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EVENLY CONVEX SETS, AND EVENLY QUASICONVEX FUNCTIONS,
REVISITED
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Abstract. Since its appearance, even convexity has become a remarkable notion in convex analysis. In
the fifties, W. Fenchel introduced the evenly convex sets as those sets solving linear systems containing
strict inequalities. Later on, in the eighties, evenly quasiconvex functions were introduced as those whose
sublevel sets are evenly convex. The significance of even convexity relies on the different areas where
it enjoys applications, ranging from convex optimization to microeconomics. In this paper, we review
some of the main properties of evenly convex sets and evenly quasiconvex functions, provide further
characterizations of evenly convex sets, and present some new results for evenly quasiconvex functions.
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1. INTRODUCTION

To the authors’ knowledge, this is the first paper that reviews one of the favorite research
topics of Juan-Enrique Martı́nez-Legaz, to whom this special issue is dedicated in occasion
of his 70th birthday: the sets which are intersections of open halfspaces and those functions
whose sublevel sets belong to this family of sets, which are called evenly convex sets and evenly
quasiconvex functions, respectively.

The concept of evenly convex set was coined by Werner Fenchel [5], one of the fathers of
convex analysis, in his attempt to extend the double polar theorem to a class of sets larger
than the one of closed convex sets. The concept of evenly quasiconvex function, in turn, was
introduced in 1981 by Martı́nez-Legaz in his PhD thesis on generalized conjugation [16], under
the name of normal quasiconvex function. It was also used in his 1983 paper [17], while the
name of evenly quasiconvex function was introduced a year later by Passy and Prisman [24] in a
paper on conjugacy in quasiconvex programming (which was followed by a sequel on the same
subject [25]) written in an independent way. Since then, many papers have been published on
both subjects.

On the one hand, concerning the evenly convex sets, Schröder used them in the seventies
to obtain his linear range-domain implications ([32, 33]). In the eighties and the nineties, the
evenly convex sets were largely applied in quasiconvex programming ([17, 18, 20, 24, 25, 26]).
Linear systems containing strict inequalities and their solutions sets, in turn, naturally arise in
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convex optimization ([30, 37]), separation problems ([1, 14]), stability analysis ([9, Chapter 6]),
and probability measures ([2]), among other fields of mathematics and computer sciences. New
characterizations and properties of the evenly convex sets were given along the aughts in [4, 8,
10, 15]. On the other hand, regarding evenly quasiconvex functions, they play a relevant role in
duality theory, since they are the regular functions in all usual quasiconvex conjugation schemes
developed in the eighties (see, e.g., [17, 24, 18, 26, 25]). A stream of works published during
the last three decades show that these functions also play a role in mathematical economy, as
the indirect utility functions arising in consumer theory are characterized as the non-increasing
evenly quasiconvex functions that satisfy an additional mild regularity condition (see, e.g., [19,
21, 27, 28]), decision theory and risk measures (see [6] and the references therein).

The convenience of a review on this topic comes from the following facts:

(1) As shown in the last two paragraphs, results on these families of sets and functions are
spread in the literature since the publication of the seminal paper of Fenchel in 1952.

(2) Most papers published before the celebrated book of Rockafellar [29] (where the stan-
dard terminology and notation of convex analysis was established) are hardly readable
for today’s readers. This is particularly true regarding the mentioned papers of Fenchel
[5], on evenly polars, and of Klee [14], on separation theorems for (mainly) evenly
convex sets.

(3) The existence of some interesting characterizations of the evenly convex sets which
were privately communicated by Martı́nez-Legaz to Reinhard in 1997 and to the second
author of this paper in 2000 and still remain unpublished.

(4) The methodology employed in recent results on evenly convex functions (those whose
epigraph is evenly convex, introduced in [31] and [22]) can be applied to derive old and
new results concerning the geometry of evenly quasiconvex functions.

This paper collects in a systematic way results on evenly convex sets and evenly quasiconvex
functions, gives references to the corresponding sources where they have been published, tries to
provide a uniform terminology and notation, and finally provides (more or less detailed) proofs
for the unpublished results or for those published results which were written in an anachronistic
language. It is worth to say that, although the concept of evenly convex set was introduced in a
finite-dimensional real space, it also makes sense in any separated locally convex space. As a
matter of fact, some authors work in a finite-dimensional setting due to the nature of the tools
they use (see, e.g., [8] and [10]) while in other cases even convexity is considered in Banach
spaces ([4]) or in more general spaces (see, e.g., [22] and [36]). In order to avoid to lengthen
the discussion on each result, we shall consider Rn as our framework, being aware that some
results may apply also in a more general setting.

The layout of the paper is as follows. In Section 2, we present the class of evenly convex
sets together with its main properties and characterizations. Section 3 introduces the evenly
convex hull of a given set. Classic separation theorems involving evenly convex sets are given
in Section 4. Section 5 summarizes well-known results on evenly quasiconvex functions. Fi-
nally, in Section 6 we present some results for evenly quasiconvex functions and the link with
subdifferentiability.
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2. EVENLY CONVEX SETS

We start this section by introducing some of the main definitions used ahead. We shall employ
the standard notation of convex analysis (see, e.g., [12, 29]). We consider Rn equipped with
the 〈·, ·〉 standard inner product and the Euclidean norm ‖x‖ =

√
〈x,x〉. Given a set X ⊂ Rn,

we denote by intX , rintX , clX , bdX , and rbdX the interior, the relative interior, the closure,
the boundary, and the relative boundary of X , respectively. X is said to be relatively open if
rintX = X (thus, /0 and Rn are relatively open sets). Moreover, convX stands for the convex
hull of X , whereas coneX := R+ convX means the convex conical hull of X ∪{0n}, where 0n
denotes the null vector of Rn. When /0 6= X ⊂ Rn, we denote by affX the affine span of X , and
by

0+X := {d ∈ Rn : x+ td ∈ X ,∀t ≥ 0,∀x ∈ X}
the recession cone of X . The lineality space of a convex cone K is linK := K∩ (−K) .

Additionally, if C is a nonempty convex subset of Rn, dimC denotes the dimension of C
(defined as the dimension of affC) and, for x ∈C, the cone of feasible directions of C at x is

D(C,x) := {v ∈ Rn : x+αv ∈C for some α > 0}= R+ (C− x) .

