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This work extends the concept of seniority number, which has been widely used for classifying
N-electron Slater determinants, to wave functions of N electrons and spin S, as well as to N-electron
spin-adapted Hilbert spaces. We propose a spin-free formulation of the seniority number operator
and perform a study on the behavior of the expectation values of this operator under transformations
of the molecular basis sets. This study leads to propose a quantitative evaluation for the convergence
of the expansions of the wave functions in terms of Slater determinants. The non-invariant charac-
ter of the seniority number operator expectation value of a wave function with respect to a unitary
transformation of the molecular orbital basis set, allows us to search for a change of basis which
minimizes that expectation value. The results found in the description of wave functions of selected
atoms and molecules show that the expansions expressed in these bases exhibit a more rapid conver-
gence than those formulated in the canonical molecular orbital bases and even in the natural orbital
ones. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4818755]

I. INTRODUCTION

Although the wave functions of N-electron systems aris-
ing from the full configuration interaction (FCI) treatment are
the exact solutions of the Schrödinger equation for a given
basis set, their determination requires a computational effort
too high in most practical situations. As is well known, to
reduce this computational cost one formulates expansions of
configuration interaction (CI) in which only a limited number
of N-electron Slater determinants is taken into account while
the remainder of these determinants is neglected. The most
popular criterion to select N-electron determinants is based
on the particle-hole excitation level from a reference deter-
minant, although other procedures as the seniority number of
the determinants have also been used. The approximate char-
acter of the CI expansions has promoted attempts to achieve
a rapid convergence of these expressions so that they yield
results closer to those of the FCI method.1 This task has pre-
dominantly been performed by means of the determination
of molecular orbitals leading to more compact expansions.
The conclusion commonly admitted is that the natural orbitals
(NO) generate CI expansions that converge faster than their
counterparts expressed in terms of the canonical molecular
orbitals (CMO), the Hartree-Fock orbitals.2–5 However, other
alternatives have also been studied.6

a)Author to whom correspondence should be addressed. Electronic mail:
qfplapel@lg.ehu.es

The concept of seniority number, which has been de-
fined as the number of unpaired particles in a determinant,7, 8

has proved to be a suitable tool in dealing with problems
in several areas of physics. In quantum chemistry, this con-
cept has been used, among others, within the pair-excited-
multiconfigurational self-consistent field model9–11 and in the
even-replacement multiconfigurational self-consistent field
method.12 CI expansions based on the selection of N-electron
determinants according to their seniority numbers have been
proposed to evaluate electron correlation energies in atomic
and molecular systems.13 In that reference, results obtained
with this procedure have been compared with those arising
from the more traditional particle-hole excitation CI expan-
sions; a better behavior of the seniority number approach is
observed in the case of systems where the strong correlation
is important, that is, when the single-determinant reference
is not a good zeroth order wave function. One of the objec-
tives of this kind of studies is to find an appropriate measure
to evaluate the closeness of the CI results to the FCI ones. In
the present study, our aim is to utilize the seniority number
concept to evaluate quantitatively the compactness of a given
N-electron wave function of spin S and to generate more com-
pact and rapidly convergent wave functions. In order to get
these goals, we propose a spin-free formulation for the senior-
ity number operator which allows one to calculate directly ex-
pectation values of this quantity with respect to an N-electron
wave function and with respect to a spin-adapted space. We

0021-9606/2013/139(8)/084103/6/$30.00 © 2013 AIP Publishing LLC139, 084103-1
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show that the expectation value of the seniority number op-
erator with respect to a wave function depends on the basis
in which that function has been expressed, while the sum of
the seniority number values of all the eigenfunctions of spin S
and a determined Sz projection of a N-electron Hamiltonian
(the seniority number of a N-electron spin-adapted Hilbert
space) is a constant. This framework also allows us to study
the distribution of the Slater determinants which compose a
wave function according to their seniority number values. The
molecular orbital basis set dependence of the wave function
seniority number enables us to propose a basis transformation
in which this expectation value turns out to be minimum, pro-
viding a more compact expansion. To test this proposal, we re-
port results arising from the minimized-seniority-number ba-
sis sets which are compared with those expressed in terms of
CMO and NO.

