
State-of-the-art in Smith-Waterman Protein
Database Search on HPC Platforms

Enzo Rucci, Carlos Garcı́a, Guillermo Botella, Armando De Giusti, Marcelo
Naiouf and Manuel Prieto-Matı́as

Abstract Searching biological sequence database is a common and repeated task
in bioinformatics and molecular biology. The Smith-Waterman algorithm is the
most accurate method for this kind of search. Unfortunately, this algorithm is
computationally demanding and the situation gets worse due to the exponential
growth of biological data in the last years. For that reason, the scientific community
has made great efforts to accelerate Smith-Waterman biological database searches
in a wide variety of hardware platforms. We give a survey of the state-of-the-art in
Smith-Waterman protein database search, focusing on four hardware architectures:
central processing units, graphics processing units, field programmable gate arrays
and Xeon Phi coprocessors. After briefly describing each hardware platform, we

Enzo Rucci
Instituto de Investigación en Informática LIDI (III-LIDI), Universidad Nacional de La Plata,
Buenos Aires, Argentina, e-mail: erucci@lidi.info.unlp.edu.ar

Carlos Garcı́a
Dpto. Arquitectura de Computadores y Automática Universidad Complutense de Madrid, Madrid,
Spain e-mail: garsanca@ucm.es

Guillermo Botella
Dpto. Arquitectura de Computadores y Automática Universidad Complutense de Madrid, Madrid,
Spain e-mail: gbotella@fdi.ucm.es

Armando De Giusti
Instituto de Investigación en Informática LIDI (III-LIDI), Universidad Nacional de La Plata,
Buenos Aires, Argentina, e-mail: degiusti@lidi.info.unlp.edu.ar

Marcelo Naiouf
Instituto de Investigación en Informática LIDI (III-LIDI), Universidad Nacional de La Plata,
Buenos Aires, Argentina, e-mail: mnaiouf@lidi.info.unlp.edu.ar

Manuel Prieto-Matı́as
Dpto. Arquitectura de Computadores y Automática Universidad Complutense de Madrid, Madrid,
Spain e-mail: mpmatias@ucm.es

The final authenticated version is available online at https://doi.org/10.1007/
978-3-319-41279-5_6

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/333883945?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Authors Suppressed Due to Excessive Length

analyse temporal evolution, contributions, limitations and experimental work and
the results of each implementation. Additionally, as energy efficiency is becoming
more important every day, we also survey performance/power consumption
works. Finally, we give our view on the future of Smith-Waterman protein
searches considering next generations of hardware architectures and its upcoming
technologies.

1 Introduction

Searching biological sequence database is a common and repeated task in
bioinformatics and molecular biology. In a typical search operation, biological
sequences with unknown functionalities (usually referred as query sequences) are
aligned to a database of known sequences to find similarities. The alignment process
computes a score that represents the degree of similarity between each pair of query
and database sequences. Sequence alignment methods are classified as either global
or local. Global alignments try to maximize the number of matches between the
two sequences along their entire lengths and are useful when the sequences are
similar. On the other hand, local alignments try to maximize the number of matches
between small portions of the two sequences. This kind of alignment exposes
much better similarity between unrelated sequences and, at the same time, leads
to more biologically relevant results [19]. The Smith-Waterman (SW) algorithm is
the most accurate method for local sequence alignment. This algorithm is based
on dynamic programming approach and its high sensitivity comes from exploring
all the possible alignments between two sequences. Unfortunately, this method is
computationally demanding and the situation gets worse due to the exponential
growth of biological data in the last years. One frequently used approach to speed
up this time demanding operation is to introduce heuristics in order to reduce the
search space. Heuristics usually produce considerably good results. However, they
are deficient in searching the best match subsequences and, in consequence, are
not guaranteed to discover the optimal alignment. For that reason, the scientific
community has made great efforts to accelerate SW protein database searches
through High-Performance Computing (HPC) in a wide variety of hardware
platforms. This chapter gives a survey of the state-of-the-art in SW protein database
search, focusing on four hardware architectures: Central Processing Units (CPU),
Graphics Processing Units (GPU), Field Programmable Gate Arrays (FPGA)
and Xeon Phi coprocessors. After briefly describing each hardware platform, we
analyse temporal evolution, contributions, limitations and experimental work and
the results of each implementation. Additionally, as energy efficiency is becoming
more important every day, we also survey performance/power consumption works.
Finally, we give our view on the future of SW protein searches considering next
generations of hardware architectures and its upcoming technologies.

The rest of the chapter is organised as follows: Section 2 briefly describes the
considered hardware platforms. Section 3 introduces the basic concepts of the SW

State-of-the-art in Smith-Waterman Protein Database Search on HPC Platforms 3

algorithm. Section 4 reviews hardware acceleration of SW protein database search.
Section 5 overviews performance-power consumption evaluations on SW context.
Section 6 gives our view on the future of SW protein searches considering next
generations of hardware architectures. Finally, Section 7 presents the conclusions of
this chapter.

2 Hardware Platforms

Scientific community has made great efforts to accelerate Smith-Waterman
biological database searches in a wide variety of hardware architectures. Next there
is a brief description for each hardware platform considered in this work.

2.1 CPU

Traditional chip design was guided by increasing transistor count and clock speed,
which enabled designers to implement many advanced techniques that permitted to
increment Instruction Level Parallelism (ILP) and, in consequence, led to improved
application performance. However, at the beginning of this century, this design
process got stuck due to two reasons:

• extracting more ILP from programmes became a hard task and
• increasing clock frequency reached unsustainable power consumption and heat

generation levels.

Multi-core processors arose as a solution to this problem. Hardware vendors
decided to integrate two or more computational cores within the same chip.
Even though these cores are simpler and slower, when combined, they permit
enhancing the global performance of the processor while making an efficient use
of energy [29]. Its introduction also affected application programmers because
explicit parallelism should be exploited to take advantage of multi-core hardware; in
particular, both data and task parallelism. The first multi-core CPUs were simply two
processors on the same die but later generations incorporated more cores, additional
cache levels and better interconnection networks, among other features.

Currently, the main CPU vendor is Intel followed by AMD. In 2015, Intel
presented the Skylake micro-architecture introducing the first processors of this
family and more models were announced to the next two years. In particular, the
high-performance Xeon line will incorporate several improvements, such as support
for more sockets, channels of DDR4 memory and PCIe slots. Additionally, these
processors will include AVX-512 vectorial instruction set 1(a 512-bit extension of

1 AVX-512 Extensions: https://software.intel.com/en-us/blogs/
additional-avx-512-instructions

4 Authors Suppressed Due to Excessive Length

the current Advanced Vector Extensions with 256-bit width) and will give support
to integrated FPGAs [37]. According to Intel, the next two micro-architectures
will be available in 2016 (Kaby Lake) and 2017 (Cannonlake). Kaby Lake will
be an upgraded version of Skylake while Cannonlake will shrink the fabrication
technology to 10nm [15].

AMD introduced three different micro-architectural families in 2011. The Fusion
family corresponds to the Accelerated Processing Units that integrate CPUs and
GPUs on the same chip. On the other hand, the Bobcat family was designed
for low-power and low-cost devices while the Bulldozer family is oriented to
desktop computers and servers. Finally, the next AMD micro-architecture is named
Zen and will be available by the end of 2016. Zen’s main purpose consists
in improving performance per core more than increasing number of cores or
hardware threads. In particular, some preliminary reports state up to 40% more
instructions per clock cycle [31]. Unlike previous micro-architectural families, Zen
will adopt simultaneous multi-threading capabilities and will be developed using
14nm fabrication technology.

2.2 GPU

GPUs were originally developed for computer games and its designs were orientated
for that purpose. The first non-graphic applications were programmed adapting
primitives from graphic languages like OpenGL or DirectX. In the last decade, GPU
architectures were modified and several programming libraries were introduced
that permitted avoiding graphic primitives. These changes increased GPU usage
in significant manner. Nowadays, they have consolidated as general-purpose
accelerators in HPC community due to the increasing compute power and energy
efficiency.