The halfline {x+λy : λ ≥ 0} is a tangent ray for the convex set C if x ∈ rbdC, y ∈ clD(clC,x),
and {x+λy : λ ≥ 0}∩ rintC = /0. If x ∈ clC, the tangent cone to C at x is TC (x) := clD(clC,x).

Definition 2.1. A set C ⊂ Rn is said to be evenly convex [5] if it is the intersection of some
family, possibly empty, of open halfspaces.

Since any linear equation can be replaced by two linear inequalities and any closed halfspace
{x ∈ Rn : 〈a,x〉 ≤ b}, with a ∈ Rn\{0n} and b ∈ R, can be written as the intersection of the
open halfspaces

{
x ∈ Rn : 〈a,x〉< b+ 1

r

}
, with r ∈ N, a set is evenly convex if and only if it is

the solution set of some (linear) system of the form

σ = {〈at ,x〉 ≤ bt , t ∈W ; 〈at ,x〉< bt , t ∈ S} , (2.1)

where W and S are disjoint index sets, at ∈Rn and bt ∈R for all t ∈ T :=W ∪S 6= /0. In particular,
Rn and /0 are evenly convex sets.

The system σ in (2.1) is said to be ordinary whenever S = /0. The solution sets of ordinary
systems are intersections of closed halfspaces and so, they are closed convex sets. The converse
holds as a consequence of the well-known separation theorem of a closed convex set from any
outside point (see, e.g., [12, Theorem 4.1.1]). Consequently, any closed convex set is evenly
convex.

The first result in this paper gathers together five characterizations of evenly convex sets given
in the literature.

Theorem 2.1 (Characterizations of evenly convex sets). Let C ⊂ Rn be such that /0 6=C 6= Rn.
Then, the following statements are equivalent:

(i) C is evenly convex.
(ii) C is the result of eliminating from a closed convex set (precisely, clC) the union of a

certain family of its exposed faces.
(iii) C is a convex set and for each x ∈ Rn\C there exists a hyperplane H such that x ∈ H

and H ∩C = /0.
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(iv) C is connected and through every point not in C there is some hyperplane H such that
H ∩C = /0.

(v) C is a convex set and x ∈C for all x ∈ rbdC such that {x−λy : λ ≥ 0}∩C 6= /0 for some
tangent ray {x+λy : λ ≥ 0}.

(vi) C is a convex set such that (x+ linTC (x))∩C = /0, for any x ∈ (clC)\C.

Sources. The equivalences (i)⇔ (ii)⇔ (iii) can be found in [8, Proposition 3.1], (i)⇔ (iv)⇔
(v) in [5, 3.2 and 3.4], and (i)⇔ (vi) in [4, Theorem 5].

The following characterizations for evenly convex sets were conjectured by Martı́nez-Legaz
in a private communication.

Theorem 2.2 (Further characterizations of evenly convex sets). Let C ⊂ Rn be such that /0 6=
C 6= Rn. Then, the following statements are equivalent:

(i) C is evenly convex.
(ii) C is the intersection of a nonempty collection of nonempty open convex sets.
(iii) C is a convex set and is the intersection of a collection of complements of hyperplanes.
(iv) C is a convex set and for any convex set K contained in (clC)\C, there exists a hyper-

plane containing K and not intersecting C.
(v) C is a convex set and for any convex set K ⊂ (clC)\C, the minimal exposed face (in

clC) containing K does not intersect C.
(vi) C is a convex set and for any x∈ (clC)\C, the minimal exposed face (in clC) containing

x does not intersect C.
(vii) C is a convex set and for any x ∈ (clC)\C, there exists a supporting hyperplane of clC

at x not intersecting C.

Proof. (i)⇔ (ii) By definition, since any evenly convex set C such that /0 6= C 6= Rn is the
intersection of some nonempty family of open halfspaces, and any halfspace is convex, then C
satisfies (ii). On the other hand, if C is the intersection of a nonempty collection of nonempty
open convex sets, then C is an open convex set and satisfies condition (iii) in Theorem 2.1,
meaning that C is evenly convex.

(i)⇔ (iii) If C is evenly convex, it satisfies condition (iii) in Theorem 2.1, and then, given
t ∈ T := Rn\C, there exists a hyperplane Ht such that t ∈ Ht and Ht ∩C = /0. Therefore,

C ⊂ ∩
t∈T

(Rn\Ht) (2.2)

and

Rn\C = T ⊂ ∪
t∈T

Ht . (2.3)

By applying De Morgan’s laws to (2.3), we get the equality in (2.2), so C satisfies (iii). Now,
assume that C satisfies (iii) and let C = ∩

t∈T
(Rn\Ht), with Ht = {x ∈ Rn | 〈at ,x〉= bt}, at ∈

Rn\{0n} and bt ∈ R, for all t ∈ T . Since C is a convex set and C ⊂ Rn\Ht for each t ∈ T , we
have that C is contained in one of the two open halfspaces determined by Ht . Then, we can
assume without loss of generality that

C ⊂ ∩
t∈T
{x ∈ Rn | 〈at ,x〉> bt} . (2.4)
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On the other hand, if x /∈C, there exists s ∈ T such that x /∈Rn\Hs or, equivalently, 〈as,x〉= bs.
Therefore, x /∈ {x ∈ Rn | 〈as,x〉> bs} and we obtain the equality in (2.4). Thus, C is evenly
convex.

Finally, we prove (i)⇒ (iv)⇒ (v)⇒ (vi)⇒ (vii)⇒ (i) .

(i) ⇒ (iv) If C is evenly convex, it satisfies condition (ii) in Theorem 2.1 and then, there
exists a family {Xt , t ∈ S} of exposed faces of clC such that

C = (clC)\
[
∪

t∈S
Xt

]
.

Let K ⊂ (clC)\C = ∪
t∈S

Xt be a nonempty convex set (if K = /0, any hyperplane not intersecting

C contains K) and let x ∈ rintK. Then, there exists t ∈ S such that x ∈ Xt , so that Xt is a face of
clC intersecting rintK and, by [29, Theorem 18.1], K ⊂ Xt . Since Xt is an exposed face of clC,
there exists a hyperplane H such that Xt = H ∩ clC. Therefore, K ⊂ H and

H ∩C = H ∩ [(clC)∩C] = Xt ∩C = /0.

