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Abstract The main properties of evenly convex sets and functions have been
deeply studied by different authors, and a duality theory for evenly convex op-
timization problems has been well developed as well. In this theory, the notion
of e′-convexity appears as a necessary requirement for obtaining important re-
sults in strong and stable strong duality. This fact has motivated the authors
to study possible properties of this kind of convexity in sets and functions,
which is closely connected to even convexity.
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1 Introduction

In [10] Wernel Fenchel introduced the concept of evenly convex set in Rn trying
to generalize the polarity theory to nonclosed convex sets. A set is e-convex if
it can be expressed as an intersection of an arbitrary familiy (possibly empty)
of open halfspaces. In the literature dealing with these sets, they are abrevi-
ated as e-convex sets, so we warn the reader to avoid any possible confusion
with e-convex sets in [22]. Characterizations of e-convex sets can be found
in [2] and [12] and their basic properties were studied in [14]. They appear
to be very useful in the study of geometrical properties of the feasible set of
a linear inequality system containing strict inequalities; see [13]. In a natural
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way, e-convex sets allow the definition of e-convex functions, introduced in [21]
as those extended real-valued functions whose epigraghs are e-convex. More-
over, in [15] a suitable conjugation pattern for e-convex functions defined on
locally convex spaces, the c-conjugation, was defined. Its suitability refers that
a proper function is e-convex if and only if it is equal to its double c-conjugate.
Since any closed convex set is e-convex, the class of convex lower semicontiu-
ous functions can be considered as a subclass of the e-convex functions. This
fact motivated that Fajardo et al. in [6] extended some well-known properties
of convex lower semicontinuous functions to e-convex functions. The notion of
e′-convexity appeared in that paper, firstly, trying to obtain the counterpart
of a well-known result (see [1, Sect.2]): let X be a locally convex space and
f, g : X → R be two proper lower semicontinuous convex functions such that
dom f ∩ dom g 6= ∅. Then

cl(epi f∗ + epi g∗) = epi(f + g)∗, (1)

where f∗ and g∗ are the Fenchel conjugate functions of f and g, respectively. If
we assume that f and g are e-convex, it is not necessarily true, and if we take
c-conjugate funtions instead of Fenchel ones the closure is not an appropiate
hull. In [6, Rem. 1] it is also stated that the e-convex hull is not enough to reach
the equality, fact that motivated them to introduce the notion of e′-convexity;
see [6, Def. 2]. Moreover, in this paper, and using the c-conjugation scheme,
a Fenchel-type dual problem for a primal one where both objective function
and feasible set are e-convex were built. Optimization problems where the
objective function and the feasible set are e-convex have potential applications
in mathematical applications, in an analogous way than evenly quasiconvex
optimization is used in [19].

In [3] an alternative dual problem (GDc) for a general primal (GP ) was
built by means of the c-conjugation scheme, via the perturbational approach.
Weak duality was assured and sufficient conditions for Fenchel strong duality,
called regularity conditions, were obtained. In addition, relationships between
e-convexity and other closedness-type notions in infinite dimensional locally
convex spaces were deduced.These connections were used for achieving regu-
larity conditions for (GP ) and (GDc), which were particularized for Fenchel
duality case and compared with the one obtained in [6]. [5] states the analysis
of regularity conditions for Lagrange duality. In [9] Fenchel-Lagrange duality
is considered, where dual problems are expressed via the c-conjugates of the
functions involved in the primal problem. [7] studies sufficient conditions and
characterizations for stable strong duality in this generalized framework for
Fenchel and Lagrange dualities. In addition, a comparison of the optimal val-
ues and solutions of the three alternative dual problems (Fenchel, Lagrange
and Fenchel-Lagrange) is achieved in [8]. Finally, in the recent paper [4], con-
verse and total duality as well as new results on subdifferential theory for
e-convex functions have been also studied, developed initially in [15] .

E-convex properties have been deeply studied, as the reader can observe,
whereas e′-convexity has been a necessary tool for the achievement of general-
ized duality results. Something was asking to be done: the study of interesting
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properties or characterizations of e′-convex sets and functions, if there were
any. As it will be shown in the following section, an e′-convex set is defined
over the space W × R, where W = X∗ × X∗ × R. Since this space can be a
bit difficult to deal with due to its high dimension, we will try to obtain a
characterization of such kind of sets, but without using ideas based on sepa-
ration hyperplanes. To this aim, and inspired in [10,11], we shall define two
new operators which will allow us to characterize the e′-convexity of a given
subset and, in spirit of [21], we will analyze the main properties that e′-convex
sets and functions inherit from the e-convex case.

The organization is as follows. In Section 2, we present the main properties
for e-convex sets and functions, together with all the necessary results, in order
to make the paper self-contained. The idea of this section is to give a general
perspective of e-convexity, since its properties have been taken as a reference
for the purpose of studying the e′-convexity. Section 3 is dedicated to the
study of the e′-convex sets and Section 4 presents the main properties of the
e′-convex functions. Finally, Section 5 concludes.

2 Preliminaries

Let X be a separated locally convex space, lcs in brief, equipped with the
σ(X,X∗) topology induced by X∗, its continuous dual space endowed with
the σ(X∗, X) topology. The notation 〈x, x∗〉 stands for the value at x ∈ X
of the continuous linear functional x∗ ∈ X∗. For a set D ⊆ X we denote
its convex hull and its closure by convD and clD, respectively. Moreover, if
D 6= ∅, the indicator function δD : X → R = R ∪ {±∞} is defined by

δD(x) =

{
0 if x ∈ D,
+∞ otherwise.

