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Abstract: In this paper, we present a comparative study of a cost-effective method for the mass
fabrication of electrodes to be used in thin-film flexible supercapacitors. This technique is based
on the laser-synthesis of graphene-based nanomaterials, specifically, laser-induced graphene and
reduced graphene oxide. The synthesis of these materials was performed using two different lasers:
a CO2 laser with an infrared wavelength of λ = 10.6 µm and a UV laser (λ = 405 nm). After the
optimization of the parameters of both lasers for this purpose, the performance of these materials
as bare electrodes for flexible supercapacitors was studied in a comparative way. The experiments
showed that the electrodes synthetized with the low-cost UV laser compete well in terms of specific
capacitance with those obtained with the CO2 laser, while the best performance is provided by the rGO
electrodes fabricated with the CO2 laser. It has also been demonstrated that the degree of reduction
achieved with the UV laser for the rGO patterns was not enough to provide a good interaction
electrode-electrolyte. Finally, we proved that the specific capacitance achieved with the presented
supercapacitors can be improved by modifying the in-planar structure, without compromising their
performance, which, together with their compatibility with doping-techniques and surface treatments
processes, shows the potential of this technology for the fabrication of future high-performance and
inexpensive flexible supercapacitors.

Keywords: flexible electronics; graphene oxide; laser-induced graphene; laser-scribing;
supercapacitors

1. Introduction

Flexible electronics are expected to bring out a revolution in diverse fields of technology, such as
electronic skin [1,2], robotics [3,4] or health-monitoring devices [5–7], among others. Most of the
recent advances in this context have been possible due to the emergence of new conductive and
flexible materials, many of which have reported outstanding results in terms of electrical conduction
and integration, such as the polycrystalline silicon (poly-Si) [8,9] or several semiconducting metal
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oxides (e.g., SnO2, TiO2, ZnO or ITO) [10–12]. However, due to the complexity of their synthesis
or the expensive fabrication processes required to obtained large-area samples, research groups are
still exploring different alternatives that enable an inexpensive and massive fabrication of flexible
electronics devices.

Therefore, the efforts in this direction have led to extensive investigations on the use of several
classes of nanomaterials with different conductivity and sensing capabilities, including carbon
nanotubes (CNTs), graphene-derived materials, metal nanowires or conductive polymers [13]. All these
materials have in common being compatible with printing techniques, which enable their economical
and efficient processing on diverse flexible substrates, thereby providing a commercially attractive
possibility to obtain multifunctional electronics over large areas [14]. Thus, techniques such as
screen-printing or inkjet printing have enabled large achievements in all areas involved in the
development of flexible electronics devices, extending from transducers to the antennas for the wireless
data transmission [15–19].

However, apart from the latter, novel flexible electronics applications are also demanding
flexible energy storage devices that, together with energy harvesting technologies, contribute to
the development of self-powered devices and, thus, to the paradigm of the ubiquitous sensing [20].
In this respect, supercapacitors are expected to play an important role, thanks to the higher power
density induced by their fast charging/discharging rates when compared to conventional batteries.
Supercapacitors can be classified mainly into two different groups, electrochemical double-layer
capacitors (EDLCs) and pseudocapacitors, depending on the storage mechanism, i.e., the interaction
between electrode-electrolyte [21]. EDLCs are those whose electrode material is not electrochemically
active, and therefore the capacitance is associated with the pure physical charge accumulation at the
electrode/electrolyte interface. On the contrary, the energy storage in pseudocapacitors relies on fast and
reversible faradaic redox reactions occurring on the electrode surface [21–23]. For these reasons, in both
cases, the electrode is a key element in the development of supercapacitors and then, many materials
have been investigated for this purpose. In the case of pseudocapacitors, the most studied materials
are transition metal oxides and conducting polymers, which promote the reversible faradaic-type
charge transfers of these redox supercapacitors [24], whereas EDLCs electrodes are fabricated from
nanoscale materials with high porosity and high surface area. In this latter case, carbon-based materials
are preferred to play this role, due to their exceptionally high surface area, relatively high electrical
conductivity and acceptable cost. These properties make porous carbon-based materials, such as
Laser-Induced Graphene (LIG) or reduced Graphene Oxide (rGO) [25–27], ideal candidates for the
fabrication of the electrodes. Many researchers agree that these kind of electrodes will play an important
role in the supercapacitor technology, and that is why a big effort is being made to further optimizing
its properties through doping [28] or surface treatments [29].

