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Abstract: The population in developed countries is aging and this fact results in high elderly health
costs, as well as a decrease in the number of active working members to support these costs. This could
lead to a collapse of the current systems. One of the first insights of the decline in elderly people is
frailty, which could be decelerated if it is detected at an early stage. Nowadays, health professionals
measure frailty manually through questionnaires and tests of strength or gait focused on the physical
dimension. Sensors are increasingly used to measure and monitor different e-health indicators while
the user is performing Basic Activities of Daily Life (BADL). In this paper, we present a system
based on microservices architecture, which collects sensory data while the older adults perform
Instrumental ADLs (IADLs) in combination with BADLs. IADLs involve physical dimension, but also
cognitive and social dimensions. With the sensory data we built a machine learning model to assess
frailty status which outperforms the previous works that only used BADLs. Our model is accurate,
ecological, non-intrusive, flexible and can help health professionals to automatically detect frailty.

Keywords: wearable devices; sensors; mobile health systems; microservices architecture; IoT;
machine learning; elderly frailty assessment; e-health

1. Introduction

In a global ageing society, it is important to detect the frailty in the early stages to be able to slow
down the decline of elderly people and to keep them active and healthy for as long as possible. Frailty is
a syndrome of older adults that increases the risk of falls, hospitalizations and even death [1,2]; affecting
11% of the home-dwelling elderly population without hospitalization and increasing drastically to
30-70% of the surgical patients over 65 years old [3]. The early detection of frailty has been proved to
increase the independence of the older adults and the decrease on health care costs [4,5].

The current detection of frailty is performed manually via independent tests of strength, gait or
self-report questionnaires, being Fried [4] the most used test, which only assess the physical dimension
of frailty. Some authors have recently accepted that frailty involves not only the physical dimension,
but also social and cognitive dimensions [6]. Accordingly, some wider tests have appeared which
include the three dimensions of frailty, such as the Tilburg Frailty Indicator (TFI) test [7]. However,
the tests are time consuming, and require investment in health resources and physical interaction
between patients and doctors. Indeed, the detection and manual assessment of the frailty for all
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older people is not currently affordable, especially due to the organizational and financial issues
mentioned above [8].

Frailty also affects the performance of the Instrumental Activities of Daily Living (IADLs) [9].
The Activities of Daily Living (ADL) are classified as basic (BADL), such as toilet hygiene or functional
mobility; Instrumental (IADL), such as house cleaning or shopping; and advanced (AADL), such as
travelling and social events. BADLs are crucial for the human being’s survival and they involve
less-demanding activities in terms of physical or cognitive resources in comparison with IADLs.
These activities are commonly named as self-activities performed by the person without the need
of help or interaction with other people. On the other hand, IADLs and AADLSs are more complex
activities that involve more resources than BALDs in terms of physical, cognitive and social functions.
These activities usually also involve the interaction with other objects or tools. Monitoring of the
performance of the IADLs could potentially be a possible marker of the frailty status, since the
complexity of the IADLs make elders them more vulnerable to show dependence in their performance.
Therefore, the monitoring of the IADLSs could replace the manual tests or questionnaires, alleviating
the health financial and organizational requirements to globally asses frailty. This alleviation could
be possible if the monitorization is performed with low-cost or well-spread devices, such as sensors,
that are currently built-in in smartphones or wearables.

Wearable devices, together with data analysis techniques, can seamlessly monitor and assess
the frailty status during the performance of the IADLs. This could be even less intrusive in the near
future, because it is foreseen that the majority of the population, including elderly people, will wear
wearables with built-in sensors [10], especially after the pandemic coronavirus of 2019 [11]. Sensors
have been successfully used in several e-health scenarios [12]. They can provide efficient and precise
psychophysiological and location values [13]. Some research works have started to measure frailty
indicators [3,14-18], being the most used devices electronic stickers, bands, bracelets, smartphones
and smartwatches [15,19-23]. However, these approaches only measure the physical dimension of
the frailty during a BADL with only one sensor, either the accelerometer or the gyroscope. None of
them monitored IADLs, such as a real shopping in the supermarket, which involves not only physical
activity, but also cognitive and social interactions. Furthermore, existing approaches are also limited in
terms of flexibility, extension and evolution, as they do not take advantage (at design and deployment
levels) of software architectures that allow developers to easily integrate current and future sensors and
functionalities. Hence, to the best of our knowledge, there is no flexible approach which assesses the
frailty status through the monitoring of IADLs in an ecological way, i.e., in the daily living environment
of older adults.

To overcome these limitations, we expanded our microservices architecture proposed in [24], with a
choreography solution and a use case that collects sensory data from wearables and builds a Machine
Learning (ML) model to assess frailty in an ecological manner—while the older adult is performing
an IADL, in combination with BADLs. Service-Oriented Architectures (SOA) are well-known for its
generalization, and therefore for its reuse in different scenarios. They can also deal with mobility,
integration interoperability, fault tolerance and self-adaptation [25-29]. A microservices architecture
improves the SOA approach, following the concept share-as-little-as-possible [30], with additional
system characteristics such as decoupling, flexibility, extension, scalability and evolution [31,32].
Microservices architectures allow to collect a wide variety of sensory data under the Internet of Things
(IoT) paradigm. We also explored several ML algorithms in order to build the most accurate model to
assess frailty. In our proposal we use microservices for data collection, data analysis and to expose the
frailty model as a microservice, with the aim of reusing the microservices in future use cases.

Our proposal is ecological and effective in terms of costs and time-consuming reduction, using an
accurate frailty assessment model that outperforms the related works. We collect sensory data in a
non-intrusive and transparent manner while the older adult is performing the IADL of shopping;
without disturbing neither the person daily life nor his environmental conditions (same supermarket,
time, pathway, etc.), i.e., ecologically. Measuring the performance of IADL we can gain a comprehensive
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vision of elderly people disorders at physical, cognitive and/or social levels. Hence, health professionals
can design specific interventional programs to improve the frailty, increasing the independence of
the older adults and decreasing health care costs. Furthermore, with the microservices architecture,
the system could be easily extended [33] to address other use cases, by adding new microservices with
the corresponding ML algorithms, models and sensors. For example, we could add microservices for
the ML models built for a different population, with specific pathologies, ethnicities; or we could add
microservices for collecting data coming from new sensors, or data sources. Our results outperformed
the ecological related works, which use only the physical data from the performing of BADLs (instead
of IADLs) and are non-low-cost. These findings have important implications for healthcare systems,
because our automatic frailty detection system can reduce health costs and health professionals time
assessing frailty ecologically with low-cost devices.

