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Abstract

We consider the recently proposed exotic 3D massive gravity. We show that this theory has

a rich space of vacua, including asymptotically Anti de-Sitter (AdS) geometries obeying either

the standard Brown-Henneaux boundary conditions or the weakened asymptotic behavior of the

so-called Log-gravity. Both sectors contain non-Einstein spaces with SO(2)×R isometry group,

showing that the Birkhoff theorem does not hold all over the parameter space, even if strong

AdS boundary conditions are imposed. Some of these geometries correspond to 3D black holes

dressed with a Log-gravity graviton. We conjecture that such geometries appear in a curve of

the parameter space where the exotic 3D massive gravity on AdS3 is dual to a chiral conformal

field theory. The theory also contains other interesting vacua, including different families of

non-AdS black holes.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/333884384?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1806.06254v1


1 Introduction

Three-dimensional (3D) gravity shares with its four-dimensional analog many interesting quali-

tative features; the most salient one being the existence of black holes [1]. At the same time, it

turns out to be much more accessible, what makes it a perfect toy model to explore theoretical

aspects of gravity to which, otherwise, we would not have access. For example, it permits to give

a microscopic description of non-supersymmetric black holes entropy [2], to sum over geometries

and discuss the saddle points content of the quantum gravity partition function [3], or even to

investigate the consistency of a holographic dual for a pure gravity theory [4].

One of the simplifications that Einstein theory in 3D presents with respect to 4D is the

absence of local degrees of freedom, what reduces the content of the theory to defects [5, 6],

black holes [1, 7], and boundary gravitons [8], but with no presence of propagating modes.

The theory, however, does acquire propagating modes when one deforms it by adding mass to

the graviton. Indeed, in 3D there exist consistent ways of giving mass to the graviton. One

such massive deformation is the well-known topologically massive gravity (TMG) [9], which

is defined by augmenting the Einstein-Hilbert action with a Chern-Simons term for the affine

connection. The interest of such model has been revived some years ago within the context of

the AdS/CFT correspondence, specially in relation to the so-called chiral gravity [10]; see also

[11, 12, 13, 14, 15].

Another consistent way of giving mass to the graviton in 3D is the so-called new massive

gravity (NMG), which is defined by adding to the action a particular combination of higher-

curvature terms that suffices to decouple the ghostly scalar mode [16]. Both TMG and NMG,

however, present a consistency problem when discussed in the context of AdS/CFT. This prob-

lem is known as the bulk-boundary clash, and basically means that there is no way of achieving

a unitary theory in bulk and in the boundary simultaneously. Among the attempts to solve

this problem, a new and arguably simpler massive deformation of 3D Einstein gravity, known as

minimal massive gravity (MMG), was proposed [17]. This theory is defined by supplementing

TMG equations of motion with a second-order rank-2 tensor. In 3D dimensions, this implies

that such a tensor, being of second order in the metric, cannot follow from a variational princi-

ple in the metric formalism, what is typically problematic for the Bianchi identities. However,

MMG manages to circumvent this obstruction in a very interesting way, that is, even though

the Bianchi identities are not identically satisfied by the tensors involved in the equations of
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motion, they do hold on-shell. This way of solving the consistency conditions is usually referred

to as the third way phenomenon [18].

More recently, a fourth-order massive deformation of 3D gravity exhibiting the same kind of

third way phenomenon has been proposed [19]. This has been dubbed exotic massive 3D gravity

(EMG). It is defined by the following equations of motion

Rµν −
1

2
Rgµν + Λgµν +

1

µ
Cµν −

1

m2
Hµν +

1

m4
Lµν = 0 (1)

where

Cµν =
1

2
ǫ αβ
µ ∇αRβν +

1

2
ǫ αβ
ν ∇αRβµ , Hµν = ǫ αβ

µ ∇αCνβ , Lµν =
1

2
ǫ αβ
µ ǫ γσ

ν CαγCβσ. (2)

Cµν is the Cotton tensor, which also appears in TMG. In fact, TMG corresponds to the limit

m → ∞ of the theory above.

The covariant divergence of the tensors Hµν and Lµν does not vanish identically, but the

following identities hold

ǫ αβ
µ Cσ

α(Rβσ −
1

2
Rgβσ −

1

m2
Hβσ) = ǫ αβ

µ (−ΛCσ
αgβσ −

1

m4
Cσ

αLβσ) = 0 (3)

and, in virtue of (3), one finds that the Bianchi identities can be satisfied on-shell without

imposing incompatible constraints.