(iv)⇒ (v) Let K ⊂ (clC)\C be a convex set and let X be the minimal exposed face (in clC)
such that K ⊂ X . By (iv), there exists a hyperplane H such that K ⊂ H and H ∩C = /0. If we
take Y := H ∩ clC 6= /0 (since K ⊂ Y ), then Y is an exposed face containing K such that

Y ∩C = (H ∩ clC)∩C = H ∩C = /0. (2.5)

Since X is the minimal exposed face containing K, we have X ⊂ Y . From (2.5), we have
X ∩C = /0.

(v)⇒ (vi) It is trivial because (vi) is a particular case of (v).

(vi)⇒ (vii) Let x ∈ (clC)\C and let X the minimal exposed face (in clC) containing x. Since
X is an exposed face of clC, there exists a hyperplane H such that clC is contained in one of
the closed halfspaces determined by H and X = H ∩ clC, so that x ∈ H and H supports clC at
x. Moreover, since X ∩C = /0, we have

H ∩C = H ∩ [(clC)∩C] = X ∩C = /0.

(vii) ⇒ (i) Let x ∈ Rn\C. We obtain a hyperplane H such that x ∈ H and H ∩C = /0 as a
consequence of (vii), if x ∈ (clC)\C, and as a consequence of clC being an evenly convex set,
if x /∈ clC and, therefore, C satisfies condition (iii) in Theorem 2.1. �

According to [29, Theorem 11.2], given a nonempty relatively open convex set C ⊂ Rn and
an affine manifold M such that C∩M = /0, there exists a hyperplane H such that M ⊂ H and
C is contained in one of the two open halfspaces determined by H. Applying this result to the
zero dimensional affine manifolds, i.e., the singleton sets, it is easy to see that condition (iii) in
Theorem 2.1 holds. Thus, any relatively open convex set is evenly convex. Analogously, any
strictly convex set C (i.e., a convex set C whose boundary, bdC, does not contain segments) is
evenly convex since the exposed faces of C are the singleton sets determined by its boundary
points. Observe that any convex set C 6= /0 can be fitted from inside by its relative interior rintC
and from outside by its closure clC, both approximating sets being evenly convex.

The next result allows to compare the cone of feasible directions at a point x, D(C,x), the set
extrC of extreme points, and the recession cone 0+C of an evenly convex set C, with those of
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its closure clC. This comparison shows that evenly convex sets enjoy many of the well-known
properties of closed convex sets (see, e.g., [29, Theorems 8.3 and 8.4, Corollary 8.4.1]).

Proposition 2.1 (Properties of evenly convex sets). If C ⊂ Rn is a nonempty evenly convex set,
then the following statements hold:

(i) D(C,x) = D(clC,x) for all x ∈C.
(ii) extrC =C∩ extrclC.
(iii) [x,y[⊂C for any x ∈C and y ∈ clC.
(iv) 0+C = 0+ (clC). Consequently, C is bounded if and only if 0+C = {0n}.
(v) If y 6= 0n and there exists x ∈C such that {x+λy : λ ≥ 0} ⊂C, then y ∈ 0+C.
(vi) If M is an affine manifold such that C∩M is a nonempty bounded set, then M′ ∩C is

also bounded for each affine manifold M′ which is parallel to M.

Sources. Statement (iii) was already proved in [5, 3.5] while (vi) is [8, Corollary 3.2] and the
remaining statements can be found in [8, Propositions 3.2 to 3.4].

The convex sets satisfying property (iii) are said to be wholefaced in the sense of Motzkin
[23]. This property recalls the well-known accessibility lemma asserting that, for any convex
set C, [x,y[⊂C for any x ∈ rintC and y ∈ clC.

The class of evenly convex sets is closed for the same operations than the class of closed
convex sets, except for the sum. Sufficient conditions for the sum of two evenly convex sets to
be evenly convex will be given in Corollary 4.1 below.

Proposition 2.2 (Operations with evenly convex sets). The following statements hold:

(i) If C 6= /0 is an evenly convex set, then αC is evenly convex for all α ∈ R.
(ii) If /0 6=C ⊂ Rn is an evenly convex set and A : Rm→ Rn is a linear transformation such

that A−1C 6= /0, then A−1C is evenly convex and 0+(A−1C) = A−1(0+C).
(iii) If C1 and C2 are nonempty sets, then C1×C2 is evenly convex if and only if C1 and C2

are evenly convex.
(iv) If C1 and C2 are nonempty evenly convex sets such that (0+C1)∩(−0+C2) = {0n} , then

0+ (C1 +C2) = 0+C1 +0+C2. (2.6)

(v) If {Ci | i ∈ I} is a family of evenly convex sets such that ∩
i∈I

Ci 6= /0, then the recession

cone of this evenly convex set is

0+
(
∩
i∈I

Ci

)
= ∩

i∈I
0+Ci.

(vi) Let C be a nonempty convex set with dimC = n, x ∈ Rn, and k ∈ Z such that 1≤ k ≤ n.
If C∩M is evenly convex for each k−dimensional affine manifold M containing x, with
k ≥ 3 or x ∈ intC and k ≥ 2, then C is evenly convex.

Sources. (i) is trivial; (ii) is [8, Proposition 3.5]; the ‘if’ part and the ‘only if’ part of (iii) are
[8, Proposition 3.6] and [31, Proposition 1.2], respectively; (iv) is [8, Proposition 3.7]; (v) is [8,
Proposition 3.8]; finally, (vi) is [15, Cororollary 2.3].

Concerning the sum of closed convex sets, it is well-known that (0+C1)∩ (−0+C2) = {0n}
guarantees that C1 +C2 is closed convex too (see, e.g., [29, Corollary 9.1.2]). This is not
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true for evenly convex sets (even though one of the two sets is bounded) as the pair of sets
C1 = {x ∈C : x1 + x2 ≤ 1} and C2 =

{
x ∈ R2 : x1 ≥ 0; x2 ≥ 0; x1 + x2 > 0

}
show.

In statement (vi), conditions over k can be weakened when we replace ‘evenly convex’ by
‘open’ or ‘closed’. So, C is open if C∩M is relatively open and 1 ≤ k ≤ n and C is closed if
C∩M is closed and k ≥ 2 or x ∈ intC. However, with even convexity, statement (vi) fails when
k = 2 and x /∈ intC.

