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Abstract: Functionalized graphene derivatives including graphene oxide (GO), reduced graphene
oxide (rGO), and heteroatom (nitrogen/sulphur (N/S) or boron (B))-doped graphene were used to
synthesize composites with TiO2 (T). The photocatalytic performance of composites was assessed
for the degradation of Orange G dye (OG) under simulated solar light. All the prepared graphene
derivatives—TiO2 composites showed better photocatalytic performance than bare TiO2. A higher
photocatalytic activity was found for the composites containing GO and N/S co-doped rGO
(kapp = 109.2 × 10−3 and 48.4 × 10−3 min−1, for GO-T and rGONS-T, respectively). The influence of
both initial solution pH and the reactive species involved in the OG degradation pathway were
studied. The photocatalytic activity of the samples decreased with the increase of the initial pH
(from 3.0 to 10.0) due to the occurrence of electrostatic repulsive forces between the photocatalysts
surface and the molecules of OG, both negatively charged. The use of selective scavengers showed
that although the photogenerated holes dominate the degradation mechanism, radicals and singlet
oxygen also participate in the OG degradation pathway. In addition, reutilization experiments
indicated that the samples were stable under the reaction conditions used.
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1. Introduction

The growing industry and population is leading to a decrease of water resources quality. Up to
date, several contaminants have been detected in water and wastewater such as nitrates, phosphates,
metals, dyes, pesticides, pharmaceuticals, personal care products, endocrine disruptors, etc. Organic
dyes are pollutants especially difficult to remove because of their high solubility and stability [1].
Advanced oxidation processes (AOPs) are considered efficient treatments for water polluted with
recalcitrant and non-biodegradable compounds [2]. Heterogenous photocatalysis is a very attractive
option because it is possible to use sunlight, the availability of non-poison materials, and low cost.
In addition, it has demonstrated a high efficiency in degrading a wide range of water pollutants [3–5].
Among the various semiconductors used as photocatalysts such as TiO2, ZnO, ZrO2, CdS, ZnS, WO3

etc., TiO2 has been typically studied because of its high efficiency and stability for the degradation of
inorganic and organic pollutants. However, its application in the visible range of the solar spectrum
is limited by the low quantum yield and the wide band gap of TiO2 (i.e., 3.2 eV for anatase) [6–9].
Several strategies have been developed to expand the response of TiO2 into the visible range spectra
namely, the addition of electron donors [10], noble metals [11], metal ion or anion doping [12,13],
dye sensitization [14], synthesis of TiO2 with exposed {001} facets [15], heterojunction with different
types of active materials [16,17], combination with carbon materials [18], etc.
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Carbon materials such as graphene (a two-dimensional allotrope of carbon) and its well-known
derivatives including graphene oxide (GO) and reduced graphene oxide (rGO) have demonstrated the
ability to enhance the photocatalytic performance of TiO2 by producing a synergistic effect between
both phases [18,19]. In fact, the delocalized conjugated system of π bonds in graphene materials could
accept photogenerated electrons, avoiding the electron-hole recombination. Furthermore, the presence
of oxygenated functionalities on GO (and in less extent in the case of rGO) could provide reactive sites
to facilitate the assembly of the semiconductors and graphene sheets [19].

Different methods of synthesis have been used for the preparation of graphene based-TiO2

composites for photocatalytic applications including the degradation of organic pollutants, production
of H2, reduction of CO2, as well as supercapacitors, among others, under visible illumination.
Liang et al. [20] reported the synthesis of rGO-TiO2 composites by a one-step hydrothermal method and
using ethanol/water as a reducing agent, with complete dye (Rhodamine B) degradation being achieved
under UV–Vis irradiation for 30 min. Zhao et al. [21] used a two-step method (based on the hydrolysis
and vacuum furnace at 700 ◦C) for the preparation of graphene-TiO2 composites to remove 70% of
methylene blue under visible light irradiation (λ = 450 nm) for 200 min. Other authors [22] reported
Pt/GO-TiO2 composites by the hydrothermal method with TiO2 nanocrystals with exposed {001} and
{101} facets for selective CO2 conversion to CH4, resulting in the selectivity of CO2 conversion to the CH4

product closely to 100% under simulated solar irradiation. Fattahi et al. [23] prepared graphene-TiO2

composites by simultaneous hydrothermal synthesis and GO reduction. The photocatalytic performance
of these composites for the formation of 2-hydroxyterephthalic acid (HTPA) under visible light
(λ = 405 nm) was optimized by changing different synthesis parameters, such as stirring time and
speed, the load of TiO2 and GO, reaction time and ethanol/water ratio. They obtained an increase
of the HTPA formation rate for the optimized graphene-TiO2 composite in comparison with bare
TiO2. Police et al. [24] reported the synthesis of rGO-TiO2 nanotube composites by the hydrothermal
method showing a remarkable photocatalytic activity towards H2 production (12.9 times higher than
commercial TiO2 under natural sunlight), as well as in other applications such as supercapacitors.
Recently, Ashraf et al. [25] reported the synthesis of graphene/TiO2/Ag composites by the combination
of a sonochemical method and freeze-drying with a high visible light photocatalytic activity for the
degradation of an azo dye (C.I. Reactive Yellow 2). They obtained 100% of dye degradation after
90 min under visible light.