Currently, most popular programming languages for GPUs are CUDA [34],
OpenCL [46] and, in lesser extent, OpenACC [36]. While these languages reduces
programming cost compared to initial graphic languages, they still represent a
hard task because they significantly differ from traditional CPU’s programming
model. Therefore, programmers must learn specific GPU knowledge to achieve
high-performance applications. For example, common optimisation techniques
comprise increasing hardware occupancy, exploiting memory hierarchy, organising
memory accesses, avoiding divergent branches, among others.

The two main GPU vendors are NVIDIA and AMD. In 2011, AMD introduced
Graphics Core Next (GCN) architecture, which is the basis for its individual and
integrated GPUs. GCN was designed to achieve high performance not only in
graphic applications but also in general purpose tasks [43]. One of the main AMD
innovations in the last years is High-Bandwidth Memory (HBM) technology, a new
type of 3D memory that can be used in CPUs and GPUs. This kind of memory has
several advantages: significant space savings and increased bandwidth and energetic
efficiency [3]. HBM has been incorporated in AMD GPUs codenamed Fiji from

State-of-the-art in Smith-Waterman Protein Database Search on HPC Platforms 5

GCN architecture, introduced in 2015, and more AMD cards with this technology
will be available in 2016.

Current NVIDIA GPUs are based on Maxwell architecture, which was presented
in 2014. Maxwell family redesigned Streaming Multiprocessor architecture, the
heart of each NVIDIA GPU, and also the memory hierarchy [13]. These changes
allowed Maxwell to improve performance and power efficiency in relation to its
predecessor Kepler. NVIDIA has announced its next architecture codenamed Pascal
for 2016, which will include HBM adoption and 16nm manufacturing process.
According to NVIDIA, Pascal will improve performance, performance per watt,
memory capacity and bandwidth of Maxwell [32].

2.3 FPGA

FPGAs are reconfigurable integrated circuits comprising programmable
interconnections that join programmable logic blocks, embedded memory
blocks and digital signal processor blocks. Communication to the outside is
performed through I/O blocks, which are arranged in a ring form around the
circumference of these devices. As opposed to CPUs and GPUs, FPGA resources
may be configured and linked together to create custom instruction pipelines
through which data is processed. Also, they work at lower clock frequencies and
have lower peak performances. However, since FPGAs can configure its hardware
for each specific application, they usually reach better performance efficiencies.
Additionally, they are normally more efficient from energetic point of view as there
is no silicon waste [42, 49].

Since its development, FPGAs have significantly evolved continuously
incrementing its available resources and incorporating features like standards for
interconnection networks and high-speed I/O. At the beginning, FPGAs were used
for digital signal processing. However, in the last few years, there are two clear
trends to enlarge FPGA usage in other application domains. The first comprises
the increasing integration of FPGAs with CPUs due to accelerators consolidation
in HPC community as a way of improving performance while keeping power
efficiency. In particular, the two main FPGA makers Xilinx and Altera have
established different agreements with important CPU vendors to develop hybrid
CPU-FPGA architectures. IBM has announced a strategic partnership with Xilinx to
enable higher performance and energy-efficient applications through FPGA-enabled
workload acceleration on IBM POWER-based systems [16]. On its behalf, Altera
has been recently acquired by Intel and they plan to combine Altera’s FPGA
products with Intel Xeon processors as highly customized, integrated products [17].
The second trend consists in reducing FPGA programming cost. Generally, digital
design verification and creation have involved the use of Hardware Description
Languages (HDLs), like Verilog and VHDL. However, HDLs are tedious, error
prone and affected by an extra abstraction layer as they contain the additional
concept of time. Currently, both Altera and Xilinx are working on high-level tools

6 Authors Suppressed Due to Excessive Length

that seek to reduce the programming cost of these devices; in particular, through
OpenCL standard [2, 53].

2.4 Xeon Phi

The Xeon Phi is a recent many-core coprocessor developed by Intel for HPC
applications. In its current generation, the Xeon Phi features up to 61 x86 pentium
cores with extended vector processing units (512-bit) named Knight Corner (KNC)
and simultaneous multi-threading capabilities (four hardware threads per core).
Each core integrates an L1 cache and has an associated fully coherent L2 cache.
Additionally, a high-speed ring interconnection allows data transfer among all the
L2 caches and the memory subsystem.

The Xeon Phi offers two execution modes: offload and native. In the offload
mode, the Xeon Phi acts as a coprocessor. It takes on computationally demanding
parts of programmes delegated by the CPU. In the native mode, the Xeon Phi runs
as a completely standalone computing system. In this mode, applications can use
solely the resources of the coprocessor.

From a programming point of view, one of the main advantages of this platform
is the support of existing parallel programming models traditionally used on HPC
systems such as the OpenMP or MPI paradigms, which simplifies code development
and improves portability over other alternatives based on accelerator-specific
programming languages such as CUDA or OpenCL.

With regard to the future of Intel many-core coprocessors, Intel has announced
the next generation, called Knights Landing, which is planned to run HPC
systems in 2016. Among the main differences posted, the chip will be built with
14nm technology and be able to operate as a standalone CPU rather than as a
coprocessor. It will also incorporate Intel Silvermont processors with AVX-512
vector capabilities, unifying in this way vector extensions with general purpose Intel
Xeon Skylake processors. Lastly, main memory will have a stacked organisation,
similar to HBM proposal [37].

3 Smith-Waterman Algorithm

In 1970, Saul Needleman and Christian Wunsch introduced an algorithm to
compute optimal global alignment between two biological sequences, known as
the Needleman-Wunsch algorithm [33]. Later, in 1981, Temple Smith and Michael
Waterman proposed a variant of the Needleman-Wunsch algorithm to find the
optimal local alignment of two sequences [44]. The SW method has been used as
the basis for many subsequent algorithms and is often employed as a benchmark
when comparing different alignment techniques [14]. Its strength comes from

State-of-the-art in Smith-Waterman Protein Database Search on HPC Platforms 7

the guarantee of discovering optimal alignment because it explores all possible
alignments between the pair of sequences.

The SW algorithm computes the optimal local alignment between two sequences
following a dynamic programming approach and can be divided in two stages: (1)
similarity matrix (also called alignment matrix) filling, to obtain optimal alignment
score; and (2) traceback, to obtain optimal alignment.

1. Similarity matrix filling: given two sequences q = q1q2q3 . . .qm and d =
d1d2d3 . . .dn, SW fills a matrix H which keeps track of the degree of
similarity between them. The recurrence relations for the SW algorithm with the
modifications of Gotoh [12] for handling multiple sized gap penalties are shown
below:

Hi, j = max{0 , Hi−1, j−1 +SM(qi,d j), Ei, j, Fi, j} (1)

Ei, j = max{H i, j−1−Goe, Ei, j−1−Ge} (2)

Fi, j = max{H i−1, j−Goe, Fi−1, j−Ge} (3)

The residues of sequence q, usually called query sequence, label the rows. In
similar way, the residues of sequence d, usually called database sequence, label
the columns. Hi, j represents the score for aligning the prefixes of q and d ending
at position i and j, respectively. Ei, j and Fi, j are the scores ending with a gap
involving the first i residues of q and the first j residues of d, respectively. SM
is the substitution matrix which defines the substitution scores for all residue
pairs. Generally SM rewards with a positive value when qi and d j are identical
or relatives, and punishes with a negative value otherwise. Common substitution
matrices for protein alignment are BLOSUM or PAM families. Goe is the sum of
gap open and gap extension penalties while Ge is the gap extension penalty. The
recurrences should be calculated with 1≤ i≤ m and 1≤ j ≤ n, after initializing
H, E and F with 0 when i = 0 or j = 0. The maximal alignment score in the
matrix H is the optimal local alignment score S.

2. Traceback: Based on the position in matrix H where the value S was found, a
traceback procedure is performed to obtain the pair of segments with maximum
similarity, until a position whose value is zero is reached (this being the starting
alignment point of the segments). These two segments represent the best local
alignment.

