE), disgust(DI), surprise(SU) and bore-
dom(BO). The EMODB dataset does not contain utterances with calm and sur-
prised emotionswhereas theRAVDESSdataset does not have utterancewith bore-
dom state.

Experiments are conducted by taking two emotion labels at a time and applying
binary classification techniques to classify the two emotions. For example, happy
and sad emotions are taken for classification and checked the performance. Strat-
ification method is used to split the data into training and testing sets with ten
splits. This train/test split is required to reduce the extent of over-fitting menace
on the classification model. Stratification helps to rearrange the data into folds so
that each fold can represent the complete data well and is a better approach com-
pared to regular cross-validation to manage the bias and variance. Then the strat-
ified folds are used for cross-validation to measure the performance of the classi-
fiers. Among the three classifiers used for this experiment, SVC and KNN, have
few hyper-parameters to be appropriately selected for better classification results.
GNB classifier, on the other hand, does not have hyper-parameters. Two impor-
tant hyper-parameters for SVC with RBF kernel are C and gamma, and they are
selected as C = 10 and gamma = 0.001. The values of C and gamma are care-
fully chosen to fit themodel well because on the one hand very highC and gamma
values can lead to over-fitting on the other hand very low values can lead to under-
fitting. For KNN the distance metric is chosen as Manhattan and neighbors = 5.
These hyper-parameters for both SVC and KNN are selected based on the Grid
Search cross-validation results.

4.4 Results andDiscussions

The accuracy of the three classification techniques SVC, GNB, and KNN using
two databases,RAVDESS and EMODB is shown in fig.4.4.1 and fig.4.4.2. Average
accuracy rates of the SVM, GNB, and KNN are 73.67%, 77.71%, and 69.41% re-
spectively using theRAVDESSwhile 73.74%, 80.88%, and 72.75% respectively us-
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ing the EMODB. Some accuracy percentages are over 90% such as sad-angry clas-
sification using the EMODB reaches 93.98%whereas calm-angry classification us-
ing theRAVDESS reaches 93.21%. One interesting observation has been depicted
in fig.4.4.3 which shows how SER performance varies with the two databases used
for this work. The figure 4.4.3 shows the deviation in the SER performance of
KNN, SVM, and GNB classifiers. The deviations are the difference between the
accuracyusing theRAVDESSdatabase and the accuracyusing theEMODBdatabase.
The emotional states considered here are present in both the databases.

Figure 4.4.1: The figure shows the performance of KNN, SVM and GNB
classifier on RAVDESS dataset.

Figure 4.4.2: The figure shows the performance of KNN, SVM and GNB
classifier on EMODB dataset.
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Figure 4.4.3: The figure shows the deviation in the SER performance of
KNN, SVM, and GNB classifiers.

Table4.4.1 shows the computation timeof the threemodels onRAVDESSdataset.
Here datasets are split into ten folds for cross-validation, and on average there are
383 rows. Since the KNN does the bulk of computations at the prediction time, it
has maximum score time. The GNB model is the quickest among the three classi-
fiers as far as the score time is concerned. The resource used for the experiment is
a standard one and has an AMD CPU (4 cores) of 1.9Gz clock speed and 6GB of
memory.

It is observed that some of the emotion pairs are hard to separate using the
SEGRT, and as a result, the classification accuracy is low. For example, happy and
fear in the EMODB is hard to separate with 56.12%, 68.14%, and 64.29% accu-
racies and nearly similar result 65.92%, 67.79%, and 59.95% in RAVDESS using
KNN, SVM, and GNB respectively. This observation supports the fact that some
emotions are hard to separate from speech utterance only and even the human ear
can be deceived in those scenarios, and research results [109, 110] also support
the fact.
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Table 4.4.1: Computation Time

Average Average Average Classification
Training Classification Time for individual

Time (ms) Time (ms) Data Points (ms)