According to [2], a set C ⊆ X is e-convex, if for every point x0 /∈ C, there
exists x∗ ∈ X∗ such that 〈x− x0, x∗〉 < 0, for all x ∈ C. Since X is assumed
to be a nontrivial lcs, X∗ 6= 0. From the definition of e-convex set, the entire
space X is e-convex. As a consequence of Hahn-Banach theorem, every closed
or open convex set is e-convex as well.

The class of e-convex sets captures some important properties from the
subclass of closed convex sets. For instance, it is immediate that the intersec-
tion of an arbitrary family of e-convex sets is e-convex. Moreover, if C is an
e-convex set, αC is also e-convex, for all α > 0. Nevertheless, the image of an
e-convex set from a linear transformation is not, in general, an e-convex set.
In particular, the sum of two e-convex sets is not necessarily an e-convex set
(see [12, Example 3.1]).

The next two propositions show basic properties of e-convex sets whose
proofs in their respective references have been done in Rn, but they can be
extended to general locally convex spaces with no further difficulties.
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Proposition 1 [21, Prop. 1.2] Let C1 ⊆ X and C2 ⊆ Y be two non-empty
subsets, with X and Y locally convex spaces. Then C1 × C2 is e-convex in
X × Y if and only if C1 and C2 are e-convex sets in X and Y , respectively.

For a set C ⊆ X, the e-convex hull of C, econvC, is the smallest e-convex
set in X containing C. This operator is well defined because X is e-convex
and the class of e-convex sets is closed under intersection. Moreover, for all
C ⊆ X, it always holds C ⊆ convC ⊆ econvC ⊆ clC.

Proposition 2 [13, Prop.2.3] Let C1 ⊆ X and C2 ⊆ Y be non-empty subsets
with X and Y locally convex spaces. Then, it holds

econv(C1 × C2) = econv(C1)× econv(C2).

Considering now a function f : X → R, we denote by

dom f = {x ∈ X : f(x) < +∞}

the effective domain of f and by

epi f = {(x, r) ∈ X × R : f(x) ≤ r}

its epigraph. We say that f is proper if epi f does not contain vertical lines,
i.e., f(x) > −∞ for all x ∈ X, and dom f 6= ∅. By cl f we denote the lower
semicontinuous hull of f , which is the function whose epigraph equals cl(epi f).
A function f is lower semicontinuous, lsc in brief, if for all x ∈ X, f(x) =
cl f(x), and e-convex if epi f is e-convex in X × R. Clearly, any lsc convex
function is e-convex, but the converse does not hold in general as we can see
below.

Example 1 (cf. [8, Ex. 2.1]) Let f : R→ R be the function defined as

f(x) =

{
x if x > 0,

+∞ otherwise.

Clearly, epi f =
{

(x, y) ∈ R2 |x > 0, y ≥ x
}

is e-convex in R2 since for every
x0 /∈ epi f , there exists a non-trivial hyperplane whose intersection with epi f
is empty. However, epi f is not closed and, consequently, f is not lsc.

The e-convex hull of a function f : X → R, econv f , is defined as the largest
e-convex minorant of f . The next propositions show important properties of
e-convex functions which have been presented in [21] for X = Rn, whose proofs
can be generalized to locally convex spaces with no extra effort.

Proposition 3 [21, Prop.3.1] Let f : X → R be an e-convex function and
α > 0. Then αf is e-convex.

Proposition 4 [21, Prop.3.2] Let {fi : X → R, i ∈ I} be a family of e-convex
functions, then f = supi∈I fi is e-convex.
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Proposition 5 [21, Prop.3.3] Let f, g : X → R be two proper e-convex func-
tions. Then f + g is e-convex.

Based on the generalized convex conjugation theory introduced by Moreau
in [17], a suitable conjugation scheme for e-convex functions is provided in
[15]. Let us consider the space W := X∗×X∗×R with the coupling functions
c : X ×W → R and c′ : W ×X → R given by

c(x, (x∗, u∗, α)) = c′ ((x∗, u∗, α), x) :=

{
〈x, x∗〉 if 〈x, u∗〉 < α,

+∞ otherwise.

Given two functions f : X → R and g : W → R, the c-conjugate of f and the
c′-conjugate of g are defined as the functions f c : W → R and gc

′
: X → R,

such that

f c(x∗, u∗, α) := sup
x∈X
{c(x, (x∗, u∗, α))− f(x)} ,

gc
′
(x) := sup

(x∗,u∗,α)∈W
{c′ ((x∗, u∗, α), x)− g(x∗, u∗, α)} ,

respectively, with the conventions (+∞) + (−∞) = (−∞) + (+∞) = (+∞)−
(+∞) = (−∞)− (−∞) = −∞.

Functions of the form x ∈ X → c(x, (x∗, u∗, α)− β ∈ R, with (x∗, u∗, α) ∈
W and β ∈ R are called c-elementary, and, in a similar way, functions of the
form (x∗, u∗, α) ∈ W → c′((x∗, u∗, α), x) − β ∈ R with x ∈ X and β ∈ R are
called c′-elementary. In [15] it is shown the following characterization for a
proper e-convex function, which can be understood as the e-convex version of
[20, Th.12.1] for proper convex and lsc functions.

Theorem 1 Let f : X → R, not identically +∞ or −∞. Let Ef be the set of
c-elementary functions minorizing f , i.e.,

Ef := {a : X → R : a is c-elementary and a ≤ f}.

Then f is a proper e-convex function if and only if f = sup{a : a ∈ Ef}.