Example 2.1 ([15, Example 2.5]). Consider in the plane of R3 given by x3 = 1, a closed rec-
tangle R and a closed circular halfdisk D that is disjoint of intR and whose diameter coin-
cides with one of the sides of R, say the segment [y,z], and let G = (R∪D)\{y,z}. The set
C = conv(G∪ [0,y[∪ [0,z[) is not evenly convex. However, for each 2-dimensional affine man-
ifold M containing 0 /∈ intC, C∩M consists of a single point, a segment, a closed triangle, or a
triangle with one or two vertices missing, and each of these sets is evenly convex.

3. EVENLY CONVEX HULL

Since the intersection of evenly convex sets is evenly convex too (cf. Prop. 2.2 (v)), then the
notion of evenly convex hull is well-defined (see [5, 4.2]).

Definition 3.1. The evenly convex hull of X ⊂ Rn, denoted by ecoX , is the smallest evenly
convex set which contains X .

Obviously, X is evenly convex if and only if ecoX = X . This happens, for instance, if X is
either a closed or a relatively open convex set. Consequently, if X is a compact (open) set, then
convX is a compact (open) convex set and so ecoX = convX . This is the case, in particular,
whenever X is finite. From the definition of evenly convex set, for any x ∈ Rn one has

x /∈ ecoX ⇐⇒ ∃z ∈ Rn : 〈z,x〉> 〈z,x〉 , ∀x ∈ X . (3.1)

For any X ⊂ Rn, since clconvX is evenly convex and ecoX is convex, we have

convX ⊂ ecoX ⊂ clconvX . (3.2)

From (3.2), if it does not exist a halfspace containing X , then Rn = convX ⊂ ecoX and ecoX =
Rn, too. For /0 6= X ⊂ Rn, since affconvX = affclconvX [29, Theorem 6.2], we also have that
affecoX = affconvX and dimX = dimconvX .

The next result establishes the relationship between the two latter sets in (3.2) (see [10, Propo-
sition 2.1]).

Proposition 3.1 (Characterization of evenly convex hulls). For any X ⊂ Rn, ecoX is the result
of eliminating from clconvX the union of all its exposed faces which do not intersect X.

We now prove the Fenchel’s extension of the bipolar theorem given in [5].

Definition 3.2. The e-polar of a nonempty set X ⊂ Rn is the evenly convex set

Xe := {y ∈ Rn : 〈y,x〉< 1,∀x ∈ X}

Corollary 3.1 (Involutory formula for e-polars). Let /0 6= X ⊂ Rn. The equation Xee = X char-
acterizes those evenly convex sets containing 0n.
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Proof. It is obvious that if Xee = X , then X is an evenly convex set containing 0n. Assume
now that X is an evenly convex set containing 0n. The inclusion ecoX = X ⊂ Xee holds as any
y ∈ Xe satisfies 〈y,x〉< 1 for all x ∈ X . To prove the reverse inclusion, let x /∈ ecoX . Acording
to (3.1), there exists z ∈ Rn such that 〈z,x〉 < 〈z,x〉 for all x ∈ X . Since 0n ∈ X , then z 6= 0n
and b := 〈z,x〉 > 0. Letting z̃ := z

b , one has 〈z̃,x〉 < 1 = 〈z̃,x〉 for all x ∈ X . Thus, z̃ ∈ Xe and
〈z̃,x〉= 1, which shows that x /∈ Xee. �

The next result describes how evenly convex hulls behave under different operators as clo-
sures, relative interiors and convex or conical hulls.

Proposition 3.2 (Relationships between the eco hull and other hulls). Given X ⊂ Rn, the fol-
lowing statements hold:

(i) clecoX = clconvX.
(ii) rintecoX = rintconvX.
(iii) ecoconvX = ecoX = convecoX .
(iv) coneecoX ⊂ ecoconeX = clconeX.
(v) If X is a nonempty bounded set , then clecoX = ecoclX = convclX .

Sources. Statements (i) and (ii) are easily obtained by taking closures and relative interiors,
respectively, in (3.2). The proof of (iii) and (iv) can be found in [10, (2.2) and (2.4)] while (v)
is [10, Proposition 2.7].

An immediate consequence of the equality in statement (iv) is that a convex cone containing
its apex is evenly convex if and only if it is closed [15, Proposition 3.3].

The set X = {x ∈ R2 : x2(1+ x2
1) = 1} shows that the inclusions in (3.2) and Proposition

3.2 (iv) may be strict as convX = (R× ]0,1[)∪{(0,1)}, ecoX =R× ]0,1], clconvX =R× [0,1],
coneecoX = (R× ]0,+∞[)∪{02} , and ecoconeX = R× [0,+∞[. Observe also that ecoX is
obtained by eliminating from clconvX its unique exposed face which does not intersect X (that
is, the line R×{0}).

Proposition 3.3 (Operations with evenly convex hulls). The following statements hold:

(i) If X ,Y ⊂ Rn and X ⊂ Y , then ecoX ⊂ ecoY .
(ii) If X ⊂ Rn and Y ⊂ Rm, then eco(X×Y ) = (ecoX)× (ecoY ) .
(iii) If X is a nonempty set inRm and A :Rm→Rn is a linear transformation, then A(ecoX)⊂

ecoAX.
(iv) If X ,Y ⊂ Rn, then ecoX + ecoY ⊂ eco(X +Y ) .
(v) If X is a nonempty set in Rn and A : Rm → Rn is a linear transformation such that

A−1X 6= /0, then eco(A−1X)⊂ A−1 (ecoX) .

(vi) If {Xi | i ∈ I} is a family of nonempty sets in Rn, then eco
(
∩
i∈I

Xi

)
⊂ ∩

i∈I
(ecoXi) .

Sources. Statement (i) easily follows from the definition of evenly convex hull. Proofs of
statements (ii), (iii), (v), (vi) and (iv) can be found in [10, Propositions 2.3 to 2.6 and Corollary
2.1], respectively.
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4. SEPARATION OF EVENLY CONVEX SETS

In 1968, Klee [14] gave separation theorems for pairs of evenly convex sets that are useful in
the study of optimization problems with strict inequality constraints. These results involve two
types of desirable separation properties.

Definition 4.1. Given two nonempty disjoint sets X ,Y ⊂ Rn, we say that a hyperplane H sep-
arates openly (respectively, separates nicely) X from Y if H is disjoint from X (respectively, H
is disjoint from X or from Y, without specifying which).

Obviously, open separation implies nice separation. From (i)⇔ (iii) in Theorem 2.1, one
has that C ⊂ Rn is evenly convex if and only if it is openly separated from any singleton set
contained in Rn\C.