The rest of the paper is organized as follows: Section 2 introduces the related works. Section 3
describes the design of the microservices system architecture to collect and analyze data, as well as
a description of the data analysis pipeline. Section 4 presents a system validation and the results of
the ML frailty model performance. Section 5 discusses the findings. And the last section summarizes
conclusions and future work.

2. Related Work

In order to monitor a variety of sensory data, we need to integrate and combine several sensors
through systems, which usually use IoT and/or microservices architectures [34-36]. IoT health systems
allow doctors to monitor patients constantly and to suggest corrective actions according to the analyzed
data [29,37,38]. For example, one of the goals of City-4Age and ACTIVAGE H2020 projects is the
assessment of frailty using IoT technology based on rules [39]. Furthermore, there are a few efforts
to apply microservices in the health domain. For example, some studies focused on security and
privacy of microservices architectures for the sensible data in the health systems [40,41]; other work
explored monitorization of depression disorder through IoT and microservices [42]. However, to the
best of our knowledge, there are no ecological approaches that use microservices to perform detailed
ML pipelines.

Sensors in combination with ML algorithms have been used to recognize different BADLs such as
sitting, standing, walking, running, stair climbing, eating and sleeping [43-50]; and IADLS such as
preparing a meal, bathing, using the phone, driving, traveling, and even shopping [46,51]. Some works
asses the physical component of frailty in BADLs using wearable devices in combination with ML
algorithms (Table 1). Tegou et al. [14] applied several ML algorithms, such as k-Nearest Neighbour
(kNN), Random Forests (RF) and Naive Bayes (NB) to classify the three frailty status based on
Fried criteria [4] (non-frail, pre-frail, frail), by measuring the number of transitions between rooms
inside the older adult home. Schwenk et al. [15] and Kumar et al. [16] applied Multinomial Logistic
Regression (MLR) model to discriminate between the three frailty status, by measuring the gait, balance,
and physical activity (PA). Toosizadeh et al. [3] used Ordinal Logistic Regression (OLR) for a frailty
detection in 20 s elbow flexion. Greene et al. [17,52] designed a digital assessment based on a Logistic
Regression (LR) model for detecting falls, frailty and mobility impairment. Razjouyan et al. [18]
applied ML embedded feature selection method for remotely monitoring frailty status, during walking
and sleeping BADLs. These studies focused on assessing only physical components of frailty (based
on Fried [4]) during physical BADLs (walking, sitting, standing or sleeping), or simple activities
such as the elbow flexion or number of transitions from one room to another at home. They neither
consider other human dimensions such as cognitive or social functions, nor assess frailty during
an JADL (which include these functions). In addition, most of these logistics models did not focus
directly on detecting frailty status, instead they looked for the correlation between risk factors (such as
falls, balance, physical performance and gait) and the frailty status. Also, the ecological approaches
reviewed [16,18] use expensive wearables and questionnaire data such as demographic and clinical
data, which do not allow the automation of the data collection.
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Table 1. Review of previous works related to assessing frailty with wearables and ML.
Work Aim Eco Data Sources System Frailty Status Best ML
RF 2:
To assess frailty by a system based on Bluetooth RSSI Smartphone Accgrécy: 82.33 0/0
) . . . - . Yes. 2 3 Sensibilty: 83.83%
[14] fingerprints using beacons, collecting data derived . Beacons RSS Three = and two 3
i, Transitions between rooms. RF*>:
from transitions among rooms (low-cost) o
Accuracy: 97.92%
Sensibilty: 94.2%
To discriminate between frailty status with gait, balance LEGSys ! ($10,000) 2 MLR:
(1ol or during a physical activity. No BalanSens ! ($4450) None Three AUC: 85.7%
MLR:
To implement a wearable to characterize the quantity Yes. 1 . . o
[16] and quality of everyday walking, and to establish Walking ADL during PAMSys Pgmographm None Two * Accgracy. 77'70/0
s i ) . Clinical Sensibilty: 76.8%
associations between gait impairment and frailty. 2 days AN
Specificity: 80%
3] To assess frailty by a wear.able during the flexibility of No Gyroscope 1 None Three 2 OLR: i
upper-extremity movements. Accuracy: 69%
. . . . LR:
s odedna digtlsesmentpotoctandalgortn No v
p , frailty ty imp : grap Sensibilty: 72.99%
Yes. EFS:
[18] To remotely monitor the frailty status using Walking & PAMSys ! None Two 5 Accuracy: 84.7%
an accelerometer. Sleeping ADLs during Demographic Clinical © Sensibilty: 91.8%
2 days Specificity: 81.4%

Eco: Is it ecological? Is it measuring frailty in the users’ daily living environment? RSS: Received Signal Strength; RSSI: Received Signal Strength Indicator; AUC: Area under the curve.
RF: Random Forest; MLR: Multinomial Logistic Regression; OLR: Ordinal Logistic Regression; EFS: Embedded Feature Selection. 1 BioSensics LLC manufacturs non low-cost wearables
devices. 2 Considered Fried 3 classes: non-frail, pre-frail, frail status. > Considered Fried 2 classes: identification of frail participants against non-frail and prefrail participants together as a
single class. 4 Considered Fried 2 classes: identification of non-frail participants against pre-frail and frail participants together as a single class. > Considered Fried 2 classes: identification
of pre-frail participants against non-frail and frail participants together as a single class.
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Therefore, to the best of our knowledge there are no works that asses the frailty status during the
performance of IADLs, combining low-cost sensors with a flexible and extensible system.

3. Materials and Methods

This section presents the participants” sample, the considered variables, the proposed system
architecture and the data analysis performed to assess participant’s frailty status, during the shopping
IADL performance. First of all, it describes the inclusion and exclusion criteria for recruiting the
participants. Secondly, it presents the dependent variable, which is the result of the traditional
assessment of frailty by the Fried test. Thirdly, it presents the variables identified through the collected
raw data coming from sensory data. Fourthly, it introduces the system architecture designed following
the microservices paradigm. Finally, it explains the pipeline workflow designed to apply data analysis
considering data collection and labelling; data preprocessing; and machine learning model generation
and evaluation.

3.1. Sample Description

We conducted a cross-sectional study in three community day centers located in Granada (Spain).
We recruited a total of 79 participants (69 women and 10 men) older than 65 years (average age
equals 75). The inclusion criteria for this study were: (1) ages ranged from 65 to 90 years old; (2) non
severe cognitive decline (using a cut-off score of > 24 points in the Mini-Mental State Examination
test [53]); (3) non perceptual alterations, determined by medical diagnosis report. Thus, the participants
were included with perceptual alterations corrected with a support device, such as pair of glasses or
hearing aid; (4) walking with/without help (cane or walker); (5) community-dwelling older adults.
Exclusion criteria: (1) severe mental disorder; (2) severe language alterations; (3) medical instability;
(4) pathology in acute stage; (5) hospitalized; (6) serious behavior alterations or motor risks. Our study
was approved by the Investigation Ethical Committee of Granada province with reference 0111-N-19
on 31 May 2019 (Andalusian Health Service, Granada, Spain).