The SW algorithm has quadratic time complexity. To compute optimal
alignments, this method has quadratic spatial complexity. However, computing
optimal alignment scores do not require storing full similarity matrix and can be
computed in linear space complexity.

Figure 1 shows the calculation of four cells (H1,1, H1,2, H2,1 and H2,2) in the
similarity matrix corresponding to the SW alignment between protein sequences
CAWHEAET (q) and CITAGWHEE (d). BLOSUM62 was selected as the scoring

8 Authors Suppressed Due to Excessive Length

Fig. 1 Calculation of four cells in the similarity matrix corresponding to the SW alignment
between protein sequences CAWHEAET and CITAGWHEE

matrix, and gap insertion and extension penalties were set to 6 and 2, respectively.
After initializing H, E and F with zero when i = 0 or j = 0, the other cells in the
similarity matrix are computed according to Eq. 1. For example, the cell H1,1 in
Fig. 1 is 9 because that is the maximum of 0, 9 (the upper-left neighbour plus the
similarity score from BLOSUM62 substitution matrix, 0 + 9 = 9),−2 (the alignment
score ending with a gap in the query sequence, max{0−8,0−2}=−2) and−2 (the
alignment score ending with a gap in the database sequence, max{0− 8,0− 2} =
−2).

It is important to note that no cell value can be less than zero. Additionally, there
is a strict order of computation in matrix H due to the data dependences inherent
to this problem. Any cell in matrix H has a dependence on three cells: the one to
the left, the one above and the one from the upper left diagonal. This dependence is
illustrated in Fig. 1 through arrows.

Once all values in matrix H were computed, a traceback procedure is performed
to obtain the best local alignment. Figure 2 illustrates the complete similarity matrix

State-of-the-art in Smith-Waterman Protein Database Search on HPC Platforms 9

Fig. 2 Illustration of
Smith-Waterman alignment
between protein sequences
CAWHEAET and
CITAGWHEE

corresponding to the SW alignment shown in Fig. 1. The traceback starts in S
position and then works backwards (upwards and to the left). Moving upwards
inserts a gap in the database sequence while moving to the left inserts a gap in the
query sequence. The traceback procedure terminates when a position whose value is
zero is reached (this being the starting alignment point of the segments). These two
segments represent the best local alignment. In this example, the optimal alignment
score is 20 while the best local alignment is shown under the similarity matrix.

4 Acceleration of SW Protein Database Search

As explained in Section 1, dynamic programming algorithms can be too
computationally expensive to be used in biological database searches. In fact, due
to the exponential growth in biological data, heuristic approaches are not enough in
some occasions [19]. This is where parallelism exploitation becomes fundamental
to accelerate this kind of searches. This section focuses on the state-of-the-art of
SW algorithm acceleration. First of all, we study the data dependences of SW
algorithm and the possible ways of parallelize it. Next, we describe the available
implementations for four different hardware platforms: CPU, GPU, FPGA and Xeon
Phi.

4.1 Data dependences and parallelism

The most computational expensive part of SW algorithm is the similarity matrix
filling. Even though the data dependences described in Section 3 restrict the ways in

10 Authors Suppressed Due to Excessive Length

that the similarity matrix can be computed, the SW computation has some inherent
parallelism that can be exploited to reduce its computational cost. In general,
accelerated implementations adopt one of the following two approaches:

• In the intra-task parallelism approach, the parallelism within a single pair of
sequences is exploited. The implementations following this approach compute
several anti-diagonal cells in parallel, since these computations are independent
among them. It is also possible to compute several cells in a row or a column
at the same time; however, a subsequent adjustment mechanism is required to
maintain algorithm coherency due to data dependence ignorance.

• Inter-task parallelism is based on performing several pairwise alignments
concurrently. Its backbone is based on null data-dependence between alignments,
which turns the problem into an embarrassingly parallel one.

Both approaches have been extensively explored by scientific community in a
wide variety of hardware platforms. In the following subsection, we describe the
works based on CPU, GPU, FPGA and Xeon Phi.

4.2 Available Implementations

Cell updates per second (CUPS) is a commonly used performance measure in the
Smith-Waterman context, because it allows removal of the dependence on the query
sequences and the databases utilized for the different tests as well as the hardware
device. A CUPS represents the time for a complete computation of one cell in
matrix H, including all memory operations and the corresponding computation of
the values in the E and F arrays. Given a query sequence Q and a database D, the
GCUPS (billion cell updates per second) value is calculated by:

|Q|× |D|
t×109 (4)

where |Q| is the total number of residues in the query sequence, |D| is the total
number of residues in the database and t is the runtime in seconds [24].

Next, we describe the most notable implementations according to the hardware
architecture employed.

4.2.1 CPU Implementations

The first efforts to accelerate SW algorithm date back to the 90s. Alpern et
al. [1] proposed several techniques including a parallel implementation that used
microparallelism by dividing the 64-bit Z-buffer registers of the Intel Paragon i860
processor into four parts. This approach allowed comparing the query sequence and
four database sequences at the same time. As a result, they reached a 5× speed-up
compared to a conventional implementation.

State-of-the-art in Smith-Waterman Protein Database Search on HPC Platforms 11

Fig. 3 Approaches to vectorisation in similarity matrix computations (adapted from [38]): (a)
Vectorisation along the anti-diagonals, proposed by Wozniak [52]; (b) Vectorisation along the
query sequence, proposed by Rognes and Seeberg [39]; (c) Vectorisation along the query sequence
(striped approach), proposed by Farrar [9]; (d) Vectorisation along multiple database sequences,
proposed by Alpern et al. [1].

The intra-register parallelism of the previous approach would be simpler and
easier with the future introduction of small vectorial capabilities from processor
vendors. With the rise of multimedia applications, general purpose processors
incorporated SIMD technology, like the MMX, SSE, AVX or AltiVec extensions
[38]. In general, four different approaches can be identified to vectorisation in
similarity matrix computations. Figure 3 illustrates these approaches.

Most efforts focused on intra-task parallelism. In 1997, Wozniak [52] presented
a parallel implementation for a Sun Ultra Sparc processor that exploited the SIMD
video instructions to compute several anti-diagonal cells in parallel, since they
have no dependences among them. Unfortunately, getting substitution scores for
anti-diagonal cells resulted complex and hard to resolve efficiently, because each
amino acid pair requires different indexation in substitution matrix. Even so,
Wozniak achieved a 2× acceleration over the fastest serial implementation of the
time.

Three years later, in 2000, Rognes and Seeberg [39] introduced a SIMD
version using the MMX/SSE extensions, becoming the first to take advantage
of these instruction sets. They found that vectorising along the query sequence
was faster than vectorising along the anti-diagonals, in spite of having to make
more calculations due to ignoring some of the data dependences mentioned in

12 Authors Suppressed Due to Excessive Length

Subsection 4.1. Another difference with previous solutions lies on Rognes and
Seeberg used 8-bit integer data. This fact allowed them to compute a higher number
of alignments in parallel at the cost of reducing score representation range to 0-255.
This scheme results beneficial because overflow only occurs when sequences are
long and/or very similar between them. When overflow occurs, a 16-bit integer
version of the algorithm is employed to guarantee correct results. In addition, they
introduced the Query Profile technique (QP), which consists in building an auxiliary
two-dimensional array of size |q|× |∑ |, where q is the query sequence and ∑ is the
alphabet. Each row of this array contains the scores of the corresponding query
residue against each possible residue in the alphabet. QP technique improves data
locality by replacing a random access to the substitution matrix with a linear access
to the QP matrix in the algorithm innermost loop. The SIMD instructions usage
together with QP technique allowed Rognes and Seeberg to reach a 6× speed-up
over an optimised serial implementation.