In this context, this work is focused on the study of a cost-effective technique for the synthesis of
raw graphene-based EDLCs electrodes and its optimization. Following a laser-photothermal process,
we synthesized electrodes based on both LIG and Laser-rGO (LrGO) using two different kind of laser
beams: CO2 and UV. These electrodes were tested under the same conditions of layout and electrolyte
to compare their performance as EDLCs electrodes. The work is structured as follows: after this
introduction, Section 2 summarizes the different materials used in our experiments, as well as the
methodologies followed for the fabrication and characterization of the samples. Section 3 presents the
results obtained for the different electrodes together with a comparison of their performance. Finally,
the main conclusions are drawn in Section 4.

2. Materials and Methods

2.1. Materials

Two different flexibles substrates were used for the fabrication of the electrochemical capacitors,
Kapton® HN films with a thickness of 75 µm from DuPont Corporation (Wilmington, DE, USA)
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and Polyethylene Terephthalate (PET) foils with a thickness of 160 µm from ColorGATE Digital
Output Solutions GmbH (Hannover, Germany). Graphene Oxide at a concentration of 0.4 wt% was
acquired from Graphenea (San Sebastián, Spain). The electrolyte was prepared using poly(vinyl
alcohol) (PVA, Mw 31,000–50,000, 98%–99% hydrolyzed) and phosphoric acid (H3PO4, product name:
1005731000), both acquired from Sigma-Aldrich (St. Louis, MO, USA). Electrical access to the capacitive
devices was printed using a silver-based conductive paint from RS PRO (RS Components, Corby, UK).

2.2. Fabrication Processes

The gel electrolyte was prepared by dissolving 1 g of PVA (Mw 31,000–50,000, 98%–99% hydrolyzed,
from Sigma-Aldrich, St. Louis, MO, USA) in 10 mL of de-ionized water (10 wt%), stirring at 80 ◦C
for 2 h using a hot plate stirrer (Scilogex SCI280-Pro, from Scilogex, LLC, Rocky Hill, CT, USA). Once
the PVA was completely dissolved, 1.5 mL of H3PO4 was added to the solution and it was stirred for
another hour [30–32].

The devices were fabricated following the schemas shown in Figure 1. In the case of the LIG-based
supercapacitors (Figure 1a), the laser photothermal ablation was carried out directly on the polyimide
film (Figure 1(a-1)), inducing the graphene-derived structures on its surface (Figure 1(a-2)) [33,34].
On the other hand, for the fabrication of LrGO-based electrodes, a PET foil (Figure 1(b-1)) was covered
with GO at a concentration of 75 µL/cm2 (Figure 1(b-2)). After that, the sample was dried at ambient
conditions during 48 h. Once the drying process was completed, the GO was turned into rGO through
the laser photothermal process, as shown in Figure 1(b-3).Micromachines 2020, 11, x 4 of 14 
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Figure 1. Schematic representation of the fabrication process of the flexible electrochemical capacitors
(ECs). (a) Laser-Induced Graphene (LIG)-based ECs: (1) Kapton® polyimide film (thickness: 75 µm),
(2) laser-scribing process to induce graphene-derived pattern on the surface of the polyimide
(this case shows the CO2 laser beam), (3) silver electrical contacts printed on each electrode,
(4) poly(vinylalcohol) (PVA)/H3PO4 electrolyte drop-casted on top of the InterDigital Electrodes (IDE)
structure. (b) Laser-reduced Graphene Oxide (rGO) (LrGO)-based ECs: (1) PET film (thickness: 160 µm),
(2) GO deposited onto the PET substrate (concentration: 75 µL/cm2), (3) laser-scribing process to reduce
the GO, (4) silver electrical contacts printed on each electrode, (5) PVA/H3PO4 electrolyte drop-casted
on top of the IDE structure.

Two different types of laser were used in this work for this purpose. On one side, we used a CO2

laser with an infrared wavelength of 10.6 µm (Rayjet 50, from Trotec Ltd., Marchtrenk, Austria). On the
other side, we also used a UV laser with a wavelength of 450 nm (from KKmoon SA, Automatic K5).
The use of this type of technology requires two main safety measures. Thus, the laser machines count
on with an eye protection shielding, which filters the high intensity wavelength of their corresponding
laser beams. In addition to that, a fume extractor was used during the laser photothermal treatment to
avoid the inhalation of the gases released during this process.
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Both laser power and speed were set, in order to optimize the sheet resistance of the
graphene-derived patterns, thus improving the effective electrons transport and the electrochemical
property [35]. Therefore, we obtained a total of four different combinations laser-electrode
(hereinafter referred to as LIG UV, LIG CO2, rGO UV, rGO CO2 for each material and laser, respectively).

