Provided by Servicio de Difusion de la Creacion Intelectual

Metadata, citation and similar papers at core.ac.uk

PHYSICAL REVIEW B, VOLUME 64, 033402

Friedel oscillations in a Luttinger liquid with long-range interactions
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We introduce a path-integral approach that allows us to compute charge-density oscillations in a Luttinger
liquid with impurities. We obtain an explicit expression for the envelope of Friedel oscillations in the presence
of arbitrary electron-electron potentials. As examples, in order to illustrate the procedure, we show how to use

our formula for contact and Coulomb potentials.
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In the last few years there has been much activity ad-
dressed to the study of condensed matter and statistical me-
chanics problems through field-theoretical methods.! In par-
ticular, the physics of one-dimensional (1D) systems of
strongly correlated particles has become a very interesting
subject since one can take advantage of the simplicity of the
models at hand and, at the same time, expect to make contact
with experiments. For instance, the recently built quantum
wire? is a good realization of a 1D electron gas. From the
theoretical side, the simplest formulation of a 1D electronic
system is given by the Tomonaga-Luttinger (TL) model,’
which has been successful in describing some qualitative fea-
tures of a Luttinger liquid such as spin-charge separation and
nonuniversal exponents in the decay law of correlation
functions.* There are, however, two crucial issues that are
not considered in the original versions of this model: the
presence of a nontrivial interaction between electrons and
impurities’ and the effect of long-range (LR) electron-
electron interactions.®’ As is well known, the former leads to
the occurrence of Friedel oscillations in the charge-density
profile, at least for Fermi liquids.® On the other hand, as the
dimensionality of a system decreases, charge screening ef-
fects become less important and the LR interaction between
electrons is expected to play a central role in determining the
properties of the system. In fact, from a theoretical point of
view, the effects of LR interactions have been recently dis-
cussed in connection to several problems such as the Fermi-
edge singularity,” the insulator-metal transition,'” and the
role of the lattice through umklapp scattering and size-
dependent effects.'! Thus, it is quite interesting to study the
interplay between impurities and LR interactions by consid-
ering Friedel oscillations in a 1D system. Some time ago,
Egger and Grabert'? analyzed this phenomenon. By combin-
ing the techniques of standard bosonization'® with the self-
consistent harmonic approximation'* and quantum Monte
Carlo simulations,'® they were able to get explicit results for
both weak and strong impurity scattering regimes. Later on,
the authors of Ref. 16 used bosonization and a scattering
description to get some exact results for the short-range case
and for a special value of the coupling constant, equivalent to
the so called ‘‘“Toulouse point’” in the anisotropic Kondo
problem. More recently, the authors of Ref. 17 again used
standard bosonization to address the same problem empha-
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sizing the equivalence between the TL model in the presence
of a single nonmagnetic impurity and a boundary Sine-
Gordon model.

In this report, we present an alternative approach to this
problem based on a path-integral bosonization technique pre-
viously developed in the context of nonlocal quantum field
theories.'® This method seems to be specially adequate to
consider LR interactions. Indeed, it has recently provided a
straightforward derivation of the electronic Green’s function
in the presence of noncontact potentials.'” Then, our main
purpose here is to show how to extend this formulation to the
computation of Friedel oscillations.

We start from a modified nonlocal Thirring model*® de-
scribed by the following (Euclidean) Lagrangian density:

L=iV(b+ yokp) W + f AT () Uy (x0T u(3) + W €T

—M(x)¥PW¥, (1)

where x = (7,,X)=(x¢,x,), and J,=W¥y,¥. The functions
U(x,y) are forward—scattering potentials. Setting U g,
=UnH=— & (x—y), one gets the covariant and local ver-
sion of the Thirring model usually studied in the context of
(1+1) quantum field theories (QFT's).

On the other hand, the choice U(x,y)
=U(]x—y]) &(r,—7,) and U;)(x,y)=0, yields the sim-
plest version of the Tomonaga-Luttinger (TL) model with an
instantaneous distance-dependent potential and no current-
current fluctuations. The last two terms in Eq. (1) corre-
spond to forward and backward electron-impurity scattering,
respectively.

