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Palavras-chave 

 
Circuitos de fotónica integrada (PIC), soluções integralmente óticas, 
processamento de sinal ótico, interferência multimodal (MMI), otimização de 
fotónica integrada, modelador ótico espacial (SLM), plataforma flexível de 
modelação ótica espacial, sistemas óticos de nova geração. 

 

Resumo 
 

 

Os sistemas óticos de nova geração beneficiam com a otimização de fotónica 
integrada. Com os circuitos de fotónica integrada (PIC) avançados a surgir como 
uma tecnologia promissora, dentro da crescente procura por flexibilidade/ 
reconfigurabilidade dos sistemas óticos e redes de telecomunicações. Os 
sistemas óticos baseados em PIC oferecem soluções eficientes e rentáveis em 
resposta às necessidades crescentes de transmissão de dados. De modo a 
contribuir para o desenvolvimento tecnológico associado à fotónica integrada, 
são investigados no âmbito desta dissertação diferentes soluções otimizadas de 
PIC, abordando diferentes estágios do seu desenvolvimento, nomeadamente 
projeto/design, teste e encapsulamento. 
Técnicas de compressão de sinais óticos estão a progredir no sentido de apoiar 
a expansão de velocidade de processamento e quantidade de armazenamento 
com elevada largura de banda associada. São esperadas vantagens recorrendo 
a PIC para a implementação de transformadas óticas, e.g., transformada de 
Haar (HT). Esta necessidade motivou a investigação de soluções de PIC com 
design otimizado, desenvolvidas em plataforma integrada de nitreto de silício 
(Si3N4). O PIC desenhado é constituído por uma rede 2D a executar a HT para 
fins de compressão e uma rede de comutação para produzir todas as entradas 
lógicas esperadas para teste e caracterização. São propostos modelos de 
design otimizados para a estrutura elementar que compõe o PIC, i.e., 
componente de interferência multimodal. Adicionalmente, foi realizado o 
primeiro teste e caracterização experimental de um PIC implementando a HT 
para fins de compressão, numa plataforma integrada de fosfato de índio (InP) e 
num material orgânico-inorgânico híbrido. 
Tirando partido de um filtro sintonizável para compensação de dispersão, 
desenvolvido em plataforma integrada de Si3N4, foi demostrado um link de 
transmissão alargada (40 km) em modulação PAM-4, com possível aplicação 
em centros de processamento de dados de interconexão. A necessidade de 
medições precisas de desempenho para a caracterização efetiva de soluções 
integradas de ressoadores de elevado fator de qualidade, motivou a 
implementação de uma técnica de medição eficaz. Esta é baseada num 
interferómetro de Mach-Zehnder calibrado em rádio frequência e na realização 
de mediações de ganho de Brillouin por análise Lorentziana de ajuste de curva. 
Por fim, tendo em conta os rigorosos requisitos técnicos e funcionais associados 
ao teste/caracterização precisa de PIC e o facto de as atuais soluções serem 
dispendiosas e pouco flexíveis. Uma prova de conceito de uma nova plataforma 
flexível de encapsulamento por software é proposta com aplicação em 
processadores PIC e sistemas com multiplexagem por divisão espacial. 
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Abstract 

 
Next generation optical systems can highly benefit from optimized photonic 
integrated solutions. Photonic integrated circuits (PIC) appear as a promising 
technology under the current demand for flexibility/reconfigurability in optical 
systems and telecommunications networks. PIC-based optical systems offer an 
efficient and cost-effective solution to data transmission increasing claims. In 
order to contribute to the development of integrated photonic technology, 
optimized PIC solutions addressing different steps of the PIC development chain, 
mainly design, testing, and packaging processes, are investigated. 
Optical signal data compression techniques are progressing to sustain the fast 
processing/storing of large amounts of bandwidth demanding data, with the 
advantage of resorting to photonic integrated solutions for the implementation of 
optical transforms, e.g., Haar transform (HT). This demand motivated the 
research of an optimized PIC design solution in silicon nitride (Si3N4) based 
platform comprising a two-level HT network for compression, and a switching 
network as a framework that supplies all logical inputs of the HT network for 
testing/characterization purposes. Optimized design models for the multimode 
interference key building block structure of the PIC design solution, are 
proposed. Additionally, a first test and characterization of PIC solutions 
implementing the HT for compression applications in indium phosphide (InP) 
based platform and in a new organic-inorganic hybrid material were realized. 
Taking advantage of a tunable lattice filter dispersion compensator in 
Si3N4-based integrated platform, it was demonstrated a real-time extended reach 
PAM-4 transmission over 40 km enabled by the photonic integrated dispersion 
compensator, with application in data center interconnects. Under photonic 
integrated high-Q resonators need for accurate performance measurement, a 
technique based on RF calibrated Mach-Zehnder interferometer, and Brillouin 
gain measurements through Lorentzian fitting analysis were successfully 
attained. 
Finally, as technical and functional requirements of PIC demand a thorough 
characterization/testing to provide an accurate prediction of its performance, and 
current testing platforms can be expensive and have low flexibility, a proof of 
concept of a new soft-packaging flexible platform for photonic integrated 
processors and spatial division multiplexing systems, based in spatial light 
modulation operation principle is proposed. 
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Symbols 

 phase of BB input WG 


{1, … ,𝑘}

 phase of BB input WG, for 𝑘 BB input WG 

 difference of phase (between BB input arms) 

 wavelength 

𝜑(𝛾) modal field distribution 

𝛽 mode propagation constant 

∠𝐻 phase component of 𝐻, i.e., phase mask 

𝛽0 fundamental mode propagation 

𝜈0 frequency carrier of a laser source 

𝛽1 first mode propagation 

(𝑐𝑥, 𝑐𝑦) horizontal (𝑐𝑥) and vertical (𝑐𝑦) frequency delay, for CGH iteration matrix 

𝑑 distance between MMI access WG (BB design parameter) 

(𝑑1, 𝑑2, 𝑑3) distance between the four WG outputs of the integrated implementation of the 
2D HT network (from InP optical chip) 

  mode numbers 

𝜈𝑖 detuning frequency (of the resonator) 

𝜃𝐼𝑛𝑃 angle of SSC in the InP PIC 

𝐿 unit delay length of dispersion compensation lattice filter 

𝜈𝑙𝑜𝑤 lower sideband frequency 

𝑛 refractive index contrast of WG 

𝜃𝑆𝑆𝑀𝐹  angle of SSMF coupled to PIC 

(𝑤𝑥, 𝑤𝑦) width (𝑤𝑥) and the height (𝑤𝑦) of the beam, for CGH iteration matrix 

𝛥𝜆 wavelength range of tracepoint 

𝛹(0, 𝑦) electric field distribution of MMI 

𝛼 propagation loss of the ring WG 

𝛿 error factor between generated hologram and initial field expected 

𝛿𝑊𝐺𝑘   error factor for the position of the four beams, i.e., expected output PIC WG 

ports positions (𝑃𝑜𝑠𝑊𝐺𝑘) vs. implemented CGH 
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𝐴𝑎𝑐𝑐𝑒𝑠𝑠 𝑊𝐺 area of access taper WG of the MMI structure 

𝐴𝑔𝑒𝑜𝑚.  𝐴, 𝐵, 𝐶  area of MMI box for structure geometries A, B, and C 

𝑎𝑖 coefficients of HT scattering matrix for a generic 1D input 

𝐵𝐹𝐿 back focal lens 

𝑏 loss coefficient (of the resonator) 

𝑐 speed of light in vacuum 

𝑐𝑖𝑗 scaling coefficients (𝑖 refers to the transform level and 𝑗 to the coefficient index 

obtained from the LP and HP filtering) 

𝑐 field excitation coefficient 

𝐶𝑅𝐵𝐵 coupling ratio of the device under optimal dimensions design 

𝑑𝑖𝑗  detail coefficients (𝑖 refers to the transform level and 𝑗 to the coefficient index 

obtained from the LP and HP filtering) 

𝐷𝑏𝑙 diameter of the ball lens 

𝐷𝑙𝑠 diameter of the light input source 

𝐸𝐹𝐿 effective focal lens 

𝐸𝐿𝐵𝐵  excess loss of the device under optimal dimensions design 

𝑓 focal length factor (in 4f optical system configuration) 

𝑓𝐿𝑠 lens focal length 

𝑓𝑚 microwave frequency 

𝐹𝑇 BB design fabrication tolerances for a wavelength range ( = 1550  15 nm) 

𝐹𝑇𝐿,∆𝑑 BB design fabrication tolerances for length range (LMMI = 3 m) and 𝑑 

range (-d = 0.2 m) 

𝐻 Fourier transform of 𝐼i 

𝐻4×4 HT equation for a 4-pixel image 

𝐻1𝑐𝑙𝑎𝑑 first height section of WG cladding cross-section 

𝐻2𝑐𝑙𝑎𝑑 second height section of WG cladding cross-section 

𝐻𝑐𝑜𝑟𝑒 height of WG core cross-section 

𝐻𝑚𝑎𝑠𝑘  mask transfer function (to send to SLM)  

𝐼1 replay field of initial hologram 

𝐼j image matrix, for 𝑗 iterations under CGH 

𝐼opt replay field of optimized hologram 

𝐼𝑅 resistor current 
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𝐼𝑆𝐿𝑀 replay field of the hologram generated by SLM 

𝜅2 power coupling coefficient 

𝑘𝑖𝑛 , 𝑘𝑜𝑢𝑡 number of input (𝑘𝑖𝑛) and output (𝑘𝑜𝑢𝑡) WG of the MMI BB structures 

𝐿  MMI length 

𝐿𝜋 MMI beat length 

𝐿𝑅  round-trip length of the resonator 

𝐿𝑡 taper length of the MMI access WG (BB design parameter) 

𝑀(𝑓𝑥, 𝑓𝑦) mask transfer function, for horizontal (𝑓𝑥) and vertical (𝑓𝑦) spatial frequencies 

𝑚 𝑚th mode of the planar WG 

𝑚𝑎𝑥 maximum element from a subset of values 

𝑚𝑖𝑛 minimum element from a subset of values 

𝑚𝑜𝑑2 modulus after division by 2 

𝑚𝑊𝑙𝑒𝑣𝑒𝑙 wavelet levels of a 𝑘-pixel transform 

𝑛𝑎𝑐𝑐𝑒𝑠𝑠 𝑊𝐺 number of access WG of the MMI structure 

𝑛𝐵𝐺  effective refractive index of background (BG) 

𝑛𝑐𝑙𝑎𝑑 cladding refractive index 

𝑛𝑐𝑜𝑟𝑒 core refractive index 

𝑛𝑒𝑓𝑓 effective refractive index 

𝑛𝑔 group index 

𝑛𝐼𝑛𝑃 refractive index of InP 

𝑛𝑆𝑆𝑀𝐹 refractive index of SSMF 

𝑛𝑊𝐺 effective refractive index of WG 

𝑁 number of MMI N self-images 

𝑁𝐴 lens numerical aperture 

𝑛 refractive index 

𝑃(𝑑𝐵𝑚) power in dBm 

𝑃𝑖(𝑚𝑊) power in mW, for 𝑖 tracepoint 

𝑃𝑖𝑛𝑗 relative power at the input WG of the BB (𝑗 indicates the number of WG inputs) 

𝑃𝐼𝑁𝑅 PIN responsivity 

𝑃𝑜𝑢𝑡𝑗 relative power at the output WG of the BB (𝑗 indicates the number of WG 

outputs) 
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𝑃𝑜𝑠𝑊𝐺𝑘 position of each beam center corresponding to the PIC WG ports 

PosCGHWGk
 position of each beam center for the implemented CGH to generate the PIC 

WG ports 

𝑄 resonator quality factor 

𝑄𝐿 loaded resonator 𝑄 

𝑄𝑈 unloaded resonator 𝑄 

𝑅 resistor 

𝑟 transmission coefficient (of the resonator) 

𝑅𝐵𝑊 resolution bandwidth 

𝑆𝑖3𝑁4 silicon nitride 

𝑆𝑖𝑛 input signal (for CGH) 

𝑆𝑖𝑂2 silicon oxide or silica 

𝑆𝑖 silicon 

𝑆𝑜𝑢𝑡 estimated output signal (for CGH) 

𝑆𝑟𝑎𝑤 intensity integration of the image matrix (from CGH) 

𝑆𝑆𝐺 Savitzky-Golay (𝑆𝐺) filtering on 𝑆𝑟𝑎𝑤 

𝑆𝑡𝑑 standard deviation 

𝑠𝑡𝑑𝑊𝐺𝑘 standard deviation for error factor calculus (𝛿𝑊𝐺𝑘) 

𝑇 transmission (of the resonator) 

𝑇4×1 transformed coefficients (HT 4-pixel image) 

𝑢{1:6} coefficients of the 2nd degree polynomial modeling the BB designed structures 

𝑉𝑅 resistor voltage 

𝑊 MMI width 

𝑊1,𝑊2 widths of MMI (𝑊1,𝑊2) under BB design parameters 

𝑊𝑐𝑜𝑟𝑒 width of WG core cross-section 

𝑊𝑒 MMI effective width 

𝑤𝑓 weighting factor 

𝑊𝑡1,𝑊𝑡2 taper widths of MMI access WG (BB design parameters) 

𝑋4×1 1D object (4-pixel image) 

𝑋𝑇∆𝜙=𝜋

2
  crosstalk at the MMI output for sum/subtraction mode (∆𝜙 =

𝜋

2
) 

𝑋𝑇∆𝜙=0  crosstalk at the MMI output for splitter mode (∆𝜙 = 0) 
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1 Introduction 

Emergent telecommunication systems are facing a significant growth of capacity requirements, 

which can be attributed to the proliferation of mobile devices, bandwidth-intensive applications, and 

services [1]–[3]. As a result, a significant increase in the broadband connections as well as the related 

multimedia traffic on a yearly basis [4]–[6] has been progressing. Traditional electronic transmission 

systems, based on copper are unable to meet the current system requirements typically in terms of 

bandwidth and latency [7] [8]. Optical fiber-based transport systems have been widely employed to 

answer to the reported needs. 

Technological breakthroughs in the area of optical communications, such as the development of 

low loss single mode fiber (SMF), the erbium doped fiber amplifier (EDFA) and more recently high-

spectral efficiency coding via digital signal processing (DSP) enabling coherent transmission, provided 

new tools to cope with the exponential capacity demand in optical networks [9]. Furthermore, the 

capacity of single-core SMF optical systems has been improved through advanced modulation formats 

and wavelength division multiplexing (WDM) technologies [10]. Nonetheless, conventional SMF based 

transport systems have been observed to be approaching Shannon’s limit [11] and the achievable 
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maximum capacity will not be sufficient to support the envisaged massive connection demanded by 

the next generation networks [12]–[14]. Due to this technology physical limitation, the system capacity 

is expected to saturate around 100 Tbit/s, and thus conventional SMF schemes with WDM might be 

unable to meet the power consumption, spatial efficiency, and cost requirements of the emerging 

communication systems [14] [15]. Therefore, different approaches should be explored to address the 

demand for higher capacity in optical systems and communications networks, with an eminent 

milestone expected when optical communications links via SMF reach a physical limitation [16]. 

From the different physical dimensions available (i.e., time, quadrature, frequency, polarization, 

and space) the research community has given extra attention to the remaining physical dimension – 

space [3] [17] [18]. Thus, spatial division multiplexing (SDM) systems potential to substantially increase 

optical transport capacities, resorting to the use of fibers supporting multiple spatial modes (i.e., 

multimode fibers – MMF) or fibers containing multiple cores (i.e., multicore fibers – MCF) [9] [19] is a 

prospective approach to prevent “capacity crunch”. Nevertheless, technological improvements need 

to be considered to guarantee the efficient use of SDM systems, and several impairments and 

technological difficulties must be overcome to reduce the energy/cost per bit despite the system 

capacity increase [20]. For example, MCF system implementation is susceptible to and can be 

constrained by transmission impairments, such as nonlinearities and inter-core crosstalk (XT) between 

signals at the neighboring cores, which may be presented via the multiple optical paths, resulting in a 

system performance decay [14] [15]. 

Another prominent solution can be given by optical signal processing (OSP), described as a broad 

knowledge domain that brings together fields of optics and signal processing to achieve high-speed 

signal processing functions under optical communication systems requirements [21]. Moreover, all-

optical signal processing is considered to be a promising approach to overcome the bandwidth and 

speed limitations imposed by conventional electronic-based systems [22] [23]. Five key enabling 

technologies associated with recent research in OSP can be highlighted [21]:  

i) photonic integrated circuit (PIC) technologies;  

ii) advances in materials and devices (to achieve more efficient nonlinearities);  

iii) coherent detection for high-speed systems;  

iv) advanced digital signal processing (DSP); 
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v) employment of different optical domains (amplitude, phase, polarization, wavelength, and 

space). 

An overall illustration of the OSP key enabling technologies is presented in Figure 1. 

 

Figure 1. Recent enabling technologies motivating optical signal processing (OSP) research. 

Adapted from [21]. 

In an effort to contribute to the evolution of next generation optical systems, this thesis research 

work will be mainly focused on optimized photonic integrated solutions. 
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1.1 Photonic integrated technology 

Photonic integrated solutions are a promising technology from the 21st-century optical 

communication systems, with PIC-based optical communications systems offering an efficient and 

cost-effective alternative to data transmission [24] [25]. The implementation of integrated photonics 

can enable power, space, cost savings, and new functionalities, increasing the transmission capacity 

of the communication systems [26] [27]. Photonic integration appears as a dominant technology in 

high bandwidth optical communications systems [28], but it also offers increased valuable solutions in 

several innovative fields, such as bio-photonics [29], sensing [30] and space technology [31]. 

Nonetheless, PIC technology is still more expensive than standard microelectronics, which can restrict 

their application to some niche markets [26].  

Photonic integrated circuits (PIC) are the equivalent of electronic integrated circuits (EIC) in the 

optical domain. As an alternative to transistors and other electronic components, PIC contains optical 

elements, such as modulators, detectors, attenuators, multiplexers, optical amplifiers, and lasers 

embedded in a single chip using a waveguide (WG) architecture [32]. The photonic integration 

technology is going through a similar evolution path as microelectronic integration, nevertheless under 

a time delay of about 20 to 30 years [33].  

Historically, the invention of the transistor in 1948 [34] [35] launched microelectronic integration 

developments, while the invention of the semiconductor laser in 1969 [36] was the breakthrough of 

photonic integration technology. Transistor and laser technologies were primarily implemented as 

discrete components. Microelectronics integration technology started with Kilby in 1959 [37] and 

maturated with complementary metal-oxide-semiconductor (CMOS) [38] in the 1970s. A first PIC 

comprising a laser integrated with a modulator was reported in 1987 [39], marking the start of PIC 

exponential development, known as Moore’s law [33]. Moore’s law forecasted a double in the number 

of components per integrated circuit about every two years, with a new technology generation 

introduced approximately every three years, and an expected compound annual growth rate (CAGR) 

under the dozens [40]. 

Optical communications evolution has brought the advent of improved PIC presenting an 

economic and sustainable alternative to data transmission [24]. With PIC technology offering 

compelling performance advances in terms of small weight and volume, low power consumption, high 

https://en.wikipedia.org/wiki/CAGR
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mechanical and thermal stability, and the ease for assembling a substantial number of complex 

systems [28]. 

In summary, PIC-based optical systems offer efficient and cost-effective solutions to data 

transmission driving to a significant boost in the segment [24], with recent PIC global market projected 

to expand at CAGR of about 26% during the forecast period of 2017 to 2023 [41], see Figure 2. 

 

Figure 2. Global photonic integrated circuits (PIC) market from 2017 to 2023, with an expected compound 

annual growth rate (CAGR) of approximately 26%. Adapted from [41]. 

Different materials are available to produce PIC, nonetheless only a few have been employed to 

emulate electronic semiconductor industry and progressed into foundry systems, software suppliers, 

design houses and fabless companies [42]. Current main photonic integration platform technologies 

offering access to generic processes and manufacturing through multi-project wafer (MPW) runs are 

silicon (Si) [43]–[45], indium phosphide (InP) [46]–[48], and silicon nitride (Si3N4) [42] [49] [50]. 

The selection of the integrated photonic platform to realize the PIC is driven by the functional 

requirements of the device to be developed and the underlying available components (active/passive) 

of the different platforms [51]. An overview of the key differences between the addressed integrated 

platform technologies is provided in Figure 3 [52] [53]. 
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Figure 3. Comparison of key features from three of the major photonic integration technology platforms, i.e., 

InP, Si, and Si3N4. Adapted from [52] [53]. 

High gain, speed, and low loss are three of the main attributes of optical communication improved 

performance. A generic response of the platforms to these areas is provided in Figure 4. 

 

Figure 4. Overall functional capabilities and/or limitations associated with the InP, silicon and silicon nitride 

based integrated platforms. Adapted from [51]. 

Several advantages and/or limitations can be highlighted from the referred technologies. As InP 

is a direct bandgap material, it presents the best available gain performance, but with higher 
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associated losses due to electrical doping from the current injection, requiring the inclusion of optical 

amplifiers [51]. Regarding systems-on-chip (SOC) complexity, InP platform has a higher maturity with 

chips comprising up to hundreds of components. Silicon-based photonic processes are 

CMOS-compatible allowing its integration to be run in a CMOS foundry, which provides well-controlled 

and more rapid scalability to fabrication environment [43]. Nevertheless, as silicon substrates size is 

larger than InP substrates and silicon photonics lacks light sources and amplifiers, InP-based platforms 

provide a higher potential for volume scaling and integration [33]. Though, the leverage of the higher 

processing technology maturity of silicon photonics, as an indirect bandgap material, a native gain has 

been difficult to realize under this platform. The platform features are in between InP and ultra-low loss 

Si3N4 technologies, with some active detection elements but no source solutions, and medial optical 

losses (amid InP and Si3N4) [51]. Regarding wavelength properties, Si/SiO2 and InP based platforms 

are mainly used in near-infrared (NIR), while silicon nitride can operate from visible to NIR [42]. 

Ultra-low loss Si3N4 planar lightwave circuits (PLC) with propagation loss below 0.1 dB/m has 

been demonstrated by UCSB and LioniX © research [54], orders of magnitude lower than other 

reported platforms. As a result, high-performance passive components are enabled by this platform, 

though electrical pump for gain is unavailable due to the insulating nature of Si3N4/SiO2 glass WG [51]. 

However, the demonstration of optical gain using erbium-doped WG distributed Bragg reflector (DBR) 

and distributed feedback (DFB) laser arrays integrated within ultra-low loss Si3N4 [55], shows potential 

for platform’s active component integration. 

In summa, silicon and silica utilize the most mature materials, leveraging from existing technology 

like silicon electronics and micro electro-mechanical systems (MEMS) industries, enabling foundry 

services robustness and products commercialization. InP integrated technology has a maturity in 

between the two, having several available commercial devices and a promising foundry model. 

Enhanced architecture choices should combine the advantages of these different integrated photonic 

technologies, ideally with associated electronics to achieve optimized performance, power, footprint, 

and cost [51]. 

Hybrid and monolithic photonic integration are the two leading methods commonly employed to 

realize integrated photonics. In the hybrid method, the integrated circuit (IC) is a package containing 

several photonic devices of similar functionality, allowing to combine numerous optic devices of 

different integrated platforms. While, monolithic photonic integration is based on a single IC containing 

https://en.wikipedia.org/wiki/Distributed_Bragg_reflector_laser
https://en.wikipedia.org/wiki/Distributed_Bragg_reflector_laser
https://www.linguee.com/english-portuguese/translation/commercialization.html
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different optical devices in the same integrated platform, thus enabling various functionalities on a 

single chip. 

To maximize overall photonic technology advantages, further development should be given to the 

realization of low cost, foundry compatible, highly functional, SOC solutions, and the relaxation of 

current power and thermal constraints [51]. Figure 5 illustrates the capabilities that should be attained 

by PIC technology in order to meet the aforementioned needs. 

 

Figure 5. Diagram of technology prospects for next generation of PIC, in order to realize future high speed, 

low cost, power-efficient photonic system-on-chip (SOC). Adapted from [51]. 

The presented research work comprehends new photonic integrated solutions (through design, 

testing, and packaging processes) for data compression applications, under different WG based 

integrated platforms, i.e., Si3N4, InP and new hybrid material. Furthermore, the development of 

ultra-low loss Si3N4 integrated solutions for lasing and dispersion compensation applications are 

presented. An overall description of the research contributions attained is provided in section 1.2. 

Photonic 
Integration

Photonics
+

Electronics

Ultra low power

Ultra efficient

technology 

Low cost

Ultra 
low loss

• Manufacturing

• Packaging

Digital & 

regenerative 

optics

• Waveguides (WG)

• Interconnects

Nanoscale

• Ultra high 

density 

integration

prospects



Chapter 1. Introduction 

 

Cátia Pinho     9 

 

1.2 Research contributions 

The development of optimized solutions under the enabling PIC technologies drives the research 

work under this dissertation, addressing different steps of the PIC development chain, mainly design, 

testing, and packaging processes. 

Driven by the craving for high-speed data transfer and improved efficiency with real-time data 

availability, optimized integrated photonic solutions for data compression applications are proposed. 

An optimized design model of multimode interference (MMI) structures in silicon nitride based platform 

for photonic integrated data compression applications was developed. Different MMI geometries were 

studied, and discussed the best building block (BB) solution to attain the desired development of an 

improved reconfigurable all-optical solution for data compression applications based in the photonic 

integrated implementation of an optical transform, i.e., the Haar transform (HT). Additionally, a first test 

and characterization of PIC solutions implementing the HT for compression applications in InP based 

platform [56] [57] and in a new organic-inorganic di-ureasil hybrid material were also realized [58]. 

Furthermore, under a collaboration with the Optical Communications and Photonic Integration 

Group (OCPI), from University of California, Santa Barbara (UCSB) was realized the development of 

an extended reach PAM-4 transmission enabled by a photonic integrated tunable lattice filter 

dispersion compensator with application as a low-cost interface for data center interconnects (DCI) 

[59]. Also, a radiofrequency calibrated Mach-Zehnder interferometer (MZI) to measure ultra-narrow 

linewidth chip-scale Brillouin laser resonator properties was built, and performed the Brillouin gain 

measurements, through Lorentzian fitting analysis which contributed for [60] [61]. This research was 

enclosed in the development of a state-of-the-art sub-hertz fundamental linewidth (< 1 Hz) photonic 

integrated Brillouin laser, narrow enough to move demanding scientific applications to the chip-scale 

[62], namely photonic micro-chip high-end lasers for spectroscopy, navigation, quantum computation, 

and optical communications applications. 

As technical and functional requirements of the PIC demand a thorough characterization and 

testing to provide an accurate prediction of the PIC performance, and current testing platforms can be 

expensive and have a lack of flexibility [46]. A proof of concept of a new soft-packaging flexible platform 

for photonic integrated processors and SDM systems, based in spatial light modulation operation 

principle is proposed. The capacity of the spatial light modulator (SLM) to dynamically reconfigure light 
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is used to feed and/or receive information to the PIC [32] [63] and dynamically optimize the spatial 

coupling under MCF fiber transmission systems [64]. 

From the main achievements attained under this research study, the following scientific outputs 

can be listed. 
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 Supplementary research/training 

In the scope of the Ph.D. studies, supplementary research/training in the field of optical 

communications has undertaken at the Optical Communications and Photonic Integration (OCPI) 

group from the University of California, Santa Barbara (UCSB); the Centre for Advanced Photonics 

and Electronics (CAPE) - Electrical Engineering Division of the University of Cambridge (UCAM); and 

the Photonic Research Labs - iTEAM Research Institute from the Universitat Politècnica de València 

(UPV). A summarized description of each mission is listed below. 

 2018/2019 – total duration: one month 

Short Term Scientific Missions (STSM) under the COST action CA16220 - European Network for 

High Performance Integrated Microwave Photonics (EUIMWP) at the Photonic Research Labs - 

iTEAM Research Institute from the Universitat Politècnica de València (UPV). 