Nevertheless, the optimization of the electronic properties of graphene is a critical topic today
and growing interest has been devoted to the use of heteroatom-doped graphene (rather than the
addition of noble metals) to produce high-performance photocatalytic composites under visible light.
Chemical doping with heteroatoms such as oxygen (O) [26], nitrogen (N) [27–29], boron (B) [30],
phosphorus (P) [31], or sulfur (S) [32,33], etc., can improve the photocatalytic performance of graphene
materials by tailoring its electronic properties [34] and increasing their reactive catalytic sites to be
used such as catalysts supports or even as a photocatalyst on their own [35].

Mou et al. [36] fabricated a composite based on N-doped rGO-TiO2 through a solvothermal
treatment showing higher photocatalytic activity for H2 production in comparison with the composite
prepared with rGO. Pedrosa et al. [37] synthetized N- and S-doped rGO-TiO2 composites for the
degradation of a pharmaceutical compound observing that the oxygen content in the precursor material
plays an important role in the catalytic performance. Another study reported [38] the degradation
of ca. 95% and 70% of methylene blue and 50% and 65% of rhodamine B in 60 min using B- or
N-doped graphene-TiO2 composites, respectively. The photocatalytic activity seems to be affected by
the electronic structure of graphene.

However, the design of composites using graphene with an optimized concentration of external
atoms and defects still remains a challenge in photocatalytic applications and needs to be more
exhaustively studied [34,37,39,40].

In the present work, GO was co-doped with different heteroatoms, in particular N/S or B, following
a hydrothermal process. Graphene derivatives were used to synthesize composites with TiO2 by the
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liquid phase deposition method. The synthetized materials were deeply characterized in order to
identify the effect of different heteroatoms on their physicochemical properties and photocatalytic
performance. The photodegradation of Acid Orange G (OG) dye under simulated solar radiation was
studied as a reaction model for the catalysts screening. The selected azo dye is typically used in the
paper and textile industry showing carcinogenic and mutagenic activity [41–44]. The optimization of
experimental conditions (i.e., pH), the identification of photoactive species, as well as the stability of
materials was also evaluated.

2. Materials and Methods

2.1. Synthesis of Graphene Oxide (GO)

GO was synthetized from graphite (powder < 20 µm) following the modified Hummers
method [45]. Briefly, 240 mL of sulfuric acid, H2SO4 (96–99%, supplied by PanReac AppliChem,
Darmstadt, Germany) was added slowly on both 5 g of graphite (Sigma-Aldrich, St. Louis, MO, USA)
and 5 g of sodium nitrate, NaNO3 (99%, Acros Organics, Geel, Belgium, keeping it under agitation
and controlling the temperature with an ice bath. Then, 30 g of potassium permanganate, KMnO4

(99%, PanReac AppliChem, Darmstadt, Germany) was added slowly under stirring to the above
solution and heated at 35 ◦C for 10 h. Afterwards, 1000 mL of water and 30 mL of hydrogen peroxide,
H2O2 (30% w/w, PanReac AppliChem, Darmstadt, Germany) were added very slowly to the suspension
and after 30 min, the material was filtered. The obtained paste was washed repeatedly with water
until it reaches pH of 5.5–6.0. The graphite oxide material obtained was dispersed in water (1.0 g in
500 mL) and sonicated for 1 h.

2.2. Synthesis of Heteroatom Reduced Graphene Oxide (rGO)

N/S- and B-doped graphene were prepared with a GO suspension (1.0 g L−1) and thiourea,
CH4N2S (99%, Alfa Aesar, Haverhill, MA, USA) [46], or boric acid, H3BO3 (Acros Organics, Geel,
Belgium) [40], as N/S or B precursors, respectively by hydrothermal reduction [47]. The GO: Precursor
ratio was selected as 1:10, in agreement with the optimized value in a previous study [46]. In a typical
synthesis, an appropriate amount of thiourea or H3BO3 was dissolved into 60 mL of GO suspension
and stirred for 10 min followed by sonication for 15 min. The above mixture was placed into a 100 mL
Teflon vessel and sealed in a stainless-steel autoclave (Parr Instruments, Moline, IL, USA, Mod. 4748) to
perform a hydrothermal treatment in an oven at 180 ◦C for 12 h. The resultant materials were washed
with distilled water and exchanged with tert-butanol for 48 h. Finally, the freeze-drying process was
used to remove the solvent (20 h). The materials were labelled as rGONS or rGOB when using thiourea
or boric acid as precursors, respectively. The rGO material was also synthetized with comparative
purposes, following the same procedure but without the addition of thiourea or boric acid.