KNN 1.698 3.957 0.103
SVM 16.113 1.859 0.049
GNB 1.403 0.553 0.014

Compared to existing research findings [160, 246, 247, 253], the classification
performance of the proposed model is very promising. Here the average classi-
fication accuracy achieved is more than 70%, and in a few cases, it is more than
90%whereas similar researches [160, 247] have achieved 63.89%and57.91%max-
imum accuracy respectively. However, the proposed model is not precisely com-
parable to [247] and [160] since they considered multi-class classification. The
SEGRT can address the high dimensionality issue of the SER because it consists
of 77 features, which is much smaller than the recent research works reported
[160, 247, 251]. Computation time and processing power required is also signifi-
cantly low compared to theDL architectures presently in use for the SER since the
training process needs negligible time and resource in comparison.

4.5 Conclusion

In this chapter, a novel feature set (SEGRT) for SER is proposed and used it with
prominent classification techniques to establish that the feature set can produce
better results than existing feature sets. The specialty of SEGRT is that it is de-
signed specifically for the SER, which is not proposed earlier. Three classifica-
tion techniqueswith differentworkingprinciples are selectedbecause it is required
to verify that the feature set is responding well when different classification tech-
niques are applied so that the novelty of the feature set can be established. From
the discussion in Section-4.4, it can be concluded that the proposedmethod could
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be able to address four critical issues of SER: accuracy, high-dimensionality, high
computation time, and high-end computation resources.

For future work, the feature set will be further fine-tuned so that the feature ex-
traction time couldbe reduced and the classificationperformance can improve fur-
ther. New attributes could be added to the feature set to make it robust. Presently
researchers are applying Deep Learning (DL) architectures for SER, so, this fea-
ture set can also be tested with DL classification techniques in the future.
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Understanding of life begins with the understanding of pat-
terns.

Fritjof Capra, Theoretical Physicist

5
Speech Emotion Recognition using

Neural Network andWavelet Features

5.1 Introduction

Recent advancements of Automatic Speech Recognition (ASR) has made a sig-
nificant impact on the Human Machine Interaction (HCI) systems by making it
possible for us humans to strike nearly natural spoken conversations with the ma-
chines (e.g. the robots like Sophia, and Erica). However, are those conversations
natural? The answer is ’no’ because an essential factor called ’emotion’ is missing
in those conversations. Human speech is the glottal wave generated due to the
vibration of the vocal folds and speech signals get affected by emotion states of
the speaker. Speech emotion recognition (SER) is a field of study where methods
are being developed to extract human emotions concealed in the speech signals so
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thatmachines can understand our emotions from the speech itself. However, after
more than 20 years of research, a satisfactory level of accuracy is not yet achieved.

SER study classifies different emotions concealed in the speech utterances by
applying classification techniques from theMachine Learning (ML) field. Speech
signal, like other signals, contains various types of information which needs to be
extracted as features for further processing. In SER, those extracted features play
a significant role in the performance of the SER systems since the selection of fea-
tures eventually affects classification performance. Different speech features and
combinations of those have been used by researchers so far, but there is no consen-
sus on a specific feature set that can be considered best. As a result, a wide range
of features are being used for SER, and researchers are proposing new feature sets.

Existing speech features are categorized into five groups based on the previous
work of Ayadi et al. [93] (see figure.5.1.1). Researchers have tried most of the fea-
tures in different combinations in SER systems for emotion classification. Some
researchers [31, 32, 94] used continuous features and recommended it, whereas
some other researchers [53, 160, 246, 247] recommend spectral features. How-
ever, the classification accuracy achieved so far with various feature-sets is not up
to the mark and not ready for industrial use. So, Siri or Alexa is not ready to read
the mood from our voices.

Figure 5.1.1: Category of features used for the SER.