The layout studied in this work consisted of planar InterDigital Electrodes (IDE) structure
(Figure 1), given that this configuration allows to achieve lower thicknesses and a more accurate control
of the distances between electrodes than its stack counterpart [36]. In addition, we considered two
different patterns, firstly we characterized the different devices using the following layout: number of
fingers N = 20, width of the fingers W = 1 mm, spacing between electrodes S = 1 mm, interspacing
between fingers i = 1 mm and length of the fingers L = 1 cm, which resulted in an effective area of
~4 cm2. Secondly, we also used a layout with the same effective area, but with different spacing between
electrodes (S = 500 µm), interspacing between fingers (i = 500 µm), as well as the width of the fingers
(W = 500 µm), to demonstrate the possibility of increasing the specific capacitance by changing the
geometry of the IDE structure.

After the laser scribing process, electrical contacts were printed on both sides using silver ink
(Figure 1(a-3) and Figure 1(b-4)) with the objective of reducing the resistivity between the electrode
and the current collector, and with that the Equivalent Series Resistance (ESR) of the capacitor [37,38].
Finally, ~1.5 mL of the gel electrolyte was drop-casted on top of the capacitive IDE structure covering
all the effective area, as depicted in Figure 1(a-4,b-5), and the samples were left standing overnight to
remove the excess of water before the characterization.

2.3. Characterization

The sheet resistance of the graphene-derived patterns was extracted through the Transmission
Line Method (TLM) [34]. X-ray Photoelectron Spectroscopy (XPS) analysis was performed using the
Katros Axis Ultra-DLD X-ray photoelectron spectrometer (from Kratos Analytical Ltd., Manchester,
UK). The samples were characterized in a vacuum chamber at a pressure of 10−10 Torr at an X-ray
power of 450 W. Raman spectra were obtained with a NRS-5100 dispersive micro-Raman spectrometer
(from JASCO International Co. Ltd., Tokyo, Japan) using an excitation source with a wavelength of
λ = 532 nm (Elforlight G4-30; Nd:YAG). The profilometry of the samples was acquired using a DekTak
XT contact profilometer (from Bruker Corporation, Billerica, MA, USA) at a stylus force of 1 mg. Cyclic
Voltammetry (CV) experiments were performed using the B2912A precision source-measurement unit
(SMU) from Keysight Technologies, Inc. (St. Rose, CA, USA).

3. Results and Discussion

The feasibility of both CO2 and UV lasers to induce porous nanographene aggregates from
commercial polyimides, and to reduce the GO, has been already proved in several works [6,28,33,34].
However, due to the different nature of the laser beams, not only is the power required to optimize
the sheet resistance different, but so are the properties of the material synthetized [39]. Furthermore,
the power required for the synthesis of these materials depends on the laser used, thus, we set the laser
speed and studied the sheet resistance of the laser-synthetized patterns as a function of the laser power,
in order to minimize the sheet resistance while maintaining the integrity of the substrates. Following
the TLM procedure, whose results are summarized in Supplementary Figure S1, the configuration of
the laser to minimize the sheet resistance is presented in Table 1.

As has been reported in previous works, one of the distinctive features of LIG, which is common
for both UV and CO2 laser exposition sources, is its highly porous structure, which is a consequence
of the rapid liberation of gaseous products during the laser-scribing process, also associated with
the drastic increase in the atomic percentage of carbon [34,40–42]. In the case of the LrGO, the laser
treatment on the surface of the GO leads to a partial restoration of the crystallographic network of
its graphitic structure, which was disrupted during the oxidation process [43]. However, this partial
recovery makes the surface of the resulting material to present structural defects manifested thorough
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a large roughness and a 3D plate-shape structure with multiple craters, a phenomenon that has been
reported for both UV [44] and CO2 lasers [45], and that could be helpful to increase their double layer
capacitance effect.

Table 1. Values of the sheet resistance obtained after optimization for the different laser beams
and materials.

Laser Material Laser Power (W) Laser Speed (cm/s) Sheet Resistance (Ω/sq.)

