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ABSTRACT Currently, state-of-the-art methods for 3D object recognition rely in a deep learning-pipeline.
Nonetheless, these methods require a large amount of data that is not easy to obtain. In addition to that,
the majority of them exploit features of the datasets, like the fact of being CAD models to create rendered
representation which will not work in real life because the 3D sensors provide point clouds. We propose a
novel global descriptor for point clouds which takes advantage of the fractal dimension of the objects. Our
approach introduces many benefits, such as being agnostic to the density of points of the sample, number
of points in the input cloud, sensor of choice, and noise up to a level, and it works on real life point cloud
data provided by commercial sensors. We tested our descriptor for 3D object recognition using ModelNet,
which is a well-known dataset for that task. Our approach achieves 92.84% accuracy on the ModelNet10,
and 88.74% accuracy on the ModelNet40.

INDEX TERMS 3D object recognition, fractal, global descriptor, machine learning.

I. INTRODUCTION
The ability to recognize tridimensional objects is a key feature
for a range of different applications. For instance, intelligent
and self-driving cars must be able to detect and recognize
the objects that surround them in order to enable a specific
behaviour: they must stop in a red light, they must engage the
emergency brake if a pedestrian suddenly crossed the road or
they must recognize the traffic signs to drive safely.

Another notorious application for the tridimensional object
recognition could be social robotics. The robots that are
meant to interact with humans should be able to recognize
each of them, and also to recognize certain objects that may
be potentially involved in their tasks. For instance, it might
be useful for the robot to recognize household items.

So far, the most novel and accurate 3D object detectors rely
in a deep learning pipeline. However, these methods require
a large amount of annotated and structured data in order to be
trained, which is very hard to obtain. Due to this, most of the
deep learning-based 3D object detectors do not perform that
well in real life, off-lab tests. In addition to that, most of them
are coupled to a certain kind of sensor. For instance, there are
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approaches that only work on 16-Beams LiDAR data, or they
only work on 3D Computer Aided Designed (CAD) objects.

In this article, we propose a novel global descriptor, which
is based on the fractal dimension. The voxel-based compu-
tation of the fractal dimension is agnostic to the density of
points, number of points in the input cloud, sensor of choice,
and noise up to a level. In addition to that, it is very fast to
compute. The fractal descriptor could be used for 3D object
recognition, which is the feature that is most explored in this
work.

Thus, the main contribution of this work is a novel global
descriptor that is based on the computation of the frac-
tal dimension, which we called Voxelized Fractal Descrip-
tor (VFD).

The rest of the paper is organized as follows: first,
we review some relevant related works in Sec. II. Then,
we describe our approach in Sec. III. In Sec. IV, we show
the results of the experiments we carried out to validate
our proposal. Finally, we draw the conclusions and state the
limitations and future works in Sec. V.

II. RELATED WORKS
Object recognition is a very important topic in the research
community, as it can provide the understanding of the scene
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for an artificial intelligence. At the beginning of computer sci-
ence, the main focus was in object recognition with images.
Deep learning approaches achieved high accuracy levels in
many competitions [1], even better than humans, with Con-
volutional Neural Network architectures [2]. However, 2D
object recognition relies on appearance and not the shape
so, for example, it cannot differentiate between a picture and
the object that has been depicted inside. With the advent
of depth sensors, we can have information about the shape
of the object, so we can differentiate between these classes.
Nevertheless, the inherited unorganized representation of the
3D information, where the neighborhood of every point can-
not be directly extracted, makes this task harder than the 2D
counterpart [3].

Traditionally, 3D object recognition has been carried out
with local and global feature-based descriptors and geometric
primitives [4], [5].

On one side, local methods describe a single point
and are only based on local geometric features around
the points of interest. However, they require methods to
select which points are in fact keypoints, and special-
ized classifiers to deal with multiple feature vectors per
object [6].