Later, in 2007, Farrar [9, 10] used SSE2 extensions to develop an improved
version of the Rognes and Seeberg implementation. Just as the previous approach,
Farrar vectorised along the query sequence. However, the alignment matrix
computations were re-organised to do them in a striped manner. This access
pattern minimises data dependences impact and reduces misaligned vector accesses.
Additionally, Farrar proposed the lazy F technique, which helps to minimise the
number of conditional jumps inside the innermost loop. As a consequence of these
improvements, Farrar reported more than 11 and 20 GCUPS when using four and
eight cores, respectively.

A year later, Szalkowski et al. [45] proposed some improvements to Farrar
approach. They presented a multi-threaded version for both x86 architectures with
SSE2 compatibility and Cell/Broadband Engine from IBM. This implementation
is known as SWPS3 and reached a peak of 15.7 GCUPS when using a quad-core
processor.

Afterwards, in 2011, Rognes [38] presented SWIPE, an implementation for Intel
processors with SSSE3 instruction set adopting the inter-task scheme proposed
previously by Alpern et al. [1]. Rognes also introduced the Score Profile technique
(SP) to accelerate the substitution scores extraction. The SP technique is based on
constructing an auxiliary n× l× |∑ | two-dimensional score array, where n is the
length of the database sequence, l is the number of vector lanes and ∑ is the alphabet.
Since each row of the auxiliary matrix forms an l-lane score vector, its values can
be loaded at the same time through a single load vectorial instruction. The main SP
disadvantage is that score array must be constructed for each database sequence.
Using two six-core processors, SWIPE achieved a peak of 106.2 GCUPS, being up
to six times faster than SWPS3 and Farrar approach.

In 2013, Zhao et al. [55] presented SSW, a library developed in C/C++
to facilitate SW integration to other genomic applications. SSW adopts Farrar
approach to compute optimal alignment as well as optimal score. As SSW is
also available as an autonomous tool, the authors measured its performance while
searching Swiss-Prot database; SSW reported up to 2.53 GCUPS using an AMD
x86 64 2.0Ghz processor.

State-of-the-art in Smith-Waterman Protein Database Search on HPC Platforms 13

Two years later, in 2015, Rucci et al. [41] introduced SWIMM, an
implementation for Intel heterogeneous systems combining Xeon and Xeon Phi
processors. SWIMM adopts the inter-task scheme and offers three execution mode:
(1) Xeon, (2) Xeon Phi and (3) concurrent Xeon and Xeon Phi. Unlike previous
implementations, SWIMM is able to take advantage of AVX2 as well as SSE
extensions. The AVX2 exploitation allows SWIMM to compute up to 32 alignments
in parallel in place of 16 (SSE case). In their work, the authors showed that SWIMM
can be comparable with SWIPE when using SSE instruction set. However, when
taking advantage of AVX2 extensions, SWIMM demonstrated to be superior to
SWIPE. In the Xeon mode with AVX2 exploitation, SWIMM reached up to 360
GCUPS using two Intel Xeon E5-2695 v3 2.3 GHz processors when searching
Environmental NR database.

Finally, in 2016, Daily [7] presented Parasail, a C-based library containing
implementations of different pairwise sequence alignment algorithms. The intent
of this library is to be integrated into other software packages, not necessarily to
replace already highly performing database search tools. In that sense, Parasail
implements most known algorithms for vectorised SW sequence alignment that
follows intra-task parallelism scheme (including Wozniak [52], Rognes and
Seeberg [39] and Farrar [9, 10] approaches described above). Additionally, the
Parasail library implements each of these methods for different instructions sets:
SSE2, SSE4.1, AVX2, and KNC. In his work, the author showed that Parasail’s
AVX2 implementation is able to outperform SWIPE for query sequences longer than
approximately 500 amino acids. Parasail reported up to 291.5 GCUPS using two
Intel Xeon E5-2670 2.3 GHz processors when searching UniProt Knowledgebase
database.

Table 1 summarises the performance of CPU implementations.

4.2.2 GPU Implementations

The first GPU implementations date back to 2006 and they were proposed by
Weiguo Liu et al. [22] and Yang Liu et al. [23]. Both proposals are very similar: they
are based on the OpenGL library, compute alignment matrices by anti-diagonals and
store sequences as well as auxiliary buffers in texture memory. Weiguo Liu et al.
implementation only processes protein sequences of length shorter than 4096 amino
acids due to limitations imposed by the texture memory of that time, and for that
reason, the experimental work was carried out with a reduced version of Swiss-Prot
database (99.8% of original sequences). This implementation reached 0.65 GCUPS
using a NVIDIA GeForce 6800 GT, which represented a speed-up of 16× over a
serial CPU implementation. On its behalf, the Yang Liu et al. implementation does
not impose restrictions on the sequence length and it offers two execution modes: (1)
optimal alignment and (2) optimal alignment score. Using a NVIDIA GeForce 7800
GTX, this implementation achieved 0.18 and 0.24 GCUPS in (1) and (2) execution
modes, respectively.

14 Authors Suppressed Due to Excessive Length

Table 1 Performance summary of CPU implementations

Year Implementation Hardware used No. of
threads

GCUPS

1997 Wozniak [52] Sun Ultra Sparc Enterprise 6000
167 MHz

12 0.2

2000 Rognes and Seeberg [39] Intel Pentium III 500 MHz 1 0.15

2007 Farrar [9] Intel Xeon Core 2 Duo 2.0 GHz 1 2.9

2008 SWPS3, Szalkowski et
al. [45]

Intel Core 2 Quad Q6600 2.4
GHz

4 15.07

2011 SWIPE, Rognes [38] 2×Intel Xeon X5650 2.67 GHz 24 106.2

2013 SSW, Zhao et al. [55] AMD x86 64 2.0Ghz 1 2.53

2015 SWIMM, Rucci et al. [41] 2×Intel Xeon E5-2695 v3 2.3
GHz

28 309.3

56 360

2016 Parasail, Jeff Daily [7] 2×Intel Xeon E5-2670 2.3 GHz 24 291.5

In 2008, Manavski and Valle [28] presented the first CUDA implementation
for SW protein database search, which was named SW-CUDA. As opposed to
previous proposals, SW-CUDA adopts inter-task parallelism scheme because each
CUDA thread computes a complete alignment between the query sequence and a
particular database sequence. Another distinctive characteristic of SW-CUDA is the
QP technique usage to obtain scores from substitution matrix. SW-CUDA reported
1.85 GCUPS using a NVIDIA GeForce 8800 GTX card when searching Swiss-Prot
database. Additionally, it showed good scalability with the amount of GPUs owing
to a dynamic workload balance technique that considers the compute power of each
particular device.

In 2009, Yongchao Liu et al. [24] introduced CUDASW++, an implementation
for CUDA-enabled GPUs that combines both intra-task and inter-task parallelism
approaches. The inter-task scheme usually reports better performance than intra-task
scheme: however, it requires more memory resources. Therefore, CUDASW++ sets
a configurable length threshold to compute the alignments. Database sequences of
length less than or equal to the threshold are computed according to the inter-task
scheme. The alignments of database sequences of length greater than the threshold
are carried out following the intra-task scheme. CUDASW++ also carefully arranges
memory accesses to get coalesced access. Besides, it exploits memory hierarchy by
storing query sequence and substitution matrix in constant and shared memories,
respectively. This set of optimisations allowed CUDASW++ to reach 9.63 and 16.09
when searching Swiss-Prot database using a single-GPU NVIDIA GeForce GTX
280 and a dual-GPU NVIDIA GeForce GTX 295, respectively.

A year later, the same authors of CUDASW++ presented an improved version
of this tool, known as CUDASW++ 2.0 [26]. This version offers two execution

State-of-the-art in Smith-Waterman Protein Database Search on HPC Platforms 15

modes: the first one adopts the original mode but includes QP technique and
replaces scalar data with packed data; the second one follows the Farrar approach [9]
through SIMD instruction virtualization on graphic cards. Searching Swiss-Prot
database, CUDASW++ 2.0 reported similar behaviour between both execution
modes, reaching 16.9 and 29.6 GCUPS on a single-GPU NVIDIA GeForce GTX
280 and on a dual-GPU NVIDIA GeForce GTX 295, respectively.