CO2
rGO 1.5 15 196.8
LIG 6 15 43.3

UV
rGO 0.39 1 305.7
LIG 1.5 1 240.1

Raman and XPS spectroscopies confirmed the graphene-derived nature of these materials. On one
hand, as seen in Figure 2, all Raman spectra are composed mainly by three different peaks located at
~1345 cm−1 (D peak), ~1580 cm−1 (G peak) and ~2700 cm−1 (2D peak), respectively. In particular, the G
peak is associated with the sp2-hybrized carbon networks of the graphitic materials, whereas the D
peak reveals the presence of defects in this structure (it would be inexistent in single-layer pristine
graphene). Moreover, the 2D peak and its full width at half maximum (FWHM2D) are of particular
interest for the study of the multi-layer nature of these materials [46].
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Acquisition parameters: wavelength: 532 nm, data interval: 1 cm−1, exposure time: 15 s, accumulations:
5, center number: 1469.99 cm−1. GO spectrum can be found in supplementary Figure S2.

In single-layer pristine graphene, the ratio I2D/IG is ~2–3, and it decreases as the number of
layers increase [47]. On this basis, the results of the rGO sheets showed that the rGO produced
with the CO2 laser presents a lower number of layers (higher I2D/IG ratio) than the one induced
with the UV laser, which might be related to its lower thickness (~12 µm, in comparison with
~18 µm, according to profilometry results) due to the higher irradiation power, as demonstrated
in other works [48]. In addition, the lower FWHM2D also indicates that these layers have a better
crystallographic structure [49]. The better recovery of the crystallographic structure of the rGO obtained
with the CO2 laser is an indication of a more effective reduction process, which explains its smaller
sheet resistance, in spite of having lower thickness. Moreover, the high ID/IG ratio indicates that the
CO2 laser rGO also presents a high defect density. In the case of the LIG electrodes, the higher ID/IG
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ratio and FWHM2D indicate a higher defective and disordered structure (i.e., lower crystallographic
quality) with respect to the rGO with no significant difference between lasers sources.

On the other hand, the XPS analysis demonstrates that the ablated surfaces are mainly composed
of carbon and oxygen (present as carbon–oxygen functional groups), and that the laser-treatment led
to a drastic increase in the original C/O ratio of the raw materials, as summarized in Table 2.

Table 2. Carbon and oxygen atomic concentrations their ratio obtained extracted from the X-ray
Photoelectron Spectroscopy (XPS) spectra for the different samples.

Material Carbon Content (%) Oxygen Content (%) C/O Ratio

Kapton® 78 18 4.33
LIG-CO2 95.72 4.85 19.74
LIG-UV 87.72 9.28 9.45

GO 68.73 29.85 2.30
rGO-CO2 87.42 9.83 8.89
rGO-UV 84.45 10.70 7.89

The highest C/O ratios are those obtained from the LIG synthetized with the CO2 (C/O = 19.74)
and UV (C/O = 9.45) lasers, respectively, being the CO2–produced samples the ones reporting a higher
level of reduction. A more detailed study of the nature of these changes can be obtained by means of
the analysis of the high-resolution C1s XPS spectra, the results of which are shown in Figure 3.
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As expected, the lasers are able to remove efficiently the oxygen-containing functional groups
of the raw GO material (see Figure S3), as well as most of the C–N, C–O–C and C=O bonds, which
compose the Kapton® HN structure. For the rGO, the remaining non-desirable bonds after the laser
treatment are mainly associated with carbon–oxygen compounds in the case of the UV laser (Figure 3a),
and with sp3 hybridized carbon bonds for the rGO reduced with the CO2 laser (which could explain
its high ID/IG ratio). Finally, regarding the LIG, the intensity of the C=C peak, when compared with
the intensity of rest of the compounds, indicates that the CO2 laser allowed a higher isolation of the
sp2 hybridized atoms with respect to the LIG induced with the UV laser (Figure 3b,d, respectively),
which is in accordance with its high carbon percentage.

Once all four different materials were analyzed from a structural point of view, we studied their
electrochemical performance as electrodes for flexible supercapacitors. For that, we firstly performed
the Cyclic Voltammetry (CV) experiments, considering a potential window of ∆V = 1 V (from −0.5 V
to +0.5 V) at different scanning rates. The CV curves obtained for the different electrodes are shown
in Figure 4. In addition, the CV curves at a scan rate of 100 mV/s are plotted together in Figure 5a,
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whereas Figure 5b presents the specific capacitance as a function of the scan rate extracted according to
Equation (1).

CA =
1

A·∆V·s
·

(∫
I(V)dV

)
(1)

where A is the area, ∆V the potential window, s the scan rate and I(V) the current response as a function
of the voltage [27].
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Figure 5. (a) Cyclic voltammetry curves at 100 mV/s. (b) Specific capacitance as a function of the
scan rate.