Definition 1 [6, p.379] A function g : W → R is e′-convex if it is the pointwise
supremum of sets of c′-elementary functions, and the e′-convex hull of an
extended real valued function g defined on W , denoted by e′convg, is the
largest e′-convex minorant of it.

It is immediate that the epigraph of a c′-elementary function is the in-
tersection of an open and a closed half-spaces in W × R, therefore it is an
e-convex set. We conclude that any c′-elementary function is e-convex, so it
follows directly that any e′-convex function is e-convex. The following theorem
has been proved in [16, Prop. 6.1, Prop. 6.2 and Cor. 6.1], containing what
can be understood as the counterpart of Fenchel-Moreau theorem for e-convex
and e′-convex functions.
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Theorem 2 Let f : X → R ∪ {+∞} and g : W → R. Then

i) f c is e′-convex and gc
′

is e-convex.
ii) econvf = f cc

′
and e′convg = gc

′c.
iii) f is e-convex if and only if f cc

′
= f and g is e′-convex if and only if

gc
′c = g.

iv) f cc
′ ≤ f and gc

′c ≤ g.

Remark 1 [6, p. 379] According to (iii) in Theorem 2, given f : X → R∪{+∞},
we say that it is e-convex in x ∈ X if f(x) = f cc

′
(x). Given g : W → R, it is

said to be e′-convex in (x∗, y∗, α) ∈W when g(x∗, y∗, α) = gc
′c(x∗, y∗, α).

The next result follows from Theorem 2 and Remark 12 in [15].

Theorem 3 Let f : X → R be a proper convex function. Then f is e-convex
if and only if f is lsc in econv(dom f).

3 E′-convex Sets

In this section we will study some algebraic properties of the class of e′-convex
sets as well as a characterization of them by using general operators instead
of supporting hyperplanes. To this aim, we begin recalling the definition of
e′-convex set from [6].

Definition 2 [6, Def. 2] A set D ⊆ W × R is e′-convex if there exists an
e′-convex function k : W → R such that D = epi k. The e′-convex hull of an
arbitrary set D ⊆ W × R is defined as the smallest e′-convex set containing
D, and it will be denoted by e′convD.

This type of envelope allowed to obtain the counterpart of (1) with the
c-conjugation scheme in [6]:

e′conv(epi f c + epi gc) = epi(f + g)c

under a certain additivity hypothesis between the sets Ef and Eg. See [6, Cor. 5]
for more details.

As described in the Introduction, e′-convex sets are important in the es-
tablishment of regularity conditions for strong and stable strong duality on
e-convex optimization problems. For this reason, the rest of the section aims
to investigate further properties as well as a characterization of this class of
sets. As any e′-convex function is e-convex as well, it follows that any e′-convex
set is e-convex.
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3.1 Characterization of e′-convex sets

Given C ⊆ Rn and F ⊆ Rn × R, Fenchel in [10] and Goberna et al. in [11]
defined, on the one hand, the negative polar of C and, on the other hand, the
weak dual cone of C and the symmetrical expression of K, as the sets

Ce := {y ∈ Rn | 〈x, y〉 < 1, for all x ∈ C} ,

C≤ :=

{(
a

b

)
∈ Rn × R | 〈a, x〉 ≤ b, for all x ∈ C

}
,

F≤ :=

{
x ∈ Rn | 〈a, x〉 ≤ b, for all

(
a

b

)
∈ F

}
,

respectively. Using these operators, in [10] and [11] it was shown that a set
C ⊆ Rn is e-convex if and only if

C = Cee or C = (C≤)≤, (2)

so a natural question arises: is it possible to adapt these operators into the e′-
convexity scheme keeping somehow these characterizations? Without further
ado, we will define two new operators which can be viewed as their e′-convex
counterparts.

Definition 3 Let K ⊆ W × R. We define the General Dual Cone (GDC) of
K as the set

KGDC :=

{
(x, γ) ∈ X × R | c′((x∗, y∗, α), x)− γ ≤ β,

for all (x∗, y∗, α, β) ∈ K

}

and, by convention, we establish that (∅W×R)GDC = X × R, being ∅W×R the
empty set of the space W × R.

Let us observe that (W × R)GDC = ∅X×R, and that in general, KGDC is not
necessarily a cone. For instance, if

K =
{

(x, y, α, β) ∈ R4 |x− β ≤ 0 and y − α < 0
}
,

we have KGDC = {1} × R+, which clearly is not a cone. We can ensure that
KGDC is a cone if its projection onto R2 reduces to the origin, which can be
proved easily. Nevertheless, although KGDC is not necessarily a cone, we have
kept this world in the name because KGDC represents the generalization of C≤

in our context. In the following proposition we give conditions guaranteeing
the nonemptiness of KGDC if K is nonempty and proper.
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Proposition 6 Let us assume that X is a reflexive space, and that K ⊂W×R
is a nonempty convex set such that its projections onto X∗ × R

K1 := {(x∗, β) | (x∗, y∗, α, β) ∈ K for some (y∗, α) ∈ X∗ × R} ,
K2 := {(y∗, α) | (x∗, y∗, α, β) ∈ K for some (x∗, β) ∈ X∗ × R} ,

verify that K1 is closed, with 0 ∈ K1, K2 is compact, K1 ∩ (−K2) = ∅,
the projection of K1 onto R is bounded from below but not from above, the
projection of K1 onto X∗ is bounded and the projection of K2 onto R is bounded
from below by 0, then KGDC is nonempty.

