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ABSTRACT 
 
The physiological mechanisms behind muscle contraction are a main concept in sport medicine and 
rehabilitation. The sarcomere is the functional unit of skeletal muscle and several proteins definite its complex 
structure. The most common theory to explain muscle contraction was proposed in the last 50’s and has 
become widely popular and accepted: the “sliding filaments” theory. Even if this hypothesis was able to justify 
some form of muscle contraction, other processes are not fully described by it. Eccentric contraction and 
some phenomena, like the “force enhancement during stretch” concept described in the 2002, are not 
explicable according to the sliding filament theory. Therefore, several hypotheses have been suggested over 
the years, such as the “popping sarcomeres” theory and the “winding filament” theory. Some other proteins, 
like titin, have gained a main role in the physiology of the sarcomere and should be relevant to explain 
mechanisms of eccentric contraction, where the sarcomere generates highest level of tension while it is 
lengthening. The aim of this review is to summarize the physiological theories of muscle contraction and to 
define concepts applicable in sport medicine and in rehabilitation areas. 
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INTRODUCTION 
 
There are two modality of muscle contraction (Padulo, Laffaye, Chamari, & Concu, 2013) (Sweeney & 
Hammers, 2018): dynamic (isotonic, isokinetic, auxotonic and plyometric) and static (isometric). Isotonic 
contraction occurs when a muscle changes its length by moving a load that remains constant for the whole 
duration of the shortening phase: it can be divided into concentric (positive phase – the muscle shortens 
developing tension) and eccentric (negative phase – the muscle stretches developing tension) contractions. 
Isokinetic contraction occurs when the muscle develops the maximum effort for the entire amplitude of the 
movement, contracting at a constant speed. Auxotonic contraction progressively increases with muscle 
shortening. Plyometric contraction is an explosive concentric contraction, immediately preceded by an 
eccentric contraction. Isometric contraction occurs when the muscle contracts without changing its length 
and without therefore shifting the load. 
 
These differences have impact on several functions of skeletal muscles, determining different level of tension. 
Recent evidences (Naugle, Naugle, Fillingim, & Riley, 2014) showed that isometric contraction could 
modulate pain perception (Rio et al., 2015), while eccentric contractions could have a role in the rehabilitation 
of muscle injuries and tendinopathies (Loiacono et al., 2019). Isometric contractions are useful to contrast 
hypotrophy. Plyometric exercises could be adopted both to increase sport performance and as training 
method (Davies, Riemann, & Manske, 2015) (Montesano et al., 2020). 
 
Physiological mechanisms behind these different types of contractions are not fully understood. Over the 
years several theories have been proposed to define the function of the sarcomere, the functional unit of 
skeletal muscle. While mechanism behind isometric and isotonic concentric contraction are widely accepted, 
several doubts persist about mechanisms of eccentric contraction and about the rule of non-contractile 
structures (i.e. connective tissue) during plyometric contraction. 
 
Knowing these mechanisms could be relevant to define the effect of physical activity (Jones & Rutherford, 
1987) (Mazzeo, Tafuri, & Montesano, 2020), rehabilitation process and physical agents on muscle tissue in 
normal and pathological conditions (B Corrado, Albano, et al., 2019) (Vola et al., 2018). 
 
Moreover, skeletal muscle contraction is managed by neural efferences, modulated by proprioceptive 
afferences from muscular and non-muscular tissues. Indeed, beyond muscle architecture, muscle contraction 
could be influenced by proprioceptive stimuli rising from articular structure, and this process is called 
arthogenic muscular inhibition (AMI) (Rice, McNair, Lewis, & Dalbeth, 2014). Therefore, some physical 
agents acting on non-muscular structure, such as cryotherapy, electrical stimulation or electromagnetic field, 
could have functional impact on muscle tissue (Sonnery-Cottet et al., 2019) (Servodio Iammarrone et al., 
2016). 
 
The present review aims to summarize the physiological hypothesis of muscle contraction and to define 
concepts applicable in sport medicine and in rehabilitation areas. 
 
THE SARCOMERE: FUNCTIONAL UNIT IN SKELETAL MUSCLE 
 
Skeletal muscle is a complex and organized tissue made by bundles of muscle fibre (Exeter & Connell, 2010). 
Each of these (myofibers) contains several myofibrils: these represent muscle cells, composed by 
sarcomeres. Bundles of myofibers form the fascicles, and bundles of fascicles form the muscle tissue. Each 
one of these layers are covered by the extracellular matrix (Lieber, 2009) and are supported by the 
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cytoskeletal network. Connective tissue of muscle is a complex entity, made by extra-cellular matrix (ECM) 
and an extensive network of capillaries and nerves (Grzelkowska-Kowalczyk, 2016) (Humphrey, Dufresne, 
& Schwartz, 2014). Traditionally, ECM in skeletal muscle is organized into three structures: epimysium, 
perimysium, and the endomysium (Gillies & Lieber, 2011). 
 