Proper selection of the classification model is an important phase in SER sys-
tems because it will be selected based on the feature set. While it is required to
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maintain the sequence of the speech signals then it is required to deploy classifica-
tion techniques like Hidden Markov Model (HMM) [118, 248] or Long Short-
Term Memory (LSTM) based Deep Learning (DL) [160, 247] methods. Re-
searchers also deployed the Gaussian Mixture Model (GMM) [53], and Support
Vector Machine (SVM) [246, 249]. Following the research works, it is observed
thatfinding suitable classification techniquewas themain focusof SERresearchers,
and less priority was given to develop SER specific feature sets. Interestingly most
of the standard feature sets used so far are successfully used in automatic speech
recognition (ASR), either directly or derived. However, ASR and SER should not
be considered as a similar problem because a human can express their emotions
in many ways, and they could have a unique sequence of events. Thus, in SER,
there are no grammars like in case of ASR. So, those speech characteristics should
be considered as features which can represent the emotions concealed in human
speech rather than considering it as a sequence. ASR features are very good at
tracking the variations in speech properties, but SER requires features which can
represent the emotional states of the speakers well. Researchers also mentioned
the need to divert from regular ASR features for SER [118, 250, 251, 254].

In this work, a new feature set used to overcome the difficulties faced in SER
feature selection. Efforts have been made to find those characteristics of speech
utterances, which could be able to represent the emotional content more promi-
nently. Experiences in different emotional states of human are very speaker spe-
cific, which can be expressed uniquely by different speakers. The new feature set
tries to overcome this specification by extracting the differences of different emo-
tional states from the corresponding speaker’s neutral state. With the application
of discrete wavelet transform (DWT) and dissimilarity measure, this new feature
set is developed.

Artificial Neural Network (ANN) is used for the classification task in this work.
Since the feature set is not sequential, a simple ANN architecture can be deployed
to demonstrate that the feature set is competent enough and no DL architecture
is required to achieve comparable classification accuracy. Also, ANN results are
compared with other prevalent classification techniques like Support Vector Clas-
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sifier (SVC), K-NearestNeighbors (KNN), andNaive Bayes (NB) to establish the
relevance of the feature set.

5.2 Description of the proposed SERmodel

SER involves many stages which are shown in figure 5.2.1. In the initial stage,
speechdata-set needs to be acquired, which is recorded to capture different human
emotions. The speech recordings need to be processed to suit the actual process-
ing. Then possible features are selected and if required, some features are engi-
neered according to the requirement. So based on the feature selection scheme,
features are extracted. In the next step, the classification technique is selected
based on the feature set, and finally, classification is performed to identify the emo-
tional state of the speaker. The feature set and the classification technique are dis-
cussed in detail in the following sections.

Figure 5.2.1: Steps involved in a SER system.

5.2.1 Feature set description

This work is based on a novel feature set which is specifically developed for the
SER.That feature set is described in detail in this section. A discrete speech signal
S, which is defined as follows [236]:

S = {sn}n∈N, where {sn} = {s1, s2, ..., sn},

{sn} ∈ R
(5.1)
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and assume N to be the length of S.
The signal in eq.5.1 is decomposed into trend and fluctuation sub-signals using

discrete wavelet transform (DWT) [231]. Five Daubechies wavelet transforms
db6, db8, db10, db12, and db14 till level 4 are used for this work. The transformation
for level 1 canbedescribed as amappingS 7−→ (t1|f1)where t1 and f1 are the1-level
trend and fluctuation sub-signals respectively whose length is half of the length
of S i.e. N/2. At level-2 of DWT the trend sub-signal of level-1 i.e. t1 is further
broken down into trend and fluctuation signals so that t1 7−→ (t2|f2). Level-2
transformation is defined as S 7−→ (t2|f2|f1) where t2 and f2 are level-2 trend and
fluctuation signals respectively with length N/4. So, in similar way at level-4 the
DWT is defined as ([231])

S 7−→ (t4|f4|f3|f2|f1) (5.2)

where t4 and f4 are level-4 trend and fluctuation sub-signals respectively with
lengthN/16 and f3 is the level-3 fluctuation sub-signalwith lengthN/8. Thus, from
each 4-level DWT of S, five sub-signals are retrieved and from all the five DWTs
we have considered i.e. db6, db8, db10, db12, and db14 we will get 25 sub-signals.