GASW is another tool for CUDA-compatible GPUs [19]. This software was
introduced in 2010 and among its optimisation we can mention elimination of
memory bottlenecks and the conversion of the database to a format convenient for
GPU usage. GASW achieved up to 21.36 GCUPS on a NVIDIA GeForce GTX 275
when searching Swiss-Prot database.

In 2011, Zou et al. [56] presented a CUDA-based implementation that combines
different optimisations: global memory accesses in coalescent manner, hierarchy
memory exploitation and loop unrolling. This implementation reached 28.35
GCUPS on a NVIDIA GeForce GTX 470 when searching a synthetic database of
107520 sequences (each sequence contains 1024 random residues).

There are few known implementations based on OpenCL for GPUs.
Khalafallah et al. [20] follows inter-task approach and reuses several optimisations
from previous implementations like global memory accesses arrangement to
obtain coalescent access and texture memory usage to store QP matrix. This
implementation achieved 12.29 and 65.99 GCUPS when searching a reduced
version of Swiss-Prot database on a NVIDIA GeForce 9800 GT and an ATI HD
5850, respectively. On its behalf, Borovska and Lazarova proposal [6] also adopts
inter-task scheme, although it does not provide enough implementation details.
With Swiss-Prot database, this software reported 1.6 and 7.8 GCUPS on a NVIDIA
Quadro FX3600M and on a NVIDIA GeForce GTX 295 (dual-GPU), respectively.

Finally, in 2013, Yongchao Liu et al. [27] presented a third version of
CUDASW++, which was named CUDASW++ 3.0. This implementation targets
NVIDIA GPUs based on the Kepler architecture and combines concurrent
CPU and GPU computations adopting the inter-task approach on both cases.
The workload is distributed dynamically using an heuristic based on hardware
characteristics and constants derived from empirical evaluations. For the GPU
computation, CUDASW++ 3.0 employs CUDA PTX video instructions. For the
CPU computation, this algorithm uses SSE extensions; specially the host code
is based on SWIPE code. Alignments are computed using 8-bit integers on both
CPU and GPU devices. Once all alignments are processed, CPU detects overflow
cases and recomputes them using 16-bit integer. It is important to mention that,
because GPU adopts inter-task scheme, it only processes those database sequences
of length less than, or equal to, the threshold. Longer sequences are obligatory
computed in CPU. With Swiss-Prot as benchmark database, CUDASW++ 3.0
reached 119 GCUPS using a personal computer based on a quad-core Intel i7 2700k
3.5Ghz processor and a NVIDIA GeForce GTX 680. Because NVIDIA decided
to cut down the capability of the PTX video instructions in Maxwell architecture,
CUDASW++ 3.0 could not run at full speed on these GPUs. Beyond the previous

16 Authors Suppressed Due to Excessive Length

limitation, CUDASW++ 3.0 is considered the fastest SW implementation for
CUDA-compatible systems as of today.

Table 2 summarises the performance of GPU implementations.

4.2.3 FPGA Implementations

Acceleration of sequence alignment using FPGAs is a widely studied topic in HPC
community. However, most of these implementations focus on DNA alignment
because it is simpler than protein alignment from an algorithmic perspective (DNA
alignment has a reduced alphabet and adopts a simpler scoring scheme).

Beyond sequence type, FPGA implementations are usually based on creating
basic building blocks that can compute a matrix cell in a clock cycle. Next, multiple
instances of these blocks are combined at the same time to create systolic arrays
capable of processing large amounts of data in parallel. A systolic array is an
arrangement of processing units in array form, where data flows synchronously
among the units, usually in a specific direction. This kind of array works like
vectorial units in modern CPUs (e.g. SSE units) but, instead of having a fixed length,
systolic arrays can configure its length [48].

Unfortunately, analytic comparison among these implementations is quite
difficult due to different causes [8, 14]:

• There is a wide variety of FPGAs and each of them implements its circuitry in a
different way, which complicates direct comparison.

• There are very few fully functional tools. The implementations that report the
best performance only contemplate synthetic tests with the aim to show the
potential of this kind of accelerator although its usage in real world is very
limited. Some implementations effectively employ real data but also present
some limitations: query sequence is embedded in the design, sequences have
a fixed or limited length, search parameters (gap penalizations or substitution
matrix) are fixed or they require hardware reconfiguration to change them, among
others.

• Lack of documentation on implementation details. For example, the
implementation performance depends strongly on the data width used. Normally,
performance improves as data width reduces, although a very small size could
be insufficient to compute all alignments. Researchers tend to omit this kind of
detail.

Among the fully functional implementations, we can found Isa et al. [18],
Benkrid et al. [4] and Rucci et al. [40]. In 2011, Isa et al. [18] proposed a
linear systolic array implementation for a Xilinx Virtex-5 XC5VLX110 FPGA
although programming language was not specified. This implementation consists
of a pipeline of basic processing elements, each holding one query residue whereas
the subject sequence is shifted systolically through it. The alignments are computed
using 11-bit integers. When searching Swiss-Prot database, this implementation
reached up to 28 GCUPS.

State-of-the-art in Smith-Waterman Protein Database Search on HPC Platforms 17

Table 2 Performance summary of GPU implementations

Year Implementation Programming
model

Hardware used Database GCUPS

2006 Weiguo Liu et al. [22] OpenGL NVIDIA GeForce 6800
GT

Reduced Swiss-Prot
(99.8%)

0.65

2006 Yang Liu et al. [23] OpenGL NVIDIA GeForce 7800
GTX

983 sequences
(462862 amino
acids)

0.24

2008
SW-CUDA,
Manavski and
Valle [28]

CUDA
NVIDIA GeForce 8800
GTX Swiss-Prot

1.85

2×NVIDIA GeForce
8800 GTX

3.61

2009
CUDASW++,
Yongchao Liu et
al. [24]

CUDA
NVIDIA GeForce
GTX 280 Swiss-Prot

9.63

NVIDIA GeForce
GTX 295 (dual-GPU)

16.09

2010
CUDASW++ 2.0,
Yongchao Liu et
al. [26]

CUDA
NVIDIA GeForce
GTX 280 Swiss-Prot

16.9

NVIDIA GeForce
GTX 295 (dual-GPU)

29.6

2010 GASW, Kentie [19] CUDA NVIDIA GeForce
GTX 275

Swiss-Prot 21.36

2010 Khalafallah et
al. [20] OpenCL

NVIDIA GeForce 9800
GT

Reduced Swiss-Prot
(45%)

12.29

ATI HD 5850 65.99

2011 Zou et al. [56] CUDA
NVIDIA GeForce
GTX 280

107520 sequences of
1024 amino acids
each

13.71

NVIDIA GeForce
GTX 470

28.35

2011 Borovska and
Lazarova [6] OpenCL

NVIDIA Quadro
FX3600M Swiss-Prot

1.6

NVIDIA GeForce
GTX 295 (dual-GPU)

7.8

2013
CUDASW++ 3.0,
Yongchao Liu et
al. [27]

Pthreads +
CUDA

Intel i7 2700k 3.5Ghz
+ NVIDIA GeForce
GTX 680

Swiss-Prot
119

Intel i7 2700k 3.5Ghz
+ NVIDIA GeForce
GTX 690 (dual-GPU)

185.6

18 Authors Suppressed Due to Excessive Length

A year later, Benkrid et al. [4] introduced an implementation similar to Isa et al.
proposal [18]. This implementation is also based on a linear systolic array. However,
alignments are computed using 16-bit integers and the corresponding FPGA design
was captured in a C-based high level hardware language, called Handel-C [30].
Using a Xilinx Virtex-4 LX160-11 FPGA, the authors reported up to 19.4 GCUPS
when searching Swiss-Prot database.