Main task: Photonic integrated circuit design for silicon nitride technologies under the CNM-VLC 

design platform. 

 2017 – six months 

Supplementary research/training at the Optical Communications and Photonic Integration (OCPI) 

group from the University of California, Santa Barbara (UCSB). 

Main tasks: Study and characterization of photonic integrated circuits. Optical signal processing 

and optical system testing. 

 2016 – one month 

Supplementary research/training at the Centre for Advanced Photonics and Electronics (CAPE) 

- Electrical Engineering Division of the University of Cambridge. 

Main tasks: Acquire knowledge and experimental skills in the use of spatial light modulator (SLM) 

and development/implementation of computer-generated holograms (CGH). 
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1.3 Thesis Outline 

The thesis is organized into four additional chapters. Chapter two presents an optimized 

reconfigurable PIC design proposal for data compression applications using optimized MMI structures 

under Si3N4-based integrated WG platform. A full description of the all-optical system architecture for 

the implementation of the optical transform, i.e., the two-level HT network, is provided. An optimized 

design model study for 22 MMI and 12 MMI BB structures is proposed. The extensive optimization 

design assessment performed, provides an important evaluation of the BB structures 

performance/behavior to realize the HT compression network. 

Chapter three comprises the first experimental characterization of an InP-based platform realizing 

the HT, with a full characterization of the elementary BB coupler implemented, i.e., the adiabatic 

asymmetric coupler (AAC), and the 2D HT network. The performed characterization comprises 

theoretical design simulations and attained experimental results. The methodologies applied for the 

packaging of the optical chip under testing and fiber coupling are also described. Additionally, taking 

advantage of low-cost hybrid materials, a potentially cost-effective integrated implementation of a 2D 

HT under the organic-inorganic di-ureasil hybrid [65] material is also demonstrated. 

Chapter four contains the implemented measurement technique for integrated high-Q resonators 

performance assessment, based in a radiofrequency calibrated MZI. Brillouin gain measurements 

through Lorentzian fitting analysis, are also described. Furthermore, the first demonstration of an 

extended reach transmission of C-band PAM-4 enabled with a photonic integrated tunable lattice filter 

dispersion compensator is attained, with applicability as a low-cost interface for DCI. The scientific 

research under this chapter proceeds on the collaboration with the OCPI research group from UCSB. 

In chapter five is presented a proof of concept of a new soft-packaging flexible platform for 

photonic integrated processors and SDM systems, based on spatial light modulation operation 

principle. The development and implementation of an SLM framework as a coupling platform under 

the capability of the SLM to dynamically reconfigure light with computer-generated holograms (CGH) 

is explored. SLM operation principle, main challenges, and applications are described. Different 

methodologies were developed and optimized solutions proposed to implement the CGH, allowing a 

dynamical improvement of the generated CGH. Experimental results of SLM framework 

implementation in SDM systems and its potential use for PIC processors are also addressed. 
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All aforementioned chapters are concluded with a final section summarizing the scientific remarks 

achieved under the chapter. Lastly, an overall conclusion of the scientific work and contributions 

attained under this dissertation, with reference to potential future work directions, are outlined in 

chapter six. 

 



Chapter 2. Optical integrated approaches for data compression applications 

 

Cátia Pinho     17 

 

2 Optical integrated approaches for data 

compression applications 

The exponential growth of bandwidth demand has drawn significant research efforts into the field 

of ultra-high capacity optical networks, where optical signal compression plays an important role in fast 

processing/storing of large amounts of bandwidth demanding data [66]. Data compression emerges 

as an important field of study with different available techniques to release additional bandwidth. 

Specifically, for faster image processing, compression methods are fundamental tools to decrease 

redundant data. Different compression transformation techniques can be used, with the wavelet-based 

transforms as the most promising ones due to their simplicity and fast computation capabilities [67]. 

All-optical network design appears as a prominent solution for the application of such compression 

methods. Optical transforms can be employed to the compression and decompression processing of 

data, with higher advantages if implemented in integrated photonics. By applying this architecture into 

a photonic integrated circuit (PIC), image compression can be attained with potentially lower cost, less 

power consumption, and high data rate due to an all-optical processing implementation [68]. Among 

Chapter  2 
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the wavelet-based methods, Haar transform (HT) offers a promising approach for image processing 

and pattern recognition due to its simple design, fast computation power, and efficiency, being easily 

implemented by optical planar interferometry [56] [67] [68]. 

The use of optical interference components realizing a separate addition and subtraction of 

incoming inputs signals at its output ports is a key element in the HT implementation. For example, a 

specific degree of asymmetry applied in 3 dB directional couplers can produce different coupling 

behaviors [68]–[70], such as magic-T [71]. A magic-T behavior can be attained by structures such as 

3 dB asymmetric coupler, where asymmetric waveguides can be used to compensate wavelength 

dependent coupling ratios [57] [72]. The employment of an adiabatic asymmetric coupler (AAC) to 

implement the HT network in an indium phosphide (InP) integrated base platform [56] [57] is addressed 

in chapter 3 – section 3.1. 

Furthermore, the magic-T response can also be realized with multimode interference (MMI) 

coupler devices, where tunable coupling ratio capabilities can be managed by adjusting the phase of 

the input signals [71] [72]. MMI structure attractive properties can include low inherent losses, large 

optical bandwidths, low polarization dependence, and relatively simple fabrication [73], against 

directional coupler dependency on sub-microns gaps between waveguides [73] [74]. Moreover, these 

structures can also benefit from higher fabrication tolerances on refractive index contrast, wavelength, 

and waveguide widths [75]. A first numerical proposal of the HT implementation with MMI structures 

is presented in [76] for an InP based platform, using taper waveguides to comprise phase shifting 

between the input signals of the MMI coupler. The study [76] reports a simulated design for the 

22 MMI device with a 260 m length and a device excess loss of 0.25 dB can be inferred from the 

linear results presented. 

In an effort to improve current existent solutions, it is studied in this chapter a new optimized 

reconfigurable PIC design proposal for data compression applications using optimized MMI structures. 

From the available integrated platforms, was selected the silicon nitride (Si3N4) due to its reported 

merits. Silicon nitride on silicon oxide (SiO2) photonic integration platform presents reduced material 

losses [44], and a vast set of applications, e.g., optical signal processing, tele/datacom, sensing, and 

bio-photonics [42]. As design performance predictions toughly match PIC fabrication, reconfigurability 

can play an important role in order to rectify unwanted drifts in the device functioning and enable 

additional functionalities in the PIC [77]. Thus, reconfigurability capabilities will be included in the 
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proposed designed structures through the implementation of thermal tuner components [78] in the 

input arms of the MMI structures. This procedure allows to change/adjust the relative phase of the 

input arms of the MMI coupler, and thus the operations performed by the device structure. The HT 

implementation is realized by a two-level network of three 22 MMI coupler building blocks (BB). 

Furthermore, a switching network to address all logical inputs of the HT network is also designed. The 

switching network is composed by a cascade of three 12 MMI splitter BB and two 22 MMI BB. An 

extensive structure optimization of the network key BB (i.e., the 22 MMI and 12 MMI) is undertaken 

in order to minimize: i) device excess loss; ii) MMI coupler/splitter imbalance (associated with the 

expected BB coupling ratio); and iii) footprint. BB device reconfigurability for different coupling 

behaviors, and fabrication tolerances under wavelength and design dimensions are also addressed. 

All BB structure designs were optimized for a wavelength of 1550 nm, moreover structures behavior 

in wavelength C-band range (1535 nm to 1565 nm) was evaluated as it entails current optical fiber 

bandwidth with the lowest loss, and thus is commonly used in general optical transmission systems. 

The chapter starts with a full description of the all-optical system architecture for the 

implementation of the HT (section 2.1). In section 2.2 is presented the new reconfigurable PIC design 

proposal in a Si3N4-based platform for data compress applications using optimized MMI coupler 

structures. The method implemented for the design architecture and BB optimization is described in 

subsection 2.2.1. Results and discussion of the optimized BB structure designs developed are 

addressed in subsection 2.2.2. The chapter is concluded with final remarks presented in section 2.3. 
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2.1 All-optical system architecture for data compression based in 

HT 

A digital image can be seen as a group of pixels, where neighboring pixels are correlated and 

usually redundant. Through the decreasing of this redundancy (by compression techniques) the 

transmission speed and the bandwidth of the system can be optimized. Transforms based on 

orthogonal functions are the most frequently used in signal compression techniques. The orthogonality 

is an important property for multi-resolution analysis, where the original signal can be split into low and 

high-frequency components without duplicating information. These functions only require subtractions 

and additions for their forward and inverse transforms. Examples of these transforms are the discrete 

Fourier transform (DFT), the discrete cosine transform (DCT), and the discrete wavelet transforms 

(DWT) [79]. DWT has the advantage of representing a fundamental tool for local spectral 

decomposition and nonstationary signal analysis, used in the JPEG2000 standard as wavelet-based 

compression algorithms [80]. 

 

Figure 6. Diagram of two-level band decomposition using multi-resolution analysis based on wavelet 

transform. Low-pass (LP) and high-pass (HP) filters are applied two times to obtain the 1D transform (L and H 

components) and the 2D transform (LL, LH, HL and HH components). Adapted from [32]. 
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DWT represent an image as a sum of wavelet functions, with different location and scale [81], i.e., 

high-pass (detail) and low-pass (approximate) coefficients. Low-pass (LP) and high-pass (HP) filters 

are applied to the input data with a two-level signal decomposition architecture, as depicted in  

Figure 6. The Haar wavelet transforms [68] [82] [83] belongs to the family of DWT and thus is based 

on orthogonal functions. This optical transform was chosen for the proposed all-optical system 

architecture due to its simplicity and fast computation. 

 

Figure 7. All-optical scheme diagram of system BB for Haar wavelet transform processing and compression. 

2D transform process schematic describes low-pass (L) and high-pass (H) filtering through sub-band 

decomposition [32]. 
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The sub-band decomposition achieved through the wavelet transform enables a direct 

compression on a specific portion of the spectrum, through spatial frequency characterization. The 

all-optical system architecture for data compression based on the HT can be divided into four main 

blocks: i) optical sensors array; ii) Haar wavelet transform; iii) compression; and iv) data encoding 

section. The scheme for the all-optical image acquisition, processing, and transmission is depicted in 

Figure 7.  

The first block entails the acquisition level with optical sensors for light detection and two 

dimensional (2D) data sampling. The HT is implemented in the second block, to extract the image 

properties by exploiting the energy compaction features of the wavelet decomposition.  

The HT block (second block) includes low-pass (L) and high-pass (H) filters associated with the 

Haar wavelet, applied over one dimension (1D) at time. The filtering operation can be simplified as the 

calculation of the average between two neighbors’ pixels values (LP) or the difference between them 

(HP). Equation (1) presents the HT scattering matrix for a generic 1D input (𝑎𝑖 coefficients), i.e., pixel 

line or column. LP and HP filters are applied two times to obtain the 1D transform (L and H component) 

and the 2D transform with the four LL, LH, HL, and HH components, see Figure 6 and Figure 7. 
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The coefficients on the left side of equation (1) are the scaling 𝑐𝑖𝑗 and detail 𝑑𝑖𝑗 coefficients 

(where 𝑖 refers to the transform level and 𝑗 to the coefficient index) obtained from the LP and HP 

filtering, respectively, for each pixel pair, which corresponds to the 1D first level of the Haar discrete 

wavelet transform. In a 2D matrix input (NN) this operation is performed twice, i.e., horizontally and 

vertically, for each transformation level, to guarantee that image intensity variations are evaluated 

along the two dimensions [32]. 

The same filtering operation is performed in the LL sub-band for the next level of the transform, 

whereas the other sub-bands (i.e., LH, HL, and HH) can be stored, transmitted or discarded, being the 

transform coefficients related to higher-frequency components. 
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The third block carries out the compression and extracts the desirable information from the 2D 

transform, e.g., LL component. The all-optical system ends with the encoding block where the data 

stream is delivered through the optical channel [32] [68]. 

A 3 dB asymmetric coupler (depicted in Figure 8), also known as a magic-T, can be used to 

implement the HT. 

 

Figure 8. Diagram of a 3 dB asymmetric optical coupler and scattering matrix given by S. 

The asymmetric coupler is characterized by having different waveguides widths, which can 

present a wide range of coupling ratios and an insertion loss up to 0.7 dB, including input and output 

single mode fiber coupling losses [84]. To perform the HT operations the asymmetric coupler must be 

designed in order to perform a 50% coupling ratio. A description and testing of an integrated HT 

implementation using an asymmetric adiabatic coupler are provided in section 3.1. 

Likewise, the HT implementation can also be realized by a two-level network of 22 MMI coupler 

devices. In the following section (2.2) is presented a new reconfigurable PIC design proposal in a 

Si3N4-based platform for data compression applications using optimized MMI coupler structures. 
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2.2 Reconfigurable HT PIC design in a Si3N4 integrated platform 

Heterogeneous silicon photonics offers technological breakthroughs with a high expected impact 

in high-speed communications, future data centers, supercomputers, and sensors [44] [85]. When 

applying both silicon nitride (Si3N4) and silicon waveguide types, e.g., Si3N4 on silicon oxide (SiO2), 

material losses can be reduced [44]. The broadband nature of Si3N4 material, i.e., from visible to mid-

infrared wavelengths, makes it feasible for a wide range of applications, namely optical signal 

processing, tele/datacom, sensing, and bio-photonics [42] [86]. 

Photonic signal processing, a recognized solution to overcome inherent electronic speed 

limitations, can highly benefit from fully reconfigurable photonic integrated signal processors [87]. As 

fabricated PIC hardly matches the design performance expectations due to the high technology 

sensitivity to fabrication tolerances, PIC reconfigurability can rectify unwanted drifts in the device 

functioning [77]. Additionally, these reconfiguration capabilities are a promising strategy for the 

delivering of advanced functionalities on PIC and are becoming progressively advisable in an attempt 

to reach device demanding new requirements [77] [87]. 

Taking advantage of the Si3N4 based integrated platform and the addition of reconfigurability 

capabilities to the PIC design, an optimized photonic integrated implementation of the two-level HT 

network (composed by MMI BB structures) for compression applications is studied. 

The method implemented for the proposed PIC design solution is described in section 2.2.1, and 

in section 2.2.2 are provided the results assessment and discussion of the optimized BB structure 

designs developed. 

 Method 

The method implemented addresses the MMI interference principle (subsection 2.2.1.1), design 

rules applied (subsection 2.2.1.2), developed design architecture (subsection 2.2.1.3), BB structure 

design optimization (subsection 2.2.1.4), and the definition of a decision-making methodology for the 

assessment of the best-optimized BB design (subsection 2.2.1.5). 
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 MMI optical interference principle 

The excitation of several modes in a multimode waveguide leads to the formation of replicas (self-

images) of the input field at the output plane through the spatial Talbot effect [88]. Depending on the 

waveguide cross-section, materials and operation wavelength, a given number of modes will be 

guided, dependent on the propagation constant of each mode (𝛽). The distribution of light injected 

(at z = 0) in an MMI with an electric field distribution 𝛹(0, 𝑦) is given by equation (2), and after a 𝑧 

distance by equation (3), where 𝑐 indicate the field excitation coefficients; 𝛽 the mode propagation 

constant; 𝜑(𝑦) the modal field distribution; and 𝑚 is the 𝑚th mode of the planar WG. The WG 

supports 𝑚 lateral modes with mode numbers  = 0,  , (m  1). 

 

𝛹(0, 𝑦) =∑ 𝑐 𝜑

𝑚−1

𝜈=0
(𝑦) (2) 

 

𝛹(𝑧, 𝑦) = ∑ 𝑐 𝜑(𝑦)
𝑚−1

𝜈=0
𝑒𝑥𝑝(−𝑗𝛽 𝑧) (3) 

The MMI length (also known as the beat length) required for the light to interfere (when the 

propagation constants 𝛽  of the first two modes are involved) is presented in equation (4), where 𝑛𝑒𝑓𝑓 

represents the effective refractive index (for fundamental 𝑛𝑒𝑓𝑓0 and first 𝑛𝑒𝑓𝑓1 mode), and  the 

wavelength of the light. 

 

𝐿𝜋 =
𝜋

𝛽0 − 𝛽1
=

0.5

𝑛𝑒𝑓𝑓0 − 𝑛𝑒𝑓𝑓1
 (4) 

The difference between the fundamental (𝛽0) and (𝛽) mode can be given by the approximation 

provided in equation (5), with the field expansion (at z = L) rewritten as presented in equation (6). 

 

𝛽0 − 𝛽1 =
 (+ 2) 𝜋

3𝐿𝜋
 (5) 
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𝛹(𝐿, 𝑦) = 𝑒𝑥𝑝(−𝑗𝛽0 𝐿)∑ 𝑐 𝜑

𝑚−1

𝑖=0
(𝑦) 𝑒𝑥𝑝 (

𝑖 (+ 2)𝜋𝐿

3𝐿𝜋
) (6) 

The shape of light (at z = L) depends on: i) values of 𝑐 (i.e., how light is injected); and ii) the 

value of 𝐿 𝐿𝜋⁄  (i.e., the ratio of 𝐿 to the beat length). For a particular set of lengths, scaled replicas of 

the input field pattern appear, known as self-images. The simplest case is described by the MMI length 

L = p3Lπ, for p = 0, 1, 2, (), as illustrated in Figure 9. 

 

Figure 9. Propagation interference for MMI length L = p3L , with (p = 0, 1, 2 , ). Adapted from [89]. 

 

Figure 10. MMI symmetric propagation interference for MMI length L = (p3Lπ)⁄N, with (N = 1, 2, 3, ). 

Adapted from [89]. 

The number input WG and its position affect the generated modes. Two interference mechanisms 

can be highlighted, the symmetric (y = 0) and paired (y = ±We/6), where 𝑊𝑒 is the effective width of 

W

N=3   N=2    N=1 N=2 N=1
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the MMI (≈ 𝑊 for high contrast platforms). Further details are given in Figure 10, illustrating the 

symmetric propagation interference mechanism. MMI paired and symmetric interference mechanisms 

[73] [89] are summarized in Table 1. 

Table 1. MMI interference mechanism overview. 

Interference mechanism Paired Symmetric 

Inputs  Outputs 2 × 𝑁 1 × 𝑁 

First single image distance 𝐿𝜋 3𝐿𝜋 4⁄  

First N-fold image distance 𝐿𝜋 𝑁⁄  3𝐿𝜋 4𝑁⁄  

Excitation requirements 
𝑐 = 0 

 = 2, 5, 8, (…) 

𝑐 = 0 

 = 1, 3, 5, (…) 

Input position ±𝑊𝑒 6⁄  0 

𝑁: number of self images formed; 𝐿𝜋: beat length; 𝑐 : field excitation coefficients;  : mode numbers;  

𝑊𝑒: MMI effective width (≈ 𝑊 for high contrast platforms). 

For the proposed PIC design solution, 22 MMI couplers and 12 MMI splitters were studied and 

optimized under the Si3N4 CNM-VLC © Photonics design platform [89] [90]. Design methodology 

combined theoretical MMI optical interference principle and numerical optimization through beam 

propagation method. 

 Design rules and procedures methodology 

The design and analysis of waveguide (WG) propagation behavior of the newly developed 

integrated Si3N4 structures were addressed numerically, as in general PIC cannot be accurately 

analyzed by simple analytical solutions, and numerical techniques are the commonly adopted solution 

to verify new PIC design structures [74]. From the various numerical analysis, beam propagation 

method (BPM) is generally considered by the scientific community as one of the best approaches for 

investigating linear and nonlinear lightwave propagation phenomena in axially varying WG such as 

curvilinear directional couplers and branching, combining and tapered WG [74] [91]. Thus, in the 

present study, BPM numerical analysis technique was chosen for the design and analysis of the WG 

propagation behavior/performance of the developed PIC structures. 
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To test the different designed BB structures a set of design rules and procedures were 

implemented, as described in the block diagram from Figure 11 [89]. 

 

Figure 11. Block diagram of the rules and procedures implemented for the MMI BB design, based in [89]. 

A 2D mode solver tool was used to compute the effective indices of the MMI cross-section. The 

effective index method (EIM) [91] was implemented to calculate the effective refractive indices of the 

WG and background (BG), with the 1D mode solver (reducing the cross-section to one dimension). 

These values were then applied in the third dimension using the 2D BPM. Optimized EIM and BPM 

simulations were realized under the transverse electric (TE) mode. All simulations were computed in 

the OptoDesigner © Synopsys software [92]. 

The developed integrated BB structures were studied and optimized under the silicon nitride 

technology design platform from Institute of Microelectronics of Barcelona, Centro Nacional de 

Microelectronica (IBM-CNM) and VLC Photonics © [89] [90], through the CNM foundry process design 

kit (PDK). A deep waveguide was used in the BB structure designs. Owing to the design kit license 

agreement (DKLA) with CNM foundry limited information about WG structure can be provided. A 

generic diagram of the passive WG structure implemented is depicted in Figure 12. 
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Figure 12. Schematic diagram of the deep WG structure from silicon nitride CNM design platform.  

Wcore and Hcore denote the WG Si3N4 core width and height, respectively.  

H1clad and H2clad refer to the heights of WG SiO2 cladding. 

Under the CNM-VLC design technology, only the width of WG core (Wcore) is endorsed to be 

changed, with a minimum default recommended value of 0.6 m. 

 

Figure 13. Effective index of deep WG fundamental mode versus light propagation wavelength, for three 

different WG core widths (0.8 m, 1.0 m, and 1.2 m). Transverse electric (TE) and transverse magnetic 

(TM) polarization are presented in continuous and dashed lines, respectively. The black dashed/dotted lines 

indicate the cutoff index of WG core (ncoreSi3N4) and cladding (ncladSiO2). 
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A simulation study of straight deep WG effective index for Wcore equal to 0.8 m, 1.0 m, and 

1.2 m on infrared C-band wavelength range (1535 nm to 1565 nm) under transverse electric (TE) 

and transverse magnetic (TM) polarization is presented in Figure 13. The WG core width of 1.0 m 

was selected for all the structure designs, in a compromise between fabrication recommendations and 

tolerances, and device footprint. Regarding, the bending radius of deep WG, a default minimum of 

50 m is validated by CNM-VLC silicon nitride technology [89]. 

 Design architecture for the integrated Si3N4 HT implementation 

MMI structures were chosen as the PIC key BB due to their attractive properties (e.g., compact 

size, and polarization independency for strongly guided structures [75] [93]), and optical interference 

capabilities (splitting and combination of optical signals). Besides the fundamental canonical MMI [73] 

(in a rectangular shape), more unconventional geometric designs (such as the butterfly shapes, also 

labeled widened/narrowed body MMI shapes) were explored to leverage coupling ratio behaviors, BB 

footprint, and fabrication tolerances (e.g., operational wavelength range). Reported literature on the 

implementation of similar MMI butterfly geometries in SOI-based platform [94], and InGaAsP/InP-

based platform [93] identified benefits, such as small size, polarization insensitivity, and available 

arbitrary coupling ratio design. 

An MMI structure footprint range between 123  10 m2 and 240  10 m2, and an average 

excess loss of 0.6 dB was reported in [94]. In [93] a MMI structure footprint range between 

308  12 m2 and 1224  24 m2 with reported excess losses below 0.7 dB was described. To 

explore and access these geometries merits under Si3N4-based platform, three MMI geometries were 

implemented, i.e., the standard MMI rectangular shape [73] (defined as geometry A) and two different 

butterfly geometric shapes based in [93] [94] (defined as geometry B and C). The geometry shape of 

the different implemented structure designs is depicted in Figure 14. 
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Figure 14. Diagram of the different designed MMI structures, in rectangular (geometry A) and butterfly 

(geometry B, C) geometric shapes. [D1]: Set of three MMI geometries of the 22 MMI BB tested to implement 

the two-level HT network and the switching network. [D2]: Set of three MMI geometries of the 12 MMI BB 

tested to implement the switching network. 

Two main block structures comprise the proposed design of the all-optical photonic integrated 

approach:  

i) a two-level HT network composed by a cascade of three 22 MMI coupler BB, to realize 

the data compression optical transform (as depicted in Figure 15);  

ii) a switching network to address all logical inputs of the HT network, composed by a 

cascade of three 12 MMI splitter BB and two 22 MMI coupler BB (see Figure 16). 

[D1] [D2]

2x2 MMI – geometry A

2x2 MMI – geometry B

2x2 MMI – geometry C

1x2 MMI – geometry A

1x2 MMI – geometry B

1x2 MMI – geometry C
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The two-level HT network can be composed by a cascaded of three 22 MMI, i.e., four inputs and 

four outputs for a 4-pixel HT, as depicted in Figure 15. A 4-pixel image acquisition process can be 

mathematically described with the matrix operation presented in equation (7) [95] [96]. 

 
𝑇4×1 = 𝐻4×4𝑋4×1 (7) 

Parameters 𝑋4×1 describes the 1D object, 𝑇4×1 the transformed coefficients, and 𝐻4×4 the Haar 

matrix (equation 1, in section 2.1). A 𝑘-pixel transform comprises 𝑚𝑊𝑙𝑒𝑣𝑒𝑙 = 𝑙𝑜𝑔2𝑘 wavelet levels. 

Thus, for a 4-pixel HT, a two-level HT network should be implemented. 

 

Figure 15. Schematic diagram of the four input two-level HT network main block structure, composed by a 

cascade of three 22 MMI coupler BB, to realize the data compression. The diagram is not in scale. 

The switching network main block structure was designed to provide a framework that supplies 

all logical inputs to the 4-pixel HT network, for study and characterization purposes. The switching 

network is composed by a cascade of three 12 MMI splitter BB and two 22 MMI coupler BB as 

depicted in the schematic diagram of Figure 16. 
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Figure 16. Schematic diagram of the switching network main block structure, composed by a cascade of 

three 12 MMI splitter BB and two 22 MMI coupler BB, to address all logical inputs of the HT network. The 

diagram is not in scale. 

From the 42 possible logical inputs, due to the unavailability to generate two zero inputs in the 

22 MMI BB, only nine logical inputs are valid and can be attained with the designed switching 

network. Relative power for the inputs of the HT network will be considered as 0 versus 1, 

corresponding to the logical input values under testing. 

Table 2. Inputs generated from the switching network block structure framework. 

 
Phase of 22 MMI4  

input arms 
Phase of 22 MMI5  

input arms 

Relative power at the switching network  
4 output ports 

N I1 - top I2 - bottom I3 - top I4 - bottom (1) (2) (3) (4) 

1 0 0 0 0 1 1 1 1 

2 /2 0 /2 0 1 0 1 0 

3 0 /2 0 /2 0 1 0 1 

4 /2 0 0 /2 1 0 0 1 

5 0 /2 /2 0 0 1 1 0 

6 /2 0 0 0 1 0 0.5 0.5 

7 0 /2 0 0 0 1 0.5 0.5 

8 0 0 /2 0 0.5 0.5 1 0 

9 0 0 0 /2 0.5 0.5 0 1 

N: number of the logical output sequence from the switching network framework. Details of the input/output 

ports and configuration of the switching network block structure are presented in Figure 16. 
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A description of the nine logic set of combinations and corresponding phase configuration of the 

input arms of the two 22 MMI coupler BB from the switching network is provided in Table 2. The 

behavior of the integrated optimized 22 MMI BB matching the difference of relative power in the 

logical outputs generated by the switching network framework will be evaluated in the results section 

(2.2.2), i.e., when half of the relative power is obtained in the output ports of the 22 MMI BB, as 

identified in logical output sequence N = 6, 7, 8, and 9, see Table 2. 