On the other side, globalmethods describe thewhole object
with a single vector, which is directly suitable for standard,
traditional classifiers. Nonetheless, they need a segmentation
stage in order to isolate the object [7]. We consider that global
techniques are more interesting than local approaches to be
used as benchmark for further novel methods, as they can be
directly used with the classifier of choice, so a revision of the
most notorious alternatives of this family is provided in the
following paragraphs.
Ensemble of Shape Functions (ESF) [8] is the only one

descriptor that do not rely on normals to describe the shape.
It is a combination of ten histograms generated from three
different shape functions: point distance (D2, line between
point-pairs randomly sampled), angle (A3, angle formed by
3 randomly sampled points), and area (D3, area created by
three points) [9]. The input cloud representing the object is
voxelized to approximate the surface and is used to trace the
line joining pair of points efficiently. For every function, there
are 3 histograms depending on the connectivity of the points
that lies on the surface, off the surface or mixed, according
to [10]. Finally, the distance ratio histogram is create using
the lines from D2 function.
Viewpoint Feature Histogram (VFH) [11] is a global

descriptor based on theFast Point Feature Histogram (FPFH)
local descriptor [12]. It is composed of two elements: a
viewpoint direction component and an extended FPFH com-
ponent. For the viewpoint direction, the centroid of the object
is calculated, and the vector between the viewpoint of the
camera and the centroid is then computed. Then, for every
point in the object the angle between this vector and its normal
is computed. The extended FPFH is computed as the original
method, using the centroid as the keypoint and the rest of the
points as its neighbors.

Clustered Viewpoint Feature Histogram (CVFH) [13] is an
extension of the VFH descriptor that calculates a histogram
for each region of points, and not for the whole object. These
regions are split by removing points with a high curvature
value, and then applying a region growing segmentation algo-
rithm.

Finally, Oriented, Unique and Repeatable Clustered View-
point Feature Histogram (OUR-CVFH) [14] is an iteration of
theCVFHmethod that defines a robust unique and repeatable
reference frame to describe the object that allows avoiding the
ambiguity over the camera roll angle.

With the explosion of newArtificial Intelligence (AI) hard-
ware accelerators, many researchers are focusing on deep
learning methods for tackling the 3D object recognition task.
We introduce these methods by grouping them in three big
categories according to their 3D data representations.

Point Cloud. 3D data is represented as a raw unordered
point cloud. These methods usually extract features by ana-
lyzing the neighborhood of every point within a radius. The
most representative proposal in this case is PointNet++ [15].
It generates a feature vector for the whole cloud by apply-
ing order-invariant transformations to every point, generating
local hierarchical features that are sampled and grouped, and
uses it to segment and classify the scene.

Some proposals are based on the previous architecture.
This is the case of VoteNet [16], a novel technique based on
Hough voting, that uses PointNet++ layers as the backbone.
This approach selects a set of interesting points, with their
corresponding features, as seed points to generate clusters of
object instances based on their votes. Finally, these clusters
are transformed into 3D bounding boxes with their corre-
sponding categories.

Another work, SplatNet [17], extends the concept of 2D
SPLAT images into 3D. It uses hash tables as a efficient
implementation of neighborhood filtering, which provides an
easy mapping of 2D points into 3D space, Then, bilateral
convolutions are used to extract a set of features.

In the case of SO-Net [18], the authors propose a method
to guarantee invariance to point permutations. It builds a
Self-Organizing Map (SOM) through modelling the spatial
distribution of the point cloud and using the neighborhood of
every point to extract hierarchical features. As a final step,
this method generates a global feature vector for the whole
cloud.

Other approaches, like Point-Voxel CNN (PVCNN) [19],
combine the sparse representation of the data with voxelized
convolutions that increase the performance of the data access
and improve the locality of the method. In this work, a new
efficient primitive is introduced, Point-Voxel Convolution
(PVConv), that converts points into voxel grids, aggregates
neighboring points with voxel-based convolutions and trans-
forms them back to points. In order to obtain features with
a higher level of detail, they include point-based feature
transformations.

2D projections. In this category of methods, input data is
represented as multiple 2D projections of the tridimensional
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data. Traditionally, they have been the most common
approaches, and usually have a 2D Convolutional Neural
Network to carry out the processing, as presented in [20].
Some studies train a boosting classifier to group different
views and improve the quality of the inference, like [21].
On the other hand, another works make a manual choice of
the best views to perform the classification. This is the case
of [22], that considers 3 orthogonal views to be good enough
to carry out the classification task, and feed 3 independent
neural networks, whose results are finally combined. Based
on ModelNet benchmark, [23], these methods have the high-
est classification performances, but they need multiple views
of the object, so they would perform poorly in real-world
applications if they have to deal with with occlusions and
partial views.