2.3. Synthesis of Graphene Derivative-TiO2 Composites

The synthesis of the photocatalytic composites was carried out by the liquid phase deposition
method (LPD), as previously reported [6]. Briefly, the precursors, ammonium hexafluorotitanate (IV),
(NH4)2TiF6 (99%, Sigma-Aldrich, St. Louis, MO, USA), and H3BO3 (0.1 and 0.3 mol L−1, respectively)
were added to a 100 mg L−1 suspension of GO, rGO, rGONS, or rGOB. The carbon loading was
maintained at ~3.5 wt%. The mixture was heated in a silicon bath at 60 ◦C for 5 h under dynamic
stirring. The precipitate was filtrated under a vacuum, washed repeatedly with distilled water, and
dried at 80 ◦C for 8 h. Finally, the obtained solid was treated under N2 flow in an oven at 200 ◦C,
5 ◦C min−1 for 2 h. Bare TiO2 (referred as TiO2) was also synthetized following the same methodology,
without the addition of any graphene derivative. The TiO2 composites prepared with GO, rGO, rGONS,
and rGOB are denoted, as GO-T, rGO-T, rGONS-T, and rGOB-T, respectively.
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2.4. Characterization Techniques

A thermogravimetric (TG) analysis of the composites was determined by heating from 40 to
950 ◦C (air flow) at 20 ◦C min−1 using a SHIMADZU TGA-50H thermobalance. The NICOLET
510P spectrometer with an attenuated total reflection accessory and a ZeSn as ATR crystal
was used for the determination of ATR-IR spectra. An elemental CHNS-O Analyzer Flask
(1112 Series) from Thermo Finigan was used to obtain the total oxygen content of samples. The N2

adsorption-desorption isotherms at −196 ◦C were carried out using a Quantachrome Quadrasorb SI
equipment. The Brunauer–Emmett–Teller (BET) equation was applied to calculate the apparent surface
area (SBET) [48,49]. Pore size distributions and the mean pore diameter (dpore) were determined by
using the quenched solid density functional theory (QSDFT) as reported elsewhere [19]. The total pore
volume (Vtotal) was obtained considering the volume of N2 adsorbed at P/P0 = 0.95 [50]. The point zero
of charge (pHPZC) of the materials was determined following the method described elsewhere [51,52].
The LEO (Carl Zeiss) GEMINI-1430-VP microscope was used to analyze the morphology of the
materials by scanning electron microscopy (SEM). The X-ray diffractograms were obtained in a Philips
PW 1710, using the CuKα radiation and a nickel filter that removes the κβ radiation. The average
crystal size of the samples was determined using the Scherrer equation. The UV–Vis spectrophotometer
(CARY 5E from VARIAN) equipped with a diffuse reflectance accessory (DRA) was used for the
analysis of the optical properties of photocatalysts. The band gap of the materials was calculated from
the corresponding Tauc plots using (Abs·hν)1/2 units as a function of energy (eV).

2.5. Photocatalytic Experiments

The photocatalytic degradation of Acid Orange G (OG) dye (Sigma-Aldrich, St. Louis, MO,
USA) was evaluated under simulated solar light at ca. 28 ◦C. In a typical experiment, a Pyrex reactor
was filled with 50 mL of OG aqueous solution (20 mg L−1 or 4.42 × 10−5 mol L−1). During the
photocatalytic experiment, the aqueous solution was stirred with a magnet and an oxygen flow was
used. The concentration of the photocatalyst was 1.0 g L−1.

The experiments were performed with a 500 W m−2 of irradiance power using a SOLAR
BOX 1500 e (CO.FE.MEGRA, Milano, Italy) with a 1500 W Xenon lamp. In order to establish the
adsorption-desorption equilibrium, the suspensions were maintained in absence of light during 60 min.
Samples were withdrawn from the reaction mixture and filtered with polyether sulfone syringe filters
(0.45 µm pore size). Photolysis experiments (in the absence of catalyst) were also performed. Samples
were analyzed using a UV-spectrophotometer model UV-1800 Shimadzu. For all the photocatalytic
experiments, the absorption spectra (λmáx = 485 nm) of OG were measured at different reaction
times. The total organic carbon (TOC) analysis was performed in a Shimadzu TOC-5000A apparatus.
The experiments were performed at different pH values, i.e., 3.0, 6.0 (natural), and 10.0, by adding HCl
0.1 or NaOH 0.1 M, respectively. The photocatalytic degradation pathway of OG was studied using an
ethylenediaminetetraacetic acid (EDTA, 1.0 mM), furfuryl alcohol (FFA, 1.0 mM), tert-butanol (t-BuOH,
1.0 mM), and as a hole, singlet oxygen (1O2) and radical scavengers, respectively [6].

The photocatalytic degradation can be described by the following equation:

[OG] = [OG]0 × e−kapp×t (1)

where kapp is the pseudo-first order kinetic constant, t is the reaction time, and [OG]0 and [OG] denote
the pollutant concentration at t = 0 and t = t, respectively. The values of kapp were obtained by a
non-linear regression.
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3. Results and Discussion

3.1. Materials Characterization

The graphene content (wt%) in all the prepared composites was analyzed by TG (not shown)
calculated from the weight loss of the respective graphene derivative-TiO2 composites by burning the
carbon phase during the TG experiments under air flow. The results corroborated at ca. 4.0 wt% carbon
(in agreement with the nominal carbon content, i.e., ~3.5%). This content was chosen in accordance
with the best photocatalytic activity of the composites prepared with TiO2 and GO, as reported
elsewhere [6,19].

The ATR-IR spectra of bare TiO2, GO, and doped graphene samples are displayed in Figure 1.
The TiO2 spectrum shows a band at ca. 850 cm−1 associated to the Ti-O vibration [53]. The presence
of a band at around 1640 cm−1 is related to the presence of the Ti-OH group as well as the bending
vibration of coordinated water [50,53], while the TiO2 lattice vibrations are assigned to the peak at ca.
1420 cm−1 [54,55].
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Figure 1. FT-IR spectra of TiO2 (T), graphene oxide (GO), reduced graphene oxide nitrogen/sulphur
(rGONS), and reduced graphene oxide boron (rGOB).