Reconfigurability capabilities will be included in the proposed PIC design through the integration 

of thermal tuner structures [78] in the input arms of the 22 MMI coupler BB to realize the different 

optical interference splitting/coupling ratios functionalities. Design guidelines from Perez et al. [78] will 

be considered for the thermal tuner implementation (addressing reliability and durability). The separate 

sum and subtraction of incoming input signals at the output ports of the MMI can be achieved with a 

/2 (or 3/2) phase change in one of the input WG of the coupler. For design purposes, the device 

reconfigurability was assessed by changing the phase launched in the input arms of the 22 MMI BB. 

A difference of phase () between the input arms of the MMI of  = /2 results in a sum/subtraction 

at the output ports (e.g., 100:0 or 0:100 coupling ratio), while  = 0 effects in a splitter (50:50) output 

behavior. 

 BB structure design optimization 

MMI structure design optimization was performed for the BB 22 MMI coupler and the BB 

12 MMI splitter. In an effort to achieve the best-optimized BB for the two final block network structure 

designs (i.e., the 2D HT network and the switching network framework), three different MMI geometric 

design shapes were designed and evaluated (i.e., rectangular – geometry A, and two different butterfly 

geometric shapes – geometry B and C). 

WG tapers were introduced in the input and output WG of the MMI BB structures to minimize 

excess loss, reflections, and imbalance in the expected coupling ratios [94] [97]. All BB structures were 

designed for five different MMI cross-section widths (i.e., 8, 9, 10, 11, and 12 m), with 8 m as the 

minimum width recommended for MMI structures by the Si3N4 foundry standards of CNM-VLC 

Photonics © [89] [90]. 
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To achieve the best optimization of each MMI design structure, script algorithms were developed 

in OptoDesigner ©. The MMI structure design parameters assessed in the BPM simulations were:  

i) MMI length (L);  

ii) MMI widths (W1 and W2, for the different MMI geometries designed);  

iii) distance between MMI access WG (d); 

iv) taper widths of MMI access WG (Wt1 and Wt2, where Wt1 = 1 m, the width of the deep 

WG core selected for the proposed PIC design solution, see section 2.2.1.2); 

v) taper length of the MMI access WG (Lt).  

Further details regarding the design parameters evaluated for the different MMI geometries are 

depicted in Figure 17. 

 

Figure 17. Design parameters assessed for the optimization of the different MMI geometric structures (i.e., 

geometry A, B, and C). [D1]: Set of three MMI geometries for the 22 MMI BB. [D2]: Set of three MMI 

geometries for the 12 MMI BB. 
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Design optimization steps consisted in a first empirical BPM simulation test to set the best 

reasonable range of values for the parameters to be assessed. Succeeding, iterative scripts to run the 

BPM simulations were implemented (with tens of thousands of iterations performed in total). A diagram 

representing the generic iteration plan performed in the OptoDesigner scripts to calculate the BPM 

simulations and determine the optimized design for the 22 MMI and 12 MMI BB structures, are 

depicted in Figure 18 and Figure 19, respectively. 

Boundary design size recommendations from CNM-VLC Si3N4 integrated platform technology [89] 

[90] were assured in all tested design structures, e.g., width of access WG ( 0.6 m), width of the 

MMI structure ( 8 m) and distance between MMI access input/output WG ( 1 m). Additionally, in 

all designs, PDK design rule checking (DRC) module was carried out to assure no fundamental errors 

in the design were held. 

 

Figure 18. Diagram of iterations performed in the OptoDesigner scripts to calculate the BPM simulations and 

determine the optimized design for the 22 MMI BB structure. 
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Figure 19. Diagram of the iterations performed in the OptoDesigner scripts to calculate the BPM simulations 

and determine the optimized design for the 12 MMI BB structure. 

The first overall set of simulations allowed to identify the MMI length (L) and the distance between 

the access MMI WG (d) as the parameters with higher influence in the overall BB performance. Thus, 

in the final step of the design optimization methodology was established a constant value for the MMI 

width W2, associated with butterfly geometrical shape, i.e., W2 = W1  0.2 m (for geometry B MMI 

geometry), and W2 = W1 – 0.2 m (for geometry C MMI geometry). Furthermore, MMI access WG 

taper length (Lt), and access WG taper width (Wt2) values with the best-identified performance for 

each MMI BB structure geometry and W1 were first empirically established under the design 

optimization iterative scripts. Then, a range of values was assessed in the design simulations for the 

length of the MMI BB structure (L) and distance between MMI access WG (d). 

 BB design assessment methodology 

The metrics used for the assessment of the BB design included device: i) excess loss; ii) coupling 

ratio; and iii) footprint. BB structures excess loss (EL) and coupling ratio (CR) metrics were calculated 

from equation (8) and equation (9), respectively. Parameters 𝑃𝑖𝑛𝑗 indicates the linear power at the 

input WG, and 𝑃𝑜𝑢𝑡𝑗  the linear power at the output WG of the designed MMI BB structures, for 𝑘𝑖𝑛 

input WG (i.e., two inputs for the 22 MMI and one input for the 12 MMI) and 𝑘𝑜𝑢𝑡 output WG (i.e., 

two outputs for both 22 MMI and 12 MMI). 
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𝐸𝐿 = 10𝑙𝑜𝑔10(∑𝑃𝑖𝑛𝑗

𝑘𝑖𝑛

𝑗=1

 ∑ 𝑃𝑜𝑢𝑡𝑗

𝑘𝑜𝑢𝑡

𝑗=1

⁄ ) (8) 

 

𝐶𝑅 = (
𝑃𝑜𝑢𝑡1

∑ 𝑃𝑜𝑢𝑡𝑗
2
𝑗=1

) ∶  (
𝑃𝑜𝑢𝑡2

∑ 𝑃𝑜𝑢𝑡𝑗
2
𝑗=1

) (9) 

The BB excess loss and coupling ratio metric under the optimal design dimensions are labeled as 

ELBB and CRBB, respectively. 

The device footprint was calculated from the overall area of the structure, i.e., the area of MMI 

box plus the area of the MMI access WG. The area of the MMI taper access WG is presented in 

equation (10), and the area of the MMI structure under the geometries A, B, and C are presented in 

equations (11), (12), and (13), respectively. The parameter 𝑛𝑎𝑐𝑐𝑒𝑠𝑠 𝑊𝐺 denotes the number of access 

WG of the structure, i.e., four for the 22 MMI and three for the 12 MMI structure. 

 

𝐴𝑎𝑐𝑐𝑒𝑠𝑠 𝑊𝐺 =
(𝑊𝑡1 +𝑊𝑡2)𝐿𝑡

2
 (10) 

 
𝐴𝑔𝑒𝑜𝑚.  𝐴 = 𝐿𝑊1 + 𝑛𝑎𝑐𝑐𝑒𝑠𝑠 𝑊𝐺𝐴𝑎𝑐𝑐𝑒𝑠𝑠 𝑊𝐺 (11) 

 

𝐴𝑔𝑒𝑜𝑚.  𝐵 = (𝐿𝑊1 + 2
𝐿|𝑊1 −𝑊2|

2
) + 𝑛𝑎𝑐𝑐𝑒𝑠𝑠 𝑊𝐺𝐴𝑎𝑐𝑐𝑒𝑠𝑠 𝑊𝐺 (12) 

 

𝐴𝑔𝑒𝑜𝑚.  𝐶 = (𝐿𝑊1 − 4
𝐿|𝑊1 −𝑊2|

2
) + 𝑛𝑎𝑐𝑐𝑒𝑠𝑠 𝑊𝐺𝐴𝑎𝑐𝑐𝑒𝑠𝑠 𝑊𝐺 (13) 

All developed MMI BB structures were designed for optimal operation at a wavelength of 1550 nm. 

Nevertheless, BB structure behavior was also assessed under wavelength C-band range of 1535 nm 

to 1565 nm, denoted as FT, i.e., a BB design fabrication tolerance for a wavelength range of 

1550  15 nm. Furthermore, fabrication tolerances to the BB design dimensions were also evaluated 
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for an MMI length range of LMMI = 3 m, and d range of -d = 0.2 m, parameter denoted as  

FTL, d. The aforementioned fabrication tolerances parameters (FT, FTL, d) were accessed by the 

excess loss metric, i.e., the highest EL obtained in response to C-band wavelength bandwidth (FT, 

see formula syntax 14) and the highest EL obtained in response to fabrication tolerances of design 

parameter L and d (FTL, d, see formula syntax 15) 

 
𝐹𝑇 ≤ 𝑚𝑎𝑥 { 𝐸𝐿=1535𝑛𝑚,  𝐸𝐿=1565𝑛𝑚 } (14) 

 
𝐹𝑇𝐿, 𝑑 ≤ 𝑚𝑎𝑥 {  𝐸𝐿𝐿±1.5𝜇𝑚,  𝐸𝐿∆𝑑±0.1𝜇𝑚 } (15) 

A quantitative decision-making method was formulated to determine the best 22 and 12 MMI 

design structure by correlating the different metrics used for the assessment of the BB design, i.e., 

ELBB, CRBB, footprint, FT and FTL, d. This method allowed to generate a comprehensive parameter 

that evaluates the overall performance of the different BB design structures, defined as BBeval. As in 

all the designs the expected CR was attained (with corresponding crosstalk below 0.2%), this metric 

was not included in the decision-making formulation. Two main parameter components were 

established for the BB evaluation, i.e., the excess loss (NEL) and footprint (Nfootprint). The parameter NEL 

included ELBB, FT and FTL, d, while the footprint was attained by the area of the BB structure. 

Weighted arithmetic calculations were carried out to ponder the contribution of the different 

metrics assessed. Under the excess loss parameter, its linear counterpart (𝐸𝐿𝑙𝑖𝑛𝑒𝑎𝑟 = 10𝐸𝐿𝑑𝐵 10⁄ ) 

was accounted for the weighted arithmetic calculus. For a rational device structure evaluation, a higher 

rate was outlined for the EL parameter under the optimal design dimensions (ELBB), with a stipulated 

weighting factor (wf) of 60%, while for the fabrication fabrications tolerances parameters an overall 

weight of 40% was established, i.e., half for FT (wf = 20%) and half for FTL, d (wf = 20%), see  

Figure 20. 
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Figure 20. Diagram of the general decision-making methodology implemented to quantitatively determine the 

best BB structure from the different implemented designs. 

To extract the variability of NEL, the offset constant component was removed (1 − 𝑁𝐸𝐿), and 

performed the normalization. NEL can be generically defined by equation (16). 

 
𝑁𝐸𝐿 = 0.6𝐸𝐿𝐵𝐵 + 0.2𝐹𝑇𝜆 + 0.2𝐹𝑇𝐿, 𝛥𝑑 (16) 

The Nfootprint parameter was given by the normalization of the BB area obtained for the different 

designed structures (see equations 11, 12, and 13). The lowest values of NEL and the Nfootprint 

correspond to the best-optimized BB design structures.  

The BBeval parameter is then realized by a weighted arithmetic sum between the components NEL 

and Nfootprint. Highly optimized excess loss values were obtained under the proposed optimal 

dimensions designs, i.e., generically with ELBB below 0.02 dB, see results in subsection 2.2.2. Thus, 

a higher weighting factor was given for the footprint component, i.e., 60% for Nfootprint and 40% for NEL. 

To guarantee that the scale range of values under parameter NEL and Nfootprint were comparable, a 

differential scale factor was considered, given by the division of the amplitude of Nfootprint by the 

BBeval
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amplitude of NEL, i.e., 𝑠𝑓𝑎𝑐𝑡𝑜𝑟 =
|𝑚𝑖𝑛{𝑁𝐸𝐿}−𝑚𝑎𝑥{𝑁𝐸𝐿}|

|𝑚𝑖𝑛{𝑁𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡}−𝑚𝑎𝑥{𝑁𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡}|
. The BBeval formulation is 

presented in equation (17). 

 
𝐵𝐵𝑒𝑣𝑎𝑙 = 0.6𝑁𝑓𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 + 0.4𝑁𝐸𝐿 𝑠𝑓𝑎𝑐𝑡𝑜𝑟 (17) 

Under the BBeval formulation, lower values correspond to higher performances of the optimized 

BB structure designs. 

A diagram describing the general decision-making methodology implemented to quantitatively 

determine the best BB structure from the different implemented designs is depicted in Figure 20. A 

compromise between the lowest EL, footprint, and response to fabrication tolerances was attained 

under the calculus of the BBeval parameter for the decision-making of the best-optimized BB structure 

design. The results of the different optimized BB structure designs implemented are provided in 

section 2.2.2. 

 Results and discussion 

The BBeval decision-making parameter (described in the subsection 2.2.1.5) was used to evaluate 

BB structure design with the best performance behavior. Results obtained for the design optimization 

of the BB 22 MMI coupler and BB 12 MMI splitter are presented in sections 2.2.2.1 and 2.2.2.2, 

respectively. 

 Optimized BB design for 22 MMI BB structure 

The 22 MMI coupler BB was designed to operate at the following coupling ratios 

(sum/subtraction: 100:0; subtraction/sum: 0:100; and splitting: 50:50), at the lowest possible excess 

loss and footprint. As MMI coupler operation mode sum/subtraction (i.e., coupling ratio 100:0) and 

subtraction/sum (i.e., coupling ratio 0:100) are mirrored equivalent, in the results only sum/subtraction 

(100:0) operation mode is provided. 
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The MMI sum/subtraction behavior is achieved when a phase of /2 is launched in the top input 

arm of the MMI (i.e., MMI difference of phase between the input arms of  = /2). While the splitting 

behavior is reached when the difference of phase between the input arms of the MMI is  = 0, i.e., 

no additional phase is launched. 

The BBeval formulation (see subsection 2.2.1.5, equation 17) was deployed to evaluate the 

performance of the different design structures implemented. As for the 22 MMI BB structure two 

operation CR modes (100:0; and 50:50) were required, the BBeval formulation is updated as depicted 

in Figure 21. The excess loss parameter component (NEL) is attained for NEL under a difference of 

phase between the MMI input arms of  = /2 (NEL,  = /2), and  = 0 (NEL,  = 0), i.e., 

𝑁𝐸𝐿 = 0.5𝑁𝐸𝐿, Δ𝜙=𝜋/2 + 0.5𝑁𝐸𝐿, Δ𝜙=0 , see Figure 21. 

 

Figure 21. Diagram of the decision-making methodology implemented to quantitatively determine the best 

design structure for the 22 MMI BB. 
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The EL metrics for CR = 100:0 ( = /2) and CR = 50:50 ( = 0) of the optimized 22 MMI 

structure dimensions for each MMI width W1 = 8, 9, 10, 11 and 12 m, is provided in Table 3, under 

the MMI designed geometries A, B, and C. 

BB MMI design fabrication tolerances for a wavelength range (FT) of 1550  15 nm, MMI length 

range of LMMI = 3 m, and d range of -d = 0.2 m (FTL, d) are also evaluated. Details regarding 

the parameters FT and FTL, d are described in subsection 2.2.1.5, equation (14) and (15), 

respectively. 

BPM simulations results from Table 3 provide a detailed guide of BB design parameters for the 

selection of the BB design that better matches the functional requirements of the circuit and/or device 

to be developed. All 22 MMI BB structures were designed to realize the expected coupling ratio of 

100:0 ( = /2), and 50:50 ( = 0), and all attained the expected CR with low crosstalk (XT), i.e., 

XT < 0.006 dB (equation 18) for CR = 100:0 mode, and XT < 0.004 dB (equation 19) for CR = 50:50 

mode. These results corresponded to deviations in the expected CR below 0.2% which validates the 

expected CR modes. Thus, the results presented in Table 3 are focused on the EL metrics for the 

optimal BB dimensions (ELBB) and the fabrication tolerance parameters (FT and FTL, d). 

 

𝑋𝑇∆𝜙=𝜋/2 = 10𝑙𝑜𝑔10(∑ 𝑃𝑜𝑢𝑡𝑗

𝑘𝑜𝑢𝑡

𝑗=1

 𝑚𝑎𝑥 { 𝑃𝑜𝑢𝑡 }⁄ ) (18) 

 

𝑋𝑇∆𝜙=0 = 10𝑙𝑜𝑔10 ( (
∑ 𝑃𝑜𝑢𝑡𝑗
𝑘𝑜𝑢𝑡
𝑗=1

2
⁄ )  𝑚𝑖𝑛 { 𝑃𝑜𝑢𝑡 }⁄ ) (19) 

The BB structure designs with the best-optimized performance (i.e., lowest BBeval) for 22 MMI 

BB geometry A, B, and C are highlighted in bold in Table 3. 
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Table 3. Optimized 22 MMI BB design dimensions for geometry A, B, and C. 

22 MMI – geometry A        
 = /2    CR = 100:0  = 0    CR = 50:50  

ELBB FT FTL, d ELBB FT FTL, d  

BB dimensions (m) EL EL  EL  EL EL  EL  BBeval 

L d W1 W2 Lt Wt2 (dB) (dB) (dB) (dB) (dB) (dB) (a.u) 

49.0 1.00 8 - 16 1.9 0.00160 0.019 0.21 0.0160 0.017 0.22 0.532 

61.0 1.10 9 - 11 2.1 0.00113 0.033 0.15 0.0124 0.044 0.20 0.531 

75.5 1.25 10 - 14 2.2 0.00046 0.054 0.13 0.0212 0.014 0.20 0.587 

90.0 1.40 11 - 11 2.4 0.00090 0.033 0.11 0.0022 0.062 0.16 0.574 

107.0 1.50 12 - 14 2.6 0.00049 0.041 0.09 0.0049 0.056 0.10 0.613 

 

22 MMI – geometry B        
 = /2    CR = 100:0  = 0    CR = 50:50  

ELBB FT FTL, d ELBB FT FTL, d  

BB dimensions (m) EL EL  EL  EL EL  EL  BBeval 

L d W1 W2 Lt Wt2 (dB) (dB) (dB) (dB) (dB) (dB) (a.u.) 

50.0 1.00 8 8.2 12 1.9 0.00412 0.028 0.21 0.0259 0.024 0.25 0.502 

62.0 1.10 9 9.2 10 2.1 0.00033 0.060 0.20 0.0075 0.083 0.28 0.587 

76.0 1.20 10 10.2 16 2.2 0.00036 0.080 0.19 0.0201 0.126 0.29 0.737 

91.0 1.40 11 11.2 10 2.4 0.00025 0.073 0.15 0.0211 0.110 0.23 0.757 

109.0 1.50 12 12.2 14 2.6 0.00174 0.059 0.11 0.0015 0.034 0.08 0.706 

 

22 MMI – geometry C        
 = /2    CR = 100:0  = 0    CR = 50:50  

ELBB FT FTL, d ELBB FT FTL, d  

BB dimensions (m) EL EL  EL  EL EL  EL  BBeval 

L d W1 W2 Lt Wt2 (dB) (dB) (dB) (dB) (dB) (dB) (a.u) 

47.5 1.00 8 7.8 7 1.8 0.00474 0.034 0.27 0.0171 0.032 0.33 0.478 

59.5 1.35 9 8.8 10 1.8 0.00374 0.054 0.13 0.0131 0.043 0.24 0.458 

73.0 1.30 10 9.8 11 2.2 0.00086 0.038 0.14 0.0002 0.026 0.15 0.466 

88.0 2.00 11 10.8 10 1.8 0.01938 0.139 0.28 0.0189 0.113 0.26 0.796 

104.5 2.10 12 11.8 16 2.0 0.02724 0.135 0.19 0.0404 0.121 0.17 0.887 

L: MMI length; W1, W2: MMI widths; Lt: length of access taper WG; Wt1, Wt2: widths of access taper WG;  

d: distance between MMI input/output access WG; : difference of phase between the input access WG;  

FT: BB fabrication tolerances for  = 30 nm ( = 1550  15 nm); FTL, d: BB fabrication tolerances for LMMI = 3 m, 

and -d = 0.2 m. The 22 MMI BB designs with the best performance from geometry A, B, and C are highlighted in 

bold. In pink is highlighted the overall best-optimized BB structure, corresponding to the lowest value of BBeval. 
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A compromise between the lowest EL, footprint, and response to fabrication tolerances was 

accomplished for the selection of the best-optimized BB designs, through the BBeval parameter. From 

the MMI geometry response assessment can be identified a higher performance behavior under the 

geometry C for the three lowest footprint designs (i.e., L  73 m), when compared to its counterparts 

MMI geometry A and B. The 22 MMI BB with the best-optimized performance was the one given by 

the geometry C structure with the dimensions: L = 59.5 m; d = 1.35 m; W1 = 9 m; W2 = 8.8 m; 

Lt = 10 m; and Wt2 = 1.8 m, highlighted in pink in Table 3. 

The BB performance associated with MMI L and d design parameters was used to extrapolate 

a model based on a second-degree polynomial under the best-optimized 22 MMI BB design structure 

from the MMI geometries studied. In Figure 22 is depicted the extrapolated second-degree polynomial 

model of the best-optimized 22 MMI BB structure from the three implemented geometries, i.e., the 

22 MMI BB geometry C design with L = 59.5 m. 

 

Figure 22. Model of the BB 22 MMI geometry C design corresponding to the best overall performance 

obtained. The 2nd degree polynomial fit was achieved with a normalized root mean square error (NRMSE) of 

2.2%. Constant design parameters (i.e., W1, W2, Lt, and Wt2) of the BB are provided in the figure top right 

corner. 
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The deduced second-degree polynomial function for the best-optimized 22 MMI BB design 

structure under the three geometry designs (A, B, and C) is described by equation (20). Where EL is 

the BB design excess loss, L the MMI length, and d the distance between the input/output access 

WG of the 22 MMI BB structure. Deduced second-degree polynomial function coefficients are 

represented by 𝑢1:6. 

 
𝐸𝐿 = 𝑢1𝐿

2 + 𝑢2𝐿∆𝑑 + 𝑢3𝐿 + 𝑢4∆𝑑
2 + 𝑢5∆𝑑 + 𝑢6 (20) 

The corresponding equations to estimate L (equation 21) and d (equation 22) were derived from 

equation (20). 

𝐿 =
−(𝑢3 ± √𝑢2

2∆𝑑2 + 2𝑢2𝑢3∆𝑑 + 𝑢3
2 − 4(𝑢1𝑢4∆𝑑

2 + 𝑢1𝑢5∆𝑑 + 𝑢1𝑢6 − 𝑢1𝐸𝐿) + 𝑢2∆𝑑)

2𝑢1
 (21) 

∆𝑑 =
−(𝑢5 + 𝑢2𝐿 ± √𝑢2

2𝐿2 + 2𝑢2𝑢5𝐿 + 𝑢5
2 − 4(𝑢1𝑢4𝐿

2 + 𝑢3𝑢4𝐿 + 𝑢4𝑢6 − 𝑢4𝐸𝐿) )

2𝑢4
 (22) 

The coefficients of the achieved function for the three 22 MMI geometries (A, B, and C) are 

provided in Table 4. 

Table 4. Coefficients of 2nd degree polynomial function model for optimized 22 MMI BB structures. 

MMI geometry u1 u2 u3 u4 u5 u6 

A    6.0010-2 -3.4210-2 -7.28 2.40 -2.88 223.72 

B    7.7310-2 -1.3410-1 -7.60 2.78 1.76 188.83 

C    9.8210-2 4.6410-2 -11.75 2.55 -9.32 355.89 

 

To realize the HT was implemented the 22 MMI BB design with the best overall performance, 

i.e., the lowest BBeval (0.458), achieved by the BB design geometry C with the MMI length L = 59.5 m 

and width W1 = 9 m (see Table 3). 
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The design attained an ELBB  0.01 dB for both CR modes, i.e., ELBB = 0.0037 dB (and 

XT = 0.0047 dB) for  = /2, and ELBB = 0.013 dB (and XT = 0.0039 dB) for  = 0. Furthermore, 

excess loss EL  0.05 dB was attained for wavelength fabrication tolerances (FT), and EL  0.2 dB 

for device dimension fabrication tolerances (FTL, d). As device dimension fabrication tolerances have 

a higher impact in the EL performance of the BB, greater attention should be given to the fabrication 

process, in order to guarantee that the BB dimensions are realized as close as possible to the optimal 

design specifications. 

Light propagation simulations of the two-level HT network (see Figure 15, from section 2.2.1.3) 

composed by a cascade of three optimized 22 MMI BB are depicted in Figure 23. The HT operations 

are carried out as expected, which can be confirmed by the obtained sum power at the output 

waveguide port (2) of the two-level HT network. The depicted 2D HT network has an overall footprint 

of 190  21 m2. 

 

Figure 23. Light propagation simulation of the two-level HT main block structure, composed by a cascade of 

three optimized 22 MMI BB structures. 

Furthermore, the same BB design will be implemented in the switching network main block (as 

depicted in Figure 16, from section 2.2.1.3). To realize the different logic outputs, the 22 MMI BB will 

need to operate as sum/subtraction and splitter mode.  
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The selected BB with the best-optimized 22 MMI design presents an MMI box footprint of 

59.5 m  9 m (536 m2) and an EL of 0.0037 dB, under the optimal design dimensions at the main 

mode of operation (CR = 100:0). 

From the literature can be identified an InP MMI design reporting an MMI box footprint of 

260  8 m2 and an EL of 0.25 dB [76], for similar applications. The employment of similar MMI 

butterfly shapes (as the implemented MMI geometries B and C) are reported in [94] with SOI-based 

MMI structure footprint designs ranging from 123  10 m2 to 240  10 m2, with an average EL of 

0.6 dB; and in [93] with InGaAsP/InP-based MMI structure footprint designs ranging from 

308  12 m2 to 1224  24 m2, with an overall EL below 0.7 dB. Furthermore, available Si3N4-based 

22 MMI structure BB under the CNM PDK with a footprint of 2397 m2 and an expected insertion 

loss below 1 dB are disclosed [89]. 

The best-optimized 22 MMI design BB proposed in this study shows an overall improved 

performance when compared to literature, with a reduced footprint, up to 1/4 lower when compared to 

its implementation for similar applications, such us in [76] and in [89]. Furthermore, the proposed 

design also entails an EL and XT metrics below 0.005 dB for the sum/subtraction CR mode, and below 

0.02 dB for the splitter CR configuration. The use of more unconventional MMI geometries such as the 

butterfly shape C showed an overall improved performance BB behavior, allowing to attain a device 

with lower footprint and excess loss, while guarantying the realization of the required CR modes, under 

wavelength and dimension fabrication tolerances evaluation. 

The optimization design study performed provides a relevant evaluation of the BB performance 

behavior and allowed to select the one that best addresses the HT compression and switching 

networks purposes. Further simulation graphic results are provided in the Appendix section A.1 and 

can be used to select a different optimized BB design depending on the functional requirements of the 

PIC to be developed. 
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 Optimized BB design for 12 MMI BB structure 

The 12 MMI BB was designed to provide a splitting behavior with an expected output coupling 

ratio of 50:50, at the lowest possible excess loss and footprint. The EL metrics for CR = 50:50 of the 

optimized 12 MMI structure dimensions for each MMI width W1 = 8, 9, 10, 11 and 12 m, is 

assessed, see Table 5. The BBeval formulation (see subsection 2.2.1.5, equation 17) was deployed to 

evaluate the performance of the different design structures implemented. 

 

Figure 24. Diagram of the decision-making methodology implemented to quantitatively determine the best 

design structure for the 12 MMI BB. 

The BBeval formulation implemented for the decision-making of the best-optimized 12 MMI BB 

structure is depicted in Figure 24. BPM simulations results presented in Table 5 provide a detailed 

guide of BB design parameters for the selection of the 12 MMI BB design that better match the 

expected functional requirements. Similarly, as for 22 MMI BB structure, design fabrication tolerances 

for a wavelength range (FT) of  = 1550  15 nm, MMI length range of LMMI = 3 m, and d range 

of -d = 0.2 m (FTL, d), are evaluated. 
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Table 5. Optimized 12 MMI BB design dimensions for geometry A, B, and C. 