Both tensors Hµν and Lµν are defined in terms of the Cotton tensor, and so they vanish

for conformally flat metrics. In 3D, all Einstein manifolds are locally equivalent to maximally

symmetric spaces, and hence conformally flat. Therefore, general relativity (GR) appears as a

subsector of the space of solutions of (1)-(2). Here, we will be concerned with solutions to these

equations that are not Einstein spaces. This will enable us to investigate different aspects of

the theory, such as the mass of the excitations around maximally symmetric spaces like AdS,

the black holes content of the theory and their (non-)uniqueness, and the existence of other

backgrounds and asymptotic conditions that might be of interest for physics applications.

In section 2, we will consider the non-linear regime of the theory. We will study gravitational

wave solutions in AdS space and the effective mass of such solutions, which is found to agree

with the analysis of linearized modes found in [19]. In section 3, we focus on asymptotically

AdS non-Einstein spaces that are solutions of the theory at a special point of the parameter

space that can be thought of as the analog of the chiral point of TMG. We discuss solutions

with both strong and weak falling-off behavior in AdS. In section 4, we discuss other vacua of

the theory, including Warped AdS black holes, Lifshitz black holes, among others.
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2 The non-linear theory

In this section and the next one we will mainly focus on solutions to (1)-(2) when the following

relation among the parameters is satisfied

µ =
m2ℓ

1−m2ℓ2
, (4)

where ℓ2 = −1/Λ (hereafter we will consider ℓ = 1). We will refer to (4) as the critical point (or,

more precisely, the chiral curve). When this relation is obeyed, the theory exhibits quite special

features: The linear excitations around AdS3 become massless [19] and low-decaying logarithmic

modes appear. This can also be observed at non-linear level by studying gravitational wave

solutions on AdS3 of the type analyzed in [20, 21, 22]. For generic µ and m, one considers the

ansatz

ds2 = −r2Nw(u, r)du
2 − 2r2dudv +

dr2

r2
, (5)

and take v ∈ R, u ∈ R, r ∈ R≥0. This ansatz represents a gravitational wave in AdS3, where v

and u are two null directions, analogously to a pp-wave. Function Nw(u, r) describes the profile

of the wave. In the case Nw = const the solution is locally equivalent to AdS3.

Ansatz (5) solves the equations of motion (1)-(2) for

Nw(u, r) = c0(u) + c2(u)r
−2 + c+(u)r

α+ + c−(u)r
α− , (6)

with

α± =
m2 + 2µ±

√

m4 + 4m2µ2

2µ
(7)

provided µ 6= (m2ℓ)/(1−m2ℓ2). Here, ci(u) (i = 0, 2,±) are functions of the null coordinate

u. When c+ = c− = 0 one obtains the GR solutions, while the modes with Yukawa decaying,

c± 6= 0, represent the massive gravitons of the theory. If one considers the particular solution

N±
w = c±(u)r

α±, i.e. setting c0 = c2 = c∓ = 0 in (6), then such solution satisfies the wave

equation
(

�+M2

± + Λ
)

N±
w (u, r) = 0, (8)

with

M± =
m

2µ

(

√

m2 + 4µ2 ±m
)

, (9)
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where � is the D’Alambertian operator associated to the metric (5). This value of M± exactly

agrees with the mass of the modes obtained by the linearized analysis of [19]. Here, we have

obtained the same result but from the non-linear analysis.

In contrast, at the critical point µ = (m2ℓ)/(1−m2ℓ2) the solution for Nw takes a different

form; namely

H(u, r) = c0(u) + c2(u)r
−2 + c+(u) log(r) + c−(u)r

−1−m2

(10)

where we explicitly see the presence of the low-decaying modes. In the next section we will

discuss these logarithmically decaying solutions in more detail.

3 Non-Einstein geometries in AdS3

Strong boundary conditions

We expect the theory on the critical curve (4) to be dual to a chiral CFT2 with central charges

cL = 0, cR = 3/|Gµ|. However, this value for cR, i.e. twice that of conformal gravity, assumes

that the action of EMG do not contribute to the diffeomorphism anomaly. For µ = ∞ the

equations of motion (1)-(2) are parity-even, but the Chern-Simons type action of the theory

does violate parity; see [19] for details.