Given a hyperplane H determining two open halfspaces, H+ and H−, and two different points,
x,y∈H, defining the disjoint convex sets X :=H+∪{x} and Y :=H−∪{y} , H separates weakly
X from Y (in the sense that any of these sets lies in one of the two closed halfspaces determined
by H), but not nicely. If one aggregates the condition that X and Y should be closed, the
counterexample must be built in dimension at least 3, as the following one shows (see [13]).

Example 4.1. Consider the line X = {(0,x2,1) : x2 ∈ R} and the closed convex cone

Y =
{

y ∈ R3
+ : y2

3 ≤ y1y2
}
.

The hyperplane H =
{

x ∈ R3 : x1 = 0
}

contains X and Y lies in the halfspace
{

x ∈ R3 : x1 ≥ 0
}
.

In fact, H is the unique hyperplane separating weakly X from Y, but the separation is not nice.

The next two results collect six open and six nice separation theorems, respectively. Their
statements involve several concepts we introduce next.

Given a set X such that /0 6= X  Rn, if Y ⊂ Rn\X is a j-dimensional affine manifold such
that d (X ,Y ) := inf{d (x,y) : x ∈ X ,y ∈ Y} = 0, then Y is called a j-asymptote of X . A con-
vex set X is called continuous provided that X is closed and its support function δ ∗X(·) :=
sup{〈·,x〉 : x ∈ X} is continuous (this is equivalent to saying that there is no halfline contained
in bdX and no 1-asymptote). Given a supporting hyperplane H of X , we say that X is contin-
uous relative to H if H ∩X is closed and convex but it has neither ray contained in its relative
boundary nor 1-asymptote relative to H. A convex set /0 6= X  Rn is called a strip provided
that it is a union of translates of a hyperplane. Equivalently, a strip is a hyperplane, an open or
closed halfspace, or a set of the form S or H1∪S, or H1∪S∪H2, where H1 and H2 are parallel
hyperplanes and S is the set of all points of Rn lying between H1 and H2. All strips are evenly
convex. A set X ⊂ Rn is said to be quasi-polyhedral (or boundedly polyhedral) provided that
its intersection with any polytope is a polytope and to be polyhedral at x ∈ X provided that X
contains a polytope which is a neighborhood of x relative to X . A set is quasi-polyhedral if and
only if it is closed, convex, and polyhedral at each of its points.

Theorem 4.1 (Open separation theorems). For X ,Y ⊂ Rn disjoint nonempty convex sets, each
of the following conditions implies X is openly separated from Y .

(i) X is open; Y is arbitrary.
(ii) X is evenly convex and its intersection with any supporting hyperplane is compact; Y is

closed.
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(iii) X admits no asymptote in any supporting hyperplane intersecting X; Y admits no
asymptote.

(iv) X is evenly convex and its intersection with any supporting hyperplane is closed; Y is
evenly convex, Y admits no hyperplane asymptote and Y is continuous relative to every
supporting hyperplane.

(v) X’s projections are all evenly convex; Y admits no asymptote and is quasi-polyhedral.
(vi) X is evenly convex; Y is singleton or a closed strip.

Concerning Theorem 4.1, each statement “(i) (respectively, (ii), . . ., (vi)) implies X is openly
separated from Y ” is an open separation theorem, and all of them are maximal in Klee’s sense
[14], except that (vi) does not when n = 2.

Theorem 4.2 (Nice separation theorems). For X ,Y ⊂ Rn disjoint nonempty convex sets, each
of the following conditions implies X is nicely separated from Y .

(I) X is open or a strip; Y is arbitrary.
(II) X is evenly convex and is continuous relative to any supporting hyperplane; Y is evenly

convex and its intersection with any supporting hyperplane is closed.
(III) X admits no asymptote in any supporting hyperplane; Y admits no asymptote in any

supporting hyperplane.
(IV ) X’s projections are all evenly convex and X is polyhedral at each of its points; Y ’s

projections are all evenly convex and Y is polyhedral at each of its points.
(V ) X’s projections are all evenly convex; Y admits no asymptote in any supporting hyper-

plane and Y is polyhedral at each of its points.
(V I) X is evenly convex; Y is singleton or open or a strip.

Regarding Theorem 4.2, each statement “(I) (respectively, (II), . . ., (V I)) implies X is nicely
separated from Y ” is a nice separation theorem, and all of them are maximal in Klee’s sense
[14], except that (V I) does not when n = 2. The common keys for the proofs of the above
results are Proposition 2.1 (iii) and the following lemma.

Lemma 4.1. Let X ,Y ⊂Rn be disjoint nonempty convex sets. Then, X is openly separated from
Y if and only if there is no point p ∈ X which lies in every hyperplane separating X from Y . Any
such point p satisfies at least one of the following conditions:

(a) p ∈ clY .
(b) There is w∈ clY such that [p,w]⊂ (clX)∩H for every hyperplane H separating X from

Y .
(c) There are sequences

{
pk}⊂Rn,

{
xk}⊂ X, and

{
yk}⊂Y such that yk ∈

[
pk,xk] for all

k, lim pk = p, limxk = x, and [p,x] is contained in some ray which lies in (clX)∩H for
every hyperplane H separating X from Y .

If X and Y are evenly convex, then condition (c) is satisfied for each point p ∈ X which lies
in every hyperplane separating X from Y and each separating hyperplane H such that X ∩H
and Y ∩H are both closed and nonempty.

Sketch of the proof for Theorems 4.1 and 4.2. By the standard separation theorem, there is a
hyperplane H separating X from Y .
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If X is open, then X ∩H = /0. If X is a strip, it can happen that H supports X and, therefore,
H ⊂ X and Y ∩H = /0, or that H ∩X = /0. So, statements (i) and (I) imply that X is openly and
nicely separated from Y , respectively.

The proofs for statements (vi) and (V I) are trivial.
The separation theorems corresponding to statements (ii), (iv) and (II) are proved by con-

tradiction. Supposing that X is not openly separated from Y , by Lemma 4.1, there is a point
p ∈ X which lies in every hyperplane H separating X from Y . Therefore, p ∈ X ∩H and H is a
supporting hyperplane of X , which, under statements (ii), (iv) or (II), implies that X is evenly
convex and X ∩H is nonempty and closed.

Regarding the set Y , if Y ∩H 6= /0, any of the three conditions implies that Y is evenly convex
and Y ∩H is nonempty and closed, and then, by the last assertion in Lemma 4.1, condition (c)
is satisfied for p, X , Y and H.