3.2. Fried Test and Frailty Status Variable

ML models need a training phase and a test phase. The model is trained with labelled data and
once the model is created it is tested with different data. Finally, with the model created and tested new
data could be automatically classified with one label. We used the score of Fried test [4] to label the data
because it is the most accepted test to asses Frailty. This test consists on the assessment of 5 components:
slowness in mobility, low energy, low physical activity, muscle weakness, and involuntary weight loss.
Depending on the previous factors, elderly people are classified into: “frail” if they score positive
in three or more components of the test; “pre-frail” if the score is positive in 2 components and
“non-frail” if they do not meet any component. Hence, the Fried test classification (“frail”, “pre-frail”
and “non-frail”) will be our dependent variable in the training and test phases of the model.

3.3. Wearable Sensors Variables

The independent variables considered come from the raw data of wearable sensors. Previous
works used accelerometer, gyroscope and heart rate sensors for monitoring physical activity, health
conditions, cognitive, social and other factors [49,54-57]. We have used similar sensors built-in a
low-cost smartwatch, the Samsung Gear S3 [58]. Samsung Gear S3 supports development of software
applications on its open access Tizen operating system. This characteristic allows to collect the sensory
raw data and to develop software applications in a flexible manner. The built-in sensors we used
are: (1) the triaxial accelerometer, which measures changes in the device velocity; (2) the triaxial
gyroscope, which detects angular velocity and orientation of the device; (3) and the heart rate sensor,
which measures the heart beats per minute. In particular, we collected the raw data from these wearable
sensors obtaining 7 variables, detailed in Table 2. The value of these variables was provided in integer
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number (without a decimal point), or in float (floating-point number, which is a number that has a
decimal place).

Table 2. Wearable sensors variables from raw data.

Variable Description Type
Accelerometer X-axis value Float
Accelerometer Y-axis value Float
Accelerometer Z-axis value Float

Gyroscope X-axis value Float

Gyroscope Y-axis value Float

Gyroscope Z-axis value Float
Heart Rate value Integer

3.4. Microservices System Architecture

Microservice architecture is the next generation of SOA architecture, improving this approach
on decoupling, flexibility and extensibility, by sharing services and resources as little as possible.
A microservice is a miniature software responsible of a unique and single task (i.e., the minimum
level of responsibility and loosely coupled) [30,59,60]. Furthermore, since microservices architecture
is based on the concept of share-as-little-as-possible [30], they try to minimize on sharing, whereas
SOA tries to maximize on sharing. Consequently, microservices only expose well-defined interfaces.
Hence, microservices ensure the maximum decoupling and extensibility, and therefore it is possible
to update a microservice independently of the rest of the microservices in an architecture. Indeed,
while SOA uses centralized dependencies (such as a centralized data storage), which makes it hard to
avoid decoupling, in microservices architectures each microservice manage all of its own dependencies
(such as database, key-value store, search index and queue), in order to develop and deploy each
microservice independently [30,59]. However, in real scenarios could be necessary to share data
between microservices. In our architecture, the data collected by one microservice, need to be stored in
a shared database that other microservice could access in order to process the data [60].

Microservices are classified in two groups: functional microservices (FM) and infrastructure
microservices (IM) [30]. FMs implement business functions (related with the business domain, e.g., frailty
assessment) and can be accessed from external clients (such as wearables, mobile phones and web
applications), via an Application Programming Interface (API) gateway. In contrast, IMs implement
nonfunctional business tasks such as logging, auditing and monitoring. The main difference between
FMs and IMs is that IMs provide a local context and they are not publicly accessible from the outside
by client requests, while FMs expose their services publicly. Figure 1 illustrates the microservices
taxonomy. In this example, FMs and IMs have been deployed in the cloud, but they can be deployed
elsewhere (such as in mobile phones or in wearable devices).

Client n)

Client Client Mobile
Wearable App Application o

AP|I GATEWAY

Figure 1. Microservices architecture taxonomy:.
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The functional microservices can communicate with external clients using an API gateway,
and with infrastructure microservices via internal requests. For example, in our use case (Figure 2),
the application in the mobile phone (Frailty Status App in Figure 2), used by end users, can access the
frailty assessment (Fried Frailty model in Figure 2) through the API gateway in the cloud server. The API
gateways are the interface components of our architecture, which aggregate microservices. They can
distribute information to the external clients (i.e., functional microservices, web and applications)
by abstracting the real microservice endpoints. With this abstraction, modifications in the internal
microservices are transparent to the clients. For instance, if a microservice is splited into two
microservices, clients do not need to change anything [30,59].

Sliding
i Windows
Resampling
Feature
Extraction

b
. : .‘

-NN
SVM
RF
NB

SRt Data Receiver

-- ~§_ ' Fried Frailty

TFI Frailty
Model

p : Infrastructure
i Functional Microservices : : Microservices
. Microservices & Applications in a Smartphone Microservices in a Cloud Server
Publish Subscribe
T " 7} O
- Data transferin
_ _F‘egufsiR_ePE’ e g _____ - Raw Data Model Database

Figure 2. Microservices architecture for frailty assessment.

The API Gateway could be implemented with different protocols, such as REST API[61], CoAP [62],
AMQP [63], or MQTT [64]. In particular, we use two API Gateways: a REST API for a one-time
communication, and a MQTT for continuous communications. The API gateway in the smartwatch
(hereafter, API-s) is a REST API (see Figure 2). API-s setup and start the microservices deployed
in the wearable device by invocations from the smartphone. The second API gateway (hereafter,
API-c) is deployed in the cloud server and it is based on the MQTT Publish/Subscribe protocol [65]
(see Figure 2). API-c supports continuous communication of data between the smartwatch and the
cloud. For example, sensor microservices send sensory data and microservices deployed in the cloud
stored and processed said data. API-c also supports the communication of events informing the app
in the smartphone about the frailty status assessment carried out by a single specific frailty model
or even more than one model simultaneously (extensibility), e.g., Fried and TFI. In particular, API-c
follows the publish/subscribe communication pattern [65]. The publishers (sensor microservices)
push messages (sensory data) through a specific topic (e.g., accelerometer), and the microservices
subscribed to that topic (functional microservices in the cloud) receive it. The Publish/subscribe
pattern used by the API-c provides decoupling between sender and receiver, allowing asynchronous
communications and mobility support. Subscriptions can be established and abandoned dynamically
(i.e., Publish/subscribe pattern supports adaptability). Furthermore, MQTT has low overhead, which is
essential in sensor environments. In our proposal microservices can publish messages to different
topics (communication channels) asynchronously, and others microservices can subscribe to these
topics and react accordingly [59].
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3.4.1. Microservices Deployed in Wearable Devices

In the wearable device, we deploy only functional microservices, dealing each one with the
collection of data from one sensor, namely Accelerometer, Gyroscope and Heart Rate microservices
(see Figure 2). The smartphone clients interact with all of the sensor microservices, through the
API-s, to setup and start the production of data. Likewise, sensor microservices interact with other
microservices deployed in the cloud server through the API-c. In particular, when the Frailty Status
App in the smartphone sends the initial setup with the sampling rate to work with and starts the
sensors microservices for collecting data (through API-s), the sensor microservices stream the collected
data to the API-c in the cloud server.