Proof In first place, lets us observe that KGDC is nonempty if and only if there
exits (x, γ) ∈ X × R such that K1 ⊂ H≤(x,−1),γ and K2 ⊂ H<

(x,−1),0, where

H≤(x,−1),γ = {(x∗, β) ∈ X∗ × R | 〈x, x∗〉 − γ ≤ β} ,

H<
(x,−1),0 = {(y∗, α) ∈ X∗ × R | 〈x, y∗〉 − α < 0} .

Under the hypothesis, with X reflexive, according to Theorem 1.1.5 in [23],
there exist (x, δ) ∈ (X×R) \{0} and α1, α2 ∈ R verifying, for all (x∗, β) ∈ K1

and (y∗, α) ∈ K2,

〈x, x∗〉+ δβ ≤ α1 < α2 ≤ 〈x,−y∗〉 − δα. (3)

Let us observe that, since 0 ∈ K1, α1 ≥ 0. Since the projection of K1 onto
R is not bounded from above, but its projection onto X∗ is bounded, δ ≤ 0.
We distinguish two cases. In the case δ = 0, naming inf(x∗,β)∈K1

{β} = C1 and
inf(y∗,α)∈K2

{α} = C2 ≥ 0 by hypothesis, we have

〈x, x∗〉 − β ≤ α1 − C1 = γ and 〈x, y∗〉 − α < −α1 − C2 ≤ 0,

for all (x∗, β) ∈ K1 and (y∗, α) ∈ K2, and (x, γ) ∈ KGDC .

On the other hand, if δ < 0, multipling by
1

|δ|
in (3) and naming z =

1

|δ|
x and

γ =
1

|δ|
α1, we have

〈z, x∗〉 − β ≤ γ and 〈z, y∗〉 − α < 0,

for all (x∗, β) ∈ K1 and (y∗, α) ∈ K2, and (z, γ) ∈ KGDC .
ut

Remark 2 The hypothesis about K1 and K2 in the above proposition can be
replaced by the hypothesis 0 /∈ cl(K1+K2), keeping the hypothesis about their
projections onto X∗ and R and that 0 ∈ K1, and applying Theorem 1.1.7 in
[23].
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Definition 4 Let H ⊆ X×R. We define the General Symmetrical Expression
(GSE) of H as the set

HGSE :=

{
(x∗, y∗, α, β) ∈W × R | c′((x∗, y∗, α), x)− γ ≤ β,

for all (x, γ) ∈ H

}

and, by convention, we establish that (∅X×R)GSE = W × R, being ∅X×R the
empty set of the space X × R.

Observing that (X×R)GSE = ∅W×R, we present the following proposition con-
cerning nonemptiness of the General Symmetrical Expression of a nonempty
and proper set.

Proposition 7 Given a set nonempty convex set H ⊂ X ×R such that H as
well as its projection onto X have nonempty interior, the projection of H onto
R is bounded from below but not from above, the projection of H onto X∗ is
bounded, then HGSE is nonempty.

Proof In this case, HGSE is nonempty if and only if there exists (x∗, y∗, α, β) ∈
W × R such that H ⊂ H≤(x∗,−1),β ∩H

<
(y∗,0),α, where

H≤(x∗,−1),β = {(x, γ) ∈ X × R | 〈x, x∗〉 − γ ≤ β} ,

H<
(y∗,0),α = {(x, γ) ∈ X × R | 〈x, y∗〉 < α} .

According to the hypotesis, applying Corollary 1.1.4 in [23] to H and to its
projection onto X, there exist supporting hyperplanes to both convex sets,
i.e.,

〈x, x∗〉+ δγ ≤ β and 〈x, y∗〉 ≤ α. (4)

for all (x, γ) ∈ H. Taking into account the hypothesis, δ ≤ 0. In the case δ = 0,
it holds (x∗, y∗, β −C,α+ 1) ∈ HGSE , where C = inf(x,γ)∈H{γ}. If δ < 0, we
can argue as in the proof of Proposition 6 leading to HGSE 6= ∅. ut

Now, we study which properties are verified by these operators. First and
foremost, applying their definitions it is not difficult to prove that given an
arbitrary set K ⊆W × R, the following inclusion

K ⊆ (KGDC)GSE , (5)

is always fulfilled. To obtain the opposite containment, we need some extra
results.

Proposition 8 Let K ⊆ W × R and H ⊆ X × R. Then, the set KGDC is
e-convex and the set HGSE is e′-convex.
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Proof To begin with, suppose that the sets K and H are nonempty. To see
that KGDC is e-convex, we define the function f : X → R such that

f(x) = sup
(x∗,y∗,α,β)∈K

{c(x, (x∗, y∗, α))− β} ,

with K ⊆W ×R. This function is e-convex by definition and it is easy to see
that (x, γ) ∈ epi f if and only if c(x, (x∗, y∗, α))−β ≤ γ, for all (x∗, y∗, α, β) ∈
K. This fact is equivalent to c′((x∗, y∗, α), x)−γ ≤ β, for all (x∗, y∗, α, β) ∈ K,
which means that (x, γ) ∈ KGDC due to Definition 3. In this way, KGDC =
epi f and KGDC is an e-convex set of X × R.

Now we move onto the second part. Let us define g : W → R such that

g(x) = sup
(x,β)∈H

{c′((x∗, y∗, α), x)− β} ,

with H ⊆ X × R. Similarly, but applying Definition 4, we conclude that
HGSE = epi g and, consequently, HGSE is an e′-convex set in W × R.