Voxelization. In this case, input data is a discretization
of the original point cloud, grouping points into different
clusters according to a neighborhood criteria, that serve as
a approximation of the original shape. Commonly, every
voxel is represented as a binary value, 0 or 1, that indicates
the presence of points in the space the voxel represents.
3D ShapeNets [24], the study carried out by the authors of
ModelNet, discretizes the data as a cubic voxel and applies
3D convolutions to generate the features. In a similar manner,
VoxNet [25] applies a 3D Convolutional Neural Network to
the volumetric representation to generate the classification.
Another works that are based on 3D convolutions are [26],
[27], which also use the voxel representation of the objects.
On another note, PointGrid [28] creates grid cells with a con-
stant number of points with a point quantization technique,
saving points’ coordinates to improve the representation of
the local geometry of the object. Other works, such asO-CNN
[29] and OGN [30] combine the use of octree representations
with the performance of 3D convolutions to lower memory
consumption and improve the performance.

Similar to approaching the problem by using multiview
2D projections, works likeMO-VCNN [31] generate different
rotations of the 3D models and extract high level features
from every pose that are combined into a final feature vec-
tor. Despite the popularity of 3D convolutions, other deep
learning architectures have been used. Vconv-dae [32] uses
a convolutional denoising auto-encoder as a feature learning
network, [33] a Variational auto-encoder and [34] a Genera-
tive Adversarial Network.

The main problem of this category of techniques is the
loss of detail due to the discretization step, and that require
high amounts of memory for the 3D convolutions, which are
mainly useless due to the internal void of the representation,
namely, that the point cloud only has points in the surface of
the object.

As for fractals, the fractal dimension has been tested as
descriptor in the past, with promising results. Regarding the
field of plant recognition, in [35] authors researched a range
of algorithms for calculating the fractal dimension. They
segment the veins of the plants and their borders, and they
calculate the fractal dimension using this information, and

classify them into different species of Passiflora, obtaining
an average accuracy of 97,77%.

Another example of the use of the fractal dimension as
descriptor is [36]. In this work, which is more theoretical,
authors propose the box counting algorithm to calculate
the fractal dimension. They aim to demonstrate how fractal
geometry can describe properties of the urban development
that cannot be capture with euclidean geometry. In this article,
they use 2D binary images of maps of 20 different American
cities to carry out the analysis. In this study, they conclude that
there is a correlation between fractal dimension and the level
of urban development of each city, but they found no evidence
of a correlation between this dimension and the population
density.

As a last example, we can find the article [37], which
uses fractal dimension to analyse signals from a magnetoen-
cephalogram. In this case, fractal dimension is considered as
an indicator of the complexity of a signal, that is usually cal-
culated following the Higuchi algorithm [38]. Authors seek to
verify the reliability of the fractal dimension as an Alzheimer
detector. Using this technique, they achieve a 87,8% of accu-
racy and a 95,24% of specificity, with 5 channels, so they
obtained good results for diagnosing this disease.

There is a specific feature that appear in each of the meth-
ods described above, and that is the fact that all of them work
with the fractal dimension in two dimensions. Because of this,
in this work we propose a method to carry out 3D object
recognition, taking advantage of the properties of the fractals,
in the hope of popularizing its use.

III. PROPOSAL
In order to evaluate the feasibility of the fractal dimension
as a 3D object descriptor, we propose the Voxelized Fractal
Descriptor (VFD). The process to generate the VFD from
an input point cloud is as follows: first, a point cloud is
obtained. The points are not required to be sorted by any
mean. A voxel grid clustering of an specific size is com-
puted using the point cloud as an input. The resolution is a
parameter of the approach. As a result, there are generated
a set of clusters which contain the points in the input point
cloud. Then, the fractal dimension is computed for each
cluster. As a result, we obtain a set of fractal dimensions,
one per cluster. If a cluster is empty, namely it has no points
within, a fixed sentinel value of 0 is returned, correspond-
ing with the theoretical fractal dimension of the empty set.
Finally, the fractal dimensions are concatenated to generate
the final voxelized fractal descriptor. As expected, the com-
putational complexity of the descriptor is related to the res-
olution of the voxel grid filter, as more voxels implies the
computation of more fractal dimensions, thus generating a
larger descriptor. The process to generate the VFD is shown
in Figure 1.