In 2016, Rucci et al. [40] presented OSWALD, a tool developed with
Altera OpenCL SDK for Altera FPGA-based systems. Unlike the rest of the
implementations, this tool does not follow a linear systolic array fashion, on the
contrary, it adopts the inter-task scheme. OSWALD computes alignments in FPGA
using 8-bit integers and the host recomputes overflowed alignments using wider
integer data. Also, it is able to combine concurrent CPU computations through
multi-threading and SIMD exploitation. On a heterogeneous platform based on two
Xeon E5-2670 and a single Altera Stratix V GSD5 FPGA, OSWALD reached up
to 58.4 GCUPS on FPGA mode and 178.9 GCUPS on hybrid mode (host+FPGA),
while searching Environmental NR database.

Table 3 summarises the performance of known FPGA implementations.

4.2.4 Xeon Phi Implementations

Xeon Phi coprocessors can also be employed to accelerate SW alignments. In
2014, Liu and Schmidt [25] introduced SWAPHI, a tool for similarity searches
based on OpenMP. This implementation adopts the offload model and is capable
of taking advantage of several coprocessors at the same time. In this work, the
authors explored the benefits of intra-task and inter-task approaches as well as QP
and SP techniques. In particular, SWAPHI is able to compute 16 cells in parallel
due to KNC instruction set. Using a Xeon Phi 5110P, SWAPHI achieved up to
45.6 and 58.8 when searching TrEMBL database with intra-task and inter-task
schemes, respectively. When using four coprocessors, performance increased to
164.9 (intra-task) and 228.4 GCUPS (inter-task) for the same database searches.

XSW is another similarity search tool based on Xeon Phi coprocessors [50]. Like
SWAPHI, XSW employs inter-task scheme, SP technique and the KNC instruction
set. Unlike SWAPHI, XSW works in native mode. XSW reported up to 70 GCUPS
when searching Environmental NR database using a Xeon Phi 7110P.

An extended version of XSW, known as XSW 2.0, was developed subsequently
by the same authors [51]. This implementation follows the offload model
and combines concurrent CPU computations through multi-threading and SSE
extensions. Using a Intel Xeon E5-2620 processor and a Xeon Phi 7110P
coprocessor, XSW 2.0 reached up to 100 GCUPS when searching Environmental
NR database.

In 2015, Rucci et al. [41] presented the previously described SWIMM tool. In
their work, the authors state that, despite having more cores and wider vectorial
processing units, the poor performance (in terms of GCUPS) of the Xeon Phi
compared to Xeon is due mainly to the absence of low-range vector capabilities

State-of-the-art in Smith-Waterman Protein Database Search on HPC Platforms 19

Table 3 Performance summary of FPGA implementations

Year Implementation Programming
language

Hardware used GCUPS Comments

2004 Dydel and
Bala [8]

VHDL Xilinx Virtex II
XC2VP70-5

11.18 Synthetic tests. Fixed
sequence lengths.

2005 Oliver et al. [35] Verilog Xilinx Virtex II
XC2V6000

10.6 Query sequence of limited
length. Require hardware
reconfiguration to change
search parameters.

2007 Zhang et al. [54] Not specified Altera Stratix II
EP25180

25.6 Require hardware
reconfiguration to change
search parameters

2007 Van Court and
Herbordt [47]

VHDL Xilinx Virtex II
Pro XC2VP70-5

5.41 Sequences of limited
length. Require hardware
reconfiguration to change
search parameters.

2009 Benkrid et al. [5] Handel-C Xilinx Virtex II
XC2V6000-4

7.66* Require hardware
reconfiguration to
change search parameters.
*Theorethical peak
performance.

2011 Isa et al. [18] Not specified Xilinx Virtex-5
XC5VLX110

28

2011 Zou et al. [56] Not specified Xilinx Virtex-5
XC5VLX330

47 Synthetic tests

2012 Benkrid et al. [4] Handel-C Xilinx Virtex-4
LX160-11

19.4

2016 OSWALD,
Rucci et al. [40]

OpenMP +
OpenCL

2×Intel Xeon
E5-2670 2.60Ghz
+ Altera Stratix V
GSD5

58.4 FPGA mode

178.9 Hybrid mode

on the Xeon Phi. Beyond that, SWIMM showed to be comparable with SWAPHI
in the Xeon Phi mode and significantly superior to XSW 2.0 in the hybrid mode.
When searching Environmental NR database, SWIMM reported 160 GCUPS using
two Intel Xeon E5-2670 2.60Ghz processors and an Intel Xeon Phi 3120P.

Finally, XSW 2.0 was replaced by another tool named LSBDS [21]. The main
difference between XSW 2.0 and LSBDS is that the latter adopted a multi-pass
method to compute the alignment matrices that solved the performance drop
problem for long query sequences of the former. LSBDS reported up to 220 GCUPS
when searching a merged database (Environmental NR + TrEMBL) using two Intel
Xeon E5-2620 v2 2.0Ghz processors and two Intel Xeon Phi 7110P.

Table 4 summarises the performance of Xeon Phi implementations.

20 Authors Suppressed Due to Excessive Length

Table 4 Performance summary of Xeon Phi implementations

Year Implementation Programming
model

Hardware used Database GCUPS

2014 SWAPHI, Liu and
Schmidt [25]

OpenMP
(offload)

Intel Xeon Phi 5110P
TrEMBL

58.8

4× Intel Xeon Phi 5110P 228.4

2014 XSW, Wang et al. [50] OpenMP
+ Pthreads
(native)

Intel Xeon Phi 7110P Environmental
NR

70

2014 XSW 2.0, Wang et
al. [51]

OpenMP
+ Pthreads
(offload)

Intel Xeon E5-2620 + Intel
Xeon Phi 7110P

Environmental
NR

100

2015 SWIMM, Rucci et
al. [41]

OpenMP
(offload)

2×Intel Xeon E5-2670
2.60Ghz + Intel Xeon Phi
3120P

Environmental
NR

160

2015 LSBDS, Lan et
al. [21]

OpenMP
+ Pthreads
(offload)

2×Intel Xeon E5-2620 v2
2.0Ghz + 2×Intel Xeon Phi
7110P

TrEMBL +
Environmental
NR

220

5 Performance/Power Consumption Evaluations

Energy efficiency is becoming more important every day in the HPC community.
There is a wide availability of works exploring performance and power consumption
of different hardware devices. However, only three do it in the SW context. All
of these works have similar coarse-grain results but differ in the improvement
coefficients due to different methodological aspects.

In 2011, Zhou et al. [56] evaluated performance and power consumption of
several implementations for CPU, GPU and FPGA. Considering energy efficiency
as GCUPS/Watt, they found that FPGA outperforms CPU and GPU by factors of
50× and 26×, respectively. These significant differences can be explained according
to three reasons. In the first place, host consumption was not considered in GPU and
FPGA implementations to the detriment of CPU implementations. In the second
place, CPU and GPU implementations are sub-optimal. These implementations
reported less GCUPS than others previously presented in literature. In the third
place, they employed synthetic data benefiting FPGA implementations, besides
being non-representative of real world biological searches.

Benkrid et al. [4] is another performance/power consumption evaluation in the
SW context. In this work, the authors presented some implementations for different
hardware devices: CPU, GPU and FPGA. They found that FPGA is the most
energy efficient platform being up to 500× and 23× better than CPU and GPU,
respectively. These impressive results are explained due to several reasons. Firstly,
host consumption was not considered in FPGA and GPU cases as in the previous
work. Secondly, the authors state that they chose specific hardware platforms

State-of-the-art in Smith-Waterman Protein Database Search on HPC Platforms 21

based on the same fabrication technology (90nm) to enable a fair comparison
between devices. This fact clearly benefits FPGA and GPU implementations
since CPUs are more advanced in this aspect. Lastly, they employed sub-optimal
implementations for all devices. As the work also evaluates programming cost of
each implementation, they chose not to use the results of the fastest implementations
reported in the literature, but instead to perform their own experiments using
solutions developed by a set of Ph.D. students with relatively equal experience on
each platform.