The main purpose of the present paper is to evaluate the
vacuum expectation value (VEV) of the charge density:

(p(x)y=(WTW+ e 2krPiw, + 2k yiy,)  (2)

for an arbitrary electron—electron potential U,)(x,y). Also,
we will be especially interested in case the impurity terms
are Cy(x)=Vdé(x—d)=M(x) and C(x)=0, where V is a
constant proportional to the impurity tunneling barrier situ-
ated at x=d. Using a suitable representation of the functional
delta and introducing an auxiliary vector field 4, (see Ref.
18 for details), the partition function of the model under
consideration reads
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Z=NJ DA, e S det(ib+\2 A+ C+$+iyokp— M(x)

+SM6#V€2N{FXFV), (3)
where S[A4] is the free quadratic action for 4,, I'y=1I and
I', = v5. Equation (2) can be obtained by functional deriva-
tion of Eq. (3) with respect to the source s.

As it is known, the massivelike determinant in Eq. (3)
cannot be exactly solved, even in the local case. However,
we can take advantage of the fact that the vacuum to vacuum
functional can be written in such a way that nonlocal terms
are not present in the determinant. Therefore, the terms
V2 A+ C+4+iyeky can be decoupled from fermions by
performing chiral and gauge transformations in the fermionic
path—integral measure. Indeed, decomposing 4 ,(x) in lon-
gitudinal and transverse pieces

ikFX

A,(x)=€,,d,| P(x)— f) +3d,m(x)

- %[c,mm(x)], @)

where ® and 7 are boson fields (to be associated to the
normal modes of the system) and applying, as anticipated,
functional bosonization techniques'® to express the fermionic
determinant in terms of ® and #, one finally obtains

Z=N f DxDxDP D7 exp(—Sp5)exp(—Sye,)
Xexp(—S[M,s,]), (5)

where Sy, corresponds to free massless fermions (x and X_)
and

S[M,SM]:J d*x )T[SM()C) eﬂ,,eZikFXFV—M(x)]e_2g75‘I’X,
(6)

Concerning S,,,, it can be more briefly described in mo-
mentum space:

d? . . .
Spos= f P 1@(p)n(p)CLip)]

(2m)?
c E
C(p) F(p) d(—p)
X Tp B(p) Tp 7(—p)
E(p) F Cul=p)
%) % D(p) g
ik d2p L .,
+7FJ (27T)2U(0;(p)c (0)(}7)62(}7), (7)

PHYSICAL REVIEW B 64 033402

where ~ we  have  defined C,=C,+s, and
A(p),B(p),C(p),D(p),E(p), and F(p) are potential-
dependent functions (see Ref. 20 for more details).

At this point, we see that the generating functional can be
formally expanded in powers of (M —s Mew,ez”‘F"FV), in
complete analogy with the usual procedure employed in the
path-integral bosonization of (1+ 1) massive QFT’s."*? In
fact, the x dependence of this perturbative parameter, to-
gether with the appearance of C ;L(x) in the bosonic action
are two of the new features of the present computation. As
long as these functions are well behaved, one can assume the
existence of every term in the corresponding series.

From now on, we will specialize the computation to the
case §;=0. This allows us to define M.(x)=M(x)
—5o(x)e™?*rX and one can then perform the above-
mentioned expansion of Z taking M . (x) as perturbative pa-
rameters. As explained in Ref. 20, one can show that the
same expansion can be obtained by starting from a purely
bosonic nonlocal extension of the sine-Gordon model given

by
’ 1 2 1 2
L=5(0u9) +5f dy d,¢(x) d(,)(x,y)d,0(y)

1 ) ‘
+F# ﬁ#(p— ﬁ(aﬂx) elﬁ‘P(X)+a7(x) e*lﬁ(p(x))’