12 MMI – geometry A        
 = 0    CR = 50:50  

ELBB FT FTL, d  

BB dimensions (m) EL EL  EL  BBeval 

L d W1 W2 Lt Wt2 (dB) (dB) (dB) (a.u) 

36.0 2.15 8 - 12 2.0 0.00085 0.033 0.165 0.415 

45.0 2.55 9 - 10 2.1 0.00161 0.055 0.151 0.464 

55.5 3.10 10 - 13 2.1 0.00031 0.085 0.166 0.575 

67.5 3.50 11 - 12 2.1 0.00199 0.031 0.131 0.494 

80.0 4.10 12 - 18 2.1 0.00002 0.056 0.148 0.621 

 

12 MMI – geometry B        
 = 0    CR = 50:50  

ELBB FT FTL, d  

BB dimensions (m) EL EL  EL  BBeval 

L d W1 W2 Lt Wt2 (dB) (dB) (dB) (a.u) 

37.0 2.20 8 8.2 12 2.0 0.00020 0.037 0.160 0.412 

47.0 2.50 9 9.2 13 2.1 0.00017 0.006 0.156 0.406 

57.5 2.95 10 10.2 13 2.2 0.00074 0.023 0.152 0.482 

69.0 3.55 11 11.2 12 2.1 0.00011 0.052 0.178 0.620 

81.0 4.10 12 12.2 18 2.1 0.00772 0.080 0.168 0.764 

 

12 MMI – geometry C        
 = 0    CR = 50:50  

ELBB FT FTL, d  

BB dimensions (m) EL EL  EL  BBeval 

L d W1 W2 Lt Wt2 (dB) (dB) (dB) (a.u) 

35.5 2.10 8 7.8 7 2.0 0.00055 0.017 0.200 0.411 

44.5 2.40 9 8.8 10 2.2 0.00030 0.012 0.174 0.394 

54.5 2.85 10 9.8 11 2.2 0.00433 0.022 0.213 0.524 

66.0 3.50 11 10.8 11 2.1 0.00337 0.045 0.179 0.545 

78.0 4.00 12 11.8 17 2.1 0.00387 0.066 0.179 0.636 

L: MMI length; W1, W2: MMI widths; Lt: length of access taper WG; Wt1, Wt2: widths of access taper WG;  

d: distance between MMI input/output access WG; : difference of phase between the input access WG;  

FT: BB fabrication tolerances for  = 30 nm ( = 1550  15 nm); FTL, d: BB fabrication tolerances for LMMI = 3 m, 

and -d = 0.2 m. The 12 MMI BB designs with the best performance from geometry A, B, and C are highlighted in 

bold. In pink is highlighted the overall best-optimized BB structure, corresponding to the lowest value of BBeval. 
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A coupling ratio of CR = 50:50 was attained in all the designs with an XT  0.002 dB (equation 19, 

subsection 2.2.2.1). This XT value corresponds to deviations in the expected CR below 0.05% which 

strongly validates the expected CR mode. Thus, the results presented in Table 5 are focused on the 

EL metrics for the optimal BB dimensions (ELBB) and the fabrication tolerance parameters (FT and 

FTL, d). A compromise between the lowest EL, footprint, and response to fabrication tolerances was 

accomplished for the selection of the best-optimized BB designs, through the BBeval parameter, see 

Table 5. 

The best design performance for the 12 MMI BB was attained under geometry C for MMI design 

dimensions: L = 44.5 m; d = 2.4 m; W1 = 9 m; W2 = 8.8 m; Lt = 10 m; and Wt2 = 2.2 m. The 

device presents an excess loss of ELBB = 0.0003 dB and XT = 0.0002 dB under the optimal design 

dimensions, and regarding the assessed fabrication tolerances an EL  0.012 dB for FT, and 

EL  0.17 dB for FTL, d. Likewise to 22 MMI BB assessment, fabrication dimension tolerances 

(FTL, d) has a higher impact in the BB EL performance, thus fabrication should match as possible the 

optimal design specifications. 

Similar design performances (through BBeval assessment) are attained under the three MMI 

geometries for the lower footprint BB designs, with an L  47 m. Thus, good results are predicted 

with the implementation of any of these designs under the requirements of the integrated approach 

proposed. Nonetheless, to maximize the PIC performance, the BB with the highest performance was 

selected. 

As well as for the optimized 22 MMI BB designs, a BB model based on a second-degree 

polynomial function under the best-optimized 12 MMI BB design structure is realized, see Figure 25. 

The coefficients of the achieved second-degree polynomial function (from equation 20) are  

𝑢1−6= [5.3610-2, 9.9010-3, -4.77, 1.61, -8.14, 115.23]. 

The optimized 12 MMI BB structure was implemented in the switching network main block 

composed by a cascade of three 12 MMI BB and two 22 MMI BB, see Figure 16 from section 

2.2.1.3. The switching network allows generating the available nine outputs logic values (see Table 2 

from section 2.2.1.3), which will be delivered as the four inputs of the two-level HT network. 
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Figure 25. Model of the BB 12 MMI geometry C design corresponding to the best overall performance 

obtained. The 2nd degree polynomial fit was achieved with a normalized root mean square error (NRMSE)  

of 1.5%. Constant design parameters (i.e., W1, W2, Lt, and Wt2) of the BB are provided in the  

figure top right corner. 

In Figure 26 are presented two sets of logic outputs attained by the switching network through 

BPM light propagation simulation. The different sets of logic outputs are realized by changing the 

phase () launched in the input arms of the 22 MMI BB.  

The complete phase configuration set for the available nine logic outputs of the switching network 

was previously described in Table 2 from section 2.2.1.3. Switching network operations are carried out 

as expected, which can be confirmed by the identified network outputs corresponding to a logic output 

of [1 1 1 1] for a phase input of {1,2,3,4} = [0, 0, 0, 0] (see Figure 26-A), and a logic output [1 0 0 1] for 

of a phase input of {1,2,3,4} = [/2, 0, 0, /2] (see Figure 26-B). The depicted switching network has an 

overall footprint of 260  20 m2. 

 

EL
 (

d
B

)

12 MMI – geometry C
W1 = 9 m

W2 = 8.8 m

Lt = 10 m

Wt2 = 2.2 m

NRMSE = 1.5%



Chapter 2. Optical integrated approaches for data compression applications 

 

Cátia Pinho     53 

 

 

 

Figure 26. Light propagation simulation of the switching network main block structure, composed by a 

cascade of three optimized 12 MMI BB and two 22 MMI BB. Examples of two sets of logic outputs attained 

by the switching network block are provided in [A] and [B]. The different sets of logic outputs is accomplished 

by changing the phase () launched in the input arms of the 22 MMI BB, i.e., [A]: {1,2,3,4} = [0, 0, 0, 0] 

resulting in the logic outputs [1 1 1 1]; and [B]: {1,2,3,4} = [/2, 0, 0, /2] resulting in the logic outputs [1 0 0 1]. 

When half of the relative power is obtained in two of the output ports, as identified in logical output 

sequence N = 6, 7, 8, and 9 (see Table 2, section 2.2.1.3), the 22 MMI BB coupling ratio response 

suffers a slight performance impairment (4%, XT  0.18 dB), e.g., in a sum/subtraction 22 MMI 

configuration mode, a lower CR performance of 96:4 can be achieved. EL metrics response is the 

same as characterized in section 2.2.2.1, Table 3. 
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The selected 12 MMI BB with the best-optimized performance presents a footprint of 

44.5 m  9 m (401 m2) and an EL and XT close to 0 dB (i.e., below 0.0003 dB) under the optimal 

design dimensions. The footprint attained is approximately 1/3 lower than the available Si3N4-based 

12 MMI BB structure under the CNM PDK, which reports a footprint of 1165 m2 and an expected 

insertion loss below 1 dB [89].  

Likewise for the best-optimized 22 MMI BB, the MMI butterfly geometry C design attained the 

best performance for the 12 MMI BB, nevertheless near performance values were achieved under 

the remaining studied 12 MMI geometries B and A. The optimization design study performed 

provides a relevant evaluation of the 12 MMI BB structure performance behavior under the 

requirements of the proposed integrated approach for compression applications. Further simulations 

results are provided in the Appendix section A.2 and can be used to select a different optimized 

12 MMI BB design depending on the functional requirements of the PIC block structure to be 

developed. 
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2.3 Chapter remarks 

The use of optical transform architectures in integrated approaches for data compression 

applications was studied. An optimized PIC design solution in Si3N4-based platform was proposed, 

comprising a two-level HT network for compression, and a switching network as a framework that 

supplies all logical inputs to the HT network for testing/characterization purposes. The key BB 

structures designed to realize the main block networks are a 22 MMI BB and 12 MMI BB. Design 

methodology combined theoretical MMI optical interference principle and numerical optimization 

through BPM assessment. Furthermore, in an effort to improve the BB performance behavior under 

the integrated approach requirements, three different MMI geometries were evaluated, i.e., rectangular 

shape (geometry A) and two different butterfly shapes (geometry B and C). 

An optimized design model study for a 22 MMI BB structure is proposed to implement the 

two-level HT network. The best-optimized 22 MMI BB developed presents an EL below 0.004 dB and 

XT below 0.005 dB for a sum/subtraction MMI operation mode (essential for the 2D HT network 

implementation) with a device size footprint up to 1/4 lower than reported literature [76] [89]. 

Additionally, device reconfigurability (with different available MMI coupling ratio behaviors) and 

wavelength tolerances in the infrared C-band were assured, with an overall EL  0.05 dB. An 

optimized design model study for the 12 MMI BB structure to realize the switching network is also 

developed, resulting in an optimized BB, with and EL and XT below 0.0003 dB, wavelength tolerances 

in the infrared C-band with EL  0.01 dB, and device size footprint approximately 1/3 lower than 

reported literature [89]. Both best-optimized BB designs (22 MMI and 12 MMI) selected, were 

attained under the MMI butterfly geometry C, which presented the overall best performance. 

The comprehensive optimization design study performed provides an important evaluation of the 

BB structures performance/behavior, to select the ones that best address the HT compression and 

switching networks. To conclude, the BB structures developed can be implemented in photonic chip 

design with the possibility to be manufactured under a multi-project wafer (MPW) run. 
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3 Implementation and testing of integrated HT 

The use of the Haar wavelet transform as an all-optical encoder/decoder implemented in PIC has 

been demonstrated, e.g., analytically with a tree of cascaded Mach-Zehnder interferometers (MZI) 

[98], and for inverse/discrete wavelet packet transform (IDWPT/DWPT) with a PIC-based on silicon on 

insulator (SOI) platform [99]. Furthermore, the use of planar interferometry in an integrated architecture 

to implement the HT has been conceptually proposed by Parca et al. [68] with an all-optical scheme 

composed by optical couplers to realize the image compression process. 

Optical couplers are key components with a wide range of applications in integrated photonics. 

Particularly, when a specific degree of asymmetry is applied on 3 dB directional couplers, different 

coupling behaviors [68]–[70], such as magic-T [71] can be attained. Its features include the realization 

of a separate addition and subtraction of incoming input signals at its output ports [68] with available 

tunable capabilities through phase adjustment of the input signals [71] [72]. The implementation of 

planar interferometry to realized the HT providing image compression in real-time with an increased 

power saving due to the all-optical processing is explored. The HT implementation can be realized 

with a two-level network of adiabatic asymmetric coupler (AAC) devices [32] [56] [57]. Alternatively, 

Chapter  3 
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these operations can also be accomplished with the implementation of MMI, as described in  

chapter 2. 

The selection of the photonic integrated platform to fabricate the PIC is driven by the functional 

requirements of the circuit and/or device to be developed and the underlying components 

(active/passive) available in the different platforms [51]. Indium phosphide (InP) [47] [48], silicon (Si) 

[44] [45] and silicon nitride (Si3N4) [42] [49] based platforms are among the most commonly used to 

realize PIC, with recognized different advantages. The silicon nitride platform technology was 

assessed in a design implementation (addressed in chapter 2). In this chapter will be investigated the 

implementation of the HT network in an integrated InP-based platform and in a new hybrid  

material [65]. 

From InP-based platform merits can be highlighted its excellent electro-optical properties allowing 

efficient light generation, detection, and guidance [100]. Due to its remarkable advantage of comprising 

the integration of both passive and active components in a single platform technology, the integrated 

InP-based platform was chosen for the design and fabrication of an InP optical chip implementing the 

two-level HT network. In this chapter is presented the first experimental characterization of an 

InP-based platform realizing the HT (in section 3.1), with a full characterization of the elementary BB 

coupler implemented, i.e., the AAC (in subsection 3.1.1), and the 2D HT network (in subsection 3.1.2). 

Furthermore, taking advantage of new low-cost hybrid materials, such as the organic-inorganic 

di-ureasil hybrid [65] was explored its employment in planar interferometry to realize the proposed 

optical HT for compression purposes [58]. Thus, a potential cost-effective 2D HT network (fabricated 

in this organic-inorganic hybrid material) composed of three 22 MMI couplers arranged in a two-level 

signal decomposition architecture is demonstrated (in section 3.2). Design and manufacturing 

methodology (in subsection 3.2.1), and simulation/experimental characterization results with 

discussion (in subsection 3.2.2) are also addressed. 

The chapter is concluded with the chapter final remarks summarized in section 3.3. 
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3.1 HT implementation with AAC in an InP integrated platform 

Indium phosphide-based PIC offer promising solutions for high-speed computing and data 

transmission due to their electro-optical properties [101]–[103]. The merits of this integrated photonic 

platform include efficient light generation and detection, light guiding, and fast phase modulation, 

allowing built-in active components, such as lasers and optical amplifiers [48] [100]. 

Taking advantage of the InP integrated photonic platform, a data compression chip based on Haar 

wavelet transform was designed in accordance with the rules and using building blocks (BB) available 

from “Application Specific Photonic Integrated Circuit” (ASPIC) foundries [104], as well as proprietary 

BB created and simulated by the authors [56]. Furthermore, a chip to test and independently 

characterize the AAC was designed and fabricated in the same platform conditions. The optical chips 

were designed under the foundation for science and technology (FCT) research project CITO – image 

compression using optical transforms (PTDC/EEA-TEL/114838/2009), prior to this thesis work plan. 

The main contribution provided in this study was the first test and characterization (with simulation and 

experimental results) of the integrated implementation of the optical HT in an InP optical chip [56] [57]. 

The chips were fabricated through a multi-project wafer (MPW) offered by the consortium “Joint 

European Platform for Indium Phosphide based Photonic Integration of Components and Circuits” 

(JePPIX) [105]. This consortium allows the development of low-cost ASPIC using generic foundry 

model and it supplies design kits for MPW. The fabrication process was achieved under the program 

“Photonic Advanced Research and Development for Integrated Generic Manufacturing” (PARADIGM) 

[106], developed to allow access to foundry processes for Universities. This program reduces the costs 

of the design, development, and manufacture by establishing library-based design combined with 

technology process flows and design tools [56]. 

The designed elementary component for the all-optical HT network implementation was the AAC, 

detailed described and experimentally characterized in section 3.1.1. The full HT testing and 

characterization are presented in section 3.1.2. 
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 InP AAC optical chip – design and characterization 

Optical couplers and splitters are components with a wide range of applications in data 

communications [72]. Compact tunable power couplers are highly beneficial, providing functionalities 

as multiplexing/demultiplexing and switching [107]. For example, a specific degree of asymmetry 

applied to 3 dB directional couplers can produce different coupling behaviors [68]–[70], such as magic-

T [71]. A magic-T also known as a 3 dB asymmetric coupler, allows to perform a separate addition and 

subtraction of incoming input signals at its output ports [68]. Asymmetric waveguides are used to 

compensate for wavelength-dependent coupling ratios, with tunable capabilities achieved by adjusting 

the phase of the input signal [71] [72]. 

An AAC in InP integrated waveguide platform, based on adiabatic coupling arrangement was 

designed using the medium-index-contrast waveguide E600 structure, available from Fraunhofer 

Gesellschaft Heinrich Hertz Institute (FhG-HHI) design manual structures [108]. Owing to a 

non-disclosure agreement (NDA) of Oclaro and HHI generic foundry processes, further details about 

the waveguide structure (e.g., structure dimensions and refractive indexes) cannot be provided due to 

propriety rights. The wavelength supported by the developed structure is infrared C-band. 

 

Figure 27. Schematic diagram of the AAC composed of three main elements of different sizes, i.e., straight, 

taper and bend elements [57]. The diagram is not in scale. 

Input 2

Input 1

Output 2

Output 1

L2

L1

D2

D1

WS

Straight

Length Length

Taper Bend

Length

WT1 WT2

WB

HB

WG 
elements:

WG2

WG1

WG: Waveguide 

HB2

HB2

HB1

HB1

Wider arm

Narrower arm



Chapter 3. Implementation and testing of integrated HT 

 

Cátia Pinho     61 

 

Finding an appropriate design to obtain the specific coupling results, requires several parameters 

to take into account. Thus, the coupler waveguides were designed with a set of different elements (i.e., 

straight, taper, and bend elements [109]), to ensure the expected coupler behavior. The design and 

general dimensions of the developed InP asymmetric coupler are presented in Figure 27 and Table 6. 

The narrower and wider arms of the AAC are waveguide 1 (WG1) and waveguide 2 (WG2) respectively, 

corresponding to the lowest width of 1 m for WG1 and 1.3 m WG2. 

Table 6. General dimensions of the AAC. 

  (m) 

Length of the WG L1 2264 

 L2 2815 

Distance between WG D1 40 

 D2 70 

Width of the straight element WS 1.15 

Width of the taper element for WG1 WT1 1.00 

 WT2 1.15 

Width of the taper element for WG2 WT1 1.30 

 WT2 1.15 

Width of the bend element WB 1.15 

Height of the WG1 (input/output) HB1 2.00 

Height of the WG2 (input/output) HB2 2.00 

Height of the bend element for WG1 HB 3.60 

Height of the bend element for WG2  5.00 

WG: waveguide. 

Simulations and fine-tuning of all design parameters were performed to attain the right profiles 

and output requirements of the AAC. Design and propagation analysis were carried out using the 2D 

BPM from OptoDesigner © Synopsys software [92] [109]. 
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Beam propagation simulations of the theoretical AAC device designed are depicted in section 

3.1.1.1. Additionally, in section 3.1.1.2 is provided the experimental testing and characterization of the 

InP optical chip implementing the AAC. 

 BPM simulations of theoretical AAC design 

Light propagation simulations of the designed InP AAC coupler with the input signal in the: i) upper 

waveguide (WG2); ii) lower waveguide (WG1); and iii) same input signal on both WG1 and WG2; are 

presented in Figure 28, Figure 29 and Figure 30, respectively. Propagation analysis was carried out 

with 2D BPM, transparent to reflections. 

An estimation of the AAC coupling ratio (CR) and device excess loss (EL) was derived from the 

light propagation BPM simulation results as presented in equations (9) and (8), respectively (see 

subsection 2.2.1.5 from chapter 2). For AAC, 𝑃𝑖𝑛𝑗  specifies the power at the input arms of the AAC 

and 𝑃𝑜𝑢𝑡𝑗  indicates the power at the output ports of the AAC, lower (WG1) and upper (WG2) WG 

respectively. 

 

Figure 28. Light propagation in the AAC when the input signal is provided in the upper waveguide (WG2).  

AAC output power values are presented in percentage. 
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Figure 29. Light propagation in the AAC when the input signal is provided in the lower waveguide (WG1) of 

the coupler. AAC output power values are presented in percentage. 

 

Figure 30. Light propagation in the AAC when the same input signal is provided in the two input waveguides 

(WG1, WG2) of the coupler. AAC output power values are presented in percentage. 
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The simulation results demonstrate that the designed coupler is behaving as expected. As 

depicted in Figure 28 and Figure 29, a 50% (i.e., coupling ratio of 50:50) splitter coupling mode is 

observed when only one of the input waveguides carries an optical signal. 

When both of the input waveguides carry an optical signal, sum and subtraction are achieved at 

the coupler output waveguides. As can be seen by the duplication of power in the output WG2 (with 

99% of the output signal) and an approximated absence of power in the output WG1 (0.3%), i.e., an 

AAC coupling ratio of approximately 99:0, see Figure 30. 

Device excess losses lower than 0.03 dB were attained in all BPM simulations. 

 Experimental test and characterization of InP AAC optical chip  

The InP chip under testing containing the asymmetric coupler is depicted in Figure 31. The chip 

is composed of one AAC powered by two distributed feedback (DFB) lasers (L1 and L2), four positive-

intrinsic-negative (PIN) photodiodes for electrical monitoring, two phase modulators (PM-L1 and 

PM-L2) at coupler’s input WG1 and WG2 respectively, two multimode interference (MMI) splitters 12 

and two spot size converters (SSC1 and SSC2) at coupler’s output port 1 and 2, respectively. 

 

Figure 31. Microscope image of the chip containing the AAC, input DFB laser sources (L1 and L2), phase 

modulators (PM-L1 and PM-L2), multimode interferometers (MMI) splitters 12 and spot size converters (SSC1 

and SSC2) to collect optical output signal from the AAC. Image obtained with Leica microscope (DM-750M; 

1CC50-HD) [110] with a 5 objective (HI Plan EPI, 5/0.12) [57]. 
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Implemented DFB lasers, PIN photodiodes, MMI splitters, and SSC are proprietary BB from 

ASPIC foundries [108]. The DFB laser can be powered by a current up to 100 mA and presents a 

linear behavior up to a maximum modulation frequency of 10 GHz [108]. The reported optical loss of 

the SSC, when coupled with a standard single mode fiber (SSMF), is < 2 dB and allows an SSMF 

alignment tolerance < 2 m [108]. An electrical power surge during the experiment damage PIN 

photodetectors and the phase modulator PM-L1 from the optical chip, inhibiting their use in the 

experimental characterization. Nonetheless, a full characterization was assured with optical 

measurements and the second phase modulator in the input WG2 of the AAC. 

This section includes the packaging of the InP AAC optical chip under testing (in subsection 

3.1.1.2.A) and the experimental method implemented, with corresponding results and discussion (in 

subsection 3.1.1.2.B). 

3.1.1.2.A Packaging of InP AAC optical chip for testing 

In the optical chip packaging is addressed: i) the design and fabrication of the PCB for PIC testing 

(in subsection 3.1.1.2.A.1 ); ii) the employed techniques for the management of the PIC temperature 

and lasers’ wavelength stability (in subsection 3.1.1.2.A.2); and iii) the applied fiber coupling approach 

for optical measurements (in subsection 3.1.1.2.A.3). 

3.1.1.2.A.1 PCB design and fabrication 

A printed circuit board (PCB) in the RO4000® laminate (material substrate 4360G2, dielectric 

constant of 6.1515, dielectric thickness 0.51 mm, and trace thickness 35 m) from Rogers 

corporation [111] was designed and printed to test the InP optical chip. The design and simulation of 

the PCB were performed with the advanced design system (ADS) [112]. The complete PCB design is 

presented in Figure 32. 
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Figure 32. Schematic diagram of the PCB designed to test the InP AAC optical chip. The diagram is not in 

scale. 
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distance between RF lines  1448 m. Physical parameters of the radio frequency (RF) transmission 

lines (with an impedance transmission line of 50  and frequency up to 10 GHz) were calculated using 

the LineCalc analysis and synthesis program from ADS [112]. Furthermore, RF line/trace corners 

designs followed the RF/microwave PCB design layout recommendations [113]. 

Electronic connections between the PIC (square pad with 100 m side length) and the PCB were 

made with gold (Au) wire-bonding (with 17.5 m of diameter). To reduce induction effects wire-bonds 

were made as short and straight as possible, maximizing the quality of connections [114] [115]. 

3.1.1.2.A.2 Management of PIC temperature and laser wavelength stability 

Thermal management of the chip was maintained at 25ºC, as recommended by the foundry for 

InP-based PIC [108], with a single-stage thermoelectric cooler (TEC) controller (MD02 series) [116]. 

For the well-functioning of the AAC, i.e., interference of input signals, is essential to guarantee the 

same wavelength in the two inputs lasers, but also the same relative phase. Spatial and temporal 

coherence of both lasers L1 and L2 were assumed according to the quality standards of HHI InP PIC 

with the TEC avoiding thermally induced deviations on the laser output.  

The waveguides were also designed to maintain the relative phase between the two lasers so 

that, the change in the relative phase can only be due to the phase shifter. Furthermore, the 

wavelength stability was also assessed by measurements using the optical spectrum analyzer (OSA) 

in which it was verified that the wavelengths of both lasers were not drifting, and the interference 

pattern guaranteed. 

The DFB lasers were powered by current sources through subminiature version A (SMA) 

connectors (to allow tests up to a maximum of 10 GHz of frequency, maximum validated by the DFB 

laser BB). The reported wavelength tuning range of the DFB is 4 nm [108]. 

3.1.1.2.A.3 Fiber coupling for optical measurements 

To reduce optical loss in the AAC output coupling was designed in the PIC a waveguide 3D SSC, 

as they have a reduced loss of approximately 0.5 dB [108]. Additionally, the waveguide SSC was set 

at a 7 angle (𝜃𝐼𝑛𝑃) to further reduce optical loss, as recommended by InP-based PIC design rules 

[108]. Taking that into consideration, the fiber coupled to the PIC for optical measurements was placed 
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at an angle of approximately 16 (see equation 23). The angle (𝜃𝑆𝑆𝑀𝐹) of the fiber to couple to the 

PIC is given by the Snell’s law as presented in equation (23).  

 
𝜃𝑆𝑆𝑀𝐹 = 𝑠𝑒𝑛−1 (

𝑛𝐼𝑛𝑃 𝑠𝑒𝑛(𝜃𝐼𝑛𝑃)

𝑛𝑆𝑆𝑀𝐹
) (23) 

In equation (23) the standard refractive index of the SSMF (𝑛𝑆𝑆𝑀𝐹) was assumed [117] and the 

InP refractive index (𝑛𝐼𝑛𝑃) was calculated with equation (24) [118] [119] were  is the light wavelength 

in the waveguide.  

 

𝑛𝐼𝑛𝑃 = √6.255 +
2.316 𝜆2

𝜆2 − 0.62632
+

2.765 𝜆2

𝜆2 − 32.9352
+ 1 (24) 

The optical measurements were performed through edge coupling between the PIC output 

waveguide SSC and an SSMF fiber optic pigtail. Edge-coupling involves the transfer of light between 

the fiber and tapered waveguides located along the edge of the PIC-die. Polarization-independency 

and allowing the use of lensed fibers are some of the advantages of this technique, resulting in lower 

insertion losses (< 1 dB), and a broadband coupling [120] [121]. 

Grating couplers, although having higher insertion losses when compared to edge coupling, can 

be employed to simplify the coupling process by relaxing alignment tolerances, with the ability to be 

placed at any position of the PIC surface (not just on the edge of the chip) [122]. Nonetheless, this 

approach was not considered in the design of the optical chip under testing, as up to the time of 

fabrication grating coupler structures were not available under the InP-based platform PDK from HHI 

[108]. 

To facilitate and optimize the alignment of the fiber with the SSC of the chip, lensed fibers were 

fabricated and tested. Lensed fibers are fibers with tips tapered in the form of a microlens. This can 

be seen as a cost-effective method for aligning the fiber to an integrated optic device [123] [124]. By 

acting as a lens, the effective numerical aperture of the fiber increases, which can reduce the coupling 

losses between the fiber and the chip. This behavior provides a more efficient coupling when compared 

to a non-lensed fiber [125]. 
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Fujikura LAZERMaster LZM-100P laser splicing system [126] [127] was used to fabricate the 

lensed fibers. The system comprises a glass processing and splicing technique that uses a carbon 

dioxide (CO2) laser heat source and advanced functionalities to provide good performance, reliability 

for splicing, tapering, ball lensing, and glass-shaping operations on single-mode fibers [115] [128]. 

Three ball lenses of different diameters (190, 200 and 210 m, below the under testing chip 

thickness of 250 µm) were fabricated and tested. In Figure 33 is presented the diameter profile for X 

and Y axis of a ball lens fabricated with an approximated diameter of 200 m (ball lens fabrication 

settings are: pre-heat time 90 s; absolute power 331 bit; relative power 100 bit; break add power 20 bit; 

rotator speed 55 deg/s; and feeding speed 0.03 m/ms). 