As seen, apart from the rGO synthetized with the UV laser, the curves maintain a highly symmetric
quasi-rectangular shape over the increasing scan rates, indicating a good reversible EDLC behavior
and a fast charge propagation within the electrode [50]. However, it can be noted that all these curves
differ from each other, indicating that the interaction electrode-electrolyte is different in each case.
Thus, regarding the LIG electrodes, we can appreciate that the material synthetized with the different
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lasers presents an identical electrochemical behavior, but with the difference of a lower capacitance,
in the case of the LIG UV electrode. This difference in capacitance is practically constant along
the different scan rates (e.g., 0.23 mF/cm2 against 0.16 mF/cm2 at 10 mV/s and 0.18 mF/cm2 against
0.12 mF/cm2 at 100 mV/s), indicating that this constant difference in capacitance might be associated
with the difference in the effective area of the LIG electrodes, as a result of the lower mechanical
resolution of the UV laser when compared to the CO2 laser, which yields a lower effective area of
the electrodes [40]. In the case of the rGO CO2 electrodes, their electrochemical behavior agrees
with the reported for equivalent devices presented in the literature, such as the ones presented by
Ghoniem et al. [45] and Yoo et al. [51]. It can be also noted that, even though the sheet resistance of the
rGO CO2 electrodes is higher than the obtained for the LIG patterns, they report the best performance
in terms of specific capacitance (0.44 mF/cm2 at 10 mV/s) as a consequence of their higher specific
surface area, when compared to the LIG, which could be up to 4.5 times higher, in the case of the
laser-synthetized rGO according to references [42] and [52].

Lastly, the tilted CV curves obtained with the rGO UV electrodes represent a high ESR, as a
consequence of the sheet resistance of these patterns, as well as a larger internal resistance to penetrate
into the pores of the electrode, as a result of their less reduced state with a high concentration of sp3

carbon bonds [53]. This is also reflected in the behavior of the capacitance as the scan rate increases.
As seen, for low scan rates, the specific capacitance achieved with these electrodes is quite similar to
that obtained with the rGO-CO2, since, at these rates, the ions have enough time to penetrate deeply
into pores; however, it decreases gradually as the frequency increases (2 µF·s/mV), due to the reduction
of the penetration depth, hence, worsening their performance [54].

Furthermore, we tested the cyclability of the different electrodes over an increasing number of CV
cycles (at 100 mV/s), extracting the specific capacitance for every single cycle (Figure 6). As observed,
the capacitors are able to retain their capacitance with a variation less than 0.03 µF/cycle in all cases
(being the LIG UV those with less retention capacity ~83% after 1000 cycles). As expected, the capacitance
decreases as the cycles increase, with exception of the rGO UV electrodes, whose capacitance increases
(up to ~700 cycles), and afterwards retains almost the same value, as a consequence of the electrochemical
reduction of some of the remaining oxygen groups of these still highly-oxidized electrodes, as has been
demonstrated in other works [27,55].
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Figure 6. Specific capacitance as a function of increasing cyclic voltammetry cycles at a scan rate of
100 mV/s obtained with the different electrodes.

According to the previous results, the LIG electrodes synthetized with both lasers, as well as
the rGO synthetized with the CO2 laser, show promising results for potentially being used as bare
electrodes in supercapacitors. In particular, the LIG electrodes synthetized with the UV laser are of
particular interest for the development of really inexpensive electrodes, since, using a low-cost and
low-power laser, they achieve comparable results to that obtained with a CO2 laser, which could be
further improved by increasing the mechanical resolution of CNC system driving the laser. In addition,
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both fabrication approaches are also compatible with the techniques of functional nanomaterials
growth, as well as doping procedures in the case of the GO, which would help to improve their
electrochemical activity [56–58].

However, it is also possible to obtain higher specific capacitances without resorting to any doping
or additional treatment of the bare electrodes, simply by modifying the layout of these structures.
Thus, as an example, we considered an alternative microstructure for the LIG UV and rGO CO2

capacitors. This structure covers the same area than the previous one but with a distance between
electrodes, spacing and width of the fingers of 500 µm, instead of 1 mm.