This work has been organized as follows. The second
section describes the spin-free formulation of the seniority
number operator and the corresponding expectation values
which can be obtained for a Slater determinant and for a wave
function. In this section, we show the basis dependence of
this property for a wave function and its invariance for the
spin-adapted space. Likewise, we describe the procedure for
minimizing the value of the wave function seniority number.
Section III reports results obtained in different bases, in or-
der to compare and to discuss the convergence of the ground
state wave functions for selected atomic and molecular sys-
tems. We also describe results that show the distribution of
the seniority number expectation values according to the se-
niority numbers of the Slater determinants which compose a
wave function. Finally, in Sec. IV we summarize the main
conclusions and perspectives of this work.

II. THE SENIORITY NUMBER

Let {i, j, k, l, . . . } be a set of K orthonormal orbitals and
let a

†
iσ /aiσ be the fermionic creation/annihilation operator cor-

responding to a spin-orbital iσ , in which σ is the spin coor-
dinate (α or β). The seniority number operator Ä̂ has been
formulated in terms of these fermion operators as13

Ä̂ =
X
i,σ

a
†
iσ aiσ −

X
i,σ1,σ2

a
†
iσ1 a

†
iσ2 aiσ2 aiσ1 . (1)

According to this definition, the Ä̂ operator does not de-
pend on the spin coordinates and consequently one can ex-
press this device by means of the spin-free formulation

Ä̂ =
X

i

¡
Êi

i − Êii
ii

¢
(2)

in which Êi
i = P

σ a
†
iσ aiσ and Êii

ii = P
σ1,σ2

a
†
iσ1 a

†
iσ2 aiσ2 aiσ1

are the first- and second-order spin-free replacement opera-
tors, respectively, corresponding to these orbital indices.14 In
this notation, the one-electron creator operators a

†
iσ and the

two-electron ones a
†
iσ1 a

†
iσ2 are represented by the superscripts

and their annihilation counterparts, aiσ and aiσ2 aiσ1 , by the
subscripts.

Closing both sides of Eq. (2) by a N-electron Slater de-
terminant, one obtains the difference between N (number of

electrons), which is the expectation value of the
P

i Êi
i op-

erator, and the number of electrons corresponding to doubly
occupied orbitals in that determinant, which is the expectation
value of the

P
i Êii

ii operator. Consequently, that difference is
the number of singly occupied orbitals or number of unpaired
electrons in a determinant, which can be expressed by means
of the expectation value of the Ä̂ operator with respect to that
determinant.

A. The seniority number for a spin-adapted
wave function

The seniority number concept can straightforwardly be
extended to a spin-adapted wave function 9(N, S), with a
specified spin S and any Sz projection, which is an eigenfunc-
tion of a spin-free N-electron Hamiltonian projected onto the
FCI space.15 As is well known, this kind of function as well as
those approximated in the CI methods are expressed by means
of linear combinations of Slater determinants.6 The expecta-
tion value of the seniority operator for this type of functions
results from the weighted sum of the seniority numbers of all
determinants in the expansion. However, according to Eq. (2)
this expectation value can be directly formulated as

hÄ̂i9(N,S) = h9(N, S)|Ä̂|9(N, S)i
=

X
i

1Di
i − 2

X
i

2Dii
ii , (3)

where 1Di
i = h9(N, S)|Êi

i |9(N, S)i and 2Dii
ii = 1

2 h9(N,

S)|Êii
ii |9(N, S)i are elements of the spin-free first- and

second-order reduced density matrices, respectively, corre-
sponding to the state 9(N, S). As these matrix elements are
independent of the spin projection, the Sz quantum number
has been omitted in this formulation.

Efficient algorithms to perform studies of electron pop-
ulation analysis in N-electron wave functions have been de-
scribed in Refs. 16 and 17 by means of formalisms related
to the particle-hole reduced density matrix framework.18–24 In
those references, it has also been suggested that the numeri-
cal value of the

P
i (1Di

i − 2 2Dii
ii ) quantity could constitute

an alternative measure of the number of effectively unpaired
electrons corresponding to the wave function 9(N, S) and
this result could be compared with those reported using other
methods.25–33 According to Eq. (3), the number of unpaired
electrons can also be evaluated in terms of the expectation
value of the seniority operator.