For the GO spectrum, different bands were observed related to the presence of oxygen
functionalities. The bands at ca. 1050 and 1350 cm−1 are assigned to the stretching vibration of
C-O and to the stretching of C-OH groups, respectively while the bands at ca. 1612, 1720, and around
3000–3400 cm−1 are attributed to the skeletal vibration of graphene sheets, to carbonyl groups (C=O),
and to the vibrations of C-OH groups, respectively [19].

Regarding the rGONS sample, the FT-IR spectrum shows two main peaks, one of them associated
to the vibration of sp2 aromatic C=C and C=N bonds at ca. 1560 cm−1 and another attributed to the
stretching vibration of the C-S-C groups at ca. 1100–1145 cm−1 [37,46,56–58]. In the case of rGOB, there
are also two main peaks in the spectrum, attributed to the vibration of C=C bond (at ca. 1560 cm−1) and
to the vibration of B-C bond and C-O bond (at ca. 1100 cm−1), as previously observed [46,59]. On the
other hand, the peaks associated to the oxygen functional groups in the doped-graphene materials
exhibited lower intensities in comparison with the obtained for the GO sample (Figure 1). These results
could be due to the partial removal of these groups after hydrothermal treatment. Thus, the elemental
analysis of the graphene-based materials indicated a percentage of oxygen content (wt%) of 53.5%,
23.2%, and 21.4%, for GO, rGO, and rGONS, respectively (results not shown). These results suggested
a considerable deoxygenation as well as heteroatom incorporation (ca. 1.8% and 1.3%, for N and
S, respectively).

The XPS analysis of the rGONS sample (labelled as rGO-NS-10) and B-doped graphene
(prepared by a similar synthesis procedure to the rGOB sample) was obtained and discussed in
previous studies [40,46]. The nitrogen species in the rGONS material were the amino group (-NH2),
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N-pyridinic species (N6), N-pyrrolic form (N5), and N-graphitic (NQ), whereas the sulphur groups
correspond mainly to S-thiophene. Regarding the rGOB sample, the most intense peak corresponds to
boron replacing carbon in the hexagonal lattice (i.e., BC3).

Physical adsorption of N2 at −196 ◦C was carried out to determine the textural properties of the
materials. Table 1 summarizes the apparent surface area (SBET), total pore volume (Vpore), and the
mean pore diameter (dpore) of the materials. N2 adsorption-desorption isotherms for TiO2 and the
prepared graphene derivative—TiO2 composites are shown in Figure 2a. The N2 isotherms of the
samples showed an adsorptive behaviour of type-IV (in agreement with the IUPAC classification) [48],
attributed to mesoporous materials. The larger volume of adsorbed N2 at high relative pressures can
be related to capillary condensation in mesopores. Moreover, the presence of a hysteresis loop of type
H3 in the samples could be due to the adsorbents with slit-shaped pores or the presence of aggregates
formed by plate particles as reported elsewhere [6,50].

Table 1. Brunauer–Emmett–Teller (BET) surface area (SBET), total pore volume (Vpore), mean pore
diameter (dpore), pH at the point of zero charge (pHPZC), band-gap energy (Eg), and crystallite size of
synthetized materials.

Samples SBET (m2 g−1) Vpore (cm3 g−1) dpore (nm) pHPZC Eg (eV) Crystallite Size (nm)

TiO2 43 0.12 5.2, 10.3 3.5 3.20 9.7 ± 1.3
GO-T 55 0.17 4.2, 16.7, 25.2 3.1 2.98 12.1 ± 1.2
rGO-T 50 0.13 5.2, 10.3 3.2 3.15 –

rGONS-T 40 0.08 5.0, 7.1 3.3 3.12 7.6 ± 1.3
rGOB-T 80 0.20 5.0 3.2 3.12 8.9 ± 1.2
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In general, TiO2 and graphene based-TiO2 composites exhibited surface areas, SBET, of ca.
40–80 m2 g−1, rGOB-T being the sample with the highest surface area (80 m2 g−1). In general, all the
prepared composites with graphene derivatives presented a higher total pore volume than the TiO2

sample. The pore size distribution (PSD) of the samples are depicted in Figure 2b. The results indicated
mean pore sizes between 5.0 and 10.3 nm, with the exception of GO-T that presented a wider PSD with
larger mesopores, i.e., 16.7 and 25.2 nm. This fact could be associated to the high amount of oxygen
functionalities, which facilitate the separation of graphene layers and coating of TiO2 particles during
the synthesis of composite preparation.

The pHpzc values obtained for both TiO2 and composite materials presented an acidic character,
i.e., pHpzc = 3.0–3.5 (Table 1), which should be explained with TiO2 precursors, the low temperature
treatment (200 ◦C), and the presence of acidic groups on graphene surfaces.
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Figure 3 shows representative SEM micrographs of TiO2 and graphene-based composites.
The morphology of TiO2 (Figure 3a) shows spherical particles aggregated with each other forming a
cluster of TiO2 particles.Nanomaterials 2020, 10, x FOR PEER REVIEW 7 of 17 
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The SEM micrograph of the GO-T composite (Figure 3b) shows a well distribution of TiO2 particles
around the GO sheets resulting in the formation of a kind of platelets uniformly covered by TiO2

nanoparticles [6]. Different morphologies were obtained for the heteroatom doped-graphene-TiO2

composites (Figure 3c,d) in comparison with the morphology observed for GO-T, since the presence
of well-separated platelets was not so notorious. The surface morphology of rGONS-T and rGOB-T
seems to be similar to that of bare TiO2 presenting larger or smaller clusters of particles, respectively.