Finally, for the nonproper case, it is a direct consequence of Definitions 3
and 4. ut

Now our purpose is to analyze the behaviour of the operators GDC and
GSE regarding inclusion and intersection. The proofs of the following lemmas
are consequences of Definitions 3 and 4 and, for this reason, we have omitted
them.

Lemma 1 Let K ⊆ W × R and H ⊆ X × R. If L ⊆ K and J ⊆ H, then
KGDC ⊆ LGDC and HGSE ⊆ JGSE.

Lemma 2 Let K1, K2 ⊆W × R and H1, H2 ⊆ X × R. Then

(i) KGDC
1 ∩KGDC

2 ⊆ (K1 ∩K2)
GDC

.
(ii) (H1)GSE ∩ (H2)GSE ⊆ (H1 ∩H2)GSE.

Motivated by (2), we establish the main result of this section.

Proposition 9 Let K ⊆W × R, then K is e′-convex if and only if

K =
(
KGDC

)
GSE

. (6)

Proof First, let us suppose that K is e′-convex. If K = ∅W×R, as we have
seen in Definitions 3 and 4, KGDC = X × R and (KGDC)GSE = (X ×
R)GSE = ∅W×R, so (6) is fulfilled. If K = W × R, applying (5) we easily
get

(
KGDC

)
GSE

= W × R. Hence, we can assume that K is a proper subset

of W ×R. By hypothesis K is e′-convex, so there exists a function h : W → R
such that

h(·) = sup
(x,γ)∈∆

{c′(·, x)− γ} , (7)
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where ∆ ⊆ X × R and epih = K. As K is a proper set, ∆ 6= ∅X×R and by
using Definition 3, ∆ ⊆ KGDC since K = epih =

⋂
(x,γ)∈∆ epi {c′(·, x)− γ}.

In this way, by virtue of Lemma 1 we have

(KGDC)GSE ⊆ ∆GSE . (8)

From Definition 4 and (7), we obtain that ∆GSE = epih = K, and by (8),
(KGDC)GSE ⊆ ∆GSE = K. Finally, applying (5), we get (6).

The converse is a direct application of Proposition 8 to the set H = KGDC .
ut

Remark 3 By virtue of (5), K is e′-convex if and only if

(KGDC)GSE ⊆ K.

Remark 4 Applying (5) and Proposition 8 we have that, for every K ⊆W×R,
it holds K ⊆ e′convK ⊆ (KGDC)GSE . Using Lemma 1 and Proposition 9, a
simple calculation shows that (KGDC)GSE = e′convK.

3.2 Properties of e′-convex sets

This section focuses on the analysis of those properties which do not hold when
e-convexity is replaced by e′-convexity. From the definition of e′-convex set and
the fact that every e′-convex function is e-convex, it is natural to wonder what
kind of differences separates the class of e-convex sets which are epigraphs and
are contained in W × R, from the class of e′-convex sets.

E-convex sets which are closed are important in convex optimization, but
they are not included in the family of e′-convex sets.

Proposition 10 No proper closed convex set which is the epigraph of a certain
function g : W → R is e′-convex.

Proof Let K ⊆ W × R be a proper e′-convex set. By Definition 2, we have
that there exists a function h : W → R defined as

h(y∗, z∗, α) = sup
(x,β)∈S

{c′((y∗, z∗, α), x)− β} ,

where S ⊂ X × R, which satisfies

K = epih =
⋂

(x,β)∈S

epi(c(x, ·)− β). (9)

Now, the idea is to prove that K cannot be closed, and to do that, we shall
check that given any (x∗, y∗, α, γ) ∈ K, the point (x∗, 0, 0, γ) ∈ clK\K. It is
clear that (x∗, 0, 0, γ) /∈ K because this point does not belong to any epigraph
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of the c′-elementary functions that build epih. By (9), K is the solution set of
the system

{〈(x,−1), (x∗, γ)〉 ≤ β, 〈(x,−1), (y∗, α)〉 < 0, for all (x, β) ∈ S} .

Bearing in mind that [12, Prop. 1.1] can be extended to general locally convex
spaces, we have

clK =
⋂

(x,β)∈S

{
(x∗, y∗, α, γ) ∈W | 〈(x,−1), (x∗, γ)〉 ≤ β,

〈(x,−1), (y∗, α)〉 ≤ 0

}
.

To conclude the proof, a matter of computation shows that (x∗, 0, 0, γ) ∈ clK
since it comes from a point (x∗, y∗, α, γ) which belongs to K. ut

Remark 5 In view of the above proposition, a necessary condition for an e-
convex set in W × R to be e′-convex is not to be closed.

Now, once we know that the class of e′-convex sets and the class of closed
convex sets have no element in common, let us continue our work analyzing
what kind of properties the family of e′-convex sets does verify. It is clear
that the class of e′-convex sets is closed under intersections, moreover, as a
consequence of the monotonicity of the e′conv hull operator,

e′conv

(⋂
i∈I

Ki

)
⊆
⋂
i∈I

e′conv (Ki) ,

where {Ki}i∈I is an arbitrary family of sets in W × R.

Proposition 11 Let γ > 0 and K ⊆ W × R be e′-convex, then γK is e′-
convex.