B. The seniority number for a spin-adapted space

The sum
P

i
1Di

i is the well-known trace of the first-
order reduced density matrix of the wave function 9(N, S)
and its value, N, is independent of the molecular orbital basis
set used to describe that wave function. However, the quantityP

i
2Dii

ii is the sum of the elements of the spin-free second-
order reduced density matrix trace related to doubly occu-
pied orbitals and its value depends on the utilized basis set;
a basis-set transformation changes its numerical value. Con-
sequently, the expectation value of the seniority number oper-
ator for a wave function is also a basis-set dependent quantity.
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In order to search for basis-set independent related quantities,
we will consider an antisymmetric and spin-adapted Hilbert
model space HA(N, K, S, Sz) (where A stands for antisym-
metric). We will denote the expectation value of the seniority
number operator for that space by

hÄ̂iN,K,S =
X

9(N,S)

h9(N, S)|Ä̂|9(N, S)i

=
X

9(N,S)

hÄ̂i9(N,S), (4)

which is the sum of the seniority numbers corresponding to
all N-electron Hamiltonian eigenstates of a spin S and any Sz

projection, constructed with K orbitals.
Likewise, we will consider the external traces of the first-

and second-order replacement operators over that space, de-
fined as34–37


Êi

j

®
N,K,S

=
X

9(N,S)

h9(N, S)|Êi
j |9(N, S)i (5)

and 
Êik

j l

®
N,K,S

=
X

9(N,S)

h9(N, S)|Êik
j l |9(N, S)i. (6)

As has been shown in those references, the values of the
traces hÊi

j iN,K,S and hÊik
j l iN,K,S are always zero unless the

creator index set in the replacement operator (the superscript
set) is identical to the annihilation one (the subscript set), i.e.,
i = j for the first-order replacement operator and {i, k} = {j, l}
for the second-order one. The presence or absence of repeated
indices in the creation and annihilation sets, and the ordering
of the annihilation indices with respect to the creation ones,
determine the values of these external traces. These values are
independent of the Sz parameter of the space HA(N, K, S, Sz);
they only depend on the parameters N, K, and S, which have
been indicated as subscripts in formulas (4), (5), and (6). The
numerical determination of the quantity hÄ̂iN,K,S requires,
according to formulas (4) and (2), the calculation of the traces
hÊi

i iN,K,S and hÊii
ii iN,K,S whose values are independent of the

nature of the orbital i, resulting34–37


Êi

i

®
N,K,S

= N

K
D(N,K, S) ∀i (7)

and 
Êii

ii

®
N,K,S

= 2 D[(N − 2), (K − 1), S)] ∀i, (8)

where D(N, K, S) is the dimension of the space HA(N, K, S,
Sz), which can be calculated by means of the Weyl-Paldus
formula38

D(N,K, S) = 2S + 1

K + 1

µ
K + 1

1
2N − S

¶ µ
K + 1

1
2N + S + 1

¶
. (9)

Taking into account Eqs. (2), (4), (7), and (8) the seniority
number expectation value for the HA(N, K, S, Sz) space turns
out to be

hÄ̂iN,K,S = N D(N,K, S) − 2 K D[(N − 2), (K − 1), S)],
(10)

which only depends on the parameters N, K, and S that define
the space and consequently it is an invariant with respect to
any unitary transformation of the basis set.

C. Minimization of the seniority number

According to Eq. (3), it is possible to search for a basis set
transformation which minimizes the expectation value of the
seniority number operator hÄ̂i9(N,S) for a given state 9(N,
S), what is equivalent to maximizing the sum

P
i

2Dii
ii for

that state. Within the expansion of the state 9(N, S) by Slater
determinants, the maximization of the

P
i

2Dii
ii quantity im-

plies an increase of the coefficients of the Slater determinants
with doubly occupied orbitals, since these are the Slater de-
terminants contributing to the matrix elements with repeated
indices 2Dii

ii . Consequently, the linear combination of Slater
determinants which expresses the state 9(N, S) resulting from
such a treatment will be more compact in terms of determi-
nants with high double orbital occupation (with low seniority
number). Obviously, the minimization of a hÄ̂i9(N,S) quan-
tity for the state 9(N, S) requires the increase of the seniority
number expectation values of other states of the HA(N, K, S,
Sz) space, so that the sum of all of them maintains the con-
stant value formulated in Eq. (10). According to these consid-
erations, a procedure leading to minimization of the seniority
number of a determined 9(N, S) state must be useful to ob-
tain faster convergent CI expansions, particularly for the states
with lowest energy values of each spin S in which generally
the doubly occupied Slater determinants are dominant. This
minimization implies an increase of the diffusion in the ex-
pansions of other states, such as those possessing low double
orbital occupations which generally are excited states.