Due to the adoption of a microservice architecture, our system is ready to add new wearable sensors
in the future (if needed or convenient) for the assessment of frailty or other pathologies. For example,
in order to add a new sensor, we need to implement the corresponding sensor microservice and
include it into the architecture to collect the sensory data. This sensor microservice should publish data
through a new topic using the MQTT protocol (API-c). Likewise, we need to expose the new sensor
microservice in the API-s of the smartwatch.

3.4.2. App Deployed in the Smartphone

The purpose of the Frailty Status App deployed in the smartphone is fourfold. First, it requests
the sensor microservices to setup and start the data forwarding. Second, it publishes (through API-c)
the event that starts one or more frailty model microservices. Third, it subscribes to the topic that
allows the reception of events informing about the frailty status of a person. Four, it shows the frailty
status to the user (on the mobile application).

Our system can be extended easily with several frailty models to assess frailty and they can even
operate simultaneously. To that end, we only need to include the microservice for the new model
and create its own topics (one for setup and start process; and another to expose the frailty status).
The Frailty Status App will need to subscribe to these new topics. For example, we could include a
frailty model which considers different datasets, which could lead to a different model; i.e., using a
different sample, for example selecting elderly people with a different age ranges or ethnicities. In fact,
when having several frailty models, the Frailty Status App could subscribe to any of the frailty model
and status subtopics (e.g., frailty/modell for starting to work; and frailty/modell/status for getting the
frailty assessment result). For example, one Frailty Status App can subscribe to the model-1 subtopic;
another Frailty Status App, running in another smartphone, could subscribe to the model-2 subtopic;
and even another Frailty Status App could receive results from more than one frailty model at the
same time when it is subscribed to the main topic (frailty/), that includes the subtopics.

3.4.3. Microservices Deployed in the Cloud Server

The first microservice we implemented in the cloud server is the functional Data Receiver,
which is in charge of receiving and storing the sensory data coming from all the sensor microservices.
The Data Receiver receives these raw data without applying any preprocessing. We have also
implemented two functional microservices for assessing frailty: Fried Frailty Model microservice
(hereafter, Fried microservice) and TFI Frailty Model microservice (hereafter, TFI microservice).
Fried and TFI microservices are in charge of the choreography of the corresponding ML pipeline
(explained in detail in the next subsection). Both, Fried and TFI microservices assess the frailty status
and send the resulting value (“pre-frail”, “frail” or “non-frail”) through the API-c. The pre-built ML
models are stored in the Model Database (this offline creation is common in ML domain), in order
to use them later by Fried and TFI microservices automatically online. The building process of these
models will be explained in Section 3.5.

The infrastructure microservices implement several data analytics techniques. We have
implemented three microservices related with preprocessing algorithms (top right of Figure 2): Sliding
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Windows microservice; Resampling microservice and Feature Extraction microservice, which we
will described in detail in Section 3.5.3. We have also implemented as microservices (bottom right
of Figure 2), four ML algorithms: k-NN, SVM, RF and NB. These algorithms require the pre-built
frailty models stored in Model Database (see Figure 2) in order to calculate the frailty assessment
("frail”, “pre-frail” or “non-frail”). They require as well, the preprocessed data from the previous
microservices (sliding windows, resampling and Feature Extraction microservices).

Adding a new frailty model to our system, requires the following: (1) to pre-build the new ML
model, and to store it in the Model Database; (2) to create the new frailty microservice for the new
model, together with its own subtopics (frailty/newmodel; and frailty/newmodel/status) and ML
pipeline setup; and (3) if we need a new ML algorithm not yet implemented, such as Artificial Neural
Network algorithm, we need to create it as an infrastructure microservice.

3.4.4. Workflow

Figure 3 shows the workflow communication during the assessment of frailty. In this section,
we show the potential of our architecture in terms of extension of future business functionalities,
illustrating a scenario with two frailty models—Fried and TFI. In particular, we will explain in detail
the workflow communication between microservices and app through the APIs and internal requests
and events.

Sliding
-
!
|

Heart Rate

Publish Request-Reply Subscribe Data transfering (R} [ M|
—_— T > T > e > Raw Data Model Database
Topics: @D movemenvace @ vitalsignals/r & frailty/fried/status
©)] movement/gyr (@) frailty/fried ® frailty/tfi @ frailty/tfi/status

Figure 3. Workflow communication details of the microservice architecture for frailty assessment.

First, the Frailty Status App sends a REST POST request to start data forwarding from each
sensor microservice available in the smartwatch (in particular, the Accelerometer, Gyroscope and
Heart Rate microservices). As a response, all the sensor microservices publish their raw data into the
API-c gateway to the corresponding topics: “movement/acc”, “movement/gyr”, and “vitalsignals/hr”,
respectively. Then, the Frailty Status App publishes an event associated to the topic “frailty/fried” with
a value of “1”, and another event “frailty/tfi” with a value of “1”, in order to start the Fried and TFI
microservices, respectively. When the app wants to stop the model microservices it will send the same
event with a value of “0”.

Second, the Data Receiver microservice, which is subscribed to all of sensory data topics
(“movement/acc”, “movement/gyr”, and “vitalsignals/hr”), receives the raw data from the sensor
microservices, and stores the data. Simultaneously, the Fried and TFI microservices, which are
subscribed to the topics “frailty/fried” and “frailty/tfi”, respectively, and start their choreographies.

These choreographies consist of a list of sequential ML pipeline microservices with their respective
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parameters, which are sent to the first IM in the pipeline (in our case Sliding Windows microservice).
For example, for Fried microservice the choreography consist of: (1) sensor microservices to use
(accelerometer, gyroscope and heart rate); (2) data sampling rate (25 Hz); (3) sliding windows size (0.5 s);
(4) subset of feature extractions (mean, standard deviation, minimum and maximum values, kurtosis,
skewness and energy—explained in Section 3.5); (5) pre-built frailty model (e.g., pre-built Fried model
database path); (6) the ML algorithm to make the frailty assessment (e.g., k-NN); (7) and the returning
Frailty model microservice where to send the frailty status assessed in step 6 (e.g., Fried microservice).