In the next step, Information Entropy (IE) of the trend and fluctuation signals
are computed. Information Entropy (IE) is an expected measure of the informa-
tion content in a signal. IE is low when there is ordered activity (like sine waves),
and entropy is high when there is random activity [252]. IE of a sequence Q of
length n is defined as (see. Kullback [242]) E(Q) =

∑n
i=1 p(qi)log10p(qi) where

Q = {q1, q2, ..., qn} is a set of random phenomena, and p(qi) is the probability of
a random phenomenon qi. A set of IE values for each frame of the sub-signal are
retrieved as the entropy sequence for that sub-signal [231].

t4 7→ {te4k}, fj 7→ {fejk} (5.3)

where j = {1, 2, 3}, m is the number of frames into which the sub-signals are
broken down, k = {1, 2, ...,m}, and te4k, as well as fejk are the entropy values
at the kth frame of the trend and fluctuation sub-signals respectively. Figure 5.2.2
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shows how IE of happy and angry utterances vary around neutral state for trend
sub-signal.

Figure 5.2.2: The figure shows how IE values of 4-level db6 trend sub-signal
for Happy and Angry emotions are varying around the Neutral state.

The feature set derivation takes a unique approach by computing the similarity
between IE values of each emotional states of a speaker from the corresponding
neutral state of the same speaker. Suppose, features are being extracted from an
angry emotional state utterance of the speaker S1. For that, the neutral and angry
state utterances of speaker S1 are first broken down till IE sequences (similar to
eq.5.3). So, for both angry and neutral utterances, there will be 25 IE sequences
each. Then, the Euclidean distance is computed between every 25 sequences of
neutral and angry utterances. So, there are now 25 distance measures.

There are two more attributes computed, one is covariance, and another is the
correlation coefficient of the IE sequences, each giving 25 valuesmaking it 50more
values. Apart from 75 values, the gender of a speaker and the length ratio between
neutral and angry utterance is also considered, which makes the total number of
features 77.
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5.2.2 Classification Technique

The classification technique used in this system is a Feed-forwardNeural Network
(FNN). FNNs are quintessential deep neural networks. Figure.5.2.3 depicts the
functioning of an FNN. The hidden layers transform the input data in the search
for a mapping function, and finally, the predicted results are produced. Gradients
of the loss function provide essential input to the optimizer to update the weights
further to find the best possible weights.

The architecture of the neural network (NN) [255] is described in this section.
The input layer dimension is 77 because there are 77 features, so, each data point
will have 77 dimensions. The input vector X is defined as X ∈ R77×1. Then there
is a single hidden layer with 100 nodes. Thus, the weight matrixWh of the hidden
layer is defined asWh ∈ R77×100. So, the input to the hidden layer Ih can be defined
as

Ih = (Wh)T X, where Ih ∈ R100×1 (5.4)

The input to hidden layer Ih now needs to be transformed using a non-linear
function called the activation function. This activation function introduces non-
linearity to the model so that important patterns can be identified to classify the
data-points.
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Figure 5.2.3: Schematic diagram of a feed-forward neural network.

The hidden layer activation function for this model is chosen to be Rectifier
Linear Unit (ReLU) (see fig.5.2.4) which is mathematically defined as

ReLU(x) = max(0, x)

ReLU is a simple yet effective activation functionwhich iswidelyused in various
NN and Deep Neural Network architectures.
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Figure 5.2.4: Shape of a Rectifier Linear Unit (ReLU) function

So, the output of the hidden layer (Lh) is then the transformation of Ih in eq.5.4
by ReLU function:

Lh = relu(Ih), where Lh ∈ R100×1 (5.5)

The weight matrix for the output layer (Wo) will be defined as Wo ∈ R100×1,
and the input to the output layer (Io) can be defined as

Io = (Wo)T Lh, where Io ∈ R (5.6)

The input to the output layer Io again needs to be transformedwith a non-linear
function to get the predicted output of the model, and the probability value is re-
quired for further verification with actual labels.