The maximization of the
P

i
2Dii

ii quantity for a deter-
mined state 9(N, S) can be performed by transforming an
initial basis set {i, j, k, l, . . . } to another {μ, ν, λ, γ , . . . },
through a matrix U which relates the functions of both basis
sets according to

|μi =
X

i

Uiμ|ii. (11)

In this work, we have computed the coefficients Uiμ by
means of the iterative procedure reported in Ref. 39 in which,
starting with the canonical molecular orbital basis set, the
sum

P
μ

2Dμμ
μμ = P

μ

P
ijkl U ∗

μiUμjU
∗
μkUμl

2Dik
jl in the fi-

nal transformed basis set is maximized. These mathematical
frameworks for searching a basis set transformation maximiz-
ing/minimizing a determined quantity have been widely uti-
lized in procedures of orbital localization, where other ten-
sors different from the 2Dik

jl one have been manipulated.40–47

In Sec. III, we report results arising from this proposal to be
compared with those provided by more conventional molecu-
lar orbital basis sets.

III. NUMERICAL RESULTS AND DISCUSSION

The performance of the above reported equations has
been tested by means of numerical data on several atomic and
molecular systems. For the sake of simplicity, we have chosen
the Be atom and the molecules LiH, BeH+, Li2, BH, BH+

2 ,
and BeH2, in which the calculations of the FCI wave func-
tions can be implemented at an affordable computational cost
and the STO-3G basis sets have been used for all these sys-
tems, for similar reasons. As mentioned in the Introduction,
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TABLE I. Values of seniority numbers hÄ̂iN,K,S for a N-electron spin-adapted space constructed with K func-
tions and spin S. Values of seniority numbers hÄ̂i9(N,S) for the ground states of the systems Be, LiH, BeH+, Li2,
BH, BH+

2 , and BeH2 described by FCI expansions expressed in the canonical molecular orbitals (CMO), in the
orbitals which minimize the seniority number (Mmin) and in the natural orbitals (NO). Equilibrium distances (Re)
at experimental bond lengths and symmetrically stretched ones (Rst) at Rst = 2.002Re (for LiH), Rst = 2.676Re

(for BeH+), Rst = 1.599Re (for Li2), Rst = 1.487Re (for BH), Rst = 1.826Re (for BH+
2 ), Rst = 2.066Re (for

BeH2). Results correspond to standard STO-3G basis sets.

CMO Mmin NO
System N K S hÄ̂iN,K,S hÄ̂i9(N,S) hÄ̂i9(N,S) hÄ̂i9(N,S)

Be 4 5 0 100 0.0001 0.0000 0.0000
LiH(Re) 4 6 0 240 0.0202 0.0001 0.0001
LiH(Rst) 4 6 0 240 0.3575 0.0002 0.0002
BeH+(Re) 4 6 0 240 0.0177 0.0001 0.0001
BeH+(Rst) 4 6 0 240 0.4110 0.0001 0.0001
Li2(Re) 6 10 0 18900 0.0190 0.0007 0.0007
Li2(Rst) 6 10 0 18900 0.0765 0.0007 0.0007
BH(Re) 6 6 0 450 0.0500 0.0016 0.0026
BH(Rst) 6 6 0 450 0.0723 0.0051 0.0973
BH+

2 (Re) 6 7 0 1470 0.0329 0.0189 0.0324
BH+

2 (Rst) 6 7 0 1470 0.3141 0.1781 0.1804
BeH2(Re) 6 7 0 1470 0.0364 0.0109 0.0357
BeH2(Rst) 6 7 0 1470 0.5315 0.1480 0.1568

the seniority concept is important in systems having strong
electronic correlation. Consequently, we have studied the in-
fluence of this feature on our results, describing molecules
at equilibrium distances and at stretched ones; likewise, an-
other reason to study the Be atom is its well-known strong
correlation.13 Our calculations have been performed at the
experimental geometries in the systems LiH, Li2, BH, and
BeH2;48 in the case of the molecular ion BeH+ we have used
the internuclear distance reported in Refs. 49 and 50, while
the geometry for the species BH+