®)

where F',(x) represents a couple of classical functions to be
related to the C;L’s and d(,,)(x,y) are two bilocal functions
that will be associated to the electron-electron potentials (a
similar nonlocality in the kinetic term was considered in the
study of the influence of LR correlations in the metal-
insulator transition?®). B is a constant and . (x) are func-
tions that can be considered as extensions of the parameter
@y used by Coleman.’* Indeed, for d=0=F, and a,
=a_=ay=constant, the model above coincides with the
usual sine-Gordon model. In the present approach, the quan-
tities a+(x) are related to M. (x), which are in turn con-
nected to the strength of the scatterer. Let us stress that in our
formulation, it is straightforward to consider a nonpointlike
impurity [ @+ (x)# VS8(x—d)]. However, in order to illus-
trate our method, in this report we will consider the usual
case of a completely localized impurity. For this particular
case, Eq. (8) contains the same terms that can be derived
from standard bosonization (see, for instance, Ref. 12).
Now, going to momentum space and employing standard
procedures to evaluate each VEV, the partition function Z'
corresponding to this generalized sine-Gordon model coin-
cides with Z provided that the following three relations hold:

2

2 27 27 2
;[poUu)(ple Uwyp)l+p

BZ
2[p*+d )PP +doy(p)pil

©)
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a(x)

8 =M. (x)=M(x)=so(x)e " 2, (10)
Zié;,,,(_p)euvpv _ Bﬁﬂ(_p)pp,
P2+6?(0)P5+d(1)17%

2 27 27 2
—LPUy(p)+piUg(p) 4P
(11)

Therefore, we have obtained an equivalence between the par-
tition functions Z and Z' corresponding to the nonlocal
Thirring and sine-Gordon models with extra interactions de-
fined above. This means that we can use Z' together with the
above conditions in order to compute the charge-density in
the Luttinger liquid in the presence of impurities. Indeed, as
a result of this bosonization technique, we can evaluate
(p(x)) through functional derivation of Z’ instead of Z. In so
doing we obtain:

i

(p(x))= <ﬁﬁx¢’(x) +cos[2me(x) —ZkFX]> (12)

where the VEV is taken with respect to the Lagrangian den-
sity £'[s,=0] obtained from Eq. (8) after using Egs. (9),
(10), and (11) and setting s,=0. Note that we have also set
B=2\m.

Let us remark that there is an additional contribution to
Eq. (12), coming from the functional derivative of the nor-
malization constant N ’[C,’L] with respect to s,,. Since this
quantity is a constant, its only effect is to shift the back-
ground value of the charge density. For this reason we have
just disregarded it.

Now we return to our main goal, that is to use the path-
integral framework depicted above in order to obtain an ex-
plicit formula for the charge density in a Luttinger liquid
with arbitrary electron-electron and electron-impurity inter-
actions. When one imposes these conditions in £'[s,=0],
one gets a Lagrangian density that has an undefined parity as
a function of ¢. However it is much simpler to work with an
even Lagrangian since, in this case, all VEV’s of odd func-
tions of ¢ will vanish. It is easy to see that the translation
o(x)— @(x)+f(x) yields an even Lagrangian L] ,, pro-
vided that the classical function f(x) is 7, independent and
its gradient satisfies:

) .
0 (x)+ ;f dy U(x—y) af( Tx,y)+\/l—; V S(x—d)=0.

(13)
We then get
(p(x))= j—;axﬁ cos| VA (x) ~ 2k7x]
X(cos[Ndme(x) ] (14)

where cos[\4 mf(x)—2kpx] is called the Friedel oscillation
and 4(x)=(cos[V4mp(x)]), is the corresponding enve-

lope.
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Let us point out that Eq. (13) has been previously found in
Ref. 17. As shown by these authors, in the short-range case it
has the solution f=constanto U whose only effect is to add
a constant phase in the cosine term associated to the Friedel
oscillation. A nontrivial phenomenon takes place for LR po-
tentials, since the cosine ceases to be a periodic function.
This nonperiodicity effect, although weak at large distances,
could eventually be observed in carbon nanotubes.?