Equations (1)-(2) admits, of course, locally AdS3 geometries as solutions, and in particular

those that are asymptotically AdS3 in the Brown-Henneaux sense [8]. These are solutions that

in a given system of coordinates behave like

gtt ≃ r2 +O(1) , gtφ ≃ O(1) , gφφ ≃ r2 +O(1) , (11)

grr ≃ r−2 +O(r−4) , gtr ≃ O(r−4) , grφ ≃ O(r−4) , (12)

where O(rn) stand for terms of order rn or subleading. We take t ∈ R, r ∈ R≥0, φ ∈ [0, 2π].

Solutions (5), for example, obey these conditions provided α± ≤ 0.

The point we want to make first is that Einstein spaces are not the only ones that obey the

above boundary conditions. There exist, in addition, non-Einstein solutions that also asymptote

to AdS3 in the Brown-Henneaux sense (11)-(12). One such geometry is given by

ds2 = −r2dt2 +
dr2

r2
+ r2dφ2 +Nγ(t, r)(dt+ dφ)2 (13)
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with

Nγ(t, r) =
(

β(t− t0) +
γ

r4

)

. (14)

It can be verified that this ansatz solves the field equations if

β2(m4 + 5m2 − 2) + 96γ(m4 + 5m2) = 0, (15)

with t0 arbitrary. Notice that the solution exhibits time translation symmetry even though

(14) explicitly depends on t. Despite being non-Einstein spaces, solutions (13)-(14) do obey the

Brown-Henneaux asymptotic conditions (11)-(12). In the limit m → ∞, one obtains µ = −1

and β2 = −96γ, which is the result for TMG [23]. Metric (13)-(14) exhibits closed timelike

curves due to the fact that function Nγ(t, r) is unbounded. This, however, does not affect the

signature of the metric. In the case β = 0, where Nγ = 0, the metric reduces to that of the

massless BTZ. For β 6= 0, the metric is not conformally flat.

This type of solution is important for several reasons. In particular, it manifestly shows that

Birkhoff theorem does not hold in Exotic Massive Gravity, at least at the critical point (4). And

this is the case even if the strong boundary conditions are considered. This is relevant for the

discussion of the bestiary of geometries that contribute to the partition function of the quantum

theory, cf. [15].

Weak boundary conditions

The theory also admits solutions that, while not obeying the Brown-Henneaux boundary con-

ditions, do respect the weakened AdS3 asymptotic behavior proposed in [11], which leads to the

definition of the so-called Log-gravity [15]; namely

gtt ≃ r2 +O(log r) , gtφ ≃ O(log r) , gφφ ≃ r2 +O(log r) , (16)

grr ≃ r−2 +O(r−4) , gtr ≃ O(1) , grφ ≃ O(1) , (17)

cf. (11)-(12). An example of such a solution is given by considering the extremal Bañados-

Teitelboim-Zanelli black hole [1]

ds2 = −N2(r)dt2 +
dr2

N2(r)
+ r2(Nφ(r)dt+ dφ)2 (18)

with

N2(r) =
(r2 − r2H)

2

r2
, Nφ(r) =

r2H
r2

, (19)
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at the critical point (4), and perturbing it by adding to the metric a term [24]

M log(r2 − r2H) (dt+ dφ)2 , (20)

where M and rH are arbitrary real constants. This solution is also solution in the limit m → ∞
[24, 25]. In that case, the mass has been shown to be proportional to M , which is not the mass of

the BTZ to which the solution reduces in the limit M → 0. The extremal black hole M = 0 has

the event horizon at r = rH . There, the logarithm in (20) for the solution with M 6= 0 diverges.

Nevertheless, the curvature scalars of the metric remain finite all over the space. The metric

can be continued to the region r < rH by changing the sign in the argument of the logarithm in

(20).

In brief, metric (18)-(20) represents a black hole dressed with a Log-gravity graviton and

realizes the boundary conditions (16)-(17) at the non-linear level.

4 Other vacua

Warped black holes

Besides those of GR and the ones discussed above, theory (1)-(2) admits other interesting type

of solutions, which appear on other curves of the parameter space (µ,m). In particular, it admits

Warped Anti-de Sitter (WAdS) spaces

ds2 =
ℓ2

ν2 + 3

(

− cosh2 r dt2 + dr2 +
4ν2

ν2 + 3
(dφ+ sinh r dt)2

)

(21)

with the parameters ν and ℓ2 being given in terms of the couplings m, µ, Λ as follows

µ =
ℓ3νm4

3(ν4 − ν2(1 + ℓ2m2) + ℓ4m4/9)
, ν6 − 2ν4 + ν2 +m4ℓ4(1 + Λℓ2)/9 = 0. (22)

These metrics represent squashed (ν < 1) or stretched (ν > 1) deformations of AdS3 space.