If Y ∩H = /0, under (ii), conditions (a) and (b) in Lemma 4.1 are excluded by the fact that Y
is closed, so (c) is satisfied; under (iv), the fact that Y admits no hyperplane asymptote yields
to a contradiction; and finally, under (II), Y ∩H = /0 implies that X is nicely separated from Y
and there is nothing to prove.

Condition (c) in Lemma 4.1 claims the existence of a ray

r := {p+λu : λ ≥ 0} ⊂ (clX)∩H

and, since p ∈ X and X is evenly convex, by Proposition 2.1 (iii), r ⊂ X ∩H, which is a contra-
diction under statements (ii) and (II). Finally, under (iv), [7, 1.1 and 1.2] assert the existence
of a parallel ray to r which is a boundary ray or an asymptote of Y ∩H and we obtain a contra-
diction again.

The remaining statements are proved by induction on n. �

Corollary 4.1 (Even convexity of the sum of convex sets). If X and Y are two proper convex
sets in Rn, not necessarily disjoint, and they satisfy any of the conditions of Theorems 4.1 and
4.2, then the set X +Y is evenly convex.

Proof . The conditions on Y in Theorems 4.1 and 4.2 are symmetric in the sense that they hold
for Y if and only if they hold for −Y and they are also preserved under translations. If we take
z /∈X+Y , then the sets X and−Y +z are disjoint (otherwise, there exist x∈X and y∈Y such that
x =−y+ z and z = x+y ∈ X +Y ). Then, since X and −Y + z are disjoint, any of the conditions
of Theorems 4.1 and 4.2 implies the existence of a ∈Rn\{0n} such that 〈a,x〉< 〈a,−y+ z〉 for
all x ∈ X and y ∈ Y , whence, 〈a,x+ y〉 < 〈a,z〉 and we have that H = {x ∈ Rn : 〈a,x〉= 〈a,z〉}
is a hyperplane which contains z and misses X +Y and, since X +Y is convex, by Proposition
2.1 (iii), X +Y is evenly convex. �

Observe that X and Y are simultaneously evenly convex under conditions (ii) , (iv) , (vi) ,
(II) and (IV ) , so that Corollary 4.1 can be interpreted, in those cases, as providing sufficient
conditions for the sum of two evenly convex sets to be evenly convex.

5. EVENLY QUASICONVEX FUNCTIONS

In this section, we briefly review the relationship between evenly quasiconvex functions and
other close families of functions. Firstly, we state some notation related to functions. For an
extended real-valued function f :Rn→R :=R∪{±∞}, we denote by epi f its epigraph, while
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its sublevel set and its strict sublevel set for r ∈ R are defined by L f (r) := {x ∈ Rn : f (x)≤ r}
and Ls

f (r) := {x ∈ Rn : f (x)< r}, respectively. The function f is said to be lower semicontin-
uous, lsc in brief, (upper semicontinuous, usc in brief) at x ∈ Rn if for any λ ∈ R, λ < f (x̄)
(resp. λ > f (x̄)), there exists a neigborhood of x̄, Vx̄, such that λ < f (x) (resp. λ > f (x)) for all
x ∈Vx̄. It is well-known that a function f is lsc at any point of Rn if and only if epi f is closed,
or equivalently, if L f (r) is closed for every r ∈ R. The function f is said to be quasiconvex
if L f (r) is convex for every r ∈ R. Although lsc quasiconvex functions (those whose sublevel
sets are closed and convex) play an important role in optimization, they do not constitute the
class of regular functions in quasiconvex programming. In this field, the larger class of evenly
quasiconvex functions arises in a natural way.

Definition 5.1. A function f : Rn → R is said to be evenly quasiconvex (respectively, strictly
evenly quasiconvex) if the sublevel set L f (r) (respectively, the strict sublevel set Ls

f (r)) is evenly
convex for every r ∈ R.

It is obvious that every lsc quasiconvex function is evenly quasiconvex and, as a function f
is usc if and only if − f is lsc, every usc quasiconvex function is strictly evenly quasiconvex.
Moreover, since L f (r) =∩r<qLs

f (q) and the intersection of evenly convex sets is evenly convex,
every strictly evenly quasiconvex function is evenly quasiconvex. The converse is not true, as
the following example shows.

Example 5.1 ([4, p. 64]). Let f : R2→ R be defined as follows:

f (x1,x2) =


0, if x1 ≥ x2 and x2 ≤ 0,
x2/x1, if x1 > x2 > 0,
1, elsewhere.

All the sublevel sets of f are closed and convex, and so evenly convex, showing that f is evenly
quasiconvex. However, Ls

f (1) = {x∈R2 : x1 > x2 > 0}∪{x∈R2 : x1≥ x2,x2≤ 0} is not evenly
convex.

As the sublevel sets of the pointwise supremum of a family of functions are intersections of
sublevel sets of the members of the family, and even convexity is preserved under intersections,
then evenly quasiconvex functions are closed under pointwise suprema. Thus, every function
f has a largest evenly quasiconvex minorant, which is called its evenly quasiconvex hull and
denoted by eqco f .

Definition 5.2. A function f is said to be evenly quasiconvex at x0 ∈Rn if f (x0) = (eqco f )(x0).

Clearly, as stated in [4, Proposition 11], f is evenly quasiconvex if and only if it is evenly
quasiconvex at every x0 ∈Rn. Next result gathers together four characterizations of even quasi-
convexity at a point given in the literature.

Theorem 5.1 (Characterizations of the even quasiconvexity at a point). Let f : Rn → R and
x0 ∈ Rn. The following statements are equivalent:

(i) f is evenly quasiconvex at x0.
(ii) f (x0) = inf{r ∈ R : x0 ∈ ecoL f (r)}.
(iii) f (x0) = sup

x∗∈Rn
inf{ f (x) : 〈x,x∗〉 ≥ 〈x0,x∗〉}.

(iv) x0 /∈ ecoL f (r) for all r < f (x0).
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(v) f is quasiconvex and for every y0 ∈ Rn such that f (y0) < f (x0), every {yn}n≥1 → y0
and every {µn}n≥1 ⊂ (0,+∞), one has f (x0)≤ liminf

n→+∞
f (x0 +µn(x0− yn)).

Sources. See, e.g., [21, Corollary 6.4] for (i)⇔ (iii). For the rest of equivalences, see [4,
Propositions 8, 10, 12].