In themodel, theoutput layer activation function is Sigmoid (seefig.5.2.5)which
is mathematically defined as [199]

sigmoid(x) =
1

1 + e−x

This is a widely used for output layers in binary classification problems because it
gives results which can be considered as a probability that is within the possible
range of probability values.
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Figure 5.2.5: Shape of a sigmoid function

So, the final output of the output layer (Lo) is defined as follows ([189]):

Lo = sigmoid(Io), where Lo ∈ R (5.7)

Now, the desired output for the output layer (Y) is the corresponding label of
the data-point. Here the labels are discretized to be either 0 or 1. So, the actual
deviation from expected result needs to be computed and here comes the concept
of cost functions, whichmeasures the deviation. Here, the binary cross entropy or
negative log-loss function is used as a cost function (C) defined as follows ([199]):

C(Lo, Y) = −
∑
i

Lo
i log(Yi) (5.8)

Next, it is required to measure how sensitive is the cost function (C) with re-
spect to the weights. This is required because weights are the only components of
the systemwhich could be tweaked to get the best classification prediction. So, the
partial derivative of C with respect to the weights Wo i.e. ∂C/∂Wo is computed.
This partial derivative can be further broken down based on the chain rule as fol-
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lows ([190]):

∂C
∂Wo =

∂C
∂Lo ×

∂Lo

∂Io
× ∂Io

∂Wo (5.9)

where ∂Io/∂Wo = Lh, ∂Lo/∂Io = sigmoid′(Io) and ∂C/∂Lo = Lo − Y
So, eq.5.9 shows that some small change in Wo will affect the Io which in turn

will affect theLo and eventually the costC gets affected. So, ∂C/∂Wo is dependent
on all the weights of the hidden layer as well because Io is a function of Lh which
in turn depends on Wh. So, in this way, the impacts of the previous layer weights
on the cost function can be extracted by applying the chain rule and this is termed
as the error back-propagation. Based on the propagated errors, weights are updated
to check in next iteration how much the C is changing and whether C is reducing
since the objective is tominimize C.

All the steps described so far in this section was for a single data point to track
the error in prediction and update the weights accordingly towards achieving cost
minimization. When the whole dataset is considered for optimization, there is a
strong need for a standard algorithm rather than doing thewhole process on an ad-
hoc basis. That is why a popular optimization technique specialized for NN called
adam is used to update the weights based on the errors propagated backward. The
adam is a gradient-descent based optimization method which uses stochastic gra-
dient descent.

Threewidelyusedclassification techniques theSupportVectorClassifier (SVC)
with Radial Basis Function (RBF) kernel, Gaussian Naive Bayes (GNB) and K-
Nearest Neighbor (KNN) are also tested on the feature set for comparing NN
classification results. These three classifiers take different approaches. The SVC
is based on the principle of finding the separating hyperplane. The GNB is based
on Bayes theorem using the concepts of posterior probability and likelihood. The
KNNcomputesdistanceor similarity andmajority voting to classifydifferent classes.
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5.3 Experiment

For the experiment, anEnglish languagedataset calledRyersonAudio-VisualDatabase
of Emotional Speech and Song (RAVDESS) [128] is used. Seven emotional states
are considered for thiswork and short-codes for the emotions are used throughout
this chapter and these are clam(CA), happy(HA), sad(SA), angry(AN), fear(FE),
disgust(DI), and surprise(SU).