The XRD patterns of the TiO2, GO-T, rGONS-T, and rGOB-T samples are depicted in Figure 4a.
TiO2 anatase particles were detected in all the prepared materials. The major diffraction peaks at 2θ
values of 25.2, 37.7, 48.1, and 53.5◦ were associated to the lattice planes of (101), (004), (200), and (105),
respectively [60]. No significant diffraction peaks of carbon were observed in the XRD patterns of
GO-T, rGONS-T, and rGOB-T composites. These results could be associated to the low amount of
carbon material present in the composites (i.e., 3%–4%). Particles sizes of 9.7, 12.1, 7.6, and 8.9 nm were
calculated for TiO2, GO-T, rGONS-T, and rGOB-T photocatalysts, respectively (Table 1) displaying
the doped-graphene composites with N/S or B, lower particles sizes in comparison with both GO-T
and TiO2.

The UV–Vis absorption spectra of TiO2 and graphene derivative-TiO2 composites are depicted in
Figure 4b. For all the samples, a strong band at ca. <400 nm corresponding to the intrinsic bandgap
transition of TiO2 was observed. Furthermore, all the graphene-TiO2 composites (i.e., GO-T, rGONS-T,
and rGOB-T) display a decrease in wavelength on the TiO2 absorption band. These results can be
associated to the electronic interaction between semiconductor and carbon as well as to the occurrence
of defect in the structure of TiO2 [61]. Moreover, it is noteworthy that for all the graphene-TiO2

materials an increase of the absorption range at a wavelength higher than 380 nm (visible range) in
comparison with TiO2 was observed. This effect is normally associated to the intrinsic light absorption
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capacity of graphene as a carbon material and also to the electronic transitions between both phases [37].
The inset of Figure 4b exhibits the Tauc’s plots versus the energy (eV). The calculated Eg of TiO2, GO-T,
rGONS-T, and rGOB-T were 3.20, 2.98, 3.12, and 3.12 eV, respectively (Table 1). The lowest Eg of GO-T
and the graphene-doped composites in comparison with bare TiO2 may be associated to the presence
of Ti-O-C bonds between carbon materials and TiO2 [37].Nanomaterials 2020, 10, x FOR PEER REVIEW 8 of 17 
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Figure 4. (a) XRD patterns of TiO2, GO-T, rGONS-T, and rGOB-T, (b) UV–Vis spectra and Tauc’s plots
versus the energy in eV of TiO2 and graphene derivative-TiO2 composites (inset).

3.2. Photocatalytic Degradation of OG

The photocatalytic performance of TiO2 and graphene derivatives-TiO2 composites for OG
degradation (at natural pH, 6.0) under simulated solar light is shown in Figure 5. The OG conversion
after 60 min (XOG), pseudo-first order kinetic rate constant (kapp), and regression coefficient (r2) are
summarized in Table 2. The photolysis experiment was carried out in the absence of a photocatalyst
and under simulated solar light. Under these conditions, the degradation of OG was approximately
6.0% after 60 min, indicating that the pollutant is very light-stable under non-catalytic conditions.
On the other hand, dark phase experiments (in the absence of light) were also performed to evaluate the
adsorption capacity of the materials (not shown). The results obtained were 6.0%, 10.0%, 8.0%, 8.0%,
and 7.0% for TiO2, GO-T, rGO-T, rGONS-T, and rGOB-T, respectively, detecting that the adsorption
equilibrium was reached after 60 min for all the photocatalysts. Once the adsorption-desorption
equilibrium was achieved, OG degradation experiments were carried out under simulated solar light.Nanomaterials 2020, 10, x FOR PEER REVIEW 9 of 17 
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Figure 5. Normalized concentration of OG (Orange G dye) as a function of time in photolysis and
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Table 2. OG conversion after 60 min (XOG), pseudo-first order kinetic rate constant (kapp), and regression
coefficient (r2) of OG.

Sample pH XOG (%) kapp (10−3 min−1) r2

Photolysis 6.0 2.8 −− −−

TiO2 6.0 47.6 11.2 ± 0.3 0.996
GO-T 6.0 99.8 109.2 ± 4 0.996
rGO-T 6.0 90.0 29.0 ± 3 0.97