From (i)⇔ (ii), one obtains the following representation for the evenly quasiconvex hull of
a given function f :

(eqco f )(x0) = inf{r ∈ R : x0 ∈ ecoL f (r)}. (5.1)

This identity shows that, for any r ∈ R,

Ls
eqco f (r)⊂ ecoL f (r)⊂ Leqco f (r).

Regarding the statement (i)⇔ (iii), it means that every evenly quasiconvex function is the
pointwise supremum of a collection of evenly quasiaffine functions (recall that a function ϕ

is evenly quasiaffine if there is x∗ ∈ Rn and a nondecreasing univariate function h such that
ϕ = h◦ 〈·,x∗〉), that is,

(eqco f )(x0) = sup
x∗∈Rn

ϕx∗(x0)

where ϕx∗(x0) := inf{ f (x) : 〈x,x∗〉 ≥ 〈x0,x∗〉}. This characterization was obtained by Martı́nez-
Legaz by employing the generalized convex conjugation theory developed in [21] as the bicon-
jugate of f for an appropriate coupling functional.

6. EVEN QUASICONVEXITY IN THE GRAPH SPACE AND SUBDIFFERENTIABILITY

The objective of this section is to present a further analysis on evenly quasiconvex functions
extending the one given in [4]. To this end, we shall employ the methodology developed in [34]
and [36] for the class of evenly convex functions.

Definition 6.1. We say that the family K := {Kt}t∈R of (possibly empty) subsets of Rn is an
ascending family if Kt ⊂ Kt ′ for all t, t ′ ∈ R with t ≤ t ′. We also associate to the ascending
family K := {Kt}t∈R the function ψK : Rn→ R defined by

ψK (x) := inf{t ∈ R : x ∈ Kt}. (6.1)

These notions were previously considered in [3, p. 126] indeed. Observe that, if Kt = /0 for all
t ∈R, then ψK (x) =+∞ for all x ∈Rn. We recall from [36] that a set K ⊂Rn×R is ascending
if either K = /0 or there exists (x0, t0) ∈ K such that (x0, t) ∈ K for all t ≥ t0. According to [36,
Corollary 2.2], if K ⊂ Rn×R is a nonempty evenly convex set, then it is ascending if and only
if (0n,1) ∈ 0+K.

Proposition 6.1 (Ascending set from an ascending family). If K = {Kt}t∈R is an ascending
family of sets of Rn, then K :=

⋃
t∈R (Kt×{t}) is ascending.

Proof. On the one hand, if Kt = /0 for all t ∈ R, then K :=
⋃

t∈R (Kt×{t}) = /0 which is as-
cending. On the other hand, if there exists t0 ∈ R such that Kt0 6= /0, since Kt0 ⊂ Kt for all t ∈ R
with t0 ≤ t, by taking any x0 ∈ Kt0 one has (x0, t0) ∈ K :=

⋃
t∈R (Kt×{t}) and (x0, t) ∈ K for all

t ≥ t0. Thus, K is ascending. �

We denote by projRn the projection (mapping) from Rn×R to Rn such that projRn(x, t) = x.
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Proposition 6.2 (Ascending family from an ascending set). If K⊂Rn+1 is ascending and evenly
convex, then K = {Kt}t∈R with

Kt := projRn
(
K∩ (Rn×{t})

)
(6.2)

is an ascending family.

Proof. Assume the non-trivial case in which K is nonempty. If K is ascending and evenly
convex, then (0n,1) ∈ 0+K according to [36, Corollary 2.2], which means that, for every
(x0, t0) ∈ K, (x0, t) ∈ K for all t ≥ t0. This implies, by defining Kt := projRn

(
K ∩ (Rn×{t})

)
,

that Kt0 ⊂ Kt for all t ≥ t0, i.e., K = {Kt}t∈R is an ascending family. �

The above proposition does not hold in general if the even convexity assumption is removed,
even though we keep just convexity. We illustrate this fact in the following example.

Example 6.1. Consider the set K = ([−1,1]×{0})∪ ({0}× [0,+∞[) ⊂ R2. Clearly, K is as-
cending but it is neither convex nor evenly convex. It is easy to see that the family K = {Kt}t∈R
defined as in (6.2) is not an ascending one. Observe that the convex and the evenly convex hulls,
convK = ([−1,1]×{0})∪(]−1,1[×]0,+∞[) and ecoK = [−1,1]×R+ (recall Proposition 3.1),
are obviously ascending, but the family obtained by replacing K by ecoK in (6.2) is ascending
while the result of replacing K by convK does not.

Proposition 6.3 (Ascending family and even quasiconvexity). Let K = {Kt}t∈R be an ascend-
ing family of evenly convex sets of Rn. Then, the function ψK in (6.1) is evenly quasiconvex.

Proof. We just need to show that LψK (a) is evenly convex for every a ∈ R. Consider the non-
trivial case in which there is t0 ∈ R such that Kt0 6= /0, otherwise ψK ≡+∞ which is obviously
evenly quasiconvex. Since LψK (a) ⊂ ecoLψK (a) always holds, we next prove the reverse set
containment.

Let x /∈ LψK (a), that is, ψK (x) = inf{t ∈ R : x ∈ Kt} > a. Then, x /∈ Ka. As Ka is evenly
convex by hypothesis, then Ka = ecoKa and so x /∈ ecoKa. By (3.1), there exists z ∈ Rn such
that

〈z,x〉> 〈z,x〉 (6.3)
for all x ∈Ka. Since K is an ascending family, that is, Kt ⊂Ka for all t ≤ a, then inf{t ∈R : x ∈
Kt} ≤ a implies that x ∈ Ka, or equivalently, LψK (a) ⊂ Ka. Thus, (6.3) holds in particular for
all x ∈ LψK (a), which again in virtue of (3.1) implies that x /∈ ecoLψK (a), and this completes
the proof. �

Corollary 6.1. Let f : Rn→ R. If there is an ascending family K = {Kt}t∈R of evenly convex
sets in Rn such that Ls

f (t)⊂Kt ⊂ L f (t) for all t ∈R, then f is evenly quasiconvex. In particular,
any function whose strict sublevel sets are evenly convex, is evenly quasiconvex as well.

Proof. As f = ψK and K is an ascending family of evenly convex sets, due to Proposition 6.3,
one has that f is evenly quasiconvex. �

Next, for a family of sets K = {Kt}t∈R, we denote ecoK := {ecoKt}t∈R.