2 has been that optimized
with the GAUSSIAN code51 at the CI level with single and
double excitations. The Hartree-Fock molecular orbital basis
sets and the one- and two-electron integrals have been ob-
tained from a modified version of the PSI 3.3 package.52 In
subsequent steps, we have used our own codes to determine
the ground state FCI wave functions 9(N, S) for these sys-
tems, expressed in the basis sets of CMO, in those of NO and
in those of orbitals minimizing (Mmin) the seniority number
for a given wave function. We have also used our own pro-
grams to select the second-order reduced density matrix ele-
ments 2Dii

ii , required for calculating the quantities hÄ̂i9(N,S)

according to Eq. (3). As it has been pointed out in Sec. II
C, the determination of the orbitals which maximize the sumP

i
2Dii

ii has been performed following the iterative proce-
dure described in Ref. 39, and the CMO sets have been used
as initial bases of that iteration. However, we have seen that
identical final orbital sets are obtained when other initial or-
thonormal basis sets, like the NO ones, are utilized.

Table I reports the value of the seniority number
hÄ̂i9(N,S) for the ground state as well as the total value of
the seniority number hÄ̂iN,K,S for the corresponding spin-
adapted space HA(N, K, S, Sz), for each of the studied sys-
tems. As can be observed, the numerical values hÄ̂i9(N,S) as-
sociated with the individual wave functions are very low in
comparison with the total space values hÄ̂iN,K,S in all situa-

tions; this behavior is fulfilled for the three basis sets utilized
in this table. The basis sets in which the seniority numbers of
the wave functions are minima present clearly lower values
of this quantity than their counterparts CMO basis sets. The
spin-free second-order reduced density matrix elements 2Dii

ii

arise from the coefficients of the Slater determinants possess-
ing repeated indices (doubly occupied orbitals) in the expan-
sions of the wave functions. Hence, the basis set transforma-
tion which maximizes the sum

P
i

2Dii
ii yields an increase in

the weights of the repeated-index determinants (low senior-
ity number) and decreases in the remainder of these determi-
nants. Consequently, this basis transformation provides more
compact expansions than those expressed in other basis sets.
We have also included in Table I results for the hÄ̂i9(N,S)

quantities arising from the use of NO basis sets. As is well
known, the NO have been considered as a benchmark to ana-
lyze the convergence of the wave function expansions in terms
of Slater determinants.3, 5, 6 Our results show that the proposed
Mmin basis sets lead to hÄ̂i9(N,S) values close and even lower
than those arising from the NO basis sets, indicating that more
compact expansions are derived from our proposal in these
cases. Another aspect which deserves to be highlighted in the
results reported in Table I is the influence of the electron cor-
relation on the numerical values of the hÄ̂i9(N,S). All the re-
ported molecular systems possess markedly higher values of
these quantities in the stretched geometries than in the equi-
librium ones in the CMO basis sets, and this tendency can
also be observed for some of them in the NO and Mmin bases.
This fact must be interpreted in terms of the increments of the
contributions of excited Slater determinants, having higher
seniority numbers, in the expansions of the wave functions
for the stretched geometries. The results described in Table I,
in agreement with Eq. (3), show that the quantities hÄ̂i9(N,S)

turn out to be suitable descriptors to measure the compactness
of the wave function expansions.
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TABLE II. Distribution of the norm of the ground state FCI wave functions according to the Slater determinants 3(0), 3(2), and 3(4) (with seniority numbers
0, 2, and 4, respectively) for the systems Be, LiH, BeH+, Li2, BH, BH+

2 , and BeH2 in the canonical molecular orbitals (CMO), in the orbitals which minimize
the seniority number (Mmin) and in the natural orbitals (NO). Equilibrium distances (Re) at experimental bond lengths and symmetrically stretched ones (Rst)
at Rst = 2.002Re (for LiH), Rst = 2.676Re (for BeH+), Rst = 1.599Re (for Li2), Rst = 1.487Re (for BH), Rst = 1.826Re (for BH+

2 ), Rst = 2.066Re (for BeH2).
Results correspond to standard STO-3G basis sets.

