70th Annual Meeting of the International Society of Electrochemistry

4 - 9 August 2019 Durban, South Africa

Electrochemistry: Linking Resources to Sustainable Development

http://annual70.ise-online.org e-mail: events@ise-online.org

Symposium 3b Fuel Cells, Biofuel Cells and Electrolyzers

Room : 11-CD

Chaired by : Aleksey Yaremchenko

09:30 to 09:50

Aleksey Yaremchenko (Department of Materials and Ceramic Engineering, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal), Blanca Arias-Serrano, Kiryl Zakharchuk, Jorge Frade

Composite LnNiO3+PrOx Oxygen Electrodes for Solid Oxide Cells

09:50 to 10:10

Chusheng Chen (Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, China)

Solid oxide electrochemical cells supported on the air electrode with large straight open pores and catalystcoated surfaces

10:10 to 10:30

Csaba Janaky (*Department of Physical Chemistry and Materials Science, University of Szeged, Szeged, Hungary*), Dorottya Hursan, Angelika Samu

Carbon-dioxide Reduction on N-doped Carbon Electrodes: Structure-activity-stability Relationships.

10:30 to 10:50

Alexander Bagger (Department of Chemistry, University of Copenhagen, Copenhagen, Denmark), Jan Rossmeisl

The electrochemical CO₂ reduction reaction: Understanding the selectivity of the Cu catalyst.

10:50 to 11:10 Coffee Break

Symposium 4 Renewable Energy and Photo-Electrochemistry

Room : 22-ABC

Chaired by : Ladislav Kavan

09:30 to 09:50

David Fermin (School of Chemistry, University of Bristol, Bristol, United Kingdom), Devendra Tiwari Bismuth-based Solar Absorbers for Solar Energy Conversion

09:50 to 10:10

Siyabonga Beizel Mdluli (Chemistry, University of the Western Cape, Cape Town, South Africa), Morongwa Emmanuel Ramoroka, Suru Vivian John, Emmanuel Iwuoha

Novel Core-Shell Electroresponsive 3-Dimensional Poly(*propylenethiophenoimine*)-co-Poly(3,4ethylenedioxythiophene) Dendritic Star Copolymers: Synthesis and Photophysical Properties

10:10 to 10:30

Hayelom Hiluf Tesfay (Chemistry, University of the Western cape, Cape Town, South Africa), Emmanuel Iwuoha

<u>Characteristics of Cu₂Zn_{1-x}FeSnS₄Nano-crystalline Kesterite Material towards thin Film PV Cell</u> <u>Application.</u>

10:30 to 10:50

Kang Shi (Department of Chemistry, Xiamen University, Xiamen, China), Huiqin Hu, Liangliang Zhang, Yanzheng Xu

Photoelectrochemical Etching for Preparing Ultrasmooth Gallium Nitride Surface in Acidic Electrolyte

10:50 to 11:10

Coffee Break

Composite LnNiO₃+PrO_x oxygen electrodes for solid oxide cells

Aleksey Yaremchenko, Blanca I. Arias-Serrano, Kiryl Zakharchuk, Jorge Frade

CICECO - Aveiro Institute of Materials, Department of Materials and Ceramic Engineering,

University of Aveiro, 3810-193 Aveiro, Portugal

ayaremchenko@ua.pt

 $Ln_2NiO_{4+\delta}$ and its derivatives with perovskite-related K_2NiF_4 -type structure demonstrate high mixed ionic-electronic conductivity, moderate thermal and negligible chemical expansion. As a result, these phases attracted significant attention as prospective cathode materials for intermediate-temperature solid oxide fuel cells (IT-SOFC). At the same time, perovskite-like $LnNiO_3$ has not been considered for these applications, mostly due to the limited phase stability under ambient oxygen pressures. On heating in air, $LaNiO_3$ decomposes at ~ 1000°C; cathodic polarization can be expected to induce the decomposition of perovskite phase at lower temperatures characteristic for IT-SOFC operation. On the contrary, redox changes imposed by anodic polarization (in solid oxide electrolysis cell mode) under oxidizing conditions should not be of risk for the phase stability of LaNiO₃. The goal of the present work was the evaluation of LnNiO₃-based oxygen electrodes for solid oxide fuel/electrolysis cells.

The LnNiO_{3- δ} ceramic powders with perovskite-like structure was prepared by glycine-nitrate combustion synthesis followed by calcinations in oxygen atmosphere at 800-1000°C. Porous ceramic samples for electrical and dilatometric studies were sintered in oxygen at 950-1050°C.

Porous LaNiO_{3- δ} samples were found to exhibit favorably high *p*-type metallic-like electrical conductivity, 400-500 S/cm at 800-600°C in air. These ceramics demonstrated also a moderate thermal expansion, with average CTE ~ 13.0 ppm/K at 25-800°C, ensuring thermomechanical compatibility with solid electrolytes.

As a first step, the electrochemical performance of LaNiO_{3-δ} electrodes was assessed in contact with three common electrolytes including $(ZrO_2)_{0.92}(Y_2O_3)_{0.08}$ (8YSZ), Ce_{0.9}Gd_{0.1}O_{2-δ} (CGO10) and $(La_{0.8}Sr_{0.2})_{0.98}Ga_{0.8}Mg_{0.2}O_{3-\delta}$ (LSGM). The electrode layers were sintered at 1050°C for 2 h under oxygen flow. The studies of symmetrical cells by EIS demonstrated that the electrochemical activity of LaNiO_{3-δ} electrodes increases in the sequence 8YSZ < CGO10 < LSGM; the corresponding values of electrode polarization resistance (R_η) at 800°C were 1.4, 0.8 and 0.25 Ohm×cm2, respectively. Significant variations of R_η with electrolyte composition correlate with the extent of chemical reactivity between LaNiO_{3-δ} and electrolyte materials during the electrode fabrication.

The R_{η} values of LaNiO_{3- δ} electrodes in contact with LSGM electrolyte were further reduced to 0.03 Ohm×cm2 at 800°C and 0.11 Ohm×cm2 at 700°C by the surface modification with PrO_x which is known for its electrocatalytic activity. At 750°C and current density of 0.5 A/cm3, LaNiO₃+PrO_x (~20 wt.%) electrodes in contact with LSGM solid electrolyte demonstrate the overpotentials of ~60 mV under cathodic polarization and ~40 mV under anodic polarization (Fig.1).

The impact of substitution of lanthanum by praseodymium (in order to improve the chemical compatibility and electrochemical activity) on the relevant properties of $LnNiO_3$ is briefly discussed.

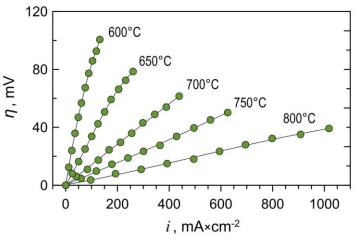


Figure 1. Anodic overpotentials of LaNiO₃+PrO_x (~20 wt.%) electrodes in contact with LSGM solid electrolyte in air.