Rucci et al. [40] is probably the most realistic SW performance/power
consumption evaluation, since the authors considered host consumption in
accelerator versions and employed powerful hardware platforms, the best
implementations available in literature so far for each device and real biological
data. Taking CPU-based systems as baseline, these authors compared performance
and energy efficiency of hybrid systems using all its available computational
resources (host and accelerators). They found that CPUs offer a good balance
between performance and power consumption, especially those with AVX2
instruction set. Xeon Phi-based systems are not a good choice for this problem from
energy efficiency perspective principally due to the absence of low-range vector
capabilities on this coprocessor. The performance gain is smaller than the increase
in power consumption, which translates into less GCUPS/Watt. Both CPU-FPGA
and CPU-GPU systems are able to improve energy efficiency, being the first step
forward to the second. GPU accelerated systems offer higher performance rates but
at the expense of higher power consumption rates too. CPU-FPGA systems offer
less GCUPS than GPU-based platforms. However, because its power consumptions
is lower, the energy efficiency rates are higher. In particular, GPU incorporation
performed up to 1.6× and 1.22× in performance and energy efficiency points of
view, respectively. In the FPGA case, its addition produced improvements of up to
1.4× in performance and 1.28× in energy efficiency.

6 Future View

Biological data continue increasing its size and accelerating SW database searches
still remains as a challenging task. Fortunately, several new hardware and software
technologies will be upcoming in the near future that will help to mitigate this issue:

• Multi-core processors offer a good balance between performance and energy
efficiency for SW database searches, in particular those with AVX2 instruction
set. Future processors of this kind will have more cores, extended vector units
and more complex and larger memory hierarchies. As explained in Section 4.2.1,
CPU-based implementations can be benefited directly from these features.

• GPUs have demonstrated to be powerful platforms to accelerate SW algorithm.
Next generation GPUs will have more computational power and better memory
performance. These characteristics can lead to faster implementations.

22 Authors Suppressed Due to Excessive Length

• FPGAs have also proved to be a good option for accelerating SW protein
searches, specially from energy efficiency perspective. In this way, new hybrid
CPU-FPGA architectures appear as a promising opportunity.

• Current generation of Xeon Phi are not a good alternative for accelerating SW
protein searches due mainly to the absence of low-range vector capabilities on
this coprocessor. Fortunately, next generation of Xeon Phi (Knights Landing)
will solve this issue incorporating the AVX-512 instruction set. Therefore, better
Xeon Phi performances are expected considering the number of cores and the
vector capabilities.

Some of these technologies will deliver improvements in a transparent manner to
programmers. For example, all hardware vendors plan to reduce the manufacturing
process technology of their devices, which can turn into faster communications
and more available computational resources. Or also stacked memory adoption
that will increase bandwidth and energetic efficiency. However, other technologies
will require programmer’s intervention to take advantage of them, like new hybrid
CPU-FPGA architectures or also the AVX-512 instruction set that will be available
in Xeon Skylake processors and next generation Xeon Phi coprocessors. Therefore,
programming efforts will be necessary to develop new computational tools capable
of taking advantage of these upcoming technologies.

7 Conclusions

In this chapter we gave a survey of the state-of-the-art in SW database protein
search, focusing on four widespread hardware architectures: CPU, GPU, FPGA
and Xeon Phi. First, we presented a brief description of each platform. Next, we
explained the SW algorithm followed by the study of its data dependences and
the possible parallelism schemes. We reviewed the existing implementations for
the hardware platforms under study including temporal evolution, contributions,
limitations and experimental work and results of each of them. Additionally,
as energy efficiency is becoming more important every day, we also surveyed
performance/power consumption works in SW context. Finally, we gave our view
on the future of SW protein searches considering next generations of hardware
architectures and its upcoming technologies.

Biological data continue increasing its size and, as a consequence, increasing
SW search time. Upcoming technologies will help to mitigate this issue but will
also present new challenges to programmers in order to take advantage of them. We
expect that this chapter can serve as a good starting point to future acceleration of
SW protein database searches.

Acknowledgements Enzo Rucci holds a PhD CONICET Fellowship from the Argentinian
Government, and this work has been partially supported by Spanish research project TIN
2012-32180.

State-of-the-art in Smith-Waterman Protein Database Search on HPC Platforms 23

References

1. Alpern B, Carter L and Gatlin KS (1995) Microparallelism and High-performance Protein
Matching. SC95, doi:10.1109/SUPERC.1995.242795

2. Altera Corporation (2016) Altera SDK for OpenCL. Available at https://www.altera.
com/products/design-software/embedded-software-developers/
opencl/overview.html Cited 08 Jan 2016

3. AMD (2016) High-Bandwidth Memory. Available at http://www.amd.com/en-us/
innovations/software-technologies/hbm Cited 08 Jan 2016

4. Benkrid K, Akoglu A, Ling C, Song Y, Liu Y and Tian X (2012) High performance biological
pairwise sequence alignment: FPGA versus GPU versus cell BE versus GPP. Int. J. Reconfig.
Comput., doi:10.1155/2012/752910

5. Benkrid K, Ying L and Benkrid A (2009) A Highly Parameterized and Efficient FPGA-Based
Skeleton for Pairwise Biological Sequence Alignment. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, doi:10.1109/TVLSI.2008.2005314

6. Borovska P and Lazarova M (2011) Parallel models for sequence alignment on CPU and
GPU. CompSysTech 2011, doi:10.1145/2023607.2023644

7. Daily J (2016) Parasail: SIMD C library for global, semi-global, and local pairwise sequence
alignments. BMC Bioinformatics, doi: 10.1186/s12859-016-0930-z

8. Dydel S and Bala P (2004) Large Scale Protein Sequence Alignment Using FPGA
Reprogrammable Logic Devices. LNCS, doi:10.1007/978-3-540-30117-2 5

9. Farrar M (2007) Striped Smith-Waterman speeds database searches six time over other SIMD
implementations. Bioinformatics, doi:10.1093/bioinformatics/btl582

10. Farrar M (2008) Optimizing Smith-Waterman for the Cell Broad-band Engine. Available
at http://farrar.michael.googlepages.com/SW-CellBE.pdf Cited 21 Mar
2009

11. Giles MB and Reguly I (2014) Trends in high-performance computing for engineering
calculations. Philos Trans A Math Phys Eng Sci., doi:10.1098/rsta.2013.0319

12. Gotoh O (1982) An improved algorithm for matching biological sequences. J. Mol. Biol.,
doi:10.1016/0022-2836(82)90398-9

13. Harris M (2014) Maxwell: The Most Advanced CUDA GPU Ever Made.
Available at http://devblogs.nvidia.com/parallelforall/
maxwell-most-advanced-cuda-gpu-ever-made/ Cited 08 Jan 2016

14. Hasan L and Al-Ars Z (2011) An Overview of Hardware-Based Acceleration of Biological
Sequence Alignment. In: Lopes H (ed) Computational Biology and Applied Bioinformatics.
InTech

15. Howse B and Smith R (2015) Tick Tock On The Rocks: Intel Delays 10nm, Adds 3rd Gen
14nm Core Product Kaby Lake. Available at http://www.anandtech.com/show/
9447/intel-10nm-and-kaby-lake Cited 08 Dec 2015

16. IBM (2015) IBM and Xilinx Announce Strategic Collaboration to Accelerate Data
Center Applications. Available at https://www-03.ibm.com/press/us/en/
pressrelease/48074.wss Cited 18 Jan 2016

17. Intel (2016) Intel Acquisition of Altera. Available at intelacquiresaltera.
transactionannouncement.com Cited 18 Jan 2016

18. Isa MN, Benkrid K, Clayton T, Ling C and Erdogan AT (2011) An FPGA-based
parameterised and scalable optimal solutions for pairwise biological sequence analysis. AHS
2011, doi:10.1109/AHS.2011.5963957