The problem is approached as a binary classification problem by considering
two emotion labels at a time. Data has been split into training, testing, and valida-
tion data sets using stratificationwith 10 splits. Stratification split is used to reduce
the extent of over-fitting in the classification model, and moreover, the stratifica-
tion split is done in such a way that each fold can represent the whole data set. The
folds are used for cross-validation to measure the performance of the classifier.

Figure 5.3.1 shows the ANNmodel used for this work. Themodel has 77 input
nodes, 100 hidden nodes, and one output node.

...

...

Output Layer

Hidden Layer

Input Layer

00

Figure 5.3.1: Design of the neural network.

The design is explained in detail in Section 5.2.2. Here, some of the hyper-
parameters of the model are explained. First of all, the epoch is set to 100, that
is the model sees the whole dataset 100 times. Next, the batch size is 40 so that
after every 40 records the weights get updated. How the model loss and accuracy
has converged with each epoch both for training, and testing can be observed in
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fig.5.3.2. The tensorflow [203] deep learning framework is used as back-end while
the front-end library was keras [256].

Figure 5.3.2: The figure shows how model accuracy and loss changes with
each epoch for testing and training.

The other three classifiers also have some hyper-parameters which need to be
mentioned here. For KNN the distance metric is chosen as neighbors = 5 and
Manhattan. For SVC with RBF, kernel hyper-parameters are selected as C = 10
and gamma = 0.001. GNB is a straightforward model and does not have hyper-
parameters. Proper selection of hyper-parameters is vital for getting optimal re-
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sults from the classification models.

5.4 Results andDiscussions

Theclassification accuracy of themodel is shown in fig.5.4.1. The average accuracy
achieved is more than 80% while some accuracies cross 90%. The results are com-
pared with three well-known classification methods: SVC, GNB, and KNN, and
the results are shown in fig.5.4.2. These results show that the NN model performs
better than other techniques.

Figure 5.4.1: ANN classification accuracy.

It is observed that some of the emotion pairs are hard to separate using this fea-
ture set, and as a result, the classification accuracy is low. For example, happy and
fear is hard to separate with 74.83%, 65.92%, 67.79%, and 59.95% using ANN,
KNN, SVM, and GNB, respectively. Research results also support the fact that
human ear can get deceived sometimes in separating emotions from speech [109,
110].
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Figure 5.4.2: Accuracy comparison between ANN, SVM, KNN, and GNB.

The proposed model demonstrates promising results compared to contempo-
rary research results [160, 246, 247, 253]. The average accuracy achieved is more
than 80%, and in some cases, it exceeded 90% whereas [160, 247, 251] achieved
63.89% and 57.91% maximum accuracy. Very high feature space dimension is a
real challenge while applying the DL architectures for SER and the number of fea-
tures sometimes run into thousands [160, 163]. The proposedmodel can address
this high dimensionality issue by reducing the number of features to 77. Finally,
computation and processing capability was much less when compared to deep
learning models. The resources used for this work are AMD 1.9Gz CPU (4 cores)
processor and 6GB of memory.

5.5 Conclusion

A novel classificationmodel for SER is proposed in this work. Application of neu-
ral network model using the new wavelet-based feature set produced promising
results compared to contemporary research results. The NN model developed
here is a simple one to show the novelty of the feature set that the feature set can
perform reasonably well even with simple models and no complicated DL archi-
tecture is required. Applying DL architecture should improve classification accu-
racy evenmore. Theproposedmodel is capable of addressinghigh-dimensionality,
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high computation time, and resource issues of SER along with high accuracy.
There is a plan to apply deep learning architecture to improve the classification

accuracy even further so that the industrial implementation of this model is pos-
sible in the near future. There is plenty of scopes left to enhance the feature set
further by adding new features and possibly by introducing generativemethods to
create a good volume of artificially created data to carry this trend of SER research
further for better results.
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Modern physics had shown that the rhythmof creation andde-
struction is not only manifest in the turn of the seasons and the
birth and death of living creatures, but is also the very essence
of inorganic matter. For modern physicists, Shiva’s dance is
the dance of subatomic matter.