The explanation of the algorithm to calculate the fractal
dimension is in Sec. III-A, and the details of our descriptor
are in Sec. III-B
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FIGURE 1. The process to generate a VFD from an input point cloud.

A. 3D FRACTAL DIMENSION ALGORITHM
The concept of fractal dimension, in fractal geometry, is a
generalization of the concept of dimension in classic geome-
try. As a simplification, it can be defined as a measure of how
much an object appears to fill the space as it is scaled up or
down. A clear example is the Koch snowflake. This figure has
a topological dimension of 1 but cannot be treated as a curve,
because as we zoom in on the figure, the distance between its
points tends to infinite. This phenomena is know as Coastline
Paradox [39].

There are many ways to calculate this property (infor-
mation dimension, correlation dimension, Higuchi dimen-
sion, Lyapunov dimension, Hausdorff dimension. . . ), but
we have chosen the box counting method, also known as
Minkowski–Bouligand dimension. This method is one of the
most popular to calculate the fractal dimension of sets in
euclidean space, it is directly applicable to 3D data, and is
very fast to compute.

The name of the box counting method is very descriptive,
as it consists in dividing the space in boxes, and counting the
number of cells that contain points. In more detail, the space
occupied by the object is divided into square boxes of side
size ε. Then, the cells that are occupied by the object are
counted. This process is repeated nIters times with a fixed
boxSizeDecrease decreasing value of ε, obtaining the Eq. 1,
where N (ε) is the number of boxes required to cover the
figure according to the side size, ε is the side size, and DBC
is the box counting dimension.

N (ε) = εDBC (1)

The obtained expression is similar to those of Haussdorf and
Higuchi, and can be operated with algorithms to generate a
linear function, as shown in Eq. 2. As we can see, DBC is
the slope of the linear function. In our practical application,
we will apply a least-squares adjustment to approximate the
value of this slope, as proposed in [40].

log(N (ε)) = DBC · log(ε) (2)

The translation of this algorithm to the 3D euclidean space
is a trivial process, as the only difference is the substitution
of the squares boxes of the grid by cubic voxels. To do so,
we relied in the voxel grid algorithm. The only parameter
to be set is the number of iterations nIters (decreases in

box size), as the rest of parameters are calculated from this.
Assuming that the object is centered in the origin, the initial
box size, tam0 is the distance from the origin to the furthest
point of the object, and the decrease in box size is calculated
following the Eq. 3

boxSizeDecrease =
tam0

nIters
(3)

The voxel grid filter is applied in each iteration, as shown
in Fig. 2 and Fig. 3 with the corresponding size. Then,
the number of voxels that are occupied is computed.
We stored the corresponding values of voxel size and number
of occupied cells in every iteration, and applied the Eq. 2
approximating, thus, the slope of the line with a least-squares
adjustment. Finally, this value represents the fractal dimen-
sion, as shown in Fig. 4.

FIGURE 2. Sample of the division (in blue) of an instance of the piano
class from ModelNet40. In black we can see the main bounding box of
the figure, that marks the size for the divisions.

FIGURE 3. Effects of the evolution of Voxel Grid filter in box counting.

FIGURE 4. Example of least-squares approximation for fractal dimension.
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B. 3D VOXELIZED FRACTAL DESCRIPTOR
The one-dimensional version of the descriptor is explained
first. Given a 3D object defined by a set of 3D points that rep-
resent its surface, this descriptor is calculated for the whole
object using the method explained in the previous section.
Thus, as a result, there is a single value which is used as a
global descriptor for the object. In Sec. IV we describe an
experiment to check the efficacy of this method.