 

Figure 33. [A]: Diameter profiles for X and Y axis of a ball lens fabricated with 200 m. [B]: Picture of the 

fabricated ball lens, collected with the Fujikura laser splicing system. 

A maximized output optical power measurement was obtained for the ball lens diameter of 

200 m. Under the same conditions, the other ball lens diameters showed lower output powers up 

to approximately 3 dB of loss, i.e., by experimentally attain the maximization in the measured coupled 

optical power through a manual mechanically active coupling. Thus, the ball lens with 200 m of 

diameter was the one used for the optical chip characterization. 
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Figure 34. Diagram of ball lens endpoint of the coupling fiber for focal lens calculus. 

The used ball lens (diameter 200 m) for the fiber coupling has a corresponding effective and 

back focal length of approximately 161 m and 61 m, respectively, see Figure 34. 

 

𝐸𝐹𝐿 =
𝑛𝑆𝑆𝑀𝐹𝐷𝑏𝑙

4(𝑛𝑆𝑆𝑀𝐹 − 1)
 (25) 

 

𝐵𝐹𝐿 = 𝐸𝐹𝐿 −
𝐷𝑏𝑙
2

 (26) 

 

𝑁𝐴 =
2𝐷𝑙𝑠(𝑛𝑆𝑆𝑀𝐹 − 1)

𝑛𝑆𝑆𝑀𝐹𝐷𝑏𝑙
 (27) 

Equations (25) and (26) were used for the calculus of the effective focal length (EFL) and back 

focal length (BFL) [129]. Where 𝑛𝑆𝑆𝑀𝐹 represents the refractive index of the coupling fiber (standard 

refractive index of the SSMF [117] was assumed), and 𝐷𝑏𝑙 the ball lens diameter. The lens numerical 

aperture (NA) is given by equation (27), where 𝐷𝑙𝑠 represents the diameter of the light input source. 

EFL BFL
𝐷𝑏𝑙: diameter of the ball lens

𝐷𝑙𝑠: diameter of the light input source

EFL: effective focal lens

BFL: back focal lens
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3.1.1.2.B Experimental characterization method 

The setup implemented for the chip testing consisted in the PCB containing the InP PIC placed 

over a Peltier device with a thermistor for temperature management (as described in section 

3.1.1.2.A.2). The optical chip and coupling fiber (i.e., ball lens with a diameter of 200 m) were 

mounted on two separated three-axis micro-positioning adjusting systems to allow a manual 

adjustment in the X, Y, and Z direction. A binocular stereoscope (Optika SZM-3) with linear zoom 

magnification (of 0.7 up to 4.5 and eyepieces 10) and a dual fiber output light source (Leica KL200) 

was used for an efficient system illumination during the alignment process. A general overview of chip 

testing setup is depicted in Figure 35. 

 

Figure 35. Setup for the chip testing illustrating the PCB with the optical chip and the alignment of the SSMF 

coupling fiber to collect the optical output signal from the SSC. A binocular stereoscope and two 3-axis 

(X, Y, Z) micro positioners were used for manual adjustment of the fiber coupling. 
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InP optical chip active components (e.g., DFB laser and phase modulators) were powered by 

current sources. Fiber-to-chip alignment adjustments were performed until a maximized optical power 

was achieved (when DFB lasers are emitting at a constant input current value), i.e., through active 

alignment. 

The active adjusting techniques use the ability to control the adjustment under real electrical 

excitation conditions of optical-electronic integrated circuits. This method offers low excess loss, good 

loss uniformity, and high yield. However, the alignment procedure can be time-consuming and labor-

intensive [130], making this method a good approach for research characterization purposes, but not 

endorsed for low-cost mass-production PIC assessments, where passive adjusting techniques are 

more appropriate [115] [131]. 

The fiber-to-chip alignment was based on the maximization of coupled power [130] when a manual 

mechanically active coupling was performed, by moving either the fiber, the chip or both [132]. 

Coupling power was measured with a power meter (for first feedback) and an optical spectrum 

analyzer (OSA) to guarantee wavelength consistency in both DFB lasers. The OSA EXFO, model 

FTB-500 was used for the optical measurements. Optical power values were calculated from the 

spectrum provided by OSA measurements. Matlab © scripts were implemented to extract the integrated 

power from the power spectral density (PSD = 𝑃(𝑚𝑊) 𝑅𝐵𝑊⁄ ) [133], see equation (28). Where 𝑃𝑖  

is the power of a single tracepoint, 𝑛 the number of tracepoints, RBW the resolution bandwidth, and 

Δλ the wavelength tracepoint. All optical power values (from OSA measurements) presented in the 

scope of this thesis reports to these integrated power measurements. 

 

𝑃𝑜𝑤𝑒𝑟 (𝑑𝐵𝑚) = 10𝑙𝑜𝑔10 (∑
𝑃𝑖(𝑚𝑊)

𝑅𝐵𝑊
 𝛥𝜆

𝑛

𝑖=1

)  (28) 

The optical output of the AAC was measured by collecting the optical power individually in each 

SSC (firstly on SSC2 and then on SSC1), optimized alignment was obtained, guarantying the 

measurement of the highest optical power in the individual measurements at the SSC1 and SSC2. A 

schematic diagram of the chip simulated and tested is depicted in Figure 36. 
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Figure 36. Schematic diagram of the AAC characterized. The optical system addressed is composed of one 

AAC, two DFB lasers, one PM, and two SSC. 

The tunable capabilities of the coupler (i.e., addition, splitter and subtraction behavior of the output 

port 2 relatively to output port 1) were assessed by scanning a set of phase values generated by the 

phase modulator PM-L2 applied to the input 2 of the coupler (input WG2), see Figure 31 and  

Figure 36. 

For comparison, simulations addressing the experimental conditions (identified in the AAC 

behavior) were performed using the 2D BPM. 

To guarantee wavelength interference (at the AAC experimental operating wavelength of 

1555 nm) between the two input DFB lasers, it was necessary to apply different current values in the 

two lasers, i.e., [78 to 90] mA, which resulted in a 3.7 dB difference of power between the two lasers. 

This power difference was taken into account in the 2D BPM simulation of the coupler, i.e., an input of 

L1 = 1 and L2 = 0.43 (normalized values) were simulated for different phase values [0 to 340]º at the 

input WG2. 

3.1.1.2.B.1 Simulation results 

The optical propagation analysis for the AAC BB to access the main coupling behaviors expected, 

i.e., splitting and addition/subtraction, are depicted in Figure 37. 

 

AAC: adiabatic asymmetric coupler 
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Figure 37. Power propagation in the AAC reproducing the experimental conditions for subtraction/addition 

and splitting coupling behaviors by adding phase to the input 2 of the AAC. [A]: Addition/subtraction behavior 

coupling ratio of 96:4) with an additional phase of 21º at the input WG2. [B]: Splitting behavior (coupling ratio 

of 50:50) with an additional phase of 113º at the WG2. [C]: Subtraction/addition behavior (coupling ratio of 

5:95) with an additional phase of 200º at input WG2. 
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The experimental conditions were taken into account in the 2D BPM simulation, i.e., input 

normalized values of 1 and 0.43 for the input WG1 and input WG2 of the AAC, respectively. Additionally, 

different values of phase were applied to the input WG2 of the coupler to model the effect of the phase 

modulator (PM-L2) in the InP AAC BB. 

The addition and subtraction behavior for both outputs of the AAC was obtained with an additional 

phase of 21º (coupling ratio of 96:4) and 200º (coupling ratio of 5:95), see Figure 37-A and  

Figure 37-C, respectively. The splitting behavior (with a coupling ratio of 50:50) was obtained with an 

additional phase of 113º at the input WG2 of the AAC, see Figure 37-B. Excess losses lower than 

0.03 dB were attained in all simulations. 

3.1.1.2.B.2 Experimental results 

Experimentally, a phase change in the AAC was realized with a current sweep (from 0 mA to 

45 mA) in the phase modulator PM-L2 to assess the tunable coupling behavior of the coupler. The 

optical power measurements obtained at the two outputs of the coupler (i.e., measured at SSC1 and 

SSC2) are presented in Table 7. 

Table 7.  AAC experimental optical power measurements. 

Current Optical Power 

PM – L2 

(mA) 

SSC1 

(dBm) 

SSC2 

(dBm) 

SSC1 – SSC2 

(dB) 

0 -19.96 -14.77 -5.19 

4.23 -18.23 -14.77 -3.46 

13.87 -17.79 -17.44 -0.35 

22.75 -13.77 -21.52 7.75 

30.99 -14.95 -20.67 5.72 

32.89 -17.04 -16.98 -0.06 

44.78 -19.57 -15.44 -4.13 

SSC1, SSC2: spot size converters of AAC output WG1 and output WG2, respectively.  

PM-L2: phase modulator at the input WG2 of the AAC. 
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During the PM-L2 experimental current-scanning, a small wavelength fluctuation of 0.3 nm was 

detected, i.e.,  = 1555.35  0.15 nm, corresponding to a BPM simulated coupling-ratio deviation 

below 1%. 

3.1.1.2.B.3 Discussion 

The correspondence of the optical power measurements with the 2D BPM simulations 

(addressing the experimental conditions, i.e., relative input power between the two input arms of the 

AAC and propagation wavelength) is depicted in Figure 38. 

 

Figure 38. Relative power (in percentage) at the two output waveguides of the AAC as a function of phase  

for the 2D BPM simulation, and experimental optical power measurements (with an experimental  

standard deviation error <4%). 

The correspondence between the simulation and the experimental results allowed to extrapolate 

the phase associated with the different current values applied to the PM-L2 (i.e., phase introduced to 

the input WG2 of the AAC), as depicted in Table 8 and Figure 39. 
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Table 8.  AAC experimental relative optical power results for a PM-L2 current sweep up to 45 mA and 

the corresponding phase of AAC input WG2. 

Current Phase Relative Optical Power 

PM – L2 

(mA) 

AAC input WG2 

() 

AAC output WG1 

(%) 

AAC output WG2 

 (%) 

0 76.98 23.24 76.76 

4.23 88.31 31.07 68.93 

13.87 110.07 47.99 52.01 

22.75 164.20 85.63 14.37 

30.99 251.93 78.87 21.13 

32.89 291.64 49.65 50.35 

44.78 320.00 27.87 72.13 

PM-L2: phase modulator applied in the input WG2 of the AAC. 

 

Figure 39. Phase realized in the AAC input WG2 as a result of the experimental current applied to PM-L2. 
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The coupler was designed in the way that when no additional phase is introduced to any of the 

AAC input arms (e.g., through current supply to the phase modulators) a separate addition and 

subtraction of incoming input signals of the coupler are expected at its output ports. Theoretically, for 

every 90 of phase introduced (to one of the coupler inputs) a switch of the coupling-ratio behavior is 

predicted. The experimental PM-L2 current sweeping was performed to provide a current-phase 

experimental calibration data of at least two maximums for each coupling-ratio behaviors (addition, 

splitting, subtraction), to prove consistency in the results. 

A graph representation of the phase realized into the AAC input WG2 due to the current applied 

to the PM-L2 is presented in Figure 39. The experimental values of the relative power (in percentage) 

obtained in the two outputs of the AAC as a function of the input current applied to the phase modulator 

PM-L2 are depicted in Figure 40. 

 

Figure 40. Relative power (in percentage) at the two output waveguides of the AAC as a function of the input 

current applied to the phase modulator PM-L2. 
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The tunable capabilities of the coupler (output port 2 relatively to port 1) are realized for the 

following values of current applied to the PM-L2: 

i) < 14 mA (phase of input WG2 between 0º and 112º) results in an addition behavior; 

ii)  14 mA (phase of input WG2 equal to 112º) results in a splitter behavior; 

iii) > 14 mA and < 33 mA (phase of input WG2 between 112º and 291º) results in a subtraction 

behavior; and 

iv)  33 mA (phase of input WG2 equal to 291º) results in a splitter behavior. 

A half-cycle behavior of the coupler (splitter – subtraction/addition – splitter) is obtained with an 

increment of current in the input WG2 of 19 mA (i.e., from 14 mA to 33 mA), see Figures 38 – 40, and 

Table 8. 

A full cycle of addition–splitter–subtraction–splitter–addition (between the output port 2 relatively 

to output port 1 of the AAC) was characterized, allowing to determine the experimental current values 

of the phase modulator at the input 2 of the coupler to obtain the different coupling behaviors.  

A good correspondence between the simulation and experimental results was verified, which 

validates the tunable capabilities of the asymmetric coupler presented, allowing to determine with 

acuity the different phases that enable the full cycle of the tuned power. This coupler characterization 

is fundamental to use its full capabilities in optical processing implementations such as the HT with 

applications in data compression. 

 InP HT optical chip – design and characterization 

The developed InP AAC structure (presented in section 3.1.1) was used as the elementary key 

component for the implementation of an integrated approach of the HT for data compression 

applications (concept detailed in section 2.1). The HT implementation was attained with a two-level 

network structure, composed of three 22 AAC devices, reproducing the required operations, i.e., the 

average (sum) and the difference (subtraction) between the optical input pairs, as depicted in  

Figure 41 [32] [56]. 
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Figure 41. Diagram of the two-level network composed of three InP AAC performing the expected operations 

of the Haar wavelet transform. 

Taking into consideration the BPM light propagation simulations for the theoretical designed AAC 

(see section 3.1.1.1) is presented in Figure 42 the resulting propagation analysis for the two-level HT 

network composed of three InP AAC. Propagation analysis were carried out with 2D BPM. 

 

 Figure 42. Light propagation in the HT two-level network composed of three AAC, when all input WG of the 

network are powered with signal (1). HT network output power values are given in percentage. 
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The HT operations are carried out as expected, which can be confirmed by the power attained at 

the four output waveguide ports, i.e., the sum at the output WG2 (98% of the overlap output signal). 

 Experimental characterization of InP HT optical chip  

The InP optical chip is composed of four DFB lasers (L1 – L4), three AAC (AAC1 – AAC3), six PIN 

photodiodes for network monitoring, six 12 MMI splitters, one 22 MMI splitter, and two SSC 3D. 

 

Figure 43. [A]: Microscope image of the optical chip (with an objective lens of 5). [B]: Design architecture of 

optical chip for data compression based on Haar wavelet transform. 
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The PIC includes a coupler network for compression and another for decompression. The 

compression network is composed of the three AAC, arranged in a two-level network, as depicted in 

Figure 41. The decompression network is composed of four 12 MMI and one 22 MMI, with four 

optical WG outputs, as depicted in the bottom right corner of Figure 43-B. The complete circuit 

architecture is presented in Figure 43. The analysis characterization of the PIC will be focused on the 

compression coupler network. 

 

Figure 44. Schematic diagram of the PCB designed to test the InP HT optical chip. The diagram is not in 

scale. 
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providing electrical output signal measurements are also available, as depicted in Figure 43. The 

complete description of the HT operation principle is detailed in section 2.1. The packaging process of 

the InP HT optical chip is similar to the one described in subsection 3.1.1.2.A. The PCB design is 

depicted in Figure 44. 

The experimental setup for the InP HT optical chip testing was reproduced as for the InP AAC 

optical chip (in subsection 3.1.1.2.B), which included the PCB containing the InP PIC placed over a 

Peltier device with a thermistor for temperature management. The optical chip and coupling fiber (ball 

lens with a diameter of 200 m) were mounted on two separated three-axis micro-positioning 

adjusting systems to allow a manual adjustment in the X, Y, and Z direction. In Figure 45 is illustrated 

the coupling process with a ball lens in the SSC1. 

 

Figure 45. Photograph from the binocular stereoscope illustrating the edge coupling process with a fiber ball 

lens being coupled to SSC1 from the InP HT optical chip. 

The characterization of the HT optical chip was made in two main steps: i) electrical 

measurements made with on-chip photodetectors (in subsection 3.1.2.1.A); and ii) optical 

measurements collected from optical SSC (in subsection 3.1.2.1.B). 
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3.1.2.1.A Electrical measurements from PIN photodiodes 

Electrical measurements were collected from on-chip photodetectors, i.e., PIN photodiodes for 

network monitoring, see Figure 43-B. The approach implemented for the optical power measurement 

through the PIN photodiodes, consisted in the placement of a resistor (R) of 10 k in line with each 

on-chip photodetector using the PCB platform. A voltage of 2V was sourced to the PIN and measured 

the voltage drop (VR) at the resistor, as depicted in Figure 46. Voltage measurements were realized 

with the source meter Keithley 2400-C. 

 

Figure 46. Circuit diagram of the approach used for electrical power measurements from on-chip PIN 

photodiodes. The resistor implemented was R = 10 k. 

With the current at the resistor given by (𝐼𝑅 = 𝑉𝑅 𝑅⁄ ), and following InP-based PIC foundry 

standards [108] for the implemented PIN photodiode, i.e., the responsivity of 0.8 A/W @1550 nm 

(𝑃𝐼𝑁𝑅 = 𝐼𝑅 𝑃⁄ ), the optical power (P) was calculated as presented in equation (29). Further PIN 

photodiode optical properties include a linear regime input power below 10 dBm and dark current 

below 10 nA (@ -2V) [108]. 

 

𝑃(𝑑𝐵𝑚) = 10𝑙𝑜𝑔10 ( 
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𝑃𝐼𝑁𝑅𝑅
1𝑚𝑊⁄ ) (29) 

Experimentally was measured the optical power in the PIN photodiodes: PIN-AAC1, PIN-AAC2, 

PIN-AAC3-M1, and PIN-AAC3-M2, when providing current from 10 to 60 mA into the DFB lasers L1, L2, 

and L3. The laser L4 was not activated as it was not emitting power. 

2 V

PIN

n p

R

VR

IR



Chapter 3. Implementation and testing of integrated HT 

 

Cátia Pinho     85 

 

A schematic diagram of the optical chip illustrating the location of the photodetectors in the 

network is presented in Figure 47. 

 

Figure 47. Schematic diagram of the optical chip illustrating the network locations of the on-chip 

photodetectors (PIN-AAC1, PIN-AAC2, PIN-AAC3-M1, and PIN-AAC3-M2) under measurement. 
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(Figure 48 – A, B). When only laser L3 was activated, no conclusions were made from coupler AAC1, 
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is obtained in comparison with the coupler power output for the activation of only one of the lasers (L1 

or L2) independently, see Figure 48 – A, B and C. 

 

Figure 48. Optical power measured from PIN-: AAC2, AAC3-M1, AAC3-M2, and AAC1, when the two-level HT 

network is powered by the activation of DFB lasers: i) L1; ii) L2; iii) L1 + L2; iv) L3; v) L1 + L3; vi) L2 + L3; 

 and vii) L1 + L2 + L3 [56]. 
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findings suggest an atypical behavior of the coupler transfer function for these characteristics. A 

possible explanation can rely on experimental phase drifting in the input arms of the couplers, which 

consequently result in a deviation of the coupling behavior of the AAC, as detailed analyzed in the 

AAC characterization provided in section 3.1.1.2.B. 
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output ports of the coupler AAC3 allow to assess the compressed outputs of the two-level HT network, 

where the higher power is expected to deliver the LL compressed component of the optical transform. 

In the obtained results was identified a coupling behavior of approximately 3 dB in the coupler 

AAC2 and coupler AAC3, i.e., a sum is performed in one of the arms and subtraction in the other, as 

estimated in the chip design. Even though, the complexity of the chip and the difficulty to fully and 

independently characterize each of its components, this study provides the first demonstration of an 

integrated all-optical two-level HT operation in an InP platform [56]. 

3.1.2.1.B Optical measurements from SSC edge coupling 

The methodology carried out for the optical measurements was equivalent to the one presented 

in section 3.1.1.2.B. However, during the experimental assessment procedures an electrical power 

surge, associated with a mild storm event, damaged the DFB laser L2 limiting our characterization to 

only two emitting lasers (i.e., L1 and L3). Additionally, in optical experimental measurements, a 

difference of about 10 dB was identified between the two lasers, further restricting the projected 

characterization. A small constrained analysis is nonetheless undertaken with the available results. 

 

Figure 49. Optical power measured from SSC1 and SSC2, corresponding to AAC3 output port 1 and port 2, 

respectively. A relative coupling power between 5 dB and 9 dB was observed at the output of the 2D HT. 
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The wavelength stability between the input lasers was assessed through OSA measurements, in 

order to ensure wavelength interference in the couplers. For that purpose, small adjustments between 

the two laser input currents were undertaken (< 10 mA). Optical measurements realized at the output 

ports of the AAC3 of the two-level HT network, which correspond to SSC1 and SSC2 are presented in 

Figure 49. 

The current sweep of  [45 to 100] mA applied to activate the DFB lasers, produced a wavelength 

linear shift of around 3 nm, i.e., from 1553 nm to 1556 nm. In an effort to better evaluate the 

experimental data obtained, beam propagation simulation of the AAC for the experimental reported 

conditions was undertaken. Conditions attained in the AAC coupler simulated included a signal power 

at the bottom coupler input port with 10 dB less power than its top counterpart, and a laser wavelength 

operating shift of 3 nm (i.e., at  = 1553 nm and  = 1556 nm). BPM simulations results of the AAC3 

coupling behavior at the output of the two-level HT network (i.e., SSC2 and SSC1) are depicted in  

Table 9. The device presented an excess loss below 0.03 dB in all the BPM simulations. 

Table 9.  AAC coupling behavior for  = [1553 – 1556] nm when powering the coupler’s top and 

bottom arms with 1 and 0.1 relative power, respectively. 

DFB laser   AAC3 coupling 

(nm) Top : Bot (%) (dB) 

1553 77 : 23 5.2 

1556 75 : 25 4.8 

Top : Bot (%): coupling between the top and bottom output ports of the AAC coupler, correlated with the 

measurements at the SSC2 and SSC1, respectively. 

Experimental optical measurements show a coupling range of approximately 5 dB to 9 dB at the 

output of the two-level HT network (i.e., top and bottom output ports of the AAC3), with an expected 

sum at SSC2 (top output port of the AAC3) and a subtraction at the SSC1 (bottom output port of the 

AAC3). Simulations of the coupler to address experimental conditions show a coupling ratio of 

approximately 5 dB, which complies with the experimental coupling values for the DFB lasers activated 

with 45 mA input current. 
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Even though, the complexity of the optical chip under testing and the experimental constrictions 

limiting the available analysis, an extrapolation of the coupling at the output of the two-level HT network 

can be inferred with an experimental coupling behavior (sum/subtraction) under the expected 

theoretical simulated range. 
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3.2 Integrated HT implementation in a hybrid material platform 

The two-level HT network can also be attained using as the elementary BB of the network an MMI 

device as studied in chapter 2. MMI structure benefits, when compared to directional couplers, may 

include slower insertion losses, and larger optical bandwidth [75]. Moreover, these structures can also 

benefit from higher fabrication tolerances on refractive index contrast, wavelength and waveguide 

widths. 

Due to the simplicity and low-cost of the Sol-Gel process, the organic-inorganic di-ureasil hybrid 

material [65] was chosen for the design and fabrication of the two-level HT network. Di-ureasil is an 

organic-inorganic hybrid material with acceptable transparency, mechanical flexibility, and thermal 

stability allowing it to be processed as thin films and tailored monoliths [65] [134]. Its refractive index 

can be efficiently controlled when combined with metal oxides precursors and the manufacturing of 

waveguide can be accomplished by single exposure ultraviolet (UV) writing through an amplitude 

mask, resulting in a cost-effective method [65] [134] [135]. Examples of its application in green 

integrated photonics include thermal actuated Mach-Zehnder interferometer (MZI) [65], thermo-optic 

variable wave plate [136], WG high-rejection optical filters [137], coherent receivers for next generation 

optical access networks [138], and integrated optical MZI for bio-sensing applications [139]. 

Taking advantage of the MMI magic-T structure design for the HT implementation and the benefits 

of the organic-inorganic di-ureasil hybrid material [65], a new cost-effective 2D HT network for image 

compression composed of three 22 MMI couplers disposed in a two-level signal decomposition 

architecture [58] is presented and tested in this section. Device design and manufacturing 

methodology are addressed in subsection 3.2.1, and in subsection 3.2.2 is presented and discussed 

the simulation/experimental results. 

 Design and manufacturing 

The 22 MMI coupler [140] and the 2D HT network structures were designed and simulated with 

3D beam propagation method (BPM) in OptiBPM ® for a propagation wavelength of 1555 nm. To 

implement a subtraction in MMI output 1 (interference of signals in opposition of phase) and a sum in 
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output 2 (interference of signals in phase), a /2 phase shifting with a 11 MMI [141] was integrated 

in the input 1 of the 22 MMI structure, as depicted in Figure 50. 

 

Figure 50. Schematic diagram of the MMI magic-T structure design. 

The 2D HT network composed by a two-level network of three 22 MMI structures (MMI1 – MMI3) 

is presented in Figure 51. Design dimensions comprehend a WG width of 6 m, a distance between 

WG (WG) of 125 m; a length and width of the 22 MMI of 4065  40 m2, length and width of the 

11 MMI of 382  15 m2, and taper with a length of 100 m and widths of 6 m and 8 m. 

 

Figure 51. Schematic diagram of the design of the HT network structure, composed by a two-level network of 

three 22 MMI couplers. 

The material simulated was the organic-inorganic di-ureasil hybrid, with an expected WG 

refractive index of 1.4924 (core) and 1.4895 (cladding), i.e., refractive index contrast (n) of  

2.910-3, and a SiO2 substrate (n = 1.45). The structures devices were patterned by UV exposition 

using a chrome amplitude photomask with a resolution between 0.05 m (500k dpi) and 0.4 m 
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(64k dpi). A UV pulsed laser ( = 248 nm, frequency of 500 Hz, 350 μJ per pulse, focused through the 

objective lens) was used. 

The time of exposure of the laser is related to the n obtained in the manufactured devices [142]. 

When compared with the designed structured (n  2.910-3), a deviation of 2.010-3 was identified 

in the refractive index contrast of the sample manufactured (n  4.910-3), measured by 

spectroscopic ellipsometry [143]. 

 Simulation and experimental results 

Simulations with 3D BPM for n = [2.9, 3.9, 4.9]10-3 were performed to assess the behavior of 

the structure for the designed (2.910-3) and experimental (4.910-3) n obtained. Furthermore, 

fabrication tolerances were also considered by studying a possible parasite effect, denominated 

waveguide sloped sidewalls occurrence [144], which can be introduced during the fabrication process, 

as illustrated in Figure 52. 

 

Figure 52. Schematic diagram of the ideal WG structure and WG with a slope deviation. 

A slope deviation range, from 0 to 15 degrees, in the vertical sidewalls of the WG core was 

modeled, see Figure 52. Simulations parameters consisted in the core vertical sidewall with 90º 

configuration (i.e., with 0º deviation), up to a vertical sidewall configuration of 75º (i.e., with 15º 

deviation), applied to the 22 MMI structure (results presented in Figure 53), and to the 2D HT network 

structure (results presented in Figure 54). 
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Figure 53. Relative power (%) at the two outputs of the 22 MMI structure for a slope deviation range of 15º 

(i.e., 90º to 75º) for n = [2.9, 3.9, 4.9]10-3, attained with BPM. 

 

Figure 54. Relative power (%) at the four outputs of the 2D HT network structure for a slope deviation range 

of 15º (i.e., 90º to 75º) for n = [2.9, 3.9, 4.9]10-3, attained with BPM. 

To ensure the same coupling conditions (e.g., phase and wavelength) in the two inputs of the 

22 MMI structure, a 12 splitter was placed before the 22 MMI, as depicted in Figure 55-A. The 
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same approach was applied to the 2D HT network structure, by placing a 14 splitting network (of the 

three 12 splitters) before the 2D HT network, as depicted in Figure 55-B.  