Fritjof Capra, Theoretical Physicist

6
Conclusion and FutureDirections

6.1 Conclusion

Researchers have identified and proposed various applications of the technique of
recognizing emotional states from the speech signals [52, 61, 73, 74]. Introduc-
tion of sensitivity to AI systems through emotion detection is going to revolution-
izemany sectors likemedical, and entertainment. Thus, SER is important, and it is
going to be an integral part of AI systems. That is the reason why there is a signifi-
cant thrust towards solving the problem of SER in the last few years. Although the
task of SER has proved to be challenging, the enthusiasm of the researchers is in-
creasing in this endeavor and an increasingnumber of researchpapers support this.
The problems in this field are old, and numerous proposals are available. However,
both the problems are still unsolved. This thesis is an endeavor towards solving a
few problems in this field. Chapter 1 of this thesis first explains the reason behind
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the influence of emotions in human life and why emotion detection is essential.
Then there is a very brief overview of an SER and including the various applica-
tion of SER. After that, the motivations behind this research has been explained,
and it is pointed out that the lack of well-defined feature set for the SER has been
the biggest motivation behind this work. The contributions are alsomentioned in
this chapter in brief.

Chapter 2 of this thesis reported the present state of SER research and con-
cluded that cross-corpus classification accuracy is significantly low, which means
that present models are not generalizing well for the unseen data. This makes the
present classification models unfit for industry use and this is the reason why SER
systems have not yet been incorporated in various consumer applications. Low ac-
curacy in cross-corpus classification scenario could be because of three reasons: 1.
the database parameters and attributes vary significantly. 2. the features extracted
from the speech databases are not adequately reflecting the characteristics of emo-
tions. 3. a combination of both the previous reasons. During this work also, it is
observed that the classifiers are not responsible for low generalization of the SER
models, because powerful classification techniques like the deep learning models
performed very well with complex problems like image classification or automatic
speech recognition, but the DL models are not that successful in solving the SER
problem. This research is an endeavor towards solving the two main issues with
SER which have been identified during the initial study: 1. speech endpoint de-
tection in pre-processing stage is not robust enough to remove the endpoints pre-
cisely; 2. existing features are not describing the emotional states of the speech
signals well.

Chapter 3 proposes a novel speech end point detection algorithm named the
WCSED. Here a wavelet convolution based approach is adopted to remove the
endpoints from speech utterances. TheWCSEDproduced very good results com-
pared to contemporary research results. Precise endpoint detection contributes
significantly to SER or other speech processing systems. So, this algorithm is a
vital contribution towards successful speech emotion recognition.

Deficiency of the SER feature sets in describing the underlying emotional state
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of the speaker has been identified as the most critical issue. A novel feature set
for SER is proposed in Chapter 4. Researchers have tried different feature sets as
described in Chapter 2, but most of them are borrowed from the ASR features.
Which means the features are not specifically designed for SER. So, an SER spe-
cific feature set is required for the SER models to perform well. The feature set
is based on a novel concept named the subjective emotional gap reduction technique
(SEGRT). The SEGRT is based on the discrete wavelet transform method. The
SEGRT is unique in the sense that for the first time a dissimilaritymeasure is calcu-
lated between a neutral state and an emotional state of the speaker. It ismentioned
in Chapter 1 that the subjective nature of emotional expression makes it difficult
to segregate different emotional states. The dissimilarity measure tried to mitigate
this subjective gap so that the extracted features for different speakers can be put
into nearly similar scale. The proposed feature set is used with different classifiers
like GNB, SVM, and KNN, and the results are very encouraging. The concept of
the SEGRT is a novel concept, first introduced through this work. This concept
is new and need further investigation and improvement to establish it as a new
standard for SER feature set. SEGRT is capable of addressing four critical issues
of SER: classification accuracy, high-dimensionality, high computation time, and
high-end computation resources.