Third, the ML pipeline, which will be described in detail in next subsection, starts. The Sliding
Windows microservice receives the ML pipeline setting, and each microservice of the pipeline is
activated sequentially by the previous one. Finally, the ML microservices, which are the last of the
pipeline, send the resulting frailty status to the corresponding Fried or TFI microservice.

Fourth, the Fried microservices receive the frailty status predicted by the ML microservice
and publish the result of the frailty assessment—"non-frail”, “pre-frail’ or “frail”—to the topic
“frailty/fried/status”. Likewise, TFI microservice publishes the result to the topic “frailty/tfi/status”.
Then, Frailty Status App on the smartphone receive this result and notifies the user.

3.5. The Data Analysis Pipeline to Build a Predictive Model for Frailty Assessment

In order to build a frailty model, we have designed a data analysis pipeline, which includes
three main phases: (1) data collection and data labelling; (2) data preprocessing; (3) and frailty
model building with ML techniques. In the first phase, we collect the data and label it in order to
apply machine learning algorithms in supervised manner, which need labelled data. Our health
experts classify each older adult with a label (“frail”, “pre-frail” and “non-frail”) according to the
traditional assessment of frailty based on Fried test [4]. This label becomes the dependent variable for
assessing frailty status. In the second phase we preprocess the data focusing on the enhancement of the
model performance. Usually, preprocessing techniques include segmentation, feature extraction and
dimensionality reduction (i.e., feature selection) [43]. In our case, the preprocessing techniques applied
consist in the feature extraction combined with segmentation, and feature selection to reduce these
features extracted. In the third phase, we build a predictive model using the labelled and preprocessed
data. We build the model outside the system architecture as we mentioned above, but we sored the
model in a database accessible by our Fried microservice. Figure 4 shows all the phases and steps
inside the pipeline, which will be described in detail bellow.

[@ Data Collection and Labelling J

¥

Data Preprocessing

[@ Segmentation

!

@ Feature Extraction ]

I

!

Frailty Model Building based on
RFE Embedded Feature Selection

[ Feature Selection with RF Filter ]
Model Building
with hyper-parameter tunning

@ Model Performance Evaluation ]

Figure 4. Data analysis pipeline for frailty status assessment.
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3.5.1. Data Collection and Labelling Process

In order to make the frailty assessment, we collected the results of the participants’ frailty status
based on Fried classification. Thus, we had labelled all of these participants with their corresponding
frailty status (“frail”, “pre-frail” and “non-frail”).

Participants were asked to buy a specific product in the nearest supermarket following the next
protocol. The participant starts in a sitting position on a chair without armrests, with €1 coin and
wearing the Gear S3 smartwatch in the non-dominant hand. The supervisor, who is responsible of
the experiment supervision, starts the Frailty Status App to start capturing wearable sensory data.
The participant stands up and walks to the supermarket; looks for and pick up a 1 kg package of
salt; goes to the check out and pays; comes back to the starting point; and sits down on the chair.
The supervisor stops the collecting of data with the Frailty Status App.

The performance of the shopping activity was divided into several tasks or sub-activities doing an
activity analysis using the Occupational Therapy Practice Framework [66]. During this whole process,
the evaluator labeled the different tasks of the shopping activity during its execution: (1) sitting;
(2) standing; (3) walking to the supermarket; (4) in the supermarket; (5) looking for the product to
purchase; (6) picking the product; (7) going to the checkout; (8) in the checkout; (9) paying; (10) go to
the exit; (11) in the outside; (12) coming back; (13) standing at the start point; (14) and sitting back.
This labelling was performed by observation, and with the help of an app connected to the smartwatch.

The smartwatch transmits (offline) the data collected to the smartphone (to the Frailty Status
App) via Bluetooth. The sampling rates used in the data collection is normally greater than 10 Hz,
and in most cases ~20 Hz, as similar studies in the field of activity recognition suggest [50,51,67].
In particular, we recorded data at 25 Hz as in Genovese et al. [55] and close to the 20 Hz used by
Garcia-Ceja et al. [51]. Nonetheless, we have performed several experiments with different sampling
rates between 10Hz and 100 Hz, obtaining similar results. Moreover, we excluded anomalies in heart
rate values based on the formula: HR maximum = 220 — participant age [68,69]. Furthermore, as we
recruited participants in three community-centers, the distance from the center to the supermarket
were different (two centers: 50 m; and the third 100 m). This fact does not carry any inconvenience as
the activities are labelled (i.e., when the participant starts and end walking to the supermarket) and the
distance for each participant is also recorded.

3.5.2. Data Preprocessing

In order to get accurate results assessing frailty [70], we performed two well-known data
preprocessing techniques sequentially: (1) segmentation of raw data (without preprocessing) with
50% overlapped windows strategy; (2) feature engineering, for every window, in order to extract
relevant variables.

Segmentation

We implemented 50% overlapped sliding windows approach to segment the data, as in previous
works [50,67,71]. This is a common technique used with wearable sensory data, which implies an
increase of the sample size due to the overlap, and therefore the re-used of the data. Hence, this technique
improves the accuracy of the results [43]. We test different window sizes to get which of them reports
the best model performance: 0.5s;1s;1.5s;2s; and 2.5 s.

Feature Extraction

We also apply feature selection, as in other similar works [12,49,50,72,73]. In particular, we extract
eight statistical features for every wearable variable (we identified 7 wearable variables in Table 2) and
for each window. Related with time-domain, the extracted features are: mean, standard deviation
(SD), skewness (the probability distribution asymmetry), kurtosis (the probability distribution, a.k.a.
tailedness), maximum, minimum and amplitude (the absolute difference between the maximum and
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minimum). The only frequency-domain feature extracted is the energy, which is the sum of the squared
Fast Fourier Transform (FFT) components [74,75]. In order to normalize the energy feature, it was
divided by each window size (jw]). Let x1, X2, ... , Xn be the i-th FFT components for the windows w1,
Wy, ..., Wn, then Energy [74] expression is:

2
M il

Energy = ]

)

3.5.3. Frailty Model

Feature Selection

Feature selection is a technique that selects only the most relevant features to train the model
and reduces the dimensionality of the dataset. As we could train the model with only a selection of
features: the model will train faster; the complexity of a model is lower and therefore it makes it easier
to interpret; the accuracy of a model could improve if the right subset is chosen; and the overfitting is
also lower. Feature selection methods apply statistics to identify what are the most important features
and remove the redundant features. A feature is redundant when another relevant feature exists with a
similar power of prediction [76]. The feature selection techniques are the filter, wrapper and embedded
methods [16,77]. Filter methods identify the relevant features based on statistics, without considering
a machine learning classifier to build a model. Wrappers use a subset of features to measure the
performance of a machine learning classifier; and then they iteratively add or remove features to the
subset according to the results, until they reach an optimum. Embedded methods include feature
selection as part of the machine learning model building. Therefore, both wrapper and embedded
methods are specific to the machine learning algorithm used.