The dimensionless parameter ν controls the squashing effect (the shape), while the dimensionful

parameter ℓ2 gives the curvature radius (the size). This metric can be thought of as a double

Wick rotation of a 3D section of Gödel solution of 4D cosmological Einstein equations. The

value ν = 1 in (21) corresponds to undeformed AdS3 space written as a Hopf fibration of AdS2.

There is also a limit in which metric (21) describes a AdS2 × S1 space, but since both Hµν and
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Lµν are transparent to conformally flat solutions, these AdS2 vacua only appear in the conformal

limit µ → 0.

There exist black holes that asymptote to WAdS3 space (21) at large distance [26]. Their

2-parameters metric, in a convenient system of coordinates, can be found in [27]. It turns out

that these black holes are, in addition, locally equivalent to WAdS3 [27], and therefore are also

solutions of the EMG theory when the relation (22) is satisfied.

Lifshitz black holes

Besides AdS black hole and WAdS black holes, equations of motion (1)-(2) in the limit µ → ∞
admit as solutions black hole geometries that asymptote to spaces with an anisotropic scale

invariance. These are the so-called Lifshitz black holes; see [28] and references therein and

thereof. The metric of these black holes have the form

ds2 = −r2z

ℓ2z

(

1− r2H
r2

)

dt2 +
ℓ2

r2

(

1− r2H
r2

)−1

dr2 + r2dϕ2 (23)

with r2H being an arbitrary integration constant that gives the radial position of the horizon.

We take t ∈ R, r ∈ R≥0, ϕ ∈ R. Metric (23) solves the equations of motion of EMG provided

that the dynamical exponent and the curvature radius satisfy the relations

z = m2ℓ2 , Λ = −m2. (24)

Metrics (23), when rH 6= 0 have non-constant curvature scalars, unlike the geometries studied

above.

This gives a whole family of asymptotically Lifshitz black holes with arbitrary value of the

dynamical exponent z, which is set by the mass coupling m. At the chiral point (4), since

µ = ∞ and m2ℓ2 = 1, one finds that the solution (23) coincides with the BTZ black hole,

z = 1 with Λ = −1/ℓ2. The solution with z = 3 is also present in the case of NMG. The case

z = 2 is particularly interesting in the holographic description of condensed matter systems as

it describes finite-temperature Lifshitz fixed points in 1+1 dimensions.

Euclidean vacua

The theory also contains other solutions at different points of the parameter space. Let us show

another two examples, which correspond to particular cases of Thurston geometries [29]. The
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latter are relevant in the study of the 3D uniformization problem. One such geometry is given

by the Sol (for solvable) metric

ds2 = dr2 + e2rdx2 + e−2rdy2 (25)

which is an Euclidean metric that solves the equations (1)-(2) for µ = ∞ if either the condition

m2 + 1 = 1− Λ = 0 or the condition m2 + 2 = Λ = 0 holds. A related example is given by the

Nil (for nilpotent) metric

ds2 = dx2 + dy2 + (dr − xdy)2 (26)

which also solves (1)-(2) for µ = ∞ if 8m2 = −9 ±
√
33 and 8Λ = 17/3 ±

√
33 hold. This

illustrates the variety of geometries that EMG contains in its space of solutions.

5 Final remarks

We have shown that the exotic theory of massive 3D gravity proposed in [19] has a rich space

of vacua. We have provided several examples of such geometries, including gravitational waves,

asymptotically AdS3 non-Einstein spaces obeying either strict or relaxed boundary conditions,

Lifshitz black holes with arbitrary value of dynamical exponent, Warped-AdS3 spaces including

Warped-AdS3 black holes and their locally equivalent Gödel type solutions, among others. Some

of these solutions, like the 1 6= z 6= 3 Lifshitz black holes, do not exist neither in TMG nor NMG.

In particular, we have shown that non-Einstein spaces with SO(2)× R isometry group exist at

the critical point (4). This implies that the Birkhoff theorem does not hold in EMG, even when

the Brown-Henneaux boundary conditions are imposed.
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