Proposition 6.4. Let K = {Kt}t∈R be a family of sets in Rn such that ecoK is ascending.
Then,

eqcoψK = ψecoK .
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Proof. Since Kt ⊂ ecoKt for every t ∈ R, one has ψecoK ≤ ψK . It follows from Proposition
6.3 that

ψecoK = eqcoψecoK ≤ eqcoψK .

On the other hand, since Kt ⊂ LψK (t) for every t ∈ R, then

ecoKt ⊂ ecoLψK (t)⊂ ecoLeqcoψK (t) = LeqcoψK (t).

So, ψecoK ≥ eqcoψK . �

Corollary 6.2 (Characterization of the evenly quasiconvex hull). Let f : Rn → R and K =
{Kt}t∈R ⊂ Rn be such that Ls

f (t)⊂ Kt ⊂ L f (t) for every t ∈ R. Then,

eqco f = ψecoK .

Proof. It easily follows from Proposition 6.4 since f = ψK and ecoK is ascending. �

This result generalizes the well-known characterization given in (5.1). As a consequence,
we observe that a strictly evenly quasiconvex function is always evenly quasiconvex. Next we
recover the equivalence (i)⇔ (iv) in Theorem 5.1.

Corollary 6.3 (Characterization of the even quasiconvexity at a point). Let f : Rn → R and
x0 ∈ Rn. The following statements are equivalent:

(i) f (x0) = (eqco f )(x0).
(ii) x0 ∈ ecoL f (t) if and only if f (x0)≤ t.

Proof. Consider the ascending family K := {ecoL f (t)}t∈R.
(i)⇒ (ii) On the one hand, if f (x0)≤ t, then x0 ∈ L f (t) and so x0 ∈ ecoL f (t). On the other

hand, let t ∈ R be such that x0 ∈ ecoL f (t). By applying (i) and Corollary 6.2, one has

f (x0) = (eqco f )(x0) = ψecoL f (x0)≤ t.

(ii)⇒ (i) By applying (ii) and Corollary 6.2, we get

(eqcoh)(x0) = ψecoL f (x0) = ψL f (x0) = f (x0).

�

Even convexity and (Fenchel) subdifferentiability via the strict epigraph were recently linked
in [36]. When dealing with quasiconvex functions, Fenchel subdifferential is not appropriate
and, because of that, several subdifferential notions have been proposed in the literature, be-
ing the Greenberg-Pierskalla one [11] the most remarkable by its properties (see, e.g., [35]).
Next, we aim to link even quasiconvexity of a function and subdifferentiability (in the sense of
Greenberg-Pierskalla) via its strict sublevel sets.

Definition 6.2. Given ε ≥ 0, a function f : Rn → R is said to be ε-subdifferentiable (in the
sense of Greenberg-Pierskalla) at a point x ∈ f−1(R) if there exists u ∈ Rn such that

〈u,x− x〉 ≥ 0 ⇒ f (x)≥ f (x)− ε. (6.4)

The set of those points u satisfying (6.4) is the ε-subdifferential of f at x, denoted by (∂ GP
ε f )(x).

When ε = 0 we just write (∂ GP f )(x) and it is called the subdifferential (in the sense of Greenberg-
Pierskalla) of f at x. The function f is said to be ε-subdifferentiable on A ⊂ Rn if it is ε-
subdifferentiable at each point of A.
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Next result characterizes the ε-subdifferentiability of a function at a given point in terms of
the even convexity of a given strict sublevel set.

Proposition 6.5. Let ε ≥ 0, f : Rn→ R and x ∈ f−1(R). Then, the following statements are
equivalent:

(i) (∂ GP
ε f )(x) 6= /0.

(ii) x /∈ ecoLs
f ( f (x)− ε).

Proof. It follows from the definition of ε-subdifferential since (6.4) is equivalent to

〈u,x〉< 〈u,x〉 , ∀x : f (x)< f (x)− ε,

and this is equivalent to (ii) according to (3.1). �

Corollary 6.4. Let f : Rn → R and x ∈ f−1(R). Then, (∂ GP f )(x) 6= /0 if and only if x /∈
ecoLs

f ( f (x)).

Corollary 6.5. Let f : Rn→ R and x ∈ f−1(R). If Ls
f ( f (x)) is evenly convex, then f is subdif-

ferentiable at x.

We have obtained in the above corollary a sufficient condition for subdifferentiability based
on the even convexity of an strict sublevel set. The last result of this paper shows that, under
certain even convexity assumptions on either the function or its domain, the even convexity of
all strict sublevel sets is a necessary condition for the subdifferentiability.

Proposition 6.6. Let f : Rn→ R. Assume that f is subdifferentiable on f−1(R) and either f is
evenly quasiconvex or dom f is evenly convex. Then, Ls

f (r) is evenly convex for every r ∈ R.

Proof. Let r ∈ R and x /∈ Ls
f (r), that is, f (x)≥ r.

Firstly, assume that f (x)<+∞ and so, f (x) ∈ R. As f is subdifferentiable on f−1(R), there
exists u ∈ (∂ GP f )(x) such that if 〈u,x−x〉 ≥ 0, then f (x)≥ f (x)≥ r. Hence, x /∈ ecoLs

f (r) and
so, Ls

f (r) is evenly convex.
Now, if f (x) = +∞ and dom f is evenly convex, there exists u ∈ Rn such that 〈u,x〉 > 〈u,x〉

for all x ∈ dom f . Since Ls
f (r)⊂ dom f , then x /∈ ecoLs

f (r) and so, Ls
f (r) is evenly convex.

Finally, assume that f (x) = +∞ and f is evenly quasiconvex. If x ∈ ecoLs
f (r), then x ∈

L f (r) = ecoL f (r), but this is impossible as f (x) = +∞. Consequently, x /∈ ecoLs
f (r) and the

conclusion follows. �
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[9] M.A. Goberna, M.A. López, Linear Semi-Infinite Optimization, J. Wiley, Chichester, England, 1998.

[10] M.A. Goberna, M.M.L. Rodrı́guez, Analyzing linear systems containing strict inequalities via evenly convex
hulls, European J. Oper. Res. 169 (2006), 1079-1095.

[11] H.J. Greenberg, W.P. Pierskalla, Quasi-conjugate functions and surrogate duality, Cahiers du Centre d’Etudes
de Recherche Opérationnelle 15 (1973), 437-448.
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