 

Figure 55. Design diagram of the manufactured device structures for testing and characterization of HT 

network operations. [A]: 22 MMI structure, with one input and two outputs, through a 12 MMI splitter 

placed before the 22 MMI. [B]: 2D HT network structure, with one input and four outputs, through a 14 

splitting network (composed by three 12 MMI splitters) placed before the 2D HT network. 

A mean normalized power of 50  1.4% was obtained at the output ports of the 12 splitter 

structure, and 25  3.8% at the output ports of the 14 splitting network. These structures (i.e., 

12 MMI splitter and 14 MMI splitting network) were printed separately in the sample to enable its 

assessment. 

The setup implemented for the optical device testing consisted of three micro-positioning adjusting 

systems placed inline to provide an efficient alignment, i.e., the: 

i) input optical signal, using an SSMF [117] fiber optic pigtail; 

ii) device under testing (DUT); 

iii) output collecting optical system. 

The output collecting optical system was composed by an objective lens (magnification 10, 

numerical aperture 0.25, focal length 16.5 mm, model Newport M-10X [145]), and a charge-coupled 
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device (CCD) image sensor (sensing area: 6.47  4.83 mm, resolution: 752  582, pixel size: 8.6  8.3 

m), model Duma Optronics Bean on IR1550 [146]. A binocular stereoscope (Optika SZM-3) and a 

dual fiber output light source (Leica KL200) was used for an efficient system illumination during the 

alignment process. The input power was given by IR laser source (Phonetics OSICS Model TLS/C) 

with a wavelength of 1555 nm and 10.5 dBm of power. An overview of the setup implemented is 

illustrated in Figure 56. 

 

Figure 56. Setup for optical device testing, composed by: infrared (IR) laser ( = 1555nm, P = 10.5 dBm); 

DUT (e.g., 22 MMI and 2D HT network); objective lens (10); and a charge-coupled device (CCD)  

image sensor. 

The DUT includes several structures, such as the 2D HT network, the 22 MMI, the 12 splitter, 

and the 14 splitting network. The analysis of the data collected with the CCD image sensor consisted 

of a first-order Gaussian fit applied to the intensity profile obtained. 
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Stereoscope light source Binocular stereoscope CCD



Optimized Photonic Integrated Solutions for Next Generation Optical Systems 

 

 

96   MAPtele 

 

To illustrate the data collection/analysis is presented in Figure 57 the experimental results attained 

for the 22 MMI BB. Figure 57-A shows the intensity profile obtained (i.e., the sum of all elements 

along each line of the image matrix) and the corresponding Gaussian fit, while in Figure 57-B is 

depicted the image acquired with the CCD image sensor. 

 

Figure 57. Experimental results from 22 MMI BB. [A]: Intensity profile of CCD image matrix acquired (blue 

dots) and corresponding Gaussian fit (red line). [B]: Image acquired with the CCD image sensor. 

Extracted parameters presented in Table 10 include: 

i) full width at half maximum (FWHM);  

ii) peak position; 

iii) normalized relative power calculated from the intensity integral of the Gaussian fit. 

Experimental results show an MMI coupling ratio of approximately 4 dB, i.e., a sum/subtraction at 

the output ports of the 22 MMI coupler structure. For the 2D HT network, a coupling ratio of 

approximately 3.6 dB between the outputs WG2 and WG3 was measured. These measurements can 

be related with the Haar wavelet transform corresponding to the HH detail component (described by 

the subtraction operation), and the LL approximation component (described by the sum operation). 
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Table 10. Gaussian fit parameters extracted from DUT output data collected with the CCD. 

 22 MMI 

Output 
FWHM 

(m) 

Peak pos. 

(m) 

Height  
(norm.) 

Rel. Power  
(%) 

1 8.09 156.97 0.45 28.2 

2 9.28 283.22 1.00 71.8 

 2D HT network 

1 8.11 33.39 0.57 22.9 

2 8.39 158.59 0.44 18.5 

3 8.61 285.23 1.00 42.8 

4 8.72 412.11 0.36 15.8 

* FWHM: full width at half maximum; 

Peak pos.: peak position in X-axis; 

Rel. Power: relative power at the output ports of structures (22 MMI and 2D HT network). 

 

Figure 58. Relative power (%) at the two outputs of the 22 MMI structure calculated with BPM, and 

corresponding experimental relative power (%) measured (highlighted in pink). 
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Figure 59. Relative power (%) at the four outputs of the 2D HT network structure calculated with BPM, and 

corresponding experimental relative power (%) measured (highlighted in pink). 

The correlation between simulation (Figure 53 and Figure 54) and experimental (Table 10) results 

is depicted in Figure 58 and Figure 59 for the 22 MMI and 2D HT network structures, respectively. 

Taking in consideration the possible slope deviation in the WG side walls and the sample 

experimental n measured (4.910-3) can be extrapolated that the device manufactured had a slope 

of about 80, as for this value an error ≤1% (simulation/experimental) for the 22 MMI structure is 

observed, as depicted in Figure 58. For the same conditions (slope = 80º, n = 4.910-3),  

an error 12% was identified for the 2D HT network (simulation relative output power of  

Out1 – 4 = [27.2, 6.6, 38.0, 28.2]%), see Figure 59 and Table 10. 

Thus, by lowering the n of the material to 2.910-3 (the n design reference) is expected a 

behavior very close to the optimal design expectations of the structures. This can be achieved through 

adjustments in the fabrication process, e.g., by decreasing the exposure time in the UV 

photolithographic process. Even with an inherent parasite effect such as the modeled slope deviation 

of 10 in the WG sidewalls, the expected results show a match accuracy of 99%, as presented in 
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Figure 58 and Figure 59. In these ideal theoretical conditions, a coupling of approximately 20 dB at 

the output of the third MMI of the 2D HT network can be estimated. 

This study provides a first implementation and testing of a potentially cost-effective 2D HT network 

for image compression. Even considering the difficulty to fully address all the variables associated with 

the design/fabrication of the structures, a valid demonstration of its functionalities is attained and a 

design optimization model proposed. 
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3.3 Chapter remarks 

A first experimental characterization of an InP-based PIC implementing an all-optical AAC network 

for data compression based on the HT is presented. An extensive characterization of the network 

elementary BB, i.e., the AAC in an InP-based platform, with the full description of its tunable 

capabilities, is accomplished. A good correspondence between the simulation and experimental 

results validates the tunable capabilities of the AAC BB, allowing to determine with acuity the different 

phases that enable the full cycle of the device’s coupling ratios. This coupler characterization provides 

a fundamental tool for the use of its full coupling capabilities in optical processing implementations 

such as Haar wavelet transforms with applications in data compression. Additionally, the experimental 

characterization of a PIC implementing the two-level HT network is also investigated. Even though, 

the complexity of the optical chip and the difficulty to fully and independently monitor each of its 

components, the first experimental demonstration of an integrated all-optical two-level HT in an InP-

based platform operation is undertaken. Theoretical simulation models mimicking the experimental 

conditions were realized to better assess experimental results and characterize the PIC under testing. 

Nevertheless, the experimental characterization limitations due to damaged components, an 

extrapolation of the two-level HT network output coupling ratio was inferred with an experimental 

coupling behavior (sum/subtraction)  3 dB obtained. 

Furthermore, taking advantage of low-cost hybrid materials [65], the first implementation and 

testing of a potentially cost-effective 2D HT network for image compression are realized. Even 

considering the difficulty to fully address all the variables associated with the design/fabrication of the 

structures, a valid demonstration of its functionalities is attained and a design optimization model 

proposed. Experimental characterization results show a coupling ratio behavior of approximately 4 dB 

for the MMI coupler, and approximately 3.6 dB at the outputs of the third MMI of the 2D HT network. 

With the implementation of the proposed design optimization model, in ideal theoretical conditions, a 

coupling ratio of approximately 20 dB is estimated at the output of the third MMI of the 2D HT network. 
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4 PIC solutions in an ultra-low loss silicon 

nitride platform 

Photonic integrated circuits can offer lower-cost smaller footprint solutions with improved 

performance and stability when compared to bulk and fiber optical systems. A wide range of optical 

system applications is foreseen, nevertheless with higher standard performance requirements of 

waveguides with ultra-low propagation loss [147]. Ultra-low propagation losses are essential for 

different optical system applications, such as high-quality factor (Q) resonators used in photonic 

rotational velocity sensors [148], optical buffers [149] [150], and narrowband photonic filters [151]. An 

ultra-low loss Si3N4 platform with stated propagation losses below 0.1 dB/m [54] is the based platform 

implemented in the PIC solutions addressed in this chapter. 

For an effective assessment of high-Q resonators properties is essential to accurately evaluate 

the device performance. Thus, it is addressed in this chapter the implementation of a high-Q 

measurement technique based in a radio frequency (RF) calibrated Mach-Zehnder interferometer. 

Chapter  4 
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This technique was implemented to assess high Q-factor performance and properties of integrated 

resonators fabricated in ultra-low Si3N4 platform as reported in [60]–[62].  

Particularly noteworthy the reported sub-hertz fundamental linewidth photonic integrated Brillouin 

laser [62]. A solution narrow enough (i.e., fundamental linewidth below 1 Hz) to move demanding 

scientific applications to the chip-scale, e.g., photonic micro-chip high-end lasers for spectroscopy, 

navigation, quantum computation, and optical communications applications. Photonic integrated sub-

hertz linewidth laser can enable commercial applications such as coherent communications [152], next 

generation data center networks, atomic sensors [153], quantum sensing [154], and atomic clocks 

[155]. As a result, the implementation of spectrally laser performance to the integrated photonics poses 

compelling solutions to reduce cost and footprint of applications, such as ultrahigh capacity fiber and 

data center networks, atomic clocks, and sensing. The single- and multiple-frequency output operation 

of the sub-hertz fundamental linewidth Brillouin laser provides a versatile low phase-noise solution, 

highlighted by its demonstration in an optical gyroscope and a low-phase-noise photonic oscillator [62]. 

The merits of achieving such performance at the chip-scale may also provide a valuable contribution 

to address the challenge posed by the internet’s exploding data-capacity requirements, and the 

resulting increase in worldwide energy consumption of data centers and fiber optic interconnects. 

Furthermore, to address the growing internet traffic demands and the increasing attention given 

to the necessity of providing low-cost high-capacity data center interconnects (DCI) solutions is studied 

in this chapter the implementation of a low-cost interface technology for DCI enabled by a dispersion 

compensating photonic-integrated programmable lattice filter fabricated in a low-loss Si3N4 platform 

[147] [156]. An extended reach C-band transmission of real-time 53.125 Gb/s PAM-4 data over 40 km 

of standard single mode fiber (SSMF) enabled by photonic integrated dispersion compensation is 

described, with a transmission of 100 GHz spaced channels error-free below the forward error 

correction (FEC) threshold [59]. 

The chapter is organized in two main sections, the first detailing the implemented high-Q resonator 

measurement technique (section 4.1), and the second presenting the first demonstration of an 

extended reach transmission of C-band PAM-4 enabled with a photonic integrated tunable lattice filter 

dispersion compensator (section 4.2). The chapter is concluded with the final remarks addressed in 

section 4.3.  
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4.1 High-Q resonator measurement technique 

Different high-Q measurement techniques can be explored for the characterization of integrated 

ring resonators, such as sideband spectroscopy [157], approaches involving RF calibrated swept 

sources, and photonic cavity ring-down [157] [158]. Based on these approaches is implemented a 

high-Q resonator measurement technique involving frequency swept laser sources (e.g., piezo tunable 

laser), which requires an independently calibrated optical frequency standard [159].  

The built-in technique mainly comprises an RF calibrated Mach-Zehnder interferometer (MZI) 

implementation, described in section 4.1.1; the setup implemented for resonator quality factor 

measurement, presented in section 4.1.2; and the data analysis through Lorentzian fitting employment 

for the calculus of resonator performance properties, provided in section 4.1.3. 

 RF calibrated MZI implementation 

The optical transmission of an unbalanced MZI was implemented as a suitable frequency standard 

for the high-Q resonator measurements [60] [160]. The calibrated frequency standard enables direct 

mapping of the applied piezo voltage signal to the relative optical frequency shift of the probe laser 

source. 

The unbalanced path length of the MZI was chosen such that its free spectral range (FSR) is 

comparable to the full width at half maximum (FWHM) of the device under test (DUT). Thus, a path 

length difference of 200 m was employed, in order to produce an FSR of approximately 1 MHz, with 

enough resolution to efficiently be used as a measurement ruler to characterize the resonator under 

testing. This FSR can be denominated as calibrated MZI frequency standard. 

The FSR independent determination was obtained through the MZI reference calibration process, 

in which an independent single sideband (SSB) swept-source experiment [160] [161] using a discrete 

stepped-sweep RF frequency synthesizer was conducted. While the discrete nature of the stepped-

sweep limited the resolution of an SSB experiment conducted for high-Q resonator measurements, it 

was sufficient for accurately determining the MZI FSR [60]. 
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The calibrated MZI frequency reference enabled analog frequency swept resonance width 

measurements and greater resolution Q measurements. For the SSB calibration of the MZI frequency 

standard, a laser source with the carrier at 𝜈0 was externally modulated by an intensity modulator 

driven by a microwave frequency synthesizer at frequency 𝑓𝑚. Cascaded fiber Bragg grating filters 

were used to suppress upper sideband and carrier frequencies, resulting in the transmission of only 

the lower sideband at 𝜈𝑙𝑜𝑤 = 𝜈0−𝑓𝑚. A linear sweep of the modulation frequency in time generates 

an RF calibrated optical frequency swept source, 𝜈𝑙𝑜𝑤(𝑡) = 𝜈0−𝑓𝑚(𝑡). Passing the swept source 

through the unbalanced MZI generates the optical frequency transfer function of the interferometer, 

with transmitted optical power maxima and minima occurring at integer multiples of the FSR [60]. 

 

Figure 60. [A]: Diagram of the experimental setup implemented for RF calibrated MZI FSR measurement. 

[B]: Photograph of built calibrated MZI box (foam peanuts were added to provide stabilization). 

A diagram of the built RF calibrated MZI box and implemented experimental setup for FSR 

calculation is depicted in Figure 60. 
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Figure 61. [A]: Interferometer optical frequency transfer function (blue line); Frequency sweep ramp at 

40 MHz (orange line). [B]: FSR measurement results from calibrated MZI (FSR = 1.070  0.015 MHz). 

The implemented calibration method allowed the mapping of the known RF signal to an optical 

transfer function resulting in a measured FSR of 1.07 MHz with a standard deviation of 0.0146 MHz, 

as depicted in Figure 61. 

 Setup for resonator characterization measurements 

The setup implemented for resonator measurements comprises a fiber laser with built-in piezo 

frequency tuning transmitting simultaneously through both the MZI and the resonator DUT. The MZI 

fringe spacing (FSR) provides the RF calibrated frequency reference used for the accurate evaluation 

of resonator Q factors, see Figure 62.  

A diagram of the complete MZI based Q measurement setup is presented in Figure 62 [60]. A 

signal generator with 0-5 V ramp signal to piezo controlled frequency tuning of source laser centered 

at 1550 nm is applied. Digital sampling oscilloscope (DSO) traces of frequency standard (MZI 

reference), DUT resonance, and FWHM are also displayed, see Figure 62. 
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Figure 62. Calibrated MZI measurement setup. Signal generator with 0-5 V ramp signal to piezo controlled 

frequency tuning of source laser centered at 1550 nm. DSO traces of frequency standard (yellow line) and 

DUT resonance (green line) with FWHM are displayed [60]. 

 Measurement of resonator properties and applied fitting technique 

Generically, a ring resonator comprises a looped optical waveguide with a coupling mechanism 

to access the loop. The resonator cavity is in resonance when the waves in the loop build up a round 

trip of an integer times 2, i.e., through constructive interference [162].  

A key parameter to characterize the performance of the ring resonator is the quality factor. In the 

frequency domain, it can be featured by the sharpness of the resonance relatively to its central 

frequency [163]. The Q-factor value depends on two main sources of loss, the loss effects associated 

with the coupling (power coupling coefficient, 𝜅2), and with the propagation in the ring (ring waveguide 

loss, 𝛼). 

The theoretical loaded Q (QL) of a given system can be expressed by equation (30) [60] [164]. 

Where 𝑛𝑔 is the group index, 𝐿𝑅 the round-trip length of the resonator, 𝜆 the wavelength of light, 𝜅2 

the power coupling coefficient, and 𝛼 the ring waveguide propagation loss. When the coupling loss is 

not included, the resonator Q-factor is named intrinsic Q or unloaded Q (QU), as expressed in 

equation (31). 
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𝑄𝐿 =

2𝜋𝑛𝑔𝐿𝑅

𝜆(𝜅2 + 𝛼𝐿𝑅)
 (30) 

 
𝑄𝑈 =

2𝜋𝑛𝑔𝐿𝑅

𝜆𝜅2
 (31) 

A Lorentzian fit was applied to the resonator Q spectrum to extract the resonator 

characteristics (i.e., loaded and unloaded Q, FHWM, power coupling coefficient, and ring waveguide 

loss). These parameters were calculated from the intensity transmission formulation presented in 

equation (32) [60] [162]. 

 
𝑇 =

𝑏2 − 2𝑟𝑎𝑐𝑜𝑠𝜙 + 𝑟2

1 − 2𝑎𝑟𝑐𝑜𝑠𝜙 + (𝑟𝑏)2
 (32) 

The variable 𝜙 is implemented by 2𝜋𝑛𝑔𝐿𝑅𝜈𝑖 𝑐⁄ , where 𝑐 is the speed of light in vacuum and 𝜈𝑖 

represents the detuning frequency, see Figure 63. It can be described as the single-pass phase shift, 

given by the multiplication of the round trip length with the propagation constant of the circulating  

mode [162]. 

Parameters 𝑏 (loss coefficient) and 𝑟 (transmission coefficient) from equation (32) are then used 

to calculate power coupling coefficient, 𝜅2 = 1 − 𝑟2, and ring waveguide loss coefficient, 

 𝛼 = −𝑙𝑜𝑔(𝑏2)𝐿𝑅
−1. 

The Lorentzian fit was implemented using the Matlab function fit modeled to fit the measured 

data into the function provided by the equation (32). The determined fitting curve contains the 

resonator coefficients (i.e., coupling and waveguide loss) values, enabling the loaded and unloaded 

Q-factor calculation through equations (30) and (31), respectively. The reliability of the fitting was 

assessed by the normalized root mean square error (NRMSE) function [165]. An example of a 

measured resonator DUT through a Lorentzian fit (with an NRMSE of 3%, i.e., fit goodness of 97%) is 

presented in Figure 63. 
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Figure 63. Measurement of resonator properties through Lorentzian fit implementation (with a fit error <3%). 

Resonator Q spectrum data and Lorentzian fit are presented in blue and red lines, respectively. Calculated 

properties of the resonator include ring waveguide loss ( = 0.46 dB/m), power coupling coefficient 

(k2 = 0.78%), loaded Q (QL = 28.47106), unloaded Q (QU = 56.82106), and full width at half maximum 

(FWHM = 6.77 MHz). The frequency standard of the MZI (with an FSR of 1.07 MHz) is presented in green. 

This measurement technique was successfully applied to the performance assessment of 

fabricated resonators, as reported in [60]–[62]. These resonators can be successfully used as 

stimulated Brillouin scattering lasers as detailed in [61]. The first presentation of the design and 

characterization of a large volume resonators in a unique TE mode with QU near 60 million in an 

ultra-low loss Si3N4 platform is detailed in [60]. Furthermore, a state-of-the-art chip-scale Brillouin laser 

capable of emitting light with a fundamental linewidth of less than 1 Hz is reported in [62]. 
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4.2 Low-cost interface technology for DCI 

Increasingly importance as being given to low-cost high-capacity DCI, as a viable solution to 

connect inter-campus and metro region scales in the 10 - 40 km distance range for certain 

deployments [59]. Thus, the extension of low-cost interface technologies developed for shorter 

reaches to this application space is of great interest. Furthermore, to address the growing internet 

traffic demands higher bandwidth modulation formats are of relevance [166]. 

A simple “higher-order” modulation scheme based on pulse-amplitude modulation with four 

amplitude levels (PAM-4) has been proposed for intra- and inter-data center optical links. Four distinct 

pulse amplitudes are used to convey the information in a PAM-4 modulation technique. Each amplitude 

level is represented by a symbol, composed of two bits, i.e., 00, 01, 10, 11, as depicted in Figure 64. 

Since for each amplitude, two bits are transmitted in parallel, PAM-4 modulation is twice as bandwidth-

efficient as conventional binary modulation, e.g., non-return-to-zero (NRZ) [167]. Nevertheless, for 

PAM-4 higher signal-to-noise ratio (SNR) is required, due to the additional voltage levels, which reduce 

the level spacing by a factor of three, making this modulation scheme more suitable for short-haul 

optical systems where a higher SNR can be satisfied. 

 

Figure 64. Example of a PAM-4 signal in the time domain. 

The commercialization of PAM-4 signaling to replace NRZ has been gaining ground in the last 

years, with PAM-4 merits for transmission over band-limited channels and the use of lower bandwidth 

components [168]. As a result, the penetration of PAM-4 as a solution for today’s DCI has been 
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increasing. Nevertheless, dispersion compensation plays a critical role in optical communication 

systems as transmission length and bitrate escalates with advanced modulation formats, particularly 

sensitive to such optical impairments. As PAM-4 modulation tends to limit transmission lengths to 

approximately 5 km due to dispersion related signal distortion, there is currently a great interest to 

increase this interface reach via dispersion compensating schemes, which also should be able to 

accommodate multiple wavelengths [51] [59]. 

Reach extension beyond the dispersion-limited tolerance of ~5 km SMF 28® for direct detection 

was focused on using the low dispersion window at 1310 nm [169]–[171]. However, due to fiber 

scarcity in this application wavelength, there has been increased interest to move PAM-4 to the 

1550 nm C-band in order to increase the link capacity [59]. A tradeoff in moving to C-band has been 

the need for discrete dispersion compensation technologies like dispersion compensating fibers (DCF) 

or fiber Bragg gratings (FBG). A demonstration of real-time 28 GBd wavelength division multiplexing 

(WDM) C-band to 80 km and 100 km has been reported [172]–[174], with dispersion compensation 

attained by the combination of tunable dispersion compensating module (TDCM) and DCF. However, 

in order to address cost, size, weight, and form factor, compact photonic integrated technologies are 

critical. These integrated solutions are expected to mitigate PAM-4 dispersion for multiple WDM 

channels while satisfying the strict optical signal-to-noise ratio (OSNR) requirements. 

In this section is reported the first demonstration of C-band transmission of real-time 53.125 Gb/s 

PAM-4 over 40 km SSMF using a monolithically integrated programmable lattice filter for dispersion 

compensation [59]. The 10-stage lattice filter [156], capable of tuning  500 ps/nm, was fabricated in 

a low loss silicon nitride platform [147] compensating different channels on a 100 GHz channel 

spacing. Pre-forward error correction (pre-FEC) bit-error rate (BER) curves demonstrate error-free 

performance below the FEC threshold for up to four different WDM channels, over fiber lengths of 

40 km, 35 km, and 25 km. While the lattice filter used in this study is designed to operate on multiple 

WDM channels on a 100 GHz grid simultaneously, an upgraded design in this platform to operate on 

a 50 GHz grid and to lower the overall chip loss to under 4 dB is also feasible [59]. 

A general overview of the integrated programmable lattice filter and its effective application in the 

extended PAM-4 link is presented in section 4.2.1. The implemented setup for the extended PAM-4 

link testing is provided in section 4.2.2, and the results discussed in section 4.2.3. 
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 Dispersion compensation photonic integrated tunable lattice filter 

Chromatic dispersion mitigation in optical fiber transmission results from group delay variations 

related to wavelength, which can severely degrade the transmitted signal [91] [175]. As a pure single 

tone is not reachable when a pulse propagates along a fiber, different wavelength components travel 

at different velocities resulting in a pulse broadening, which limits the data rate and feasible 

transmission distance. For a fixed modulation format, dispersion tolerance of a transmission system is 

inversely proportional to the square of bit rate, thus increments in the bit rate highly deteriorate the 

overall system tolerance, which can pose an important limitation for high-speed communications [156] 

[176]. 

The application of integrated optical tunable filters technology can provide a good solution for 

dispersion compensation, as it can provide a compact approach bit rate independent and capable of 

compensating phase and amplitude distortions. Design features of such optical filters have a periodic 

frequency response that allows multiple WDM channels compensation in a single device. Additionally, 

tunability makes it possible to dynamically compensate residual chromatic dispersion resulting from 

fluctuations associated with different factors, e.g., temperature variations and path changes in 

reconfigurable optical networks [156]. 

The filter used to compensate dispersion in the proposed extended reach PAM-4 link is an 

integrated programmable lattice filter fabricated in a low-loss silicon nitride platform [54] [147] with 

heater controlled dispersion tuning [59]. This low-loss platform allows state-of-the-art waveguide 

losses at a bend radius ten times smaller than in silica platform, making it possible to design/fabricate 

low footprint lattice filter (even for a large stage number) [156]. 

A cascade of alternating symmetric and asymmetric MZI compose the filter, as depicted in Figure 

65-A. The symmetric MZI acts as a tunable coupler to guide the optical signal path, while asymmetric 

MZI mostly function as dispersive elements and set the filter order. Delays are obtained through the 

coupling ratio of couplers with time delays chosen as integer multiples of the unit delay to provide a 

time domain discrete filter. The filter discreteness in the time domain assures its periodicity in the 

frequency domain allowing its application in multiple WDM channels. The total dispersion 

compensation ( 500 ps/nm) comprised by the device is related to the designed unit delay length 
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(L = 2 mm), the FSR (of 100 GHz), and the number of filter stages (10-stage cascaded lattice filter), 

as reported in [51] [156]. 

The device has a footprint of 2.2 cm2 (22.5  9.89 mm2) and was designed to operate on 

simultaneous WDM channels (in a 100 GHz channel spacing grid), with maximum dispersion tuning 

of  500 ps/nm over a 15 GHz bandwidth per channel [156]. The filter and its design architecture are 

presented in Figure 65. 

 

Figure 65. [A]: Diagram of integrated programmable lattice filter architecture with a delay length of 2 mm for 

100 GHz channel spacing. [B]: Photograph of tunable 10-stage dispersion compensating lattice filter, with red 

light used for coupling alignments [59]. 

For PAM-4 over 40 km in the C-band is expect the required dispersion compensation to be 

approximately 550 ps/nm assuming the receiver can tolerate 170 ps/nm residual dispersion as 

reported in [173]. Optical backscatter reflectometry (OBR) measurements of wavelength-dependent 

group transmission, group delay, and corresponding dispersion are reported in [156]. 

Dispersion is continuously tuned by adjusting the phase of the couplers, i.e., by applying different 

voltage bias settings. Changes in the bias settings trigger variations in the couplers coupling ratio, 

which results in a corresponding change in the filter group delay response. The probe station 

implemented for bias settings tuning is depicted in Figure 66. 

[A] [B]
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Figure 66. Photograph of probe station implementation for the bias settings tuning of the integrated 

programmable lattice filter.  

The current device has a total through loss of 20 dB due to the absence of fiber coupler tapers 

and the close proximity of the thermal tuners to the waveguides. Nonetheless, the device loss was not 

a limiting factor in this demonstration, as the link was dispersion-limited with the OSNR maintained 

above 40 dB [59]. 

Nevertheless, key device design features can be readily changed to realize a filter with under 4 dB 

loss. Critical filter design parameters include the unit optical delay (2 mm for this design) and the 

number of filter stages, which determine the maximum tunable dispersion, FSR, and bandwidth. To 

overcome the loss of the current filter, next generation device will incorporate longer unit optical delay 

length and smaller filter FSR to increase dispersion tuning maximum and enable 50 GHz WDM. 

Furthermore, the low loss platform (of 0.1 dB/m [54]) potentiates long delays and a large number of 

stages. 