The next idea was to involve the distribution of points
and their location on the object as well. With this in mind,
our proposal is to divide the object in voxels, with a voxel
resolution provided by the user. Then, the fractal dimension
for the points that lie within each voxel is computed. If a voxel
has no points within, a fractal dimension of 0 is returned.
The fractal dimensions are concatenated in a single vector
by following the order of creation, thus generating the final
descriptor. We named this version the fractal Voxelized Frac-
tal Descriptor (VFD). It is worth to mention that the only
parameter that takes VFD is the resolution of the voxels. The
descriptors of a set of objects are then used to train a classifier
in order to tackle the 3D object recognition task.

FIGURE 5. Plot of the calculation of fractal dimension over two voxelized
figures, a cone and a ground with two different parts: a flat surface and a
very sharp surface, with the lighter colours being higher values of fractal
dimension.

Figure 5a shows the result of dividing a cone in voxels
and calculating the fractal dimension for every voxel. The
points that lie in a certain voxel are colored as a function
of the fractal dimension. The voxels with the lightest shades
of greens, which represent a higher fractal dimension, cor-
respond with the zones with more points. The darkest areas
represent a lower fractal dimension, which also are zoneswith
fewer points. On the other side, in Fig. 5b, we can see the dif-
ference between a flat surface and a rough surface. Logically,
for the regular part of the surface, the fractal dimension is
constant, whilst the roughest parts show a range of different
factal dimension. In this part, the bulge tips have low values,
the points near the base have similar values to the flat surface,
and the central parts present the highest values of fractal
dimension, which are represented by the different shades of
green.

In Fig. 6 we present the analysis for 4 different classes of
the ModelNet40 dataset. Figure 6a shows a guitar, where its
body and the central part of the neck are constant, because
they are flat surfaces. The parts that show more difference
are the edges of the guitar neck and body. Besides, in Fig. 6b,
there is a darker band due to the intersection of some voxels
with the limits of the cylinder. More dark points are on the

FIGURE 6. ModelNet40 samples of calculating fractal descriptor over
voxels. Lighter green values are higher fractal dimensions.

winglets, at the end of the plane. The case of the laptop
in Fig. 6c is pretty interesting because the keyboard is in
constant color as it is vertically aligned, but the screen shows
some discontinuities due to the fact that it is tilted, thus
its points lie within multiple columns of the grid. Finally,
in Fig. 6d we have the example of a plant, which leaf surfaces
and vase are of similar, light green color, whilst the stem and
leaf tips are of darker colors. This effect is identical to the
one with the wings of the plane, the guitar tuning pegs and
the tips of the rough surface. We strongly believe that this
is an important factor to differentiate between objects, as we
demonstrate in the next section.

IV. EXPERIMENTATION
In this section, we first describe the dataset, ModelNet, used
in the experimentation. Then, we apply the one-dimensional
descriptor to the smallest version of the dataset, ModelNet
10, and show the results in Sec. IV-B. After that, in Sec. IV-
C, we present the results for the ModelNet10 dataset for the
Voxelized Fractal Descriptor. For this dataset, we conducted
a great deal of tests in order to find the classifier and the
voxel resolution that provide the best performance for our
descriptor. Then, in Sec. IV-D we use the best setup found
in the previous section with the most complex version of
the dataset, which is ModelNet40. We do this to evaluate the
performance of our system with harder problems, also with
the VFD descriptor.

The experiments were carried out using the following
setup: Intel Core i5-3570 with 16 GiB of Kingston HyperX
1600MHz andCL10DDR3RAMon anAsus P8H77-MPRO
motherboard (Intel H77 chipset). The implementation of our
methods has beenmadewith Python, using the novel Open3D
library [41], which offers a large set of functions to process
3D data.

A. ModelNet DATASET
We have used the Princeton ModelNet project [24], which
is one of the most widely used benchmarks for 3D object
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recognition. This dataset has two versions: ModelNet10 and
ModelNet40.
ModelNet10 offers a set of more than 4,700 CAD mod-

els from 10 different categories that are manually aligned,
and divided into training and test set. Following the steps
explained in [26], we converted thesemodels intoPoint Cloud
Data (PCD) clouds, compatible with the Open3D library.
In [26] we can also see the the highly imbalanced distribution
of both training and test sets.