Proof We shall prove that γK is the epigraph of an e′-convex function. By
hypothesis K is e′-convex, so there exists an e′-convex function h : W → R
such that

h(y∗, z∗, α) := sup
(x,b)∈S

{c′((x∗, y∗, α), x)− b} ,

with S ⊂ X ×R in such a way that epih = K. Now, let us define the function

H(x∗, y∗, α) := γh

(
1

γ
x∗,

1

γ
y∗,

1

γ
α

)
, (10)

for all (x∗, y∗, α) ∈W , with γ > 0 by hypothesis, and take an arbitrary point
(x∗, y∗, α, β) ∈ epiH. By virtue of (10),

γh

(
x∗

γ
,

1

γ
y∗,

1

γ
α

)
≤ β,
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or, equivalently, (
1

γ
x∗,

1

γ
y∗,

1

γ
α,

1

γ
β,

)
∈ epih = K,

so we can conclude that (x∗, y∗, α, β) ∈ γK. The converse inclusion is analo-
gous. Consequently, epiH = γK and we only have to prove that H is e′-convex.
Since

c′
((

x∗

γ
,

1

γ
y∗,

1

γ
α

)
, x

)
=

1

γ
c′((x∗, y∗, α), x),

we can write

H(x∗, y∗, α) = γ sup
(x,b)∈S

{
1

γ
c′((x∗, y∗, α), x)− b

}
.

Defining the set T := {(x, γb) ∈ X × R | (x, b) ∈ S}, since γ is assumed to be
strictly positive, we obtain

H(x∗, y∗, α) = sup
(x,b)∈S

{c′((x∗, y∗, α), x)− γb}

= sup
(x,β)∈T

{c′((x∗, y∗, α), x)− β} ,

and we conclude that H is an e′-convex function. ut

The next result was of interest in [7].

Lemma 3 [7, Lem. 3.2] Let C ⊆ W × R be a non-empty set. Then, C is e′-
convex if and only if for all x∗ ∈ X∗ and δ ∈ R, C+{(x∗, 0, 0, δ)} is e′-convex.

Remark 6 In general, we cannot assure that the sum of an e′-convex set and
a point will be e′-convex. To show this fact, we need the following result.

Proposition 12 [7, Prop. 2.7] A necessary condition for a non-empty set
K ⊆ R4 to be e′-convex is that the boundary of its projection onto R2, corre-
sponding to the second and third coordinates, contains the origin.

Next example illustrates what is pointed out in Remark 6.

Example 2 Let X = R and C ⊆ R4 be the e′-convex set

C = epi c (1, ·) =
{

(x, y, α, β) ∈ R4 |x− β ≤ 0, y − α < 0
}
.

Let us define

C ′ := C + {(1, 1, 0, 0)} =
{

(x, y, α, β) ∈ R4 |x− β ≤ 1, y − α < 1
}
.

Then, since
PrR2(C ′) =

{
(y, α) ∈ R2 | y − α < 1

}
,

it is clear that 02 does not belong to bd(PrR2(C ′)) and, due to Proposition 12,
we see that C ′ is not e′-convex.
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4 E′-convex Functions

This section is divided in two parts. The first part will focus on the analysis of
the main properties that the e′-convex functions satisfy. Finally, we will con-
clude the section obtaining sufficient conditions to ensure when an e′-convex
function has an e-convex domain.

4.1 Properties of e′-convex functions

In this section we shall study if the class of e′-convex functions is closed
under certain operations that preserve e-convexity. Recall from the definition of
an e-convex function that the indicator function of an e-convex set is evidently
an e-convex function.
Applying the definition of e′-convex function and due to Proposition ??, it is
not difficult to show that the family of e′-convex functions is closed under the
supremum operator. Moreover, following similar steps as in the last part of
the proof of Proposition 11, we have the following result.

Proposition 13 Let γ > 0 and h : W → R be an e′-convex function, then γh
is e′-convex.

As the following result shows, certain indicator functions can be e′-convex
as well.

Proposition 14 Let x̂∗ ∈ X∗ and A = {x̂∗} × {0} × R++ ⊆ W . Then,
δA : W → R is an e′-convex function.

Proof According to Remark 1, it is enough to prove that δc
′c
A (x∗, y∗, α) =

δA(x∗, y∗, α) for every (x∗, y∗, α) ∈ W and, then, the function δA will be e′-
convex. Since, for all x ∈ X,

δc
′

A(x) = sup
(x∗,y∗,α)∈A

{c(x, (x∗, y∗, α))− δA(x∗, y∗, α)}

= sup
(x̂∗,0,α)∈A

{c(x, (x̂∗, 0, α))} = 〈x, x̂∗〉 ,

we have that dom δc
′

A = X and, consequently,

δc
′c
A (x∗, y∗, α) = sup

x∈X
{c(x, (x∗, y∗, α))− 〈x, x̂∗〉} .

Now, we have to study two different cases. The first one is when (x∗, y∗, α) ∈ A,
i.e., (x∗, y∗, α) = (x̂∗, 0, α), with α > 0, then

δc
′c
A (x̂∗, 0, α) = sup

x∈X
{c(x, (x̂∗, 0, α))− 〈x, x̂∗〉} = 0 = δA(x̂∗, 0, α).

Let us analyze what happens with (x∗, y∗, α) /∈ A. If y∗ 6= 0X∗ , we can always
find x ∈ X such that 〈x, y∗〉 ≥ α, independently of the value of α. If y∗ = 0X∗
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and α ≤ 0, we have that δc
′c
A (x∗, 0, α) = +∞. Finally, if y∗ = 0X∗ , α > 0 and

x∗ 6= x̂∗, then a matter of computation shows that

δc
′c
A (x∗, 0, α) = sup

x∈X
{〈x, x∗〉 − 〈x, x̂∗〉} = sup

x∈X
{〈x, x∗ − x̂∗〉} = +∞.