rGONS-T 6.0 98.2 48.4 ± 2 0.993
rGOB-T 6.0 96.5 39.1 ± 2 0.99

GO-T 3.0 100.0 153.4 ± 8 0.992
GO-T 10.0 99.6 55.1 ± 3 0.98

GO-T + EDTA 6.0 22.1 4.5 ± 0.4 0.95
GO-T + t-BuOH 6.0 75.4 24.1 ± 1 0.996

GO-T + FFA 6.0 66.3 16.6 ± 1 0.98

rGONS-T 3.0 99.5 62.0 ± 3 0.992
rGONS-T 10.0 87.1 39.1 ± 1 0.994

rGONS-T + EDTA 6.0 16.4 3.4 ± 0.3 0.91
rGONS-T +

t-BuOH 6.0 71.1 21.3 ± 0.3 0.999

rGONS-T + FFA 6.0 46.9 12.1 ± 0.8 0.95

The presence of graphene derivatives, such as GO, rGO, rGONS, and rGOB, increased the
efficiency for the OG degradation in comparison with TiO2 (OG conversion of 99.8%, 90.0%, 98.2%,
96.5%, and 47.6% for GO-T, rGO-T, rGONS-T, rGOB-T, and TiO2 respectively, Figure 5 and Table 2).
These results suggest a synergistic effect between graphene materials and TiO2, although this effect
depends on the type of graphene derivative used in the composite. In particular, the composite
prepared with GO (i.e., GO-T) showed the best performance for the OG degradation under simulated
solar light (kapp = 109.2 × 10−3). The results of TOC removal were found to follow the same trend as a
photocatalytic conversion, i.e., GO-T, rGONS-T, rGOB-T, rGO, and TiO2 produced respectively 40%,
22%, 17%, 17%, and 15% of TOC reduction after 60 min of solar irradiation.

The lower photocatalytic activity obtained for rGO-T, rGONS-T, and rGOB-T when compared
with the GO-T composite could be attributed to the lower amount of oxygen functionalities, resulting
in a weaker interaction between graphene derivatives and TiO2. The lowest band gap energy of the
GO-T composite (Table 1) as well as the pronounced quenching of photoluminescence in the GO-T
composite [6], suggest that GO can effectively accept the photoexcited electrons to hinder electron-hole
recombination. These effects combined with the good assembly and interfacial coupling between
the TiO2 and the GO sheets, as observed by SEM images (Figure 3b), may promote charge migration
between both phases after photoexcitation, leading to an increase in the efficiency of the photocatalytic
process for the GO-T composite.

Nevertheless, the doped graphene derivative-TiO2 composites also showed better performance
when compared with both rGO-T and bare TiO2. These results can be explained due to the presence
of N/S or B-doping, which favoured a lower band-gap energy (Eg) for both rGONS-T and rGOB-T
in comparison with rGO-T and TiO2 materials (3.12, 3.12, 3.15, and 3.20 eV, respectively, Table 1).
The photocatalytic activity can be also related with the enhancement of electronic conductivity as well
as the recovery of the sp2 graphene network and the decrease of defects within the plane associated
with heteroatom incorporation [34,36,62]. In general, the results suggest that the addition of any
graphene derivative in the TiO2 matrix can promote the photocatalytic activity of TiO2 under solar
light due to the charge transfer of photo-generated electrons between TiO2 and graphene that can
limit the electron-hole recombination, permitting the graphene-TiO2 composites to produce a higher
amount of radicals under solar radiation [63]. Both GO-T and rGONS-T materials were selected to
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study the effect of initial pH on the OG conversion, the photoactive species involved in the reaction,
and reusability cycles.

3.2.1. Influence of pH on OG Degradation

The photocatalytic degradation of OG at initial pH values of 3.0, 6.0 (natural pH), and 10.0 is shown
in Figure S1a,b of the Supplementary Materials for both GO-T and rGONS-T, respectively. The obtained
kapp constants for the different pH values are illustrated in Figure 6 while the OG conversion (XOG),
rate constant (kapp), and regression coefficient (r2) at different pH values are summarized in Table 2.
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Figure 6. Pseudo-first order kinetic rate constant (kapp) for different initial solution pH over the GO-T
and rGONS-T composites.

It can be observed that the photocatalytic performance of photocatalysts decreased as the initial
pH value increased, as observed for the reaction rate constants for both materials when the initial
pH increased from pH 3.0 to 10.0 (kapp = 153.4 × 10−3 and 62.0 × 10−3 min−1 for GO-T and rGONS-T,
respectively for pH 3.0 and kapp = 55.1 × 10−3 and 39.1 × 10−3 min−1 for GO-T and rGONS-T,
respectively for pH 10.0, Figure 6).

It is well known that the initial pH value can modify the surface charge density of catalyst and the
ionization state of organic molecules at the same time, among others [64]. For pH values higher than
the pHPZC of TiO2, the surface charge becomes negative (TiO−), while for pH values lower than the
pHPZC, the surface charge is positive (TiOH2

+). OG is a molecule with a negative charge (OG−) in
the solution due to the deprotonation of the sulfonic group −SO3, (pKa = 1.0) [65]. When the initial
pH is 3.0, the surface of both GO-T (pHPZC ≈ 3.1) and rGONS-T (pHPZC ≈ 3.3) is positively charged,
while OG is negatively charged. Thus, electrostatic attraction forces are expected. On the contrary,
at higher pH values (i.e., natural pH of 6.0 and 10.0), a lower photodegradation rate for both materials
was observed due to the occurrence of electrostatic repulsive forces between the negatively charged
catalysts surface and the OG− species.

3.2.2. Photocatalytic Degradation Pathway

The photoactive species involved in the reaction were investigated at natural pH (6.0) using
EDTA, FFA, and t-BuOH, as scavengers for holes, singlet oxygen (1O2), and radicals, respectively.
Figure 7a,b displays the OG concentration during the photocatalytic experiments with the addition of
the scavengers for the GO-T and rGONS-T composites, respectively. The results indicate that for both
photocatalysts the presence of any scavenger produces a decrease in the OG degradation rate, suggesting
that photogenerated holes, 1O2, and radical species participate in the OG degradation pathway.