CMO Mmin NO

System
P

3(0) |c3|2 P
3(2) |c3|2 P

3(4) |c3|2 P
3(0) |c3|2 P

3(2) |c3|2 P
3(4) |c3|2 P

3(0) |c3|2 P
3(2) |c3|2 P

3(4) |c3|2

Be 0.9999 <10−4 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000
LiH(Re) 0.9899 0.0101 0.0000 0.9999 <10−4 0.0000 0.9999 <10−4 0.0000
LiH(Rst) 0.8213 0.1787 <10−4 0.9999 0.0001 0.0000 0.9999 0.0001 0.0000
BeH+(Re) 0.9912 0.0088 0.0000 0.9999 <10−4 0.0000 0.9999 <10−4 0.0000
BeH+(Rst) 0.7945 0.2055 0.0000 0.9999 <10−4 0.0000 0.9999 <10−4 0.0000
Li2(Re) 0.9906 0.0092 0.0001 0.9998 0.0001 0.0001 0.9998 0.0001 0.0001
Li2(Rst) 0.9619 0.0380 0.0001 0.9998 0.0001 0.0001 0.9998 0.0001 0.0001
BH(Re) 0.9750 0.0250 0.0000 0.9992 0.0008 0.0000 0.9987 0.0013 0.0000
BH(Rst) 0.9638 0.0361 0.0000 0.9975 0.0025 0.0000 0.9514 0.0486 0.0000
BH+

2 (Re) 0.9915 0.0006 0.0079 0.9911 0.0083 0.0005 0.9917 0.0003 0.0079
BH+

2 (Rst) 0.8930 0.0569 0.0501 0.9524 0.0060 0.0415 0.9516 0.0065 0.0418
BeH2(Re) 0.9906 0.0006 0.0088 0.9947 0.0051 0.0001 0.9909 0.0003 0.0088
BeH2(Rst) 0.8144 0.1053 0.0802 0.9591 0.0078 0.0331 0.9561 0.0094 0.0345

In Table II, we have shown the analysis of the ground
state FCI wave function expansions (normalized to unity) for
the mentioned systems, in order to complement the previ-
ous results. We describe the distributions of unity into con-
tributions given by the weights of the Slater determinants 3,
grouped according to their seniority number. The amountsP

3(0) |c3|2,
P

3(2) |c3|2,
P

3(4) |c3|2, etc., are the sums of the
square of the coefficients of the Slater determinants possess-
ing zero, two, four, etc., unpaired orbital functions, respec-
tively. In the systems with N = 6 electrons, we have omit-
ted the quantities

P
3(6) |c3|2 due to the low values found for

these components. In Table III, we report the number of Slater
determinants present in each seniority space for the studied
systems. A survey of the results in Table II confirms once
again that the CMO basis sets lead to more diffuse expan-
sions than the basis sets proposed in this work, arising from
the minimization of the hÄ̂i9(N,S) quantities. Likewise, the
contributions in the NO basis sets turn out to be slightly more
diffuse than those obtained in the basis sets Mmin. The stretch-
ing of the molecular systems yields wave functions in which
the reference Slater determinant is less dominant than in the
equilibrium geometries, as is reflected by the increase of the
values of the quantities hÄ̂i9(N,S) as well as in higher diffu-
sions of the expansions of these functions.

TABLE III. Number of Slater determinants 3, with seniority numbers 0, 2,
4, and 6 for the studied systems in the STO-3G basis sets.

System 3(0) 3(2) 3(4) 3(6)

Be 10 60 30 . . .
LiH 15 120 90 . . .
BeH+ 15 120 90 . . .
Li2 120 2520 7560 4200
BH 20 180 180 20
BH+

2 35 420 630 140
BeH2 35 420 630 140

IV. CONCLUDING REMARKS

In this work, we have described a spin-free formulation
of the seniority number operator. This formulation allows us
to extend the seniority number concept to states described by
N-electron wave functions of spin S as well as to spin-adapted
antisymmetric Hilbert spaces constructed with K one-electron
functions, N electrons, and spin S, providing the direct eval-
uation of the corresponding expectation values. Taking into
account the behavior of these expectation values under trans-
formations of the molecular orbital basis sets, we have pro-
posed an orbital basis set in which the expansion of the wave
function in terms of Slater determinants turns out to be more
compact than in the CMO basis sets and even in the NO ones.
Such a basis set is obtained through the maximization of the
sum of the spin-free second-order reduced density matrix di-
agonal elements with repeated indices of the corresponding
state function (minimization of its seniority number expecta-
tion value). The results arising from the test of our proposal
on several simple systems indicate that this basis set can be ef-
ficient for the formulation of more convergent CI expansions
and that the expectation value of the seniority number oper-
ator with respect to a given wave function can be useful as a
quantitative measure of the diffusion/compactness of the ex-
pansion of that function in terms of Slater determinants. Work
along these lines is being pursued in our laboratories.
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