 Experimental setup 

An optical NRZ on-off keying (OOK) transmission link was initially implemented for baseline 

performance testing. In Figure 67 is presented the apparatus of the NRZ link. Real-time NRZ signal 

(amplified bit pattern signal) is interfaced with a C-band Mach-Zehnder modulator (MZM). 
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Figure 67. Experimental setup for the NRZ link implementation for baseline performance testing. 

The transmitted signal from C-band tunable laser (NP Photonics Rock module laser) and booster 

erbium-doped fiber amplifier (EDFA) is the input of the MZM. An optical isolator (ISO) is incorporated 

to block backwardly progressing optical light by reflection, and an optical tunable filter (OTF) to reduce 

the EDF amplified spontaneous emission (ASE) noise light. After the transmission block, the variable 

optical attenuator (VOA) is used to control and/or tested the loss associated with a transmission fiber 

span. The signal is amplified before the DUT to guarantee sufficient power to overcome the device 

insertion loss, through VOA and/or DUT. At the receiver, the output signal is split in (98:2)%, where 

2% of the signal is set for optical monitoring using an optical power meter (OPM). Then, the power 
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signal (98%) goes to the photodetector (PD) for optical-electrical conversion for BER measurements, 

as depicted in Figure 67. Optical signal-to-noise ratio ( 40 dB) and noise penalties in the link were 

assessed to guaranty the feasibility of the link and the posterior transition to the PAM-4 modulation 

scheme. 

Stimulated Brillouin scattering (SBS) suppression was evaluated by inserting a circulator before 

fiber span and measuring reflected power. C-band tunable laser with a booster EDFA and 75 km fiber 

span showed transmission saturation at inputs above around 7 dBm, see Figure 68. 

 

Figure 68. Stimulated Brillouin scattering (SBS) suppression measurement for a C-band tunable laser with a 

booster EDFA and 75 km fiber span. 

The experimental setup implemented for the extended reach PAM-4 link testing is presented in 

Figure 69. Inphi PAM-4 Phy integrated circuit (IC) [177] transmitter and receiver boards were used to 

generate and detect real-time PAM-4 pseudorandom binary sequence (PRBS)-31 patterns as well as 

generate histograms and counting BER. The real-time PAM-4 boards were interfaced with a C-band 

40 Gb/s MZM based transmitter and a 32 GHz linear receiver. Transmission booster and receiver 

optical amplifiers and optical filters were used to set the OSNR with the integrated dispersion 

compensation chip in place to above 40 dB. The transmitter electrical block consists of an 

Inphi PAM-4  PHY IC board generating at KR4 (25.78125 GBd) and KP4 (26.56250 GBd) standard 

IEEE baud rates [170]. 
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Figure 69. [A]: Experimental setup for real-time C-band 53.125 Gb/s PAM-4 transmission using 10-stage 

photonic integrated programmable lattice-filter dispersion compensator. [B]: Photograph of experimental setup 

implemented. 
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The PAM-4 integrated circuit board outputs differential signals are drive into a single-ended 

Sumitomo MZM intensity modulator using a differential to single-ended linear amplifier (IN3214). 

The optical signal from a C-band tunable laser and booster EDFA was the input of the modulator 

at a power level of 7 dBm to transmit 53.125 Gb/s data channels onto a 100 GHz C-band ITU grid. 

A single-ended optical to differential electrical output linear receiver (Picometrix PT-28E) suitable for 

28 GBd direct detection enabled measurements with received power as low as -16 dBm. Receiver 

side DSP and signal recovery were performed on-board the PHY-IC PAM-4 unit, with built-in pre-FEC 

BER and SNR analytics. For each real-time pre-FEC BER measurement only the laser frequency and 

EDFA filter center frequencies were changed, in increments of 100 GHz. For each BER measurement 

all other transmission components were kept constant, i.e., booster EDFA, MZM, and PAM-4 drive 

electronics, receiver EDFA, linear receiver gain and bandwidth, and PAM-4 receiver board equalization 

settings. All BER measurements are pre-FEC and shown relative to the FEC threshold, i.e., KP4-FEC 

threshold of 2.410-4 [170]. 

 

Figure 70. Measured Pre-FEC BER for 0 (1560 nm) back-to-back and over 25 km, 35 km, and 40 km of 

SMF-28 SSMF with the KP4-FEC 2.410-4 threshold indicated. 

Back to back optical pre-FEC BER measurements were made with no transmission fiber in place 

at a wavelength of 1560 nm (0). A baseline error detection better than the FEC threshold limit was 

achieved, as depicted in Figure 70. Fiber lengths of 40 km, 35 km, and 25 km were incorporated into 
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the link for transmission measurements, using an SMF-28 ® SSMF with an dispersion 18 ps/nmkm 

(at 1550 nm), and maximum loss of 0.2 dB/km (at 1550-1625 nm range) [117] [178]. Transmission 

measurements results of pre-FEC BER below the KP4-FEC error threshold (2.410-4) for the channel 

0 (1560 nm) are presented in Figure 70. A sample eye diagram at the receiver differential output and 

a post-DSP 4-level histogram is also depicted. 

 

Figure 71. Measured pre-FEC BER for four 100 GHz spaced channels 0 - 3 with a received optical power 

of -7 dBm and performance below KP4-FEC 2.410-4 threshold (channel 3 was not recovered for 40 km due 

to the total plus residual dispersion exceeding the compensated). 

A total accumulated dispersion of 720 ps/nm in a transmission length of 40 km, i.e., 

40 km  18 ps/nm•km, can be estimated. An EDFA was incorporated before the photonic chip to 

overcome device loss and enable transmission measurements up to -5 dBm received optical power. 

Optical SNR was maintained above 40 dB for all measurements to ensure the link performance was 

not limited by the OSNR margin for PAM-4 optical transmission. The measurement of the real-time 

pre-FEC BER multiple channels at 100 GHz spacing for the three fiber lengths at four wavelengths 

are presented in Figure 71. Performance is assessed with KP4-FEC error threshold of 2.410-4 BER 

[170]. 
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It can be estimated that the link as the ability to compensate for a total accumulated dispersion of 

approximately 670 ps/nm (i.e., the 500 ps/nm integrated photonic circuit compensation plus the 

170 ps/nm residual dispersion tolerance at the PAM-4 receiver board). The system presented good 

performance for transmission lengths up to 40 km, being just not able to completely recover from the 

dispersion degradation at 40 km for channel 3 (1562.86 nm) as depicted in Figure 71. As a result, the 

pre-FEC value for channel 3 at 40 km was not plotted due to the total accumulated dispersion falling 

just short of the required compensation at that exact wavelength, see Figure 71. The photonic circuit 

was operated at 80 mA and 5.9 V, corresponding to 470 mW. 

 Discussion 

The first demonstration of real-time transmission of 53.125 Gb/s PAM-4 over 40 km SSMF using 

a photonic integrated 10-stage tunable lattice filter for dispersion compensation is presented. Test 

results show 100 GHz spaced C-band channels to be transmitted error-free below the KP4-FEC 

2.410-4 threshold, and subsequently BER limit threshold 3.810-3. The integrated compensator 

tunable dispersion range of  500 ps/nm supported the transmission of three channels over 40 km 

and four channels over 35 km and 25 km. The dispersion for the fourth channel at 40 km was just 

under the receiver dispersion tolerance combined with the compensator maximum and therefore was 

not able to be recovered while keeping all transmission components constant while only the 

transmission wavelength was changed. It should be noted that this fourth channel was recoverable by 

slightly adjusting its transmission frequency, however that data point was left out to provide only the 

exact 100 GHz grid spaced channels. 

All measurements were made with dispersion-limited transmission and OSNR above 40 dB. The 

integrated photonic lattice filter had an insertion loss of 20 dB, which did not limit the link OSNR, but 

in next generation filters it can be lowered to below 4 dB with design optimization, e.g., using fiber 

taper couplers on-chip [179] and thickening of upper cladding by moving the thermal tuning metal 

further away from the optical mode. Tuning using piezoelectric (PZT) is also under investigation to 

further the loss lowering and decrease the power consumption [59]. 
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4.3 Chapter remarks 

PIC solutions with ultra-low loss propagation can pose remarkable merits in a variety of 

applications, namely integrated high-Q resonators. Nevertheless, accurate performance measurement 

of the resonators quality factor output should be guaranteed. In this chapter, is reported the 

implementation of a high-Q resonator measurement technique based on an RF calibrated MZI and 

data analysis through Lorentzian fit employment. This technique was successfully implemented to 

evaluate the high Q-factor performance properties of integrated resonators fabricated in ultra-low Si3N4 

platform as reported in [60]–[62]. Standing out, a state-of-the-art Brillouin laser capable of emitting light 

with a fundamental linewidth lower than 1 Hz, narrow enough to move demanding scientific 

applications to the chip-scale [62]. 

Furthermore, the first demonstration of real-time transmission of 53.125 Gb/s PAM-4 over 40 km 

SSMF using a photonic integrated 10-stage tunable lattice filter for dispersion compensation was 

attained. The tunable filter was manufactured under a low-loss Si3N4-based integrated WG platform. 

Additional improvements are expected in the next generation filters by lowering the device insertion 

loss up to 4 dB and enable a 50 GHz grid WDM, through design optimization. Optimization approaches 

can include the use of fiber taper couplers on-chip, thickening of upper cladding, design longer unit 

optical delay lengths and smaller filter FSR, and the investigation of PZT tuning to further decrease 

loss and power consumption.
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5 Spatial light modulator framework 

Spatial light modulation is a technology with a demonstrated wide range of applications, especially 

in optical systems. Among the various spatial light modulator (SLM) technologies, e.g., liquid crystal 

(LC); magneto-optic; deformable mirror; multiple-quantum-well; and acoustic-optic Bragg cells; the 

ones based on liquid crystal on silicon (LCoS) have been gaining importance and relevance in a 

plethora of optical contexts, namely in telecom, metrology, optical storage, and microdisplays. Their 

implementation in optical systems and telecom have enabled the development of high capacity optical 

components in system functionalities as switching (in reconfigurable optical add/drop multiplexers - 

ROADM), multiplexing/demultiplexing, and optical signal processing. This technology combines the 

unique light-modulating properties of LC with the high-performance silicon CMOS properties. Different 

types of modulation (i.e., phase, amplitude, or combination of the two) can be achieved by combining 

liquid crystal molecules alignment with the appropriate polarization optics properties of the incident 

light of the modulator. 

The capability of the SLM to dynamically reconfigure light with computer-generated holograms 

(CGH) is explored in this chapter with the implementation of an optical system SLM framework with 

Chapter  5 
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application in SDM systems (e.g., to efficiently excite different cores in MCF) and characterization/test 

of photonic integrated circuits. In section 5.1 are introduced the basics of SLM operation principle, 

main challenges, and applications. The implemented SLM framework methodology is discussed in 

section 5.2. The main experimental results are provided in section 5.3, and the chapter is concluded 

with the final remarks on section 5.4. 

5.1 SLM operation principle and applications  

Optical signal processing has been providing relevant solutions to convert data into spatially 

modulated coherent optical signals with SLM devices, allowing the effective implementation of digital 

holograms [180]. One of the most useful properties of the hologram is its ability to control the phase 

and the amplitude of light in the far-field. The Fourier transform describes the relationship between a 

hologram (near-field) and its corresponding replay field (far-field). The far-field can be formed at the 

focal point of a positive lens or an infinite distance from the near field plane in free space [180] [181]. 

An example describing this concept is presented in Figure 72. 

 

Figure 72. Diagram of a Fourier transform through a positive lens. A complex design pattern (diffractive 

optical element – DOE) is provided to the SLM to generate the expected hologram in the  

replay field (far-field). 
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Holograms can reproduce waveforms from an existing object. With digital advances and optical 

signal processing is possible to numerically calculate interference patterns to generate completely 

synthetic wavefronts of arbitrary form. These interference patterns can have different denominations, 

such as computer-generated holograms (CGH), diffractive optical elements (DOE), phase/amplitude 

masks, diffractive grating, etc. [181]. All operate in the principle of diffraction, so it is somehow an 

arbitrary choice of terminology. In the context of this work will be used the CGH, DOE, and phase 

mask nomenclature to refer to the calculus and generation of numerical interference patterns. 

The SLM can be described as an electronically programmable device that modulates light in 

accordance with a fixed spatial (pixel) pattern. It can be exploited for incident light phase and/or 

amplitude control. Subsequently, phase-only, amplitude-only, or the combination phase-amplitude can 

be realized with the SLM. From the different employed modulation mechanisms, the most widely used 

is the electro-optical SLM, i.e., with the liquid crystal as the modulation material. 

A liquid crystal SLM has a microdisplay being employed for the incident light modulation and 

collection. This can be realized in a transmissive form using a liquid crystal display (LCD) SLM 

technology or in a reflective form with LCoS SLM technology. From the various SLM technologies, the 

LCoS will be addressed in more detail in this study due to its relevant applicability in optical systems 

context. One of the leading features of these modulators is the liquid crystal molecule alignment. 

Typically, this can be either vertical, parallel, or with twisted formation. Consequently, with suitable 

polarizing optics is determined which incident light beam properties can be effectively changed, i.e., 

amplitude, phase, or their combination [32] [63] [182]. 

Nonetheless, the common hologram generation techniques cannot arbitrarily modulate the beam 

phase and amplitude simultaneously [181] [182]. It is not then possible to simply address the inverse 

Fourier transform of the desired pattern into the far-field and replicate the resulting distribution of 

amplitude and phase directly on the SLM [181]. As a consequence, the employment of optimization 

algorithms is highly recommended to generate an accurate hologram within the device constraints, 

e.g., the best pixel distribution in which each pixel will be able to take only one of two states that 

correspond to a 0 or  phase shift [32] [181]. 

The device used in the proposed SLM framework is based in the nematic LCoS technology, i.e., 

a type of SLM with phase-only modulation capability. It belongs to the category of the electrically 

addressed reflection modulators in which, a direct and accurate voltage controls the liquid crystal, and 
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modulates the light beam wavefront [183] [184]. An example of an LCoS SLM is illustrated in  

Figure 73 [32]. The LCoS SLM can be employed as a diffractive device to reconstruct images from 

computer-generated holography [185], with applications in different communication purposes like in 

indoor visible light communication systems [186]. 

 

Figure 73. LCoS SLM Pluto phase modulator from Holoeye © 2018 Holoeye Photonics AG. 

As aforementioned, LCoS displays have been gaining significant recognition as promising micro-

displays for various types of SLM applications. Similarly, they retain attractive and significant features, 

such as high spatial resolution and light efficiency [187]. Due to this, they have been applicable in a 

plethora of optical contexts such as communication, reconfigurable interconnects [188], storage [189], 

diffractive optics [190], metrology [191], and quantum computing [192]. They are also applicable in the 

waveshaper technology for optical signal processing and monitoring [193]. In addition, LCoS can be 

seen as a cost-effective solution due to its ability to be flexibly programmed. This helps in supporting 

a number of additional functions like group delay ripple compensation, wavelength filtering, and 

chromatic dispersion compensation. Besides, it can aid in ensuring variable attenuation for individual 

wavelength channels as well as output ports. Consequently, the LCoS device offers a promising 

solution for the wavelength selective switch (WSS) [189]. 

The LCoS micro-display SLM has a good implementation background in the WSS systems. Its 

employment in the WSS system core component can be attributed to a number of advantages such 

as larger spatial bandwidth, more port availability, enhanced resolution, as well as system 

miniaturization. The WSS systems have been also exploited in ROADM WDM optical networks. It has 

been observed that ROADM is one of the promising schemes that can be employed to improve the 

traffic capacity of the existing and future telecommunication systems [189] [194]. Moreover, in 

Liquid crystal microdisplay

Ribbon cable
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communication networks, the ease of adding or dropping the wavelength is essential. They can ensure 

effective information access or re-routing to another appropriate path in the network. It should be noted 

that WSS is the ROADM sub-system that has been extensively employed in optical switch applications. 

In addition, micro electro-mechanical systems (MEMS) [195], and WSS based on LCoS [196] have 

been commercialized for different applications. Also, WSS by means of LCoS operates on the principle 

of disperse-and-select, in which the inward bound WDM channels are dispersed into a distinct 

wavelength channel, and subsequently relayed by LCoS through programmable grating patterns. This 

is in an attempt to facilitate an add and drop function. It is envisaged that the next generation ROADM 

will hold different attractive features such as directionless, colorless, and contentionless in order to 

improve system performance [189]. 

LCoS technology can also be employed in flex-grid that has been considered as the major feature 

for the next generation networks [189] [197]. As the traditional fixed-grid with 50 GHz spacing 

standardized by the International Telecommunication Union (ITU) Telecommunication Standardization 

Sector (ITU-T) possesses a number of challenges. The fixed-grid has been observed to bring about 

the optical spectra being inefficiently used. Besides, it constraints the system transmission capacity 

considerably. On the other hand, the flex grid implementation enables the use of different modulation 

formats and their coexistence on a shared infrastructure. They can also be densely and efficiently 

multiplexed, which aids the optical networks, not only to extend the reach but also the per-channel bit 

rate. It has also been envisaged that the implementation of WSS and SDM will significantly help further 

in extending the network reach and capacity [189]. 

In the present study, SLM LCoS technology will be used as an SLM framework with application in 

systems with MCF. By allowing to improve alignment and excite different cores of an MCF, this 

framework can contribute to the impairment mitigation in the system optical path, which can relax the 

digital signal processing (DSP) equalization requirements of the SDM system [5] [198] [199]. 

Furthermore, its use as a flexible platform for feeding photonic integrated processors was also 

explored for the characterization/test of PIC, with results presented for its implementation as a parallel 

implementation of the Haar transform (HT) image compression algorithm [32] [63] [64]. 

  



Optimized Photonic Integrated Solutions for Next Generation Optical Systems 

 

 

126   MAPtele 

 

5.2 SLM framework methodology 

The SLM framework methodology can be described by three main blocks: i) the implemented 

CGH methods to generate the hologram; ii) SLM framework setup implementation; and iii) the 

experimental results obtained from the CGH. 

 CGH implemented methods 

Different algorithm approaches have been proposed in the literature to overcome the problem of 

accurately design an interference element to transform a given light distribution into another expected 

one (the hologram). A variety of techniques such as iterative Fourier transform algorithm (IFTA) [5] 

[200]–[202]; linear Fourier transform (i.e., linear phase mask) [5] [32] [64] [203]; simulated annealing 

[204]; and Gerchberg-Saxton algorithm [205] have been explored for the calculus of the numerical 

interference patterns to generate the holograms (CGH). 

Due to the intensive computational requests and high power-loss (up to 9 dB [181]) associated 

with the implementation of the simulated annealing and Gerchberg-Saxton algorithms, these 

approaches were not implemented in our framework. To realize and test the proposed SLM framework 

three main techniques were implemented and tested: 

i) iterative Fourier transform algorithm (IFTA); 

ii) linear phase mask; 

iii) iterative optimization of the CGH. 

Complex patterns can be generated with the IFTA based method [200] [201], with additional 

computational cost (compared to linear phase mask). Linear phase mask can be implemented to 

generate relatively simple patterns. Further optimization can be achieved with iterative optimization 

algorithm approaches as presented in [32] [63]. This method delivers a simplified solution based on 

the implementation of a linear phase mask generation and a new iterative algorithm experimentally 

driven for CGH effective optimization. 

All algorithms were developed and implemented in Matlab © [165]. 
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 Iterative Fourier transform algorithm 

The method implemented to generate optimized holograms based in the IFTA technique can be 

described by the steps listed below: 

i) load the image (i.e., expected hologram to be generated) as the initial field (𝐼1) to calculate 

the phase mask; 

ii) calculate the Fourier transform of 𝐼1, 𝐻 = 𝑓𝑓𝑡(𝐼1); 

iii) calculate the inverse Fourier transform of 𝐻, 𝐼2 = 𝑖𝑓𝑓𝑡(𝑒𝑖∠𝐻),  

iv) iterative verification of constraints in the spectrum domain, i.e., for root mean square error 

(RMSE)  10% or until a maximum number of 1000 iterations, repeat steps (ii) and (iii); 

v) the optimized phase mask is given by ∠𝐻 (the phase component of H), and the simulated 

digital hologram by 𝐼𝑗, where 𝑗 is the total number of iterations to achieve the established 

constraints. 

 

Figure 74. Block diagram of the IFTA. The final optimized phase mask to apply to the SLM is given by the 

phase component of H, i.e., ∠H. 
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Further details of the implemented algorithm are described in the block diagram presented in 

Figure 74. 

 Linear phase mask 

A linear phase mask can be described as a numerical information transformation (in the Fourier 

domain) of the input function of interest [180], which allows it to be introduced into the optical system 

through an SLM. The necessary calculations to achieve the linear phase mask are based on the 

Fourier optical principles presented in [180]. Thus, CGH is obtained with a linear phase mask 

calculated in the frequency domain as described in equation (33), where 𝑐𝑥 and 𝑐𝑦 are the horizontal 

and vertical tilt parameters, respectively; and 𝑓𝑥 and 𝑓𝑦 are the components of the spatial frequency 

vector corresponding to the image to be generated in the horizontal and vertical axis, respectively. 

 𝑀(𝑓𝑥, 𝑓𝑦) = −2𝜋(𝑐𝑥 𝑓𝑥 + 𝑐𝑦 𝑓𝑦) (33) 

The mask transfer function to be sent to the SLM is given by 𝐻𝑚𝑎𝑠𝑘 = 𝑀(𝑓𝑥 , 𝑓𝑦)𝑚𝑜𝑑2𝜋, 

ensuring that the phase values are set in the range of [−𝜋, 𝜋].  

A collimated Gaussian beam with a transverse profile 𝑆𝑖𝑛 is imaged into the SLM via a lens. 𝑆𝑖𝑛 

describes the signal of the input beam, see equation (34). 

 
𝑆𝑖𝑛 = 𝑒𝑥𝑝 (−(2

𝑥 − 𝑥0

𝑤𝑥 𝑙𝑜𝑔(√2)
)

2

− (2
𝑦 − 𝑦0

𝑤𝑦 𝑙𝑜𝑔(√2)
)

2

) (34) 

Where (𝑥0, 𝑦0) provides the horizontal and vertical position and (𝑤𝑥, 𝑤𝑦) the width and the 

height of the beam, respectively, as depicted in Figure 75. 
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Figure 75. Diagram in Cartesian coordinate system describing the parameters (x0, y0) and (wx, wy) used for 

the estimation of the input beam Sin. 

With the adoption of the Fraunhofer approximation, the Fourier transform is produced at the SLM 

plane, 𝑓𝑓𝑡(𝑆𝑖𝑛). Afterward, the subsequent illumination profile is multiplied with the phase mask, 

𝑒𝑖𝐻𝑚𝑎𝑠𝑘 . The resultant signal is then Fourier transformed via the second lens by means of an inverse 

Fourier transform to achieve the estimated output signal 𝑆𝑜𝑢𝑡, which can be defined by equation (35). 

 𝑆𝑜𝑢𝑡 = 𝑖𝑓𝑓𝑡 (𝐻(𝑓𝑓𝑡(𝑆𝑖𝑛))) (35) 

A graphical user interface (GUI), named SLM-Mask, was also developed to test different masks 

to be applied to the SLM device [64], see Figure 76. Mathematically, the inherent ability of a converging 

lens to perform 2D Fourier transforms at its focus was used [180]. The different masks were 

determined by adjusting different available parameters. For the Input beam GUI panel the following 

input parameters are available: i) horizontal position (𝑥0); ii) vertical position (𝑦0); iii) width of the beam 

(𝑤𝑥); iv) height of the beam (𝑤𝑦), see GUI panel Input Beam in the Figure 76. 
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Figure 76. GUI SLM-mask developed to generate different phase masks to apply to the SLM [64]. 

The Phase Mask GUI panel retains the corresponding input parameters: i) horizontal translation 

(𝑑𝑥); ii) vertical translation (𝑑𝑦); iii) horizontal frequency delay (𝑐𝑥); iv) vertical frequency delay (𝑐𝑦); 

v) percentage of zoom (%); vi) rotation in degrees (º); and vii) selection of three possible input 

functions, i.e., sinusoidal (36), linear (33), or defined by the user (user-defined). 

 𝑀(𝑓𝑥 , 𝑓𝑦) = 𝜋𝑠𝑖𝑛 (2𝜋(𝑐𝑥 𝑓𝑥 + 𝑐𝑦 𝑓𝑦)) (36) 

The option to save or replace the phase mask file is also made available, see the GUI panel Phase 

Mask in Figure 76. 

 Optimization of the CGH 

In an effort to realize the hologram that better replicates the expected signal is estimated the 

hologram of the beam through the image phase-only information of the generated hologram. For the 

linear phase CGH method was developed an iterative optimization algorithm feed by experimental 

data from the generated hologram, collected with an IR camera. 
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Since a phase-only SLM does not allow the inverse Fourier of the desired pattern to be addressed 

into the far-field and replicated into the resultant distribution of amplitude and phase on the SLM 

directly. It is quite demanding to generate a CGH, which guarantees for the light to be spatially 

modulated with the required accuracy and resolution. To address these challenges and obtain the 

desired hologram with an error factor 𝛿  10%, an iterative algorithm to optimize the generation of the 

linear phase mask was implemented. Also, an error factor threshold was set, so as to prevent an 

infinite loop in the implemented optimization algorithm, while ensuring that the output result has an 

accuracy ≥ 90%.  

The algorithm was implemented to generate a hologram that replicates the output of the four 

waveguides (WG) of an optical chip for data compression purposes [32] [56] [63]. A hologram of four 

beams was calculated by a phase-only superimposition of four independent holograms generated by 

equation (33). Then, the corresponding linear transformations in the Fourier domain provided in 

equations (37) and (38) were applied [32] [63]. 

 𝐻 = ∠(𝑒𝑖𝐻1 + 𝑒𝑖𝐻2 + 𝑒𝑖𝐻3 + 𝑒𝑖𝐻4) (37) 

 𝐻1 = 𝑒𝑥𝑝 (𝑖2𝜋(𝑐𝑥1𝑓𝑥 + 𝑐𝑦1𝑓𝑦)) (38) 

The block diagram of the employed algorithm is given in Figure 77, and the major steps of the 

algorithm are enumerated as follows [32]: 

i) generate a 1st linear phase mask to produce the expected initial field based on 

equation (37); 

ii) initially set the four coefficients 𝑎1−4 to 1, from: 

𝐻 = ∠(𝑎1𝑒
𝑖𝐻1 + 𝑎2𝑒

𝑖𝐻2 + 𝑎3𝑒
𝑖𝐻3 + 𝑎4𝑒

𝑖𝐻4); 

iii) acquire the replay field from the hologram generated by SLM (𝐼𝑆𝐿𝑀) with a camera and 

feed this data to the algorithm;  

iv) calculate the difference between the hologram generated and the initial field expected, 

defined as error factor: 𝛿 = |𝐼𝑆𝐿𝑀 − 𝐼1| ≤ 0.1;  
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v) if the condition 𝛿 ≤ 0.1 is not satisfied, the steps (ii) to (iv) are repeated by iteratively 

adjusting the values of 𝑎1−4 to compensate for the error factor (𝛿). 

The iterative adjustment of 𝑎1−4 coefficients were based on the mathematical optimization 

described by the Lagrange multipliers method [206]. 

 

Figure 77. Block diagram of the algorithm applied for the optimization of the CGH [32]. 

The developed algorithm and scripts were implemented in Matlab ©, and are capable of controlling 

both SLM, as well as camera hardware. Also, the error factor (𝛿) is defined to quantify the generated 

hologram deviation from the optical chip expected output [32] [63]. 

 SLM framework setup implementation 

A first testing approach of the SLM framework was performed with a visible SLM, used for testing 

and generation of images and small videos. The data to be transformed (in the Fourier domain) is 

introduced into the optical system by the SLM, with an appropriate DOE to generate the expected 

function of interest. IFTA was the method used to calculate the best interference pattern to produce 

the hologram (Figure 78-C). The in-line transmission hologram setup consisted of a red laser 
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( = 634 nm; P = 10 mW) and a visible transmissive LC SLM, model Holoeye LC2002 [207], see 

Figure 78-A,B. 