Nanomaterials 2020, 10, 1106 11 of 17

Nanomaterials 2020, 10, x FOR PEER REVIEW 11 of 17 

 

observed due to the occurrence of electrostatic repulsive forces between the negatively charged 
catalysts surface and the OG− species. 

3.2.2. Photocatalytic Degradation Pathway 

The photoactive species involved in the reaction were investigated at natural pH (6.0) using 
EDTA, FFA, and t-BuOH, as scavengers for holes, singlet oxygen (1O2), and radicals, respectively. 
Figure 7a, b displays the OG concentration during the photocatalytic experiments with the addition of 
the scavengers for the GO-T and rGONS-T composites, respectively. The results indicate that for both 
photocatalysts the presence of any scavenger produces a decrease in the OG degradation rate, 
suggesting that photogenerated holes, 1O2, and radical species participate in the OG degradation 
pathway.  

  
(a) (b) 

Figure 7. Normalized concentration of OG as a function of time with and without scavengers for (a) 
GO-T and (b) rGONS-T. 

For GO-T (Figure 7a), the addition of FFA and t-BuOH reduced the kapp from 109.2 × 10−3 to 24.1 × 
10−3 min−1 and from 109.2 × 10−3 to 16.6 × 10−3 min−1, respectively. Nevertheless, the highest reduction 
of the constant rate was found in the presence of EDTA (kapp = 4.5 × 10−3 min−1). Regardless, the rGONS-
T material, an analogous performance was observed (Figure 7b) and although the presence of t-BuOH 
and FFA led to a reduction of the photocatalytic activity, the addition of EDTA produced the highest 
decrease in the rate constant (from 48.4 × 10−3 to 21.3 × 10−3, 12.1 × 10−3 and 3.4 × 10−3 min−1, respectively). 
These results suggest that the photoactive species including hydroxyl, superoxide anion, 
hydroperoxyl radicals, and singlet oxygen (i.e., HO●, O2●−, HOO ,and 1O2, respectively) participate in 
the photodegradation mechanism [66,67]. However, the high quenching effect of EDTA indicates that 
photogenerated holes (h+) play an essential role in OG removal for both GO-T and rGONS-T 
photocatalysts under simulated solar light.  

3.2.3. Reutilization Tests 

The photocatalytic stability of both GO-T and rGONS-T materials was examined. Four 
consecutive reusability cycles were performed at pH natural (pH = 6.0) under simulated solar light 
(Figure 8). The experiments were carried out as follows. After each run, the photocatalyst was filtered, 
washed with distilled water, and dried at 80 °C for 6 h. The resulting material was reused in the 
photocatalytic experiments using a fresh OG solution. The OG conversion decreased between the 
first and the second run for both photocatalysts (from 100% to 80.3% and from 98.2% to 70.1% for 
GO-T and rGONS-T, respectively), due to the adsorption of by-products on the photocatalyst. In the 
third run, the photocatalytic activity of the materials is essentially kept with a slight decrease of the 
OG conversion (i.e., from 80.3% to 75.0% and from 70.1% to 63.5% for GO-T and rGONS-T, 
respectively) and in the fourth run the photocatalytic performance of photocatalysts remained almost 
unchanged with respect to the third run concluding that both materials were stable under the reaction 

Time (min)
0 15 30 45 60

[O
G

]/[
O

G
] 0

0.0

0.2

0.4

0.6

0.8

1.0

GO-T no scavenger 
GO-T + EDTA 
GO-T + tBu-OH 
GO-T- FFA

a)

Time (min)
0 15 30 45 60

[O
G

]/[
O

G
] 0

0.0

0.2

0.4

0.6

0.8

1.0

rGONS-T no scavenger 
rGONS + EDTA 
rGONS + tBu-OH
rGONS + FFA

b)

Figure 7. Normalized concentration of OG as a function of time with and without scavengers for
(a) GO-T and (b) rGONS-T.

For GO-T (Figure 7a), the addition of FFA and t-BuOH reduced the kapp from 109.2 × 10−3

to 24.1 × 10−3 min−1 and from 109.2 × 10−3 to 16.6 × 10−3 min−1, respectively. Nevertheless, the
highest reduction of the constant rate was found in the presence of EDTA (kapp = 4.5 × 10−3 min−1).
Regardless, the rGONS-T material, an analogous performance was observed (Figure 7b) and although
the presence of t-BuOH and FFA led to a reduction of the photocatalytic activity, the addition of
EDTA produced the highest decrease in the rate constant (from 48.4 × 10−3 to 21.3 × 10−3, 12.1 × 10−3

and 3.4 × 10−3 min−1, respectively). These results suggest that the photoactive species including
hydroxyl, superoxide anion, hydroperoxyl radicals, and singlet oxygen (i.e., HO•, O2

•−, HOO, and 1O2,
respectively) participate in the photodegradation mechanism [66,67]. However, the high quenching
effect of EDTA indicates that photogenerated holes (h+) play an essential role in OG removal for both
GO-T and rGONS-T photocatalysts under simulated solar light.