The fifth chapter proposes a deep learning classification model for SER using
the SEGRT feature set. A single hidden layer feed-forward neural network (FNN)
model is used and the results are promising compared to contemporary research
results. This neural network model uses the cross-entropy loss function as a cost
function. Whichmeans entropy value between the distribution of target emotions
and predicted emotions are used as a measure to evaluate the performance of the
neural network. Here low cross-entropy value means better fit but very low cross-
entropy would mean an overfit. The subjective gap of different emotions from
the corresponding neutral state at differentwavelet decomposed layers is weighted
with the respectiveweight of the neural networkmodel. So, for different emotions,
different wavelet transform level is given importance depending on the frequency
of the speaker’s voice. Thus, the performance of this model will depend on how
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aptly the dataset depicts the subjective gap. Moreover, the stratification split of
the training data helps to prevent the cross-entropy values to fall very low by ran-
domly selectingwavelet decomposed signal fromdifferent levels. TheFNNresults
are better compared to other classifiers like GNB, SVM, and KNN. However, the
training timeusing theFNN is highbecause themodel is trained in 100 epochswith
40 batch size. The SEGRT feature set contains 77 attributes which is much lower
than regular feature sets and so, it is capable of addressing the high-dimensionality
issue of the SER.

6.2 FutureDirections

The proposed WCSED algorithm demonstrated encouraging results and can be
further tested with other speech processing systems as well. Some scope of im-
provement for theWCSED algorithm have been identified as: 1. level of loudness
of the speaker’s utterances could be an essential factor to improve the end-point
selection results; 2. WCSED could be further adapted to work in the online or re-
al-time scenario to enhance the scope and usability of the algorithm.

Theproposed SEGRT feature set should bemademore robust by further reduc-
ing redundant attributes and adding more relevant attributes. There is a scope to
apply deep learning architecture to improve the classification accuracy further so
that the industrial implementation of this model can be developed in the near fu-
ture. A generativemodel can be developed to generate a good volumeof artificially
created data based on the SEGRT so that there is more relevant data available for
research.

Research and study of a subject can never be complete unless the proposed con-
tributions get implemented to solve real-life problems for humankind. So,my con-
stant endeavor will also be to see those proposals to be implemented in real-life.

102



Appendix A

Publications
Journals

1. T Roy, T Marwala, and S Chakraverty. Precise detection of speech end-
points dynamically: A wavelet convolution based approach. Communica-
tions in Nonlinear Science and Numerical Simulation, 2018.
doi:https://doi.org/10.1016/j.cnsns.2018.07.008.

Conferences

1. T. Roy, T.Marwala, and S.Chakraverty. IntroducingNewFeature Set based
onWavelets for Speech Emotion Classification. 1st IEEE Conference on Ap-
plied Signal Processing (ASPCON) 2018. Accepted for IEEE Conference
proceedings book.

2. T. Roy, T. Marwala, and S. Chakraverty. Speech Emotion Recognition us-
ing Neural Network and Wavelet Features. 8th Wave Mechanics Vibrations
Conference 2018, NIT RKL. Accepted for Springer Conference proceedings
book.

Book Chapters

1. T. Roy, T. Marwala, and S. Chakraverty. Novel Advancements of Auto-
matic Emotion Recognition and its Role in the 4th Industrial Revolution.
Accepted InTheDisruptive Fourth Industrial Revolution: Technology, So-
ciety and Beyond, Edited by T Marwala, BS Paul. Springer.
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2. T. Roy, T. Marwala, and S. Chakraverty. A Survey of Classification Tech-
niques in Speech Emotion Recognition. Accepted In Mathematical Meth-
ods in Interdisciplinary Sciences, Edited by S Chakraverty. Wiley.

3. T. Roy, T.Marwala, and S. Chakraverty. Deep Learning in Speech Emotion
Recognition: A Review. Proposed In Mathematical Methods and Vibra-
tions, Edited by S Chakraverty. Elsevier.
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