Hence, for every (x∗, y∗, α) /∈ A, we get

δc
′c
A (x∗, y∗, α) = +∞ = δA(x∗, y∗, α),

concluding that the function δA is e′-convex. ut

Remark 7 It has been impossible to characterize the sets in W whose indicator
function is e′-convex. We would just want to point out that a little change in
the description of the set in the above proposition leads to a non-e′-convex
function, as the following example shows.

Example 3 Let W = R3 and A = {(1, 1)} × R++. In this case epi δA =
{(1, 1, α, β) : α > 0, β ≥ 0}, and its projection on the second and third co-
ordinate is the set {1} × R++, whose boundary does not contain the origin.
According to Proposition 12, epi δA is not an e′-convex set.

Next proposition establishes one of the main differences between the classes
of e-convex and e′-convex functions. It shows that the class of e′-convex func-
tions has empty intersection with the class of lsc and convex functions, being
its proof a direct consequence of Proposition 10.

Proposition 15 No proper closed convex function g : W → R can be e′-
convex.

Recalling Proposition 5, the sum of two proper e-convex functions is e-
convex as well. However, this fact is no longer true for e′-convex functions as
the following example shows.

Example 4 Let h1, h2 : R3 → R be two e′-convex functions defined as

h1(y∗, z∗, α) = c′((y∗, z∗, α), 1) and

h2(y∗, z∗, α) = c′((y∗, z∗, α),−1).

If we define the function h := h1 + h2, a matter of computation yields

domh = domh1 ∩ domh2

=
(
R×

{
(z∗, α) ∈ R2 | z∗ < α

})
∩
(
R×

{
(z∗, α) ∈ R2 | − z∗ < α

})
=R×

{
(z∗, α) ∈ R2 | − α < z∗ < α

}
=: Ω,

and

h(y∗, z∗, α) =

{
0 if − α < z∗ < α,
+∞ otherwise.
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Now, taking into account that the function

hc
′
(x) = sup

(y∗,z∗,α)∈Ω
{c′((y∗, z∗, α), x)− h(y∗, z∗, α)}

= sup
(y∗,z∗,α)∈Ω

{c′((y∗, z∗, α), x)}

has domhc
′

= {0}, we get, for instance,

hc
′c(1, 2, 1) = sup

x∈{0}

{
〈x, 1〉 − hc

′
(x)
}

= 0,

but h(1, 2, 1) = +∞ since (1, 2, 1) /∈ domh. Hence, a straightforward applica-
tion of Theorem 2 shows that h is not e′-convex.

Remark 8 Example 4 also allows us to show that the necessary condition for
a set in R4 to be e′-convex stated in Proposition 12 is not sufficient: the set
Ω × R ⊂ R4 verifies that necessary condition, but it is not an e′-convex set,
since h is not e′-convex, being h the only function such that Ω×R = epih. In
fact, h = δΩ×R.

To conclude this subsection, we would like to point out that the character-
ization offered by Theorem 3 for e-convex functions has no meaning when we
try to translate it into the subclass of proper e′-convex functions. The reason
for this is that if a function h is defined on W , it does not make any sense to
talk about the properties of h on e′conv(domh), which is a subset of W × R.
In the following section we will present some results about the domain of an
e′-convex function.

4.2 Domain of e′-convex functions

In this section we shall study conditions to know when an e′-convex function
has an e-convex domain. Results for e-convex functions defined on Rn can be
found in [21].

The next results will be of interest in the sequel.

Definition 5 [23, Chap. 1] Let M ⊆ Y be a linear subspace of a general
vector space Y and let A ⊆ Y be a non-empty subset. The algebraic interior
of A with respect to M is

aintM A = {a ∈ Y | ∀x ∈M,∃δ > 0 | ∀λ ∈ [0, δ] , a+ λx ∈ A} .

If M = aff(A − A), being aff A the affine hull of A, aintM A is denoted by
iA and it is called the relative algebraic interior of A. Moreover, if A ⊆ Y
is convex, the segment [a, x[= {(1− λ)a+ λx |λ ∈ [0, 1[} ⊆ iA for all a ∈ iA
and x ∈ A.
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Lemma 4 [23, Prop. 2.1.4] Let f : X → R be a convex function. If there exists
x0 ∈ X such that f(x0) = −∞, then f(x) = −∞ for every x ∈ i(dom f).

The next proposition extends Lemma 2.5 in [21] to locally convex spaces.

Proposition 16 If f : X → R is e-convex such that f(x0) = −∞ for some
x0 ∈ dom f , then f(x) = −∞ for all x ∈ dom f .

Proof Since f is e-convex, it is also convex, so applying Lemma 4, f(x) = −∞
for all x ∈ i(dom f). Take x ∈ dom f\ i(dom f) with f(x) ∈ R. Then, (x, f(x)−
1) /∈ epi f , so by virtue of the e-convexity of f , there exists (x∗, γ) ∈ X∗ × R
such that

〈(x− x, λ− f(x) + 1), (x∗, γ)〉 < 0 (11)

for all (x, λ) ∈ epi f . Since x ∈ dom f\ i(dom f), the segment [a, x[⊆ i(dom f)
for all a ∈ i(dom f) . Defining xλ = λx+(1−λ)a for all λ ∈ [0, 1[, f(xλ) = −∞
for all λ ∈ [0, 1[, and

(xλ, f(x)), (xλ, f(x)− 2)

belong to epi f , for all λ ∈ [0, 1[ . Replacing them in (11) we get

〈(xλ − x, 1), (x∗, γ)〉 < 0, 〈(xλ − x,−1), (x∗, γ)〉 < 0,

respectively. Making λ → 1, we get γ = 0. Taking γ = 0 in (11), we have
〈x− x, x∗〉 < 0 for all (x, λ) ∈ epi f , which is a contradiction since x ∈ dom f .
Hence, f(x) = −∞. ut

Proposition 17 Let f : X → R be an improper function such that f(x0) =
−∞ for some x0 ∈ dom f . Then, f is e-convex if and only if dom f is e-convex
and f ≡ −∞ on its domain.