In our case, we have used embedded methods (such as in [18]), hence using feature selection in the
building process of the frailty assessment model. Our embedded method consists in the combination
of a filter method (based on Random Forest to rank features by their importance) with the Recurrent
Feature Elimination (RFE) strategy [78] to build (also called train) one ML model per feature selected.
First, RF sort the features by their relevance in descending order, then RFE starts considering all
of the sorted feature set. Then, we build the model with that sorted feature subset and evaluate
different performance metrics (we will detail these metrics in the next subsection). In each iteration,
we eliminated the least relevant variable (or redundant); recalculate the importance rank of the new
subset with RF filter; create a model with this subset; and evaluate the frailty model performance.
At the end, we select the model with the best performance and identify what are the resulting features
subset. Considering that the total wearable variables coming from the raw data are 7 (see Table 2) and
that from each variable we extract 8 features, our initial set of features is 56.

Frailty Model Building

To build an accurate machine learning model it is necessary to tune its hyper-parameters,
considered high level concepts of the model. For instance, some hyper-parameters are complexity,
capacity to learn, number of leaves in trees of RF, or kernels in SVM [79]. As described in the related
work, several machine learning algorithms have been applied successfully to assess physical frailty,
such as k-NN, RF and NB. We used these algorithms and Support Vector Machines (SVM), which is
widely used for ADL recognition. Therefore, we tried them all, and identify which one of them reported
the best performance for our use case. We tested these algorithms, with R programming language,
tuning its specific hyper-parameters based on related studies [45,49,80]:

e k-NN:(1)k: {1, 3,5, .., square of number of rows} (only odd numbers).
e SVM: (1) cost function: {0.1, 1, 10, 100}; (2) gamma value: {0.5, 1, 2}; (3) and, kernel type: {“radial”,

VZa

“polynomial”, “linear”, “sigmoid”}.
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e RF: (1) number of trees: {10, 100, 200, 500, 1000}; (2) number of variables randomly sampled:
{10, 25, 50}.
e NB: (1) use of kernel: {True, False}; (2) use of poisson: {True, False}.

Regarding the computational load, it is known that in the creation of the model (training phase),
some algorithms are slower (SVM and RF) than others (k-NN and NB). However, this process is
performed offline and it does not require rapid responsiveness. The complexity of the offline building
process for every ML algorithm is as follows. Let n be the training size, m the number of features,
Nirees the number of trees (for RF algorithm), then the computational complexity is:

e k-NN: O(nm)

e SVM: O(n’m + n?)
e RF: O(n’mnyrees)

e NB: O(nm)

However, once we have our model built, to know the prediction of a particular record (i.e., to assess
frailty of a person) the computational complexity is reduced. Specifically, the complexity of each ML
algorithm is:

e  k-NN: O(nm)

e  SVM: O(ngym), where ngy is the number of support vectors, which is the resulting points of the
SVM model, close to the decision boundary.

e RF: O(nreesm)

e NB: O(m)

Model Performance Evaluation

In order to validate our ML model, we used 5-fold stratified cross-validation [3,14], in which
the dataset was randomly divided into k = 5 equal parts keeping the proportion of samples of the
three frailty labels (“frail”, “pre-frail” and “non-frail”). At each k-th iteration, the k-1 partitions were
used to train (build) the model, and the left-out partition (hidden data for the trained model) was
used for validating the model. The performance metrics for this validation were: accuracy, f1-score,
sensitivity (true positive rate) and specificity (true negative rate). These metrics are related with these
concepts: (1) true positive (TP) condition, which is the number of true positive cases in the data and
rightly predicted as positive by model; (2) true negative (TN) condition, which is the total number of
true negative cases and rightly predicted as negative; (3) false positive (FP) condition, which is the
total number of positive cases classified wrongly as negatives; (4) and, false negative (FN) condition,
which is the total number of negative cases but classified wrongly as positives. Taking into account
these considerations, the expressions of the four metrics used are the following:

Accuracy = (TP + TN) / (TP + TN + FP + FN) 2)
Sensitivity = TP / (TP + FN) 3)
Specificity = TN / (TN + FP) 4)

F1-Score = 2TP / 2TP + FP + FN) 5)

4. Results

Before using the system, we performed a system validation, with only five participants, in which we
validated the technological solution, as well as the usability and acceptance, following a user-centered
design approach. After this preliminary validation, we were ready to validate the complete frailty
assessment system with a larger sample of 78 participants.
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4.1. System Validation Results

We carried out a preliminary study [24] as a proof of concept for the technical validation of the
system architecture and the usability and acceptance by end-users, i.e., experts and the older adults.
Debes et al. [46] suggested that the acceptance of wearables for Health assessment can be increased
with a user-centered design, that guarantees privacy and transparence. Therefore, we not only design
at the beginning for elderly people, but also adapt the system to them. Taking this into account,
we performed this proof of concept in order not only to validate the technical proposal, but also to
adapt the system to the users.

In order to validate the technological solution, older adults were assessed in a real environment
(performing a shopping activity at the supermarket). The participants recruited for the proof of concept
were five adults coming from a community center in Granada (Spain); three of them were women
(one frail; and two non-frail); and two were men (one frail and one non-frail). The average age was
84 years old. All of them performed the shopping IADL, as explain in Section 3.5.1, while we collect
sensory data using our system architecture. After that, we performed a preliminary Exploratory Data
Analysis (EDA) with the collected data revealing that heart rate data could be a relevant feature to
distinguish between non-frail and frail participants (Figure 5).
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Figure 5. Comparison between frail and non-frail individuals by heart rate [24].

In particular, frail individuals reported a wider range of heart rate over the non-frail individuals.
Specifically, heart rate values in frail individuals move between 50 and 90/100; whereas, in non-frail
individuals the values move only between 80 and 100. In addition, the mean heart rate values were minor
than 88 in frail participants, and greater than 88 in non-frail participants. However, these observations
are a proof of concept of the system, and the sample is not representative (only 5 participants) for
inferring that wider range of heart rate is a feature exclusive of non-frail individuals. Nonetheless,
this proof of concept represents that our system is technically validated, and ready to perform a frailty
assessment with a larger dataset.