From now on we shall focus our attention on the compu-
tation of the envelope of the oscillation. Since L,,,, is not
exactly solvable, we shall employ the well-known self-
consistent harmonic approximation,'* which amounts to re-
placing £! . by

even
1 , 1
’CSCHAZE(a;L(P) + ;j dy ax()D(Tx ,X) U(X_Y) &y‘P(Tx :Y)

+m(V) o(x—d) o (15)
2

where m (V') is a constant, related to the impurity strength, to
be variationally determined. The precise relationship be-
tween m (V) and V was obtained in Ref. 12. For instance, in
the strong-scattering limit, when V' is much larger than a
certain bandwidth, one has simply m =V (See also, Ref. 17).
Let us now consider the computation of A(x) using this
approximation. Performing a translation in the field ¢(x)
—@(x)+a(x), with a(x) a classical function, we find

A(x)=expiJma(x).
Going to momentum space we see that the Fourier trans-
form of a(x) satisfies an integral equation whose solution is

,.( ) 21\/; —ip,x ( meiplrl(p09r))
a =——¢e twrpl |l ——7——],
P 200 m+ml(py.0)
PP
(16)
with
* cos(q,r)
[(porr)zf dql > (17)
0 5 s 2U(q,)
potai| 1+ ——
where we defined r=|x—d)|.
The envelope of the Friedel oscillation then reads
1 * mlz(po ,I")
A(r)=exp— ;jmdpo([(po,o)— T ml(p.0))’
(18)

which is our main formal result. Indeed, formulas (17) and
(18) give an analytical expression (exact within the Gaussian
approximation) for A(r) as a function of both the electron-
electron potential and the variational parameter m (V). Since
the self-consistent harmonic approximation seems to fail for
weak impurity strength, due to the neglect of interwell
tunneling,'? we restrict our analysis to the strong impurity
regime. We also consider a large distance approximation of
Eq. (17) which consists of inserting 1/r as infrared cutoff.
Let us call I,(p,r) the integral (17) regulated in this way.
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We will examine, as examples, two specific short-range and
Coulomb potentials. This, in turn will allow us to illustrate
how to use our general formula (2) for other cases. More-
over, since these problems were previously considered in
Refs. 12 and 17 by using standard (operational) bosoniza-
tion, our computation will give an independent confirmation
by means of a different approach. First of all, we note that it
is convenient to split out the two terms of the exponential
factor on Eq. (18), such that A(r)=-exp(T+ W)(r).

For the simple contact potential U(q )= U= constant, we
get

T(r)=In(Ar) "8, (19)
and
W(r)=gexp(mg*r) E(—mg*r)—gexp(2g) E{(— 2g()§0)

where A is an ultraviolet cutoff. We have also introduced the
interaction constant g=(1+2U/)~ 2. Taking into account
the asymptotic behavior of the exponential integral function
E, for mg?r>1, one obtains

A(r)=C(g,A)(2gr)‘geXp<— ) (21)

mgr
which coincides with Refs. 12 and 17 under the same re-
gime.

In the Coulombian case, one has U(|x|)= U/ \[x[?+ b2,
whose Fourier transform is U(q,)=2UK(b ¢q;), where b
plays the role of a lattice spacing. Inserting this expression in
T and W, and considering the same regime as before we find
that ¥ vanishes and
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. 77(\/1 4U b \/1 4U1bA ’
(N==5g| V1= g~ Vi) 22

which yields

[m 7
A(r)=C’(g,b,A)exp(— l_/an)' (23)

Again, this behavior is equal to the one previously found in
Refs. 12 and 17.

In summary, we have described an alternative bosoniza-
tion approach to the computation of charge-density fluctua-
tions. This technique, previously originated in the context of
QFT’s, parallels, in the path-integral framework, the opera-
tional schemes usually employed in condensed-matter appli-
cations. In particular, we have computed the envelope of
Friedel oscillations in a simple version of the TL model with
a nonmagnetic impurity. By combining that bosonization
procedure and the self-consistent harmonic approximation,
we were able to express the envelope of the oscillations as a
function of the electron-electron interaction [see Egs. (17)
and (18)]. Finally, as a consistency check of this formal re-
sult, and in order to illustrate our method, we considered the
long-distance regime for contact interactions and Coulomb
potentials. Our results are in agreement with Refs. 12 and 17.
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