Sarcomeres is the basic functional unit of skeletal muscle and it has a complex structure, mainly made by 
two sets of protein filaments: thin filaments (α-actin and associated proteins) and thick filaments (myosin and 
associated proteins) (Mukund & Subramaniam, 2020). Macroscopically, the sarcomere is bordered at each 
end by a dark line (Z-disk) that bisects a lighter I band. At the centre of the sarcomere there is a dense thick 
filament zone (A-band), with a lighter H-zone. The M-line halves the H-zone. Thin filaments are anchored 
laterally at the Z-disk while the M-line interconnects the thick filaments (H. E. HUXLEY, 1957). The thick 
filament is mainly composed of myosin proteins, associated with other non-myosin proteins such as myosin 
binding proteins (MyBPs) C: this latter contributes to regulate force generation by the actomyosin complex 
(Ackermann & Kontrogianni-Konstantopoulos, 2013), and it is associated with titin (Freiburg & Gautel, 1996) 
(Gilbert, Cohen, Pardo, Basu, & Fischman, 1999). The giant elastic protein, titin, extends along the length of 
the thick filament (Wang, McClure, & Tu, 1979) (Linke, 2018): it has been found to act as a “molecular 
template” in the sarcomeres’ structure (Horowits, Kempner, Bisher, & Podolsky, 1986). Similar to thick 
filaments, also thin filaments are associated with “helping” proteins (Gokhin, Ochala, Domenighetti, & Fowler, 
2015): troponin (TNN-I, TNN-C, TNN-T) and tropomyosin stabilize actin and provide a molecular scaffold for 
Ca2+ signalling (Zot & Potter, 1987). Ca2+ released by fibre depolarization raises the Ca2+ concentration in 
cytosol, binding to Ca2+-specific sites of TNN-C, thus forming the initial signal for myofibrillar contraction 
(Mukund & Subramaniam, 2020). This allows the actin-myosin interaction (Galińska-Rakoczy et al., 2008). 
Nebulin for thin filaments has a similar role to titin for thick filaments (Horowits et al., 1986). 
 
Muscle contraction is a complex mechanism realized though the interaction of several proteins. It begins with 
the activation of sodium channels SCN4A, generating an action potential transmitted to the muscle fibre. This 
process is called excitation-contraction coupling (ECC) and it occurs at the junction between two 
membranous structures (T-tubules) and the sarcoplasmic reticulum, called the triad junction (Gash & 
Varacallo, 2018) (Mukund & Subramaniam, 2020). Depolarization of the T tubules causes calcium release 
from the sarcoplasmic reticulum (SR), and its binding to TNN-C. This led to the shift of tropomyosin, allowing 
the myosin heads to attach to the actin filaments and creating the so-called cross-bridge (Mukund & 
Subramaniam, 2020). This cross-bridge cycle ends with the myosin dissociating from the actin due to ATP 
hydrolysis (Frontera & Ochala, 2015). This cycle repeat itself until calcium levels in the myocyte fall, causing 
the release between actin and myosin. 
 
This difficult network of protein is necessary to maintain a normal muscular function. Several human diseases 
affecting these muscle proteins, or their metabolism, determine structural and functional abnormalities with 
relevant consequences on muscular function (Haycock, MacNeil, Jones, Harris, & Mantle, 1996) (Bruno 
Corrado, Ciardi, & Iammarrone, 2019). 
 
SLIDING FILAMENT THEORY AND CROSS BRIDGE CYCLE 
 
The most common theory about muscle contraction was proposed in the 1957 by Andrew Huxley et al. (A. 
F. HUXLEY, 1957) and has become widely popular and accepted, defining the concept of interaction between 
actin and myosin (A. F. Huxley & Niedergerke, 1954) (H. Huxley & Hanson, 1954). He described the results 
from the microscopy of single frog muscle fibres. Within each sarcomere, the actin, a globular protein, is 
organized in thin filaments. These filaments are able to slide over thick filaments composed by myosin, a 



Montesano, et al. / A narrative review of skeletal muscle contraction mechanisms          JOURNAL OF HUMAN SPORT & EXERCISE 

                     VOLUME 15 | Proc3 | 2020 |   S809 

 

fibrillar protein. The head of the thick filaments attaches to the actin filament creating temporary cross-
bridges, able to shorten the sarcomere. This process requires energy expenditure, in terms of ATP hydrolysis. 
 
The basic idea of Huxley is that the myosin filament has a subgroup attached to the main filament that can 
form temporary interactions and attach to sites on the adjacent actin filament (Astumian, 2015); ATP 
hydrolysis detaches the myosin from actin. When the head is attached to actin, the spring pulls the actin. This 
cross bridge cycle explains the molecular mechanisms of the sliding filament model. 
 
In spite of strong evidence, the sliding filament theory did not gain any support for several years (Cooke, 
2004). In 1966, Gordon et al. (Gordon, Huxley, & Julian, 1966) added that, at greater lengths, the tension on 
each actin filament is made up of equal contributions from each bridge overlapping on adjacent myosin. 
 
Even if this theory was able to explain some form of muscle contraction, like isometric and concentric 
contraction, some mechanisms are not fully described by it. 
 