We also validated our system in terms of usability, acceptance. The supervisor of this preliminary
experiment observed the participants and interviewed them about this activity. Participants answered
whether the wearable affected their comfort and mobility. The main findings are in line to those of
Ehmen et al. [81]: (1) older adults with low sensorimotor abilities can use our system; (2) our system
requires little time of use and it is transparent for older adults, because they only have to wear the
smartwatch; (3) our system is easy to use for older adults, they do not require any technological
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competence; and (4) our system does not require extra personnel to train the users or to use the system.
In conclusion, all of the participants reported a satisfactory experience. They said that the system was
non-intrusive. Participants also reported that: the wearable is easy to wear; the app is easy to learn;
and the collected data are secured because they are anonymized.

Therefore, the technological solution was viable, and the system was adapted to the end users
(user design centered) without the need to any further tuning. Hence, we started the assessment of the
frailty with a larger sample.

4.2. Frailty Model Results

In this section, we present the results of the frailty model building: first, the recount of frailty classes
of the recruited sample, with/without considering shopping phases; second, a summary of the ML
algorithms used and total features explored; third, the best ML model built and its metrics; and finally,
a comparative about how shopping IADL influences in the model performance for frailty assessment.

Wearable sensory data of 79 participants (69 women; 10 men) were collected. However,
the exploratory data analysis reported one male with some missing values, thus we discarded this
record. Then, the final sample consisted in 78 participants, 12 of them classified as “frail”, 47 “pre-frail”
and 19 as “non-frail”. In addition, we labelled the global shopping activity into 14 shopping tasks or
sub-activities (as described in the Materials and Methods section), with the help of an occupational
therapists” analysis to define the phases. The final distribution sample is: (1) 168 phases for “non-frail”
individuals; (2) 658 phases for “pre-frail” individuals; (3) and 266 phases for “frail” individuals. In total
1092 samples.

We built four frailty classification models using the machine learning algorithms k-NN, SVM,
RF and NB, following the embedded feature selection method (with RF filter to rank features) and
using RFE strategy. Then, we used 5-fold stratified cross-validation to evaluate all of models built.
Figure 6 shows the metric Fl-score over features from 1 to 56 of total amount of features extracted.
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Figure 6. Performance of different machine learning algorithms by RFE embedded feature selection.
Table 3 shows the results. The k-NN model reported the best performance with k =1 (i.e., 1-NN)

at 25 Hz, 0.5 s windows size and considering only 29 features followed closely by SVM. The best
accuracy was 0.99, i.e,, it classifies correctly the frailty status in most than 99% of the participants
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recruited, using only 29 features extracted from the wearable sensors. In 1-NN, Fl-score was 0.98.
Sensitivity was 0.97 and specificity was 0.99. In addition, we found that for 1-NN (see Table 4), the best
frailty status detected was “pre-frail”, followed by “non-frail” and, then, “frail”, giving priority to
sensitivity metrics rather than specificity, which is preferred in health problems.

Table 3. Performance of different Machine Learning algorithms to assess frailty status.

Algorithm Features Accuracy F1-Score Sensitivity Specificity
k-NN'! 29 0.9917641 0.9837171 0.9764216 0.9947197
SVM 46 0.9670102 0.9364576 0.9108271 0.9779242
RF 27 0.8461648 0.6960141 0.6244533 0.8733734

NB 47 0.6621256 0.4960688 0.4353061 0.7659894

1 k-NN reached the best performance with k = 1 (1-NN). In bold letters, the best performance results.

Table 4. Performance of 1-NN for the three frailty status.

Frailty Status Sensitivity Specificity
Frail 0.9375 0.9946237
Pre-frail 0.9851852 0.9879518
Non-frail 0.962963 0.9939024

In bold letters, the best performance results.

Furthermore, we used these findings in order to test 1-NN to know which are the most relevant
shopping phases for the final assessment of frailty status. To that end, we perform several experiments
with different phases or grouping of phases in them. For example, automatic detection of the shopping
phases inside the supermarket could pose a challenge. Therefore, we performed an experiment
consisting in grouping all these stages in one single phase in order to compare the impact of packaging
phases or not. This package process (packed shopping) consisted in reducing the number of all
shopping phases samples by computing the arithmetic mean of all the shopping phases values (row 4
in Table 5). As expected, the results indicate that the performance is worst, by 2.6%, if we consider
the shopping phases packaged (row 6 in Table 6) than if we considered one single phase separately
(rows 5 in Table 6). Figure 7 shows these results and additionally, we can see how the F1-score becomes
stable after 20 features approximately for most of the phases. In particular, for the phase “Walking &
Sitting/Standing & Shopping” we can see that it increases linearly with the number of features until
15 features, and then improves slowly until 29 features where it reaches its maximum. Furthermore,
the most influent shopping phase is “looking for the product” with a 93.2% accuracy, followed by
“walking to the checkout”.

Table 5. Experiment names and phases (tasks or sub-activities) of shopping considered.

Experiment (Phases) Tasks or Sub-activities

(1) Walking to the supermarket

(2) Coming back

(1) Sitting

(2) Standing

(3) Standing at start point

(4) Sitting back.

(1) Participant is in the supermarket

(2) Looking for the product to purchase

(3) Picking the product

(4) Going to the checkout

(5) In the checkout
)
)

Walking

Sitting/Standing

Shopping

(6) Paying

(7) Go to the exit

(8) In the outside

(1) Same phases as the shopping experiment but considered as a unique

Packed Shopping phase by computing the arithmetic mean of the values.
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Table 6. Performance of 1-NN in different experiment phases.

17 of 23

Algorithm Features Accuracy  F1-Score  Sensitivity Specificity
Walking ! & Sitting/Standing ? & Shopping 3 29 0.9917641  0.9837171  0.9764216  0.9947197
Walking ! & Sitting/Standing ? Packed Shopping 31 0.9503722  0.9036798  0.8792540  0.9705433
Walking ! 19 0.9425269  0.8927655  0.8656145  0.9650742
Sitting/Standing 2 21 0.9325653  0.8722884  0.8430592  0.9594234
Shopping 3 42 0.9359852  0.8785180  0.8397436  0.9588485
Packed Shopping * 18 0.9091168  0.8450966  0.8034157  0.9488836
Looking for the product 28 0.9322537  0.8944003  0.8754377  0.9671364
Picking up the product 15 0.8940171  0.8218771  0.7855828  0.9441125
Walking to checkout 8 0.9245014  0.8669296  0.8295743  0.9552347
Waiting for their turn 17 0.851007  0.7638345  0.7256926  0.9190001
Paying 48 0.8863248  0.8151564  0.7741049  0.9367538

1 Walking: (1) walking to the supermarket; (2) coming back; 2 Sitting/Standing: (1) sitting; (2) standing; (3) standing
at start point; (4) and sitting back. 3 Shopping: (1) in the supermarket; (2) looking for the product to purchase;
(3) picking the product; (4) going to the checkout; (5) in the checkout; (6) paying; (7) go to the exit; (8) in the
outside. * Packed Shopping: all phases of Shopping 3, but packed in only one phase. In bold letters, the best

performance results.
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Figure 7. Performance of 1-NN by RFE embedded feature selection over shopping phases. Walking:
(1) walking to the supermarket; (2) coming back. Sitting/Standing: (1) sitting; (2) standing; (3) standing
at start point; (4) and sitting back. Shopping: (1) in the supermarket; (2) looking for the product to
purchase; (3) picking the product; (4) going to the checkout; (5) in the checkout; (6) paying; (7) go to the

exit; (8) in the outside. Packed Shopping: all phases of Shopping but packed in only one phase.