3.2.3. Reutilization Tests

The photocatalytic stability of both GO-T and rGONS-T materials was examined. Four consecutive
reusability cycles were performed at pH natural (pH = 6.0) under simulated solar light (Figure 8).
The experiments were carried out as follows. After each run, the photocatalyst was filtered, washed
with distilled water, and dried at 80 ◦C for 6 h. The resulting material was reused in the photocatalytic
experiments using a fresh OG solution. The OG conversion decreased between the first and the
second run for both photocatalysts (from 100% to 80.3% and from 98.2% to 70.1% for GO-T and
rGONS-T, respectively), due to the adsorption of by-products on the photocatalyst. In the third
run, the photocatalytic activity of the materials is essentially kept with a slight decrease of the OG
conversion (i.e., from 80.3% to 75.0% and from 70.1% to 63.5% for GO-T and rGONS-T, respectively)
and in the fourth run the photocatalytic performance of photocatalysts remained almost unchanged
with respect to the third run concluding that both materials were stable under the reaction conditions
used. Nevertheless, more studies will be required namely, the use in continuous flow reactors for the
sake of checking the long-term stability of catalysts.
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Figure 8. Reusability of the GO-T and rGONS-T photocatalysts for the OG degradation during four
consecutive runs.

For comparison purposes, Table 3 comprises studies regarding graphene-TiO2 based photocatalysts
that have been recently published towards dye degradation under visible light illumination. It can be
concluded that the obtained photocatalyst in this work showed a good photocatalytic performance
comparatively to that of other materials reported in the literature.

Table 3. Compilation of recently published works regarding graphene-TiO2 based photocatalysts for
dye degradation under visible light illumination.

Photocatalyst Application Main Results Ref.

N-TiO2/rGO aerogel 20 mg L−1, 100 mL MB
Excellent adsorption

Removal rates > 90% in 60 min [68]

N-TiO2/rGO 10 mg L−1, 50 mL RhB Degradation of 90% in 120 min [69]

GO/TiO2/Hermin 10 mg L−1, 250 mL RhB under
UV/Vis/H2O2.

Degradation of 100% in 40 min [70]

rGO/TiO2/WO3 MB Degradation of 83% in 60 min [71]

rGO/TiO2 5 mg L−1, 35 mL MB
Degradation of 82% in 140 min

Conversion (TOC) 49% in 100 min [72]

rGO/amino-grafted TiO2
5 mg L−1, MB

5 mg L−1, Rh6G
Degradation of 91.2% in 40 min (MB)

Degradation of 88.3% in 240 min (Rh6G) [73]

Graphene aerogel/TiO2/g-C3N4 20 mg L−1, 25 mL RhB
Adsorption of 96.5% in 60 min
Degradation of 98.4% in 60 min [74]

GO-TiO2 20 mg L−1, 50 mL OG
Degradation of 99.8% in 60 min

Conversion (TOC) 40% in 60 min
This
work

rGONS-TiO2 20 mg L−1, 50 mL OG
Degradation of 98.2% in 60 min

Conversion (TOC) 22% in 60 min
This
work

rGOB-TiO2 20 mg L−1, 50 mL OG
Degradation of 96.5% in 60 min

Conversion (TOC) 17% in 60 min
This
work

MB: Mthylene blue; RhB: Rhodamine B; Rh6G: Rhodamine 6G; OG: Acid Orange G.

4. Conclusions

The morphology of the graphene-TiO2 composite depends on the type of graphene derivative
used during the synthesis. Thus, N/S- or B-doped graphene composites (rGONS-T and rGO-B) and
undoped rGO composite (i.e., rGO-T) show clusters of TiO2 particles, while the composite including
GO (GO-T) presents a structure formed by graphene layers coated by TiO2 particles. All materials
were mesoporous and presented an acidic character. The addition of any graphene derivative triggers
the narrowing band-gap energy in comparison with bare TiO2.

The OG conversion and mineralization were always higher with the graphene derivative-TiO2

composites rather than TiO2 under simulated solar light.
The most active material consisted of GO in a TiO2 matrix (GO-T). The photocatalytic performance

is being related with the morphology of GO-T composite that shows a strong interaction between
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graphene sheets and TiO2 particles, producing an optimal assembly of TiO2 on GO sheets as well as to
the lowest band gap energy.

The photocatalytic performance of functionalized graphene derivatives-TiO2 composites decreases
as the initial solution pH increases, attaining a OG conversion of 100% and 99.5% for GO-T and rGONS-T,
respectively at pH 3.0 due mainly to the occurrence of electrostatic attraction forces between the catalyst
surface and OG molecules.

The addition of scavengers suggests that for both GO-T and rGONS-T catalysts, radical species,
photogenerated holes, and singlet oxygen species participate in the OG degradation pathway. However,
the higher reduction of the photocatalytic performance observed when EDTA is used as hole scavengers,
indicates that photo-generated holes dominated the OG degradation on graphene-TiO2 composites
rather than radicals or singlet oxygen species. In addition, the reutilization cycles prove that both
GO-T and rGONS-T composites were stable in a series of consecutive runs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/6/1106/s1,
Figure S1: Normalized concentration of OG as a function of time pH values of 3.0, 6.0 (natural pH), and 10.0 for
(a) GO-T and (b) rGONS-T.
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