FORCE ENHANCEMENT THEORY 
 
In the last 80’s, several physiological experiments described some phenomena not explicable according to 
the sliding filaments theory, like the “force enhancement during stretch” concept (Herzog & Leonard, 2002a) 
(Lombardi & Piazzesi, 1990). Indeed, applying a previous stretch to the sarcomere, exceeding its normal 
operating length, the force generated by its contraction is higher than the force generated at the same 
sarcomere length during an isometric contraction without stretch. Huxley et al. in 1980 postulated that a large 
stretch applied during the plateau of a tetanus leaves the tension raised for a long period. This mechanism 
is not explicable with the sliding filaments theory, because the number of cross-bridges between action and 
myosin should be the same at the same sarcomere’s length, thus determining the same force. Herzog et al. 
(Herzog & Leonard, 2002b) suggest that part of the force enhancement of muscles following stretch is caused 
by an ‘activatable’ passive element that changes its stiffness, at a given length, during active stretching. 
 
This residual force enhancement was first observed by Abbott et al. (Abbott & Aubert, 1952), and predated 
Huxley's cross-bridge model. 
 
To explain this concept some other theories have been proposed as the “popping sarcomere” theory and the 
involvement of some passive structure able to increase force following a stretch. The popping sarcomere 
hypothesis (D. L. Morgan, 1990) (David L Morgan & Proske, 2004) states that stretch-induced muscular 
damage comes from non-uniform lengthening of sarcomeres beyond its capacity: the longest sarcomeres 
will be the weakest. According to Morgan et al. (D. L. Morgan, 1990), the adaptation to eccentric exercise 
consists of increasing the number of sarcomeres in series, so that a given muscle length corresponds to a 
shorter sarcomere length. 
 
WINDING FILAMENT THEORY 
 
Moreover, no mechanisms are able to justify the mechanisms behind the eccentric contraction of the 
sarcomere, where its contraction generates highest level of tension while it is lengthening. Indeed, 
lengthening or eccentric contractions have remained unexplained for several years, remaining difficult to 
understand through just-known theories (K. C. Nishikawa, Lindstedt, & LaStayo, 2018). 
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To explain this concept, several other proteins involved in the sarcomere architecture have been investigated 
during the last years. Among them, the titin protein, the most represented protein in the skeletal muscle, has 
been proposed to have a key role in explain force enhancement and mechanism of eccentric muscle 
contraction, through several hypothesis like the winding filament theory (K. C. Nishikawa et al., 2012). 
Because titin is bound to thick filaments in the A-band and to thin filaments in the Z-disc (Funatsu et al., 
1993), rotation of thin filaments by the cross-bridges must lead to the winding of titin upon them (K. Nishikawa 
et al., 2011): this begins a process able to store elastic potential energy during isometric force development 
and active stretch (Linke et al., 2002) (Yamasaki et al., 2001) (Bianco et al., 2007). 
 
The winding filament model provides a simple mechanism by which titin contributes to muscle force 
development and active shortening (K. C. Nishikawa et al., 2012). It adds an elastic element inside active 
muscle sarcomeres, trying to complete the sliding filament theory. 
 
PRACTICAL APPLICATION TO SPORT MEDICINE AND REHABILITATION SCIENCE 
 
Years of scientific research in skeletal muscle physiology tried to make its complex structure and function 
clearer (Mukund & Subramaniam, 2020). The importance of these preclinical studies is of widespread interest 
for their high application to the clinical field: knowing the exact mechanism of muscle contraction must be the 
base for everyday application of sport science, and it is fundamental in planning training strategies and 
recovering from muscle injuries. It allows us to understand minute details of molecular cross‐talk required for 
effective coordination between the myriad interacting components for efficient muscle function. 
 
It is the case of eccentric exercise for the treatment of tendinopathy (O’Neill, Watson, & Barry, 2015) 
(Loiacono et al., 2019), or the use of isokinetic dynamometer in the prevention of sport injuries (Croisier & 
Crielaard, 2001). In the last years, a novel modality of muscle contraction, iso-inertial (Tesch, Fernandez-
Gonzalo, & Lundberg, 2017), is gaining more scientific interest for its potential applications. Muscle 
contraction is also the anatomical base on which an efficient and individualized training program can be 
developed (Jiménez-Reyes, Samozino, Brughelli, & Morin, 2017), also for people with disability (Spera et al., 
2019) (Montesano, Tafuri, & Mazzeo, 2013), and this concept is still not clear for most people (Palermi et al., 
2020). 
 
While different molecules have been proposed as method to promote tendon’s healing (Sirico et al., 2017) 
(Bruno Corrado, Mazzuoccolo, et al., 2019), few substances have been studied to promote muscle healing, 
like PRP (Hamid, Yusof, & Mohamed Ali, 2014). Knowing physiological mechanism behind muscle 
contraction could promote new rehabilitative approach and interventional procedures in musculoskeletal 
disorders, favouring more positive results for patients (Gustafsson, DeFreese, & Madigan, 2017), trainers, 
physiotherapists (Bruno Corrado, Ciardi, Fortunato, & Iammarrone, 2019) and doctors (Dewa, Loong, 
Bonato, Thanh, & Jacobs, 2014). 
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