5. Discussion

We have created a platform based on microservices which allows the generalization, extension
and reuse of our system functionalities. In particular, we can easily include new sensors coming from
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different wearables, such as smartwatches, wristbands, bracelets and headbands. Likewise, we can
reuse or include new microservices to predict other pathologies (e.g., the dependency status).

We found that the shopping activity (IADL) is equally important than individual BADLs in the
assessment of frailty, but the combination of both improves the accuracy. The prediction of frailty
status has a similar accuracy considering only the shopping IADL (row 5 in Table 6) or considering only
the BADLs (rows 3 and 4 of Table 6) such as sitting, standing and walking outside the supermarket.
However, the addition of shopping IADL data to sitting, standing and walking BADLs data (see row
1 in Table 6) increases the accuracy in 5% (from rows 3 and 4 to row 1 in Table 6). This combination
reaches the best accuracy of 99.2% using k-NN algorithm with k = 1 (1-NN). Then, since k-NN
algorithm works with Euclidean distance, and provides better results than other ML algorithms
tested, this suggests our classes (three frailty status) are quite separable. Furthermore, the most
influent shopping phase is “looking for the product”, with 93.2% accuracy followed by “walking to
the checkout”. These results could be due to the fact that both phases involve the physical activity of
walking, which is the BADL with the best results. The worst accuracy was achieved by the “waiting in
turn” phase, which probably is due to the fact that it does not involve any physical or cognitive activity
and the sensors could not discerned frailty form non-frailty older adults. The second worst results
(although still a good results) was provided by the “paying” phase. This result is probably due to the
fact that paying involves cognitive and social factors, that we do not considered when we labelled
the data with Fried test. Thus, we will explore in the future the use of sensors, such as Electrodermal
Activity (EDA), which could sense physiological signals which are known to be directly correlated to
cognitive and social functions; as well as labelling the data with other frailty tests which considered
social and cognitive functions. Nonetheless, our findings confirm the relationship between the IADLs
performance with the frailty status of older adults [9] and state that the combination of BADLs and
IADLSs improve the accuracy.

Our findings with “shopping packed” are relevant, because the detection of a person inside of
a supermarket (and therefore performing the “shopping packed” phase), could be easily detected,
for example, using a GPS location sensor or some IADL recognition methods available in the literature.
Whereas the detection of each phase inside the supermarket could be a challenge or require more
resources, such as fixing sensors inside the supermarket.

Our frailty model outperforms the previous works. In particular, it outperforms the most relevant
study comparable to ours we found [14], as mentioned in Section 2, which has an accuracy of 82.33%
and sensitivity of 83.83% classifying the three classes of frailty status (frail, pre-frail and non-frail),
but using only BADLs. Also, our model has an accuracy 1.26% higher than the other experiment
performed by Tegou et al. [14], which divided the sample in two classes (group 1: dentification of
frail participants; group 2: non-frail and prefrail participants together as a single class). In addition,
we outperform [18] from 85% to 99% accuracy, which used embedded feature selection approach as
our proposal.

Our proposal is novel because it is ecological, low-cost, wearable-based to automatize the
data collection non-intrusively—applying ML techniques to classify the three classes of frailty
syndrome—microservices based architecture for healthcare systems. Furthermore, our proposal
outperformed similar studies, which measure Frailty with ML, but do not have all the above characteristics.

This paper may have some limitations. Firstly, the recruited sample had an unequal gender
distribution, which is common in this kind of experiments with elder people. Likewise, the sample is
imbalance, due to the bigger number of “pre-frail” people in this age range and able to perform IADLs,
than the number of “frail” or “non-frail”.

The benefits of our results consist on the automatic assessment of frailty status during IADLs,
which involves an ecological approach. This could reduce health professionals’ time, health costs,
and could be the basis for a preventive intervention to reduce frailty. Our proposal is ecological
because, we can measure frailty of older adults in their own environment (their daily living), without
disturbing them, in a non-intrusive and transparent manner. A consequence of this ecological point of
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view, is the reduction of costs and time in the assessment of frailty, in comparison with traditional
frailty tests. Furthermore, due to the adoption of microservices approach in our system architecture
we can take advantage of all of its properties, such as extensibility and reusability. For that reason,
we are able to extend the system with different frailty model microservices or including different
sensors. Moreover, our frailty model contributes to an early detection of frailty status, which is a
key point for prevention [4,5], allowing health professionals to make early decisions for performing
specific interventions.

6. Conclusions and Future Work

In this paper, we have presented a novel proposal for e-health, which is a platform based on
microservices for assessing frailty status of older adults, ecologically during the performance of an
IADL, such as shopping, which involves physical, cognitive and social human functions. To that
end, we designed a microservice architecture to support sensory data collection from wearables,
and ML analytics. Hence, our proposal take advantage of the microservices characteristics, such as
extensibility, reusability and scalability. The main potential of the microservices architecture is
that it could be extended with little effort. For example, we could easily include new data sources,
new sensors, new business functionalities, or new frailty models based on different assessment methods.
Our ML model has an accuracy of 99.2%, a 98.4% F1-score, a 97.7% sensitivity and a 99.5% specificity,
outperforming those of the previous works. Our system is ecological, because it does not disturb the
daily living of elderly people. Our frailty assessment is performed in a transparent and non-intrusive
way, thanks to the use of mobile computing technologies.

Our proposed model can help healthcare professionals in the early detection of frailty, reducing
costs and time. It can help clinicians in the early detection of frailty, because the monitorization could
be done automatically and continuously, even before any symptoms appear. Hence, clinicians could
design personalized intervention plans to prevent or revert frailty. Traditional frailty assessments
require to perform several tests of gait, balance, physical activities and self-report questionnaires.
Thus, healthcare services could adopt our solution, because its implementation implies a more objective
assessment than the traditional tests, which involves questions about the feelings of your personal
health and independence. Our solution also implies a time reduction and a decrease of cost with
respect to the conventional assessments.
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