As a result, this structure led to an increase of the capacitance in both cases, without compromising
the electrochemical performance of the devices, as can be observed in Figure 7a. This increment arises
from the increase of the capacitance between two consecutive fingers by reducing their interspacing,
as well as from the increment of the density of fingers, according to the IDE analytical models [59–61].
In our case, the increment, depicted in Figure 7b, represents a factor of 1.42 ± 0.05 for the LIG UV
electrodes and of 1.73 ± 0.03 for the rGO CO2, resulting in a specific capacitance at 10 mV/s of
~0.23 mF/cm2 and ~0.7 mF/cm2, respectively. These values compare well to the ones reported for
similar devices fabricated with other materials, such as activated carbon [62] or graphene-CNTs [63],
and it is similar or even higher than the reported results for other laser-synthetized materials [64,65].
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Figure 7. (a) Comparison of the cyclic voltammetry curves at 100 mV/s for two different configuration
of electrodes. (b) Specific capacitance as a function of the scan rate for these configurations.

In addition, it is shown in Figure 8 how these devices are capable of maintaining their
electrochemical performance under different bend conditions, without significant changes to their
specific capacitance (being the maximum deviation with respect to the flat state ∆C/C0 (%) = 1.87 in
the case of LIG electrodes and ∆C/C0 (%) = 5.45 in the case of the rGO electrodes). This maximum
deviation was reported for the outer bend state in both cases.
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Figure 8. Cyclic voltammetry curves at a scan rate of 100 mV/s at different bend conditions (bend radius
of 1.25 cm) obtained for the (a) LIG UV and (b) the rGO CO2 supercapacitors. Inset of (a) shows an
inner bent LIG-based supercapacitor, while inset of (b) shows an outer bent rGO-based supercapacitor.
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Furthermore, in applications where the size is not a constraint, it is always possible to combine
different supercapacitors to increase either the current delivered or the operation voltage, as represented
in Figure 9. For instance, here we present the CV curves of a single LIG UV supercapacitor, together with
different combinations of two devices at a scan rate of 100 mV/s. As seen, when two supercapacitors are
combined in series, they operate at double of the voltage, without compromising their performance at
the cost of an equivalent capacitance, which is a half of the presented by a single device. Alternatively,
when they are connected in parallel, the equivalent is twice the capacitance of a single device,
hence, duplicating the nominal current. Finally, to show a practical application, we used a parallel
configuration of two devices to power up a red LED bulb (as shown in the inset of Figure 9). For that,
the cell was previously charged at 1 mA up to reach 2.5 V.
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Figure 9. Cyclic voltammetry curves at a scan rate of 100 mV/s for the LIG UV-based supercapacitors
obtained under different series-parallel configurations. Inset shows the power up of a red LED using
two devices in parallel connection.

4. Conclusions

In this work, we reported a comparative study of the laser synthesis of graphene-based electrodes
to be used in flexible electric double-layer capacitors (EDLCs). We considered two different kind of
lasers, a CO2 laser with an infrared wavelength of λ = 10.6 µm and a low-power UV laser (λ = 405 nm)
to synthetize laser-induced graphene from Kapton® HN polyimide films, as well as to reduce a
graphene oxide layer deposited onto a PET foil. After the optimization of the parameters of the lasers
to minimize the sheet resistance of the laser-synthetized patterns, we studied the resulting materials
and their performance as electrodes for electric double-layer capacitors. The experiments showed that
the LIG electrodes synthetized with the low-cost UV laser are able to provide a specific capacitance
that compares well to that obtained with the CO2 laser. Furthermore, it has been demonstrated
that, under similar conditions, the rGO electrodes fabricated with the CO2 laser make it possible to
obtain the highest specific capacitance, whereas the reduction achieved with the UV laser was not
enough to provide a good electrochemical performance, given the high degree of oxidation of the
resulting material, which increases the equivalent series resistance of the capacitive structure, as well
as the motion resistance of electrolyte ions within the pores of the electrode. Finally, we proved how,
by reducing the width of the fingers and the distance between them, hence, increasing the density of
fingers, it is possible to enhance the specific capacitance of the these EDLCs.

The authors believe that the technology presented in this work contributes to the study of bare
electrodes for the fabrication of inexpensive flexible supercapacitors, while further studies aim to
extend the comparison in combination with doping techniques.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/11/6/555/s1,
Figure S1: Resistance as a function of the distance between consecutive contacts extracted from the TLM
measurements, Figure S2: Raman spectra of the graphene oxide. Acquisition parameters: wavelength: 532 nm,
data interval: 1 cm−1, exposure time: 15 s, accumulations: 5, center number: 1469.99 cm−1, Figure S3. XPS C1s
peaks of the graphene oxide.
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