The main problem of this dataset is the visual similarity
between categories, that mainly occurs with the night_stand
y dresser categories. In Fig. 7 we can see samples of both
categories, which are very difficult, even for a human, to dis-
tinguish them. It is clear that there are other designs which
are more differentiable from each other, but this problem
occurs quite often, thus leading to a potential decrease of the
accuracy of the classification results.

FIGURE 7. Comparative between instances of night_stand and dresser in
frontal and side view.

ModelNet40 offers a set of more than 11,000 CAD models
from 40 different categories manually aligned, and divided
into training and test set. Similarly to theModelNet10 dataset,
we converted these models into PCD clouds. This version of
the dataset also shows a high imbalanced distribution of both
training and test sets.

FIGURE 8. Comparative between instances of cup and vase in frontal and
top view.

The problem referred to ModelNet10 happens with this
dataset too, as shown in Figures 8 and 9, as it is of the
same nature. In addition to those already mentioned in the
previous section, we will see frequent confusions between
door and curtain classes, because they are both plain rect-
angles, taller than wide and shallow. Something similar
occurs between bench and desk, because most of their
instances consists of a large rectangular base with four legs.
However, main confusions are between classes flower_pot,
plant, vase and cup. We can find many potted plants in
flower_pot and plant instances indistinctly, so the classifi-
cation is expected to be somewhat arbitrary in this case.
On the other hand, flower_pot, vase and cup categories have
very similar instances that only differ in scale, color and use,
feature that are not taken into consideration in the proposed
VFD algorithm.

B. RESULTS ON ModelNet10 USING THE
ONE-DIMENSIONAL DESCRIPTOR
The first experiment we carried out consists of a naive
experiment, using the one-dimensional descriptor, which is
described in Sec. III-B, for the ModelNet10 dataset. We have
used the K-Nearest Neighbors (KNN) classifier, with a K
value of 5. It showed a very poor accuracy of 21,6%, as shown
in Fig. 10. This result is expectable as it is very likely that a
range of different object share the same fractal dimension for
the whole object. So, we conclude that this descriptor does
not provide enough discriminative power to allow distinguish
between categories.

C. RESULTS ON ModelNet10 USING VFD
The first classifier we tested was KNN. We tried different
setups of k and voxel resolutions. The results are presented
in Fig. 11. in this plot, it can be seen the influence of the
k parameter and the voxel resolution. With the minimum
number of subdivisions (23) the worst results appear, but they
improve considerably from 33 to 103, where the accuracy
starts decreasing slightly. Apparently, this algorithm works
better with lower values of k, regardless of the voxel res-
olution. Moreover, it is worth noting that the number of

FIGURE 9. Comparative between instances of plant and flower_pot in
frontal and top view.
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FIGURE 10. Confusion matrix with the one-dimensional fractal descriptor
for the whole object with a KNN classifier, k = 5.

FIGURE 11. Comparison of ModelNet10 results for KNN with different k
values and voxel subdivisions using euclidean distance.

FIGURE 12. Confusion matrix for ModelNet10 using KNN with k = 1 and
53 subdivisions. 86,01% accuracy.

subdivisions with better average result is 53. Finally, the best
result of a 86,01% accuracy is obtainedwith the configuration
k = 1 and 53 subdivisions. The confusion matrix regarding
this setup is shown in Fig. 12. This last result will be used to
compare with other classifiers.

The next classifier we tested was a fully-connected neural
network. We tried a simple topology as a baseline in order to
know the reliability of our descriptor and prevent overfitting.
This first architecture has only two layers: an input layer
with a number of neurons equal to the size of the feature
vector (that depends on the voxel resolution) with sigmoid
activation, followed by an output layer of 10 neurons (one for
each category) with softmax activation. The best results were
obtained with 93 subdivisions, which yielded an accuracy
of 90,75%. The corresponding confusion matrix is shown
in Fig. 13.

After observing the learning curves, we noticed a little
overfitting, even though it is a very simple network, so we
used regularization techniques such as Dropout [42]. This
technique is very simple and consists of randomly disabling
the connection between some neurons, so we force every
neuron to learn something that contributes to the overall
result of the network, preventingmemorizing. After involving
this technique, we achieved an accuracy of 90,97%, but
differences between train and test accuracy were significantly
lowered, as depicted in Figs. 14, 15. 16. 17.