 

Figure 78. [A]: In-line transmission hologram setup, composed by a red laser ( = 634 nm; P = 10 mW) and a 

visible SLM (Holoeye LC2002). [B, C]: Photographs of the setup and generated hologram, respectively. 

This setup allowed a first experimental test of the digital hologram generation and the calculus of 

the DOE to generate the hologram based on the IFTA method. Matlab © scripts were developed to 

control the SLM and compute the CGH method. 

Thereafter, was implemented a reflective LCoS SLM with an operation range in the infrared (IR) 

typical telecom wavelength range of 1400 – 1700 nm. A calibration process was performed to set the 

SLM for a linear 2 phase distribution over all 8-bit gray level in order to ensure a stable (as possible) 

phase response. For that purpose was implemented a path interferometer setup and recorded the 

intensity distribution of the produced interference pattern with a near-IR camera. The setup was 

composed by an IR laser ( = 1550 nm); a polarization controller; two lenses (AC254-050-C-ML, AR 

coating 1050 - 1620 nm) Ls1 and Ls2 with a focal length of 75 mm and 250 mm, respectively; a neutral 

density filter to avoid saturation in the acquisition (by the camera); and a near-infrared 

(1460 - 1600 nm) camera (sensing area: 6.4  4.8 mm, resolution: 752  582, pixel size: 

8.6  8.3 m) to capture the replay field of the hologram produced. Further details about the setup are 

depicted in Figure 79. 

~ 3 mLaser

LCoS-SLM

Hologram

[A] [B] [C]

IFTA

DOE

LCoS: liquid crystal on silicon

SLM: spatial light modulator

IFTA: iterative Fourier transform algorithm

DOE: diffractive optical element



Optimized Photonic Integrated Solutions for Next Generation Optical Systems 

 

 

134   MAPtele 

 

 

Figure 79. [A]: Diagram of the SLM calibration setup for a linear 2 phase distribution, i.e., generating the 

phase mask for a 0 to 255 gray level. [B]: Photographs of the setup. 

The two holes mask (of diameter 3 mm separated by 7 mm) generates two coherent beamlets, 

which hit the right and the left part of the vertically divided LCoS panel (centered in the horizontal 

dimension). A total amount of 256 phase masks were introduced in the SLM, composed by a white 

and gray face ranging from 0 to 255 gray level, as depicted in Figure 80. 
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Figure 80. Laser beamlets loaded on the LCoS SLM panel. 

The analysis of the results consisted in the sine fit of the interference patterns obtained from each 

hologram and the calculus of the phase shift from each gray level, i.e., the distance between two 

fringes maximums corresponded to , and the deviation from maximums of each hologram generated 

providing the corresponding phase shift distribution, see Figure 79. The results obtained are presented 

in Figure 81. 

 

Figure 81. Phase modulation obtained for the linear 2 phase distribution and corresponding lookup table 

(LUT) values of the gamma curve. 

The lookup table (LUT) values obtained from the calibration were provided to the SLM for gamma 

calibration/correction and white/black balance adjustment. 
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5.3 Experimental CGH results 

The employed SLM is a reflective LCoS phase-only type, model PLUTO-TELCO-012, operating 

within the wavelength range of 1400 - 1700 nm. Additional specifications are an active area of 

15.36 × 8.64 mm2, a pixel pitch of 8.0 µm, a 92% fill factor, and 80% reflectivity [208]. 

Two different setup arrangements were implemented to create CGH for SDM (e.g., MCF) and PIC 

applications, presented in sections 5.3.1 and 5.3.2, respectively. 

 SLM framework for SDM applications 

Setup alignments were carried out, using a red laser of 637 nm (power 70 mW, SM Fiber-Pigtailed 

Laser Diode), a collimator, two lenses (Ls1 and Ls2), a charge-coupled device (CCD) image sensor, 

and the LCoS-SLM. After the alignments, an MCF of 10 m of length and a bit-error rate (BER) tester 

was introduced in the setup, as depicted in Figure 82. 

The MCF contained four cores arranged in a quadrangular-lattice pattern, with a side length of 

36.25 µm and attenuation @1550 nm of 0.45 dB/km. The non-return-to-zero (NRZ) signal was 

generated by a pattern generator (Agilent N4901B) using a pseudorandom binary sequence 

(PRBS)  231-1. The signal was injected into the tunable direct modulator laser to create 10 Gb/s optical 

signal. After the MCF, the signal was detected by the avalanche photodiode (APD) receiver inside of 

the small form-factor pluggable (SFP) transceiver. BER measurements were carried out for each core 

of the MCF, through fan-out single core fibers structures connected to the MCF. A BER of 1.210-3 

comprised the worst measure attained and consequently defined as the system BER performance. 

The results showed a transmission error-free below the BER limit of 3.810-3 (7% hard-decision FEC) 

threshold [209] [210]. Thus, the SLM framework was able to properly function as a spatial coupling 

interface between the SLM generated pattern and the MCF cores. The platform flexibility allows an 

easy adjustment of the generated phase mask (CGH), contributing to an effective dynamic optimization 

of the MCF fiber transmission. 



Chapter 5. Spatial light modulator framework 

 

Cátia Pinho     137 

 

 

 

Figure 82. [A]: Setup diagram of the SLM platform for MCF applications, with Ls1 and Ls2 lens and positioner 

Pxy. [B,C]: photographs of the corresponding setup. 
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 SLM framework for PIC applications 

In an effort to eliminate the phase distortion and enable the full Fourier transform scaled by the 

focal length (𝑓) factor, the optical system was designed based on the 4𝑓 system configuration. This 

forms the basis of a low distortion optical system. 

 

Figure 83. [A]: Hologram reconstruction scheme using an infrared (IR) laser of 1550 nm, a polarization 

controller, lens Ls1 and Ls2, an LCoS-SLM, and an IR camera. [B]: Photography of the implemented setup. 

The setup comprises two lenses (AC254-050-C-ML, AR coating 1050-1620 nm) Ls1 and Ls2 with 

a focal length of 75 mm and 250 mm, respectively; a polarization controller; an IR laser ( = 1550 nm); 

a neutral density filter, to prevent saturation in the camera acquisition; and a Near-Infrared 

(1460-1600 nm) camera (sensing area: 6.4  4.8 mm, resolution: 752  582, pixel size: 8.6  8.3 m) 

for capturing the generated hologram. Further details about the setup are depicted in Figure 83 [32] 

[63]. 

 Results and discussion 

The hologram was generated in an attempt to create the beam profile in the first order of diffraction 

when being displayed on the SLM. The CGH should reproduce the four WG outputs of the PIC 

implementing the HT [32] [56], see Figure 84. The measurements of the distance between the four 
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WG at the end of the two-level HT network are d1 = 241.3 m; d2 = 278.6 m; and d3 = 248.0 m 

(using a Leica microscope, DM-750M; 1CC50-HD, and an objective of 20, HI Plan EPI, 20/0.40) 

[32], see Figure 84. Further details about the InP integrated approach for the realization of the HT can 

be found in section 3.1. 

 

Figure 84. [A]: Design architecture of the PIC for data compression based on HT. [B]: Measurements of the 

distance between the four WG at the end of the two-level HT network of the PIC [32]. 

 

Figure 85. Replay field of the hologram acquired by the IR camera for the: [A]: initial hologram; and 

[B]: optimized hologram. 
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The obtained image from the hologram replay field generated with the initial (𝐼1) and optimized 

(𝐼𝑜𝑝𝑡) CGH are presented in Figure 85 [32] [63]. The analysis of the obtained replay field images are 

defined by the steps described below:  

i) calculate the intensity integration of the image matrix, i.e., the sum of all elements along 

each line of the image matrix, depicted as 𝑆𝑟𝑎𝑤; 

ii) application of the Savitzky-Golay (SG) filter to smooth the intensity integration signal 

obtained in step (1), depicted as 𝑆𝑆𝐺; 

iii) implementation of a first-order Gaussian fit curve to the filtered signal depicted as 

𝐺𝑎𝑢𝑠𝑠 𝑓𝑖𝑡; 

iv) extraction of Gaussian parameters to calculate the distances between the four beams 

(obtained from the CGH) and compare with the expected results (d1, d2, and d3 from the 

optical chip). 

The signal smoothing of the intensity integration was obtained with the Savitzky-Golay filter, which 

can be characterized by a generalized moving average with filter coefficients determined by an 

unweighted linear least-squares regression and a polynomial model of specified degree [165] [211]. 

The parameters applied in the filter were a polynomial order 9 and a window length 19. 

 

Figure 86.  Integrated intensity from the replay field image Sraw (red dots), and corresponding smoothing with 

Savitzky-Golay (SG) filter SSG (blue line). [A]: initial CGH; and [B]: optimized CGH. 
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Results after steps (1) and (2) are depicted in Figure 86, and after the Gaussian curve fitting 

application presented in Figure 87. 

 

Figure 87. Gaussian fit (Gauss fit – blue line) of smoothed integrated intensity signal from the replay field 

image (SSG – red dots) for [A]: initial CGH; and [B]: optimized CGH. 

 

Figure 88. Overlap of the Gaussian fit results attained for the initial CGH (I1) and optimized CGH (Iopt), and 

the expected four WG positions (PosWG) from HT PIC. The error factor for initial (black) and optimized (blue) 

CGH implementations associated with the WG4 position are indicated (WG4) to illustrate the measuring 

process. 

In
te

n
si

ty
(n

o
rm

.)

In
te

n
si

ty
(n

o
rm

.)

Distance (m) Distance (m)[A] [B]

Distance (m)

In
te

n
si

ty
(n

o
rm

.)

vs. 

PIC WG pos.d1 d2 d3

WG4

WG4

PosWG1 PosWG2 PosWG3 PosWG4



Optimized Photonic Integrated Solutions for Next Generation Optical Systems 

 

 

142   MAPtele 

 

In Figure 88 is depicted the overlap of the Gaussian fit results of the integrated intensity signal 

from the replay field attained for the initial CGH (𝐼1) and optimized CGH (𝐼𝑜𝑝𝑡), and the expected four 

WG positions of the HT PIC. To illustrate the error factor measuring process, it is indicated WG4 for 

the WG4 position, under the initial and optimized CGH implementation. 

The position of the four beams from the CGH implementation was calculated from the center 

position of each beam profile, given by the Gaussian fit coefficient, which corresponds to the position 

of the center of the peak. The coefficients were obtained with 95% confidence bounds.  

The deviation values (𝛿) are calculated by the difference (in percentage) of the distances between 

the attained position of the center peak and the expected output PIC WG ports positions/distances. 

The error factor (𝛿𝑊𝐺𝑘) formulation syntax is presented in equation 41, by applying the generic 

standard deviation calculus (𝑠𝑡𝑑𝑊𝐺𝑘, see equation 40) in percentage. Where 𝑃𝑜𝑠𝑊𝐺𝑘
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  indicates the 

mean between the expected PIC WG position (𝑃𝑜𝑠𝑊𝐺𝑘) and the attained beam position from the CGH 

implemented (𝑃𝑜𝑠𝐶𝐺𝐻𝑊𝐺𝑘), see equation 39; with 𝑘 as the index corresponding to the four different 

WG positions (as for the HT PIC). 

 

𝑃𝑜𝑠𝑊𝐺𝑘
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

𝑃𝑜𝑠𝑊𝐺𝑘+𝑃𝑜𝑠𝐶𝐺𝐻𝑊𝐺𝑘

2
  ;      𝑘 = 1,  2,  3,  4. (39) 

 

𝑠𝑡𝑑𝑊𝐺𝑘 =
1

𝑁 − 1
√∑|𝑆𝑃𝑜𝑠𝑖 − 𝑃𝑜𝑠𝑊𝐺𝑘

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |
2

𝑁

𝑖=1

; 

𝑆𝑃𝑜𝑠𝑖 = [𝑃𝑜𝑠𝑊𝐺𝑘
 ,   𝑃𝑜𝑠𝐶𝐺𝐻𝑊𝐺𝑘

];    𝑁 = 2. 

(40) 

 

𝛿𝑊𝐺𝑘
(%) =

𝑃𝑜𝑠𝑊𝐺𝑘 − 𝑠𝑡𝑑𝑊𝐺𝑘

𝑃𝑜𝑠𝑊𝐺𝑘

100 ;      𝑘 = 1,  2,  3,  4. (41) 

The deviation values (𝛿) of the generated hologram (i.e., initial 𝐼1 and optimized 𝐼𝑜𝑝𝑡 holograms), 

when compared with the expected output of the optical chip (i.e., PosWG1-4 , see Figure 84) are 

presented in Table 11. 
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Table 11. Error Factor (WG) values for HT PIC four output WG positions. 

 Initial CGH (%) Optimized CGH (%) 

𝛿𝑊𝐺1 17.74 8.95 

𝛿𝑊𝐺2 0.64 1.28 

𝛿𝑊𝐺3 0.14 0.00 

𝛿𝑊𝐺4 2.68 1.70 

 

An error factor 𝛿  18% was obtained for the initial CGH and 𝛿  9% for the final optimized CGH. 

Though, further optimizations can be attained by lowering the error factor threshold of the CGH 

optimized algorithm (set for 𝛿  10%, see section 5.2.1.3). 

Power measures of the beams were performed through the integration of intensity profiles, i.e., 

the integral of the Gaussian fit (see Figure 88). In Table 12 is presented the integration of the intensity 

profiles for each beam when applying the initial and optimized CGH. Corresponding mean and 

standard deviation values of the beam profile for both cases are provided. 

Table 12.  Integration of the intensity profiles for the four beams. 

Beam Initial CGH (a.u.) Optimized CGH (a.u.) 

1 6.30 5.12 

2 8.21 5.78 

3 7.18 6.37 

4 7.69 5.51 

Mean 7.35  0.81 5.69  0.52 

Std (%) 11.07 9.22 

Std: standard deviation. The four beams are numbered from 1 to 4 from top to down, as depicted in Figure 85. 

An improved hologram is achieved with the optimization of the linear phase mask CGH, i.e., with 

a reduction of up to 9% in the error factor (between initial and optimized holograms), see Table 11. 

Nonetheless, the loss of 1.1 dB identified on the mean beam power for the optimized CGH, an 



Optimized Photonic Integrated Solutions for Next Generation Optical Systems 

 

 

144   MAPtele 

 

improved equalization between the beams was observed, with a 2% reduction in the standard 

deviation, see Table 12. 

The phase mask that replicates the expected output of the optical chip can be used to 

multiplex/demultiplex the obtained result. Furthermore, a phase mask, which addresses the HT 

operations can also be applied to invert the compression induced by the HT (optically implemented in 

the chip with the three asymmetric couplers network). 
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5.4 Chapter remarks 

LCoS SLM technology implementation has been gaining importance in different optical systems 

applications, namely telecom with the development of high capacity optical components in system 

functionalities as switching, multiplexing and demultiplexing, and optical signal processing. Taking 

advantage of spatial modulation properties, a proof of concept on the implementation of a new SLM 

based flexible coupling platform was provided. The implementation of the SLM flexible framework was 

experimentally demonstrated for SDM systems [5] [64] [202] and PIC characterization/testing [32] [63]. 

Optimized methodologies to generate the CGH were developed and implemented. Furthermore, an 

SLM phase mask generator GUI was developed to test different phase masks. Main results include:  

i) signal recovery for an optical SDM system, i.e., the use of the SLM to efficiently excite the different 

cores of an MCF [64]; and ii) optimized CGH implementation to feed/receive the output of an optical 

chip for data compression based on the HT [32] [63]. 

This SLM flexible framework can positively contribute to the development of multi-dimensional 

optical communication systems, by providing a versatile optical method to facilitate a dynamic 

optimization of MCF transmission (e.g., by improving the setup alignment and excitation of different 

cores in MCF), and to provide a more flexible and robust optical methodology to assess/test PIC 

(e.g., offering a proof of concept of the PIC HT operation). 
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6 Conclusion and future work 

Next generation optical systems requirements can highly benefit from optimized photonic 

integrated solutions. Integrated photonics appears as a promising solution for the current demand for 

flexibility and reconfigurability in optical systems and telecommunications networks. PIC-based optical 

systems can offer an efficient and cost-effective solution to data transmission increasing demands. 

The work developed in the scope of this thesis addresses relevant components in PIC research, such 

as design, packaging, and testing. 

Optical signal compression plays an important role in the fast processing/storing of large amounts 

of bandwidth-demanding data, with data compression emerging as a noteworthy technique to release 

additional bandwidth. The integrated implementation of optical transforms to compress/decompress 

data processing is advantageous. By applying an optical transform architecture into a PIC, 

compression can be attained at a lower cost, less power consumption and high data rate due to an 

all-optical processing implementation. Capitalizing on HT benefits, such as simple design, fast 

computation power, efficiency, and its straightforward implementation by optical planar interferometry, 

this optical transform was selected to realize integrated solutions for data compression applications. 

Chapter  6 
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A design of optimized structures to implement an all-optical transform architecture for data 

compression entails the first major contribution reported in the thesis. Taking advantage of silicon 

nitride integrated platform merits and established foundry PDK [90], an optimized PIC design solution 

in Si3N4 based platform is realized. The design of the developed integrated approach comprises a two-

level HT network for compression, and a switching network as a framework that supplies all logical 

inputs of the HT network for testing/characterization purposes. This study provides optimized design 

models for the 22 MMI BB and the 12 MMI BB, to realize the HT proposed PIC approach. The best 

optimized BB solution proposed, attained an overall excess loss and crosstalk metrics below 0.005 dB 

(under the required MMI operation mode for the realization of the 2D HT). A device footprint up to 1/4 

and 1/3 lower than reported literature was accomplished under the 22 MMI BB and 12 MMI BB 

best-optimized design structures, respectively. Additionally, fabrication tolerances of BB operation 

modes were also guaranteed under the infrared C-band wavelength range, with an overall excess loss 

 0.05 dB. The comprehensive optimized design study achieved offers an important evaluation of the 

BB structures performance/behavior, to select the ones that best address the HT compression and 

switching networks under the Si3N4 integrated approach proposed. The implementation of the 

optimized BB structures and proposed networks for the HT completion is highly recommended to be 

manufactured as a future realization. 

The second key contribution of this thesis comprises of the first experimental characterization of 

an InP-based PIC implementing an all-optical AAC network realizing the HT. The InP-based platform 

was chosen due to its excellent electro-optical properties allowing efficient light generation, detection, 

and guidance in a monolithic integrated circuit. The tunable operation capabilities of the implemented 

key BB deploying the HT, i.e., the AAC; were validated through simulation and experimental results. 

This allowed determining with acuity the different phases that enable the full cycle of the device’s 

expected coupling ratios. The coupler characterization performed, provides a fundamental tool for the 

use of BB full coupling capabilities in optical processing implementations such as Haar wavelet 

transforms with applications in data compression. The experimental characterization of the PIC 

implementing the two-level HT network was also attained. Even though, the complexity of the optical 

chip and the difficulty to fully and independently monitor each of its components, the first experimental 

demonstration of an integrated all-optical two-level HT in an InP-based platform was successfully 

completed. 
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Furthermore, taking advantage of low-cost hybrid materials [65] with application in integrated 

photonics, the first implementation and testing of a potentially cost-effective 2D HT network for image 

compression in an organic-inorganic hybrid material are demonstrated, consisting in the third main 

contribution under this thesis. To better address the design/fabrication of the integrated structures 

under the hybrid material, a design optimization model is proposed based on the theoretical 

simulations and experimental results obtained. Through the implementation of the proposed design 

optimization model, under ideal theoretical conditions, an HT operation behavior improvement, of 

about 16 dB, is estimated at the output of the 2D HT network. Nevertheless, under this hybrid material, 

structure design optimizations should be conducted to decrease the device’s footprint, presently up to 

300 times higher than the best-optimized design achieved for the 22 MMI BB structure in the 

Si3N4-based platform. 

The fourth core contribution addresses Si3N4 integrated WG platforms with ultra-low propagation 

losses, which are essential for different optical system applications, e.g., high-Q resonators and 

narrowband photonic filters. Namely, integrated high-Q resonators tailor a paradigm shift in a variety 

of PIC applications, though accurate performance measurement of the resonators quality factor needs 

to be ensured. Under this requirement, a high-Q resonator measurement technique based on an RF 

calibrated MZI and Brillouin gain measurements, through Lorentzian fitting analysis was successfully 

attained. This research was enclosed in the development of a state-of-the-art sub-hertz fundamental 

linewidth photonic integrated Brillouin laser, capable of emitting light with a fundamental linewidth lower 

than 1 Hz, narrow enough to move demanding scientific applications to the chip-scale [62]. Future 

developments through resonator Q design engineering improvements are idealized, paving the way 

for engineered Brillouin high coherence integrated lasers disruptive applications, namely coherent 

communications, quantum communication/computing, and positional/navigation sensors. 

Furthermore, a fifth major contribution entails the implementation of a low-loss Si3N4-based 

integrated tunable lattice filter for dispersion compensation enabling the first real-time C-band 

transmission demonstration of 53.125 Gb/s PAM-4 over 40 km SSMF. The 10-stage lattice filter 

capable of tuning  500 ps/nm allowed to compensate up to three channels on a 100 GHz channel 

spacing over 40 km. This integrated solution showed to be promising to mitigate PAM-4 dispersion for 

multiple WDM channels while satisfying the strict OSNR requirements. Additional improvements can 

be expected in the next generation integrated filters by lowering the device insertion loss up to 4 dB 

and enable a 50 GHz grid WDM, through engineering design optimization. The foreseen optimization 
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approaches can include the use of fiber taper couplers on-chip, thickening of upper cladding, design 

of longer unit optical delay length and smaller filter FSR, and investigation of PZT tuning to further 

decrease loss and power consumption. 

The sixth and final contribution presented under this thesis explored the spatial light modulation 

principle as a flexible platform with application in photonic integrated processors and spatial division 

multiplexing systems. SLM technology has been gaining importance in a wide range of optical systems 

applications, namely telecom with the development of high capacity optical components in system 

functionalities, multiplexing/demultiplexing, and optical signal processing. As technical and functional 

requirements of the PIC demand a thorough characterization and testing to provide an accurate 

prediction of the PIC performance, and current testing platforms can be expensive and have a lack of 

flexibility. By taking advantage of spatial light modulation operation principle, a proof of concept of a 

new soft-packaging flexible platform for photonic integrated processors and SDM systems was 

developed. The capacity of the SLM to dynamically reconfigure light was used to feed and/or receive 

information to the PIC and dynamically optimize the spatial coupling under MCF transmission systems. 

Experimental results of the SLM framework implementation in SDM systems and its potential use for 

PIC processors are demonstrated. 

Looking forward, the SLM framework flexibility to dynamically re-generate digital masks, in a 

feeding loop process, i.e., by collecting the outputs of the PIC and re-adjust the applied digital mask, 

in order to obtain the optimized output, paves the way for a new product – a soft-packaging for highly 

complex PIC, named PICpack. From the expected framework benefits can be highlighted: 

i) the accurate coupling of light for a vast diversity of PIC systems, available for 2D and 3D 

packaging configurations; 

ii) the ability to reproduce optical transforms implemented in the PIC under testing; 

iii) the dynamic optimization of SDM optical systems. 

Moreover, by allowing to solve 3D coupling light alignments effectively, without resorting to 

expensive complex optical infrastructures, an overall cost reduction under PIC testing 

technology/methodology is estimated. 
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Appendix  A 

BPM simulation results of Si3N4 BB designs 

Additional BPM optimized simulation results are provided for the 22 MMI and 12 MMI BB 

structures designed under: i) three different MMI geometric shapes implemented (i.e., A, B and C); 

and ii) the MMI widths W1 = 8, 9, 10, 11 and 12 m. 

EL metrics of the different optimized designs are determined for a range of MMI length (L) values 

and the distance between MMI input/output access WG (d). To access 22 MMI BB sum/subtraction 

coupling ratio behavior a phase of /2 is launched in the top input arm of the 22 MMI BB structure, 

i.e., realizing a difference of phase between the MMI input arms of  = /2. A coupling ratio of 100:0 

is obtained in all 22 MMI BB structure designs implemented in the sum/subtraction operation mode. 

When no additional phase is launched in the 22 MMI input arms (i.e.,  = 0 for the MMI splinting 

operation mode), a coupling ratio of 50:50 is achieved for all the implemented BB designs. The set of 

results reached for the 22 MMI BB are presented in Appendix section A.1. For the 12 MMI splitter 

BB, a coupling ratio of 50:50 was achieved in all BB structure designs implemented. The corresponding 

set of results obtained is presented in Appendix section A.2. 
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A.1 BB 22 MMI structures 

A.1.1 BB 22 MMI – geometry A 

 

Figure A-1. EL metrics of the BB 22 MMI geometric shape A for MMI width W1 = 8, 9, 10, 11 and 12 m, 

when a range set of values of L and d are implemented, and a phase of /2 launched in the top input arm of 

the MMI BB. Best-optimized BB design parameters for the different W1 widths are provided in the top right of 

each graph. 
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Figure A-2. EL metrics of the BB 22 MMI geometric shape A for MMI width W1 = 8, 9, 10, 11 and 12 m, 

when a range set of values of L and d are implemented, and a relative phase between the MMI input arms is 

 = 0. Default BB design parameters (matching BB structure in the sum/subtraction operation mode) are 

provided in the top right of each graph. 
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A.1.2 BB 22 MMI – geometry B 

 

Figure A-3. EL metrics of the BB 22 MMI geometric shape B for MMI width W1 = 8, 9, 10, 11 and 12 m, 

when a range set of values of L and d are implemented, and a phase of /2 launched in the top input arm of 

the MMI BB. Best-optimized BB design parameters for the different W1 widths are provided in the top right of 

each graph. 
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Figure A-4. EL metrics of the BB 22 MMI geometric shape B for MMI width W1 = 8, 9, 10, 11 and 12 m, 

when a range set of values of L and d are implemented, and a relative phase between the MMI input arms is 

 = 0. Default BB design parameters (matching BB structure in the sum/subtraction operation mode) are 

provided in the top right of each graph. 
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A.1.3 BB 22 MMI – geometry C 

 

Figure A-5. EL metrics of the BB 22 MMI geometric shape C for MMI width W1 = 8, 9, 10, 11 and 12 m, 

when a range set of values of L and d are implemented, and a phase of /2 launched in the top input arm of 

the MMI BB. Best-optimized BB design parameters for the different W1 widths are provided in the top right of 

each graph. 
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Figure A-6. EL metrics of the BB 22 MMI geometric shape C for MMI width W1 = 8, 9, 10, 11 and 12 m, 

when a range set of values of L and d are implemented, and a relative phase between the MMI input arms is 

 = 0. Default BB design parameters (matching BB structure in the sum/subtraction operation mode) are 

provided in the top right of each graph. 
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A.2 BB 12 MMI structures 

A.2.1 BB 12 MMI – geometry A 

 

Figure A-7. EL metrics of the BB 12 MMI geometric shape A for MMI width W1 = 8, 9, 10, 11 and 12 m, 

when a range set of values of L and d are implemented. Best-optimized BB design parameters for the 

different W1 widths are provided in the top right of each graph. 
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A.2.2 BB 12 MMI – geometry B 

 

Figure A-8. EL metrics of the BB 12 MMI geometric shape B for MMI width W1 = 8, 9, 10, 11 and 12 m, 

when a range set of values of L and d are implemented. Best-optimized BB design parameters for the 

different W1 widths are provided in the top right of each graph. 
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A.2.3 BB 12 MMI – geometry C 

 

Figure A-9. EL metrics of the BB 12 MMI geometric shape C for MMI width W1 = 8, 9, 10, 11 and 12 m, 

when a range set of values of L and d are implemented. Best-optimized BB design parameters for the 

different W1 widths are provided in the top right of each graph. 
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