19. Kentie M (2010) Biological Sequence Alignment Using Graphics Processing Units. MSc
Thesis, TUDelft

20. Khalafallah A, Elbabb HF, Mahmoud O and Elshamy A (2010) Optimizing Smith-Waterman
algorithm on Graphics Processing Unit. ICCTD 2010, doi:10.1109/ICCTD.2010.5645976

21. Lan h, Liu W, Schmidt B, and Wang B (2015) Accelerating Large-Scale Biological
Database Search on Xeon Phi-based Neo-Heterogeneous Architectures. BIBM 2015,
doi:10.1109/BIBM.2015.7359735

24 Authors Suppressed Due to Excessive Length

22. Liu W, Schmidt B, Voss G, Schroder A and Muller-Wittig W (2006) Bio-sequence database
scanning on a GPU. IPDPS 2006, doi:IPDPS.2006.1639531

23. Liu Y, Huang W, Johnson J and Vaidya S (2006) GPU Accelerated Smith-Waterman. LNCS,
doi:10.1007/11758549 29

24. Liu Y, Maskell DL and Schmidt B (2009) CUDASW++: optimizing Smith-Waterman
sequence database searches for CUDA-enabled graphics processing units. BMC Research
Notes, doi:10.1186/1756-0500-2-73

25. Liu Y and Schmidt B (2014) SWAPHI: Smith-Waterman Protein Database Search on Xeon
Phi Coprocessors. ASAP 2014, doi:10.1109/ASAP.2014.6868657

26. Liu Y, Schmidt B and Maskell DL (2010) CUDASW++ 2.0: enhanced Smith-Waterman
protein database search on CUDA-enabled GPUs based on SIMT and virtualized SIMD
abstractions. BMC Research Notes, doi:10.1186/1756-0500-3-93

27. Liu Y, Wirawan A and Schmidt B (2013) CUDASW++ 3.0: accelerating Smith-Waterman
protein database search by coupling CPU and GPU SIMD instructions. BMC Bioinformatics,
doi:10.1186/1471-2105-14-117

28. Manavski S and Valle G (2008) CUDA compatible GPU cards as efficient
hardware accelerators for Smith-Waterman sequence alignment. BMC Bioinformatics,
doi:10.1186/1471-2105-9-S2-S10

29. McCool MD (2008) Scalable Programming Models for Massively Multicore Processors.
Proceedings of the IEEE, doi: 10.1109/JPROC.2008.917731

30. Mentor Graphics (2015) Handel-C System Methodology. Available at https://www.
mentor.com/products/fpga/handel-c/ Cited 08 Jan 2016

31. Moammer K (2015) AMD Zen CPU Microarchitecture Details Leaked In Patch - Doubles
Down On IPC And Floating Point Throughput. Available at http://wccftech.com/
amd-zen-cpu-core-microarchitecture-detailed/2/ Cited 16 Oct 2015

32. Moammer K (2015) Nvidia : Pascal Is 10X Maxwell, Launching in 2016 – Features 16nm,
3D Memory, NV-Link and Mixed Precision. Available at http://wccftech.com/
nvidia-pascal-gpu-gtc-2015/ Cited 16 Jan 2016

33. Needleman SB and Wunsch CD (1970) A general method applicable to the
search for similarities in the amino acid sequence of two proteins, J. Mol. Biol.,
doi:10.1016/0022-2836(70)90057-4

34. NVIDIA Corporation (2016) CUDA. Available at http://www.nvidia.com/
object/cuda_home_new.html Cited 08 Jan 2016

35. Oliver TF, Schmidt B and Maskell DL (2005) Reconfigurable architectures for
bio-sequence database scanning on FPGAs. IEEE Transactions on Circuits and Systems,
doi:10.1109/TCSII.2005.853340

36. OpenACC Organization (2016) OpenACC. Available at http://www.openacc.org/
Cited 08 Jan 2016

37. Pirzada U (2015) Intel’s Skylake Purley Family of Microprocessors
Will Boast upto 28 Cores and 56 Threads - Next Generation Xeon
Platform Landing in 2016. Available at http://wccftech.com/
intel-skylake-purley-platform-upto-28-cores-56-threads/ Cited
08 Dec 2015

38. Rognes T (2011) Faster Smith-Waterman database searches with inter-sequence SIMD
parallelization. BMC Bioinformatics, doi:10.1186/1471-2105-12-221

39. Rognes T and Seeberg E (2000) Six-fold speed-up of Smith-Waterman sequence
database searches using parallel processing on common microprocessors. Bioinformatics,
doi:10.1093/bioinformatics/16.8.699

40. Rucci E (2016) Evaluación de rendimiento y eficiencia energética en sistemas heterogéneos
para bioinformática. PhD Thesis, UNLP

41. Rucci E, Garcı́a C, Botella, G, De Giusti A, Naiouf M and Prieto-Matı́as M (2015) An
energy-aware performance analysis of SWIMM: Smith-Waterman implementation on Intel’s
Multicore and Manycore architectures. CPE, doi: 10.1002/cpe.3598

State-of-the-art in Smith-Waterman Protein Database Search on HPC Platforms 25

42. Seetle S (2013) High-performance Dynamic Programming on FPGAs with
OpenCL. Available at http://ieee-hpec.org/2013/index_htm_files/
29-High-performance-Settle-2876089.pdf Cited 08 Jan 2016

43. Smith R (2011) AMD’s Graphics Core Next Preview: AMD’s New GPU, Architected
For Compute. Available at http://www.anandtech.com/show/4455/
amds-graphics-core-next-preview-amd-architects-for-compute
Cited 08 Jan 2016

44. Smith TF and Waterman MS (1981) Identification of common molecular subsequences. J.
Mol. Biol., doi:10.1016/0022-2836(81)90087-5

45. Szalkowski A, Ledergerber C, Krahenbuhl P and Dessimoz C (2008) SWPS3 - fast
multi-threaded vectorized Smith-Waterman for IBM Cell/B.E. and x86/SSE2. BMC Research
Notes, doi:10.1186/1756-0500-1-107

46. The Khronos Group (2016) OpenCL: The open standard for parallel programming of
heterogeneous systems. Available at https://www.khronos.org/opencl/ Cited 08
Jan 2016

47. Van Court T and Herbordt MC (2004) Families of FPGA-based algorithms for approximate
string matching. ASAP 2004, doi:10.1109/ASAP.2004.1342484

48. Vermij E (2011) Genetic sequence alignment on a supercomputing platform. MSc Thesis,
TUDelft

49. Vestias M and Neto H (2014) Trends of CPU, GPU and FPGA for high-performance
computing. FPL 2014, doi:10.1109/FPL.2014.6927483

50. Wang L, Chan Y, Duan X, Lan H, Meng X and Liu W (2014) XSW: Accelerating Biological
Database Search on Xeon Phi. IPDPS 2014, doi:10.1109/IPDPSW.2014.108

51. Wang L, Chan Y, Duan X, Lan H, Meng X and Liu W (2014) XSW 2.0: A fast
Smith-Waterman Algorithm Implementation on Intel Xeon Phi Coprocessors. Available at
http://sdu-hpcl.github.io/XSW/ Cited 16 Nov 2015

52. Wozniak A (1997) Using video-oriented instructions to speed up sequence comparison.
CABIOS 13-2:145–150

53. Xilinx Inc. (2016) SDAccel Development Environment. Available at http://www.
xilinx.com/products/design-tools/software-zone/sdaccel.html
Cited 08 Jan 2016

54. Zhang P, Tan G and Gao GR (2007) Implementation of the Smith-Waterman Algorithm on a
Reconfigurable Supercomputing Platform. HPRCTA 2007, doi:10.1145/1328554.1328565

55. Zhao M, Lee W, Garrison E and Marth G (2013)SSW Library: An SIMD
Smith-Waterman C/C++ Library for Use in Genomic Applications. PLoS One,
doi:10.1371/journal.pone.0082138

56. Zou D, Dou Y and Xia F (2011) Optimization schemes and performance evaluation of
Smith-Waterman algorithm on CPU, GPU and FPGA. CPE, doi: 10.1002/cpe.1913