Proof It is a direct consequence of Propositions 1 and 16, and that epi f =
dom f × R if f ≡ −∞ on its domain. ut

Having in mind that any e′-convex function is e-convex, the following re-
sults come from Propositions 16 and 17 directly.

Corollary 1 Let h : W → R be a function such that h(y∗0 , z
∗
0 , α0) = −∞ for

some (y∗0 , z
∗
0 , α0) ∈ domh. Then, if h is e′-convex, h equals −∞ over domh.

Corollary 2 Let h : W → R be an improper convex function. If h is e′-convex,
then domh is e-convex.

Corollary 3 Let h1, h2 be two e′-convex functions with at least one of them
improper. Then h1 + h2 is e′-convex and it has e-convex domain.

The purpose for the rest of the section is to analyze the proper case. First
of all, we establish the following result, which comes directly form the fact
that any e′-convex function is e-convex as well and the generalization of [21,
Prop. 2.7] for general spaces. As it happened for e-convex functions (see [21,
Ex. 2.8]), the converse in the following result does not hold in general.
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Proposition 18 Let h : W → R be a proper e′-convex function which is upper
bounded on its domain. Then domh is e-convex.

Now, let h : W → R be a proper e′-convex function such that

h(·) = sup
(x,β)∈S

{c′(·, x)− β} , (12)

being S an arbitrary proper subset of X×R. Pursuing the objective of finding
conditions for the domain of a general e′-convex function to be e-convex could
be too ambitious. The reason is that the arbitrariness of S complicates the
development of the aforementioned conditions over the domain.

Let us see an equivalent formula to express the domain of a general function
h defined as in (12). On the one hand,

domh =
{

(x∗, y∗, α) ∈ dom(c′(·, x)− β), for all (x, β) ∈ S,

sup
S
{〈x, x∗〉 − β} < +∞

}
.

On the other hand, defining the sets

D :=

{
x∗ ∈ X∗ | sup

(x,β)∈S
〈x, x∗〉 − β <∞

}
,

C(x,β) := {(y∗, α) ∈ X∗ × R | 〈x, y∗〉 < α} , for all (x, β) ∈ S,
(13)

the following equality offers no difficulty to be checked

domh = D ×
⋂

(x,β)∈S

C(x,β). (14)

Let us observe that actually the sets C(x,β) are open half-spaces:

C(x,β) = H<
(x,−1),0 = {(y∗, α) ∈ X∗ × R | 〈(x,−1), (y∗, α)〉 < 0},

therefore, they are e-convex sets. Since the class of e-convex sets is closed under
intersection and finite product, if the set D were an e-convex subset of X∗,
domh would be e-convex in W . Let us assume that D 6= ∅.

Lemma 5 If sup(x,β)∈S,x∗∈D{〈x, x∗〉 − β} is finite, then the set D defined in
(13) is e-convex in X∗.

Proof Take any constant M ∈ R such that 〈x, x∗〉 ≤M for all (x, β) ∈ S and
x∗ ∈ D, For any point x∗ /∈ D, there exists (x, β̄) ∈ S such that 〈x, x∗〉 > M .
Since (x, β̄) ∈ S, 〈x, x∗〉 ≤M for all x∗ ∈ D. Then 〈x, x∗〉 ≤M < 〈x, x∗〉 , for
all x∗ ∈ D or, equivalently, 〈x, x∗ − x∗〉 < 0 for all x∗ ∈ D, concluding that D
is e-convex in X∗. ut

The next result establishes a sufficient condition for an e′-convex function
to have e-convex domain.
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Proposition 19 Let h : W → R be the function defined in (12). If S and the
set D in (13) are bounded, then domh is e-convex.

Proof According to [18, Th. 6.4.1], the image of a bounded set through a
continuous linear functional is also bounded, so the supremum in Lemma 5 is
finite. Hence D is e-convex and domh is e-convex in W . ut

Finally, we conclude showing that the converse in Proposition 19 does not
hold in general as we can see in the following example.

Example 5 Let h : W → R be a function such that

h(·) = sup
(x,β)∈R×R+

{c′(·, x)− β} .

Hence, domh = {0} × {0} × R++, which is e-convex, h is e′-convex by its
definition, but the set S is not bounded.

5 Conclusions

In this paper we investigate not only basic algebraic properties of the e′-convex
sets and functions, but also a characterization of e′-convex sets. This character-
ization is motivated by the general dual cone and general symmetric expression
operators. In addition, we prove that the class of e′-convex sets does not in-
tersect with the family of closed and convex sets of appropriate dimension.
We also study which properties from e-convex sets remain still true for the
family of e′-convex sets. Regarding e′-convex functions, we have studied some
properties that they inherit from e-convex functions. Finally, we have analyzed
sufficient conditions to guarantee when an e′-convex function has an e-convex
domain.

There are still some areas for future research. For example, it would be
worthwhile investigating further conditions over the arbitrary set S in (12)
implying the e-convexity of the domain of the function. Another possible con-
tinuation might be to give more precise characterizations of e′-convex sets in
terms of supporting hyperplanes as was done in the case of e-convex sets.
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