FIGURE 13. Confusion matrix for ModelNet10 with a fully-connected
network and 93 voxel resolution. 90,75% accuracy.

FIGURE 14. Accuracy before applying Dropout.

161964 VOLUME 8, 2020



J. F. Domenech et al.: Voxelized Fractal Descriptor for 3D Object Recognition

FIGURE 15. Accuracy after applying Dropout.

FIGURE 16. Loss before applying Dropout.

FIGURE 17. Loss after applying Dropout.

The last classifier we tested was Support Vector Machines
(SVM). With this method we achieved the highest accuracy,
92,84%, with 53 subdivisions. In the light of the results,
we can determine that SVM is the best classifier for our
descriptor.

Fig. 18 shows the confusion matrix regarding this experi-
ment, where we can notice that a great part of the errors are

FIGURE 18. Confusion Matrix for ModelNet10 with SVM and 53

subdivisions. 92,84% accuracy.

FIGURE 19. Accuracy for SVM classifier in ModelNet40 with different
voxel resolutions.

misclassifications between conflicting classes, as exposed in
Sec. IV-A. This fact shows that our system is working prop-
erly, as the confusions are between classes that are visually
and semantically similar, which is very hard to tell apart even
for humans.

D. RESULTS ON ModelNet40 USING VFD
In view of the success of the SVM classifier for Mod-
elNet10, we decided to move on to the extended ver-
sion of the dataset that involces 40 different classes.
We carried out different experiments with a range of
voxel resolutions, as shown in Fig. 19. Best results
were obtained with 73 subdivisions, which confusion
matrix is depicted in Fig. 20, with a test accuracy
of 88,74%.

In [23] we can find the reported accuracy of the main rele-
vant papers for bothModelNet10 andModelNet40. In Table 1
we offer a summary with the performance of some recent
or relevant works for this topic. It is important to note
that many of these methods rely on deep learning and
multi-view representations, contrary to the proposed method
that is a global descriptor based on fractal properties of the
objects.
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FIGURE 20. Confusion matrix for ModelNet40 with 73 subdivisions and
SVM classifier. 88,74% accuracy.

TABLE 1. Comparative of accuracy results on ModelNet benchmark.

V. CONCLUSION AND FUTURE WORK
The feasibility of the fractal dimension as global descriptor
to recognize 3D objects has been demonstrated through the
experiments carried out. The results obtained for the datasets
ModelNet10 and ModelNet40, used as benchmarks, have

been successful, with a test accuracy of 92,84% and 88,74%
respectively, which make the VFD comparable to the deep
learning-based methods of the state of the art.

One main advantage of our method is that it is inherently
agnostic to the to the density of points of the sample, number
of points in the input cloud, sensor of choice, and noise up
to a level because it is based on the fractal dimension of a
set of points. This feature allows VDF to provide competitive
accuracy on classification tasks. Another advantage is that
our method is able to work on real life, sensor-provided point
clouds as it do not relies on intermediate, rendered representa-
tions. It also does not require any powerful, specific hardware
to create the descriptor and perform classification tasks on a
reasonable amount of time, unlike the deep learning-based
approaches. Nonetheless, our descriptor has linear complex-
ity as the size of the descriptor is directly related to the reso-
lution of the voxel grid clustering, as there is one component
on the descriptor for each voxel. The resolution is also linked
to the accuracy, as more complex objects would require more
resolution in order to capture the finest details.

Throughout this article, different methods for calculating
fractal dimension have been mentioned. It seems logical that
if the box counting method has succeed for 3D object recog-
nition, other methods could work too and even improve the
results or efficiency, so we plan to test different approaches
as future work. In addition to that, we would explore method
to limit the complexity of the descriptor in order to make it
constant.

Another path to explore is to improve the implementation
of the box counting method. We want to study the selection
of a subset of points to approximate the line which slope is
the fractal dimension, instead of applying least-mean squares
minimization over all points. With this technique we could
avoid the distortion produced by the leftmost points, as shown
in Fig. 21.

FIGURE 21. Errors with least-mean square minimization for box counting
fractal dimension calculation.
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