View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

arXiv:1901.04200v2 [g-fin.CP] 7 Dec 2019

provided by Repositério Institucional da Universidade de Aveiro

Remarks on Automatic Adjoint Differentiation
for gradient descent and models calibration

Dmitri Goloubentsev* Evgeny Lakshtanov'

Abstract

In this work, we discuss the Automatic Adjoint Differentiation
(AAD) for functions of the form G = §3°1"(Ey; — C;)?, which often
appear in the calibration of stochastic models. We demonstrate
that it allows a perfect Vil parallelization and provide its relative
computational cost. In addition we demonstrate that this theoretical
result is in concordance with numeric experiments.

Key words: Automatic Adjoint Differentiation, automatic vectorization,
Single instruction multiple data, AAD-Compiler

The Automatic Adjoint Differentiation (AAD) is a rapidly growing field
with a wide range of applications including image restoration [5], computer
vision [9] and maching learning in general see e.g. [2], [10]. The long list of
AAD applications can be found in the site of Autodiff community, see [1].

For the additional reading one can mention monograph by Antoine Savine
[12], articles by L.Capriotti [4] and by other authors e.g. [13], [14].

The AAD has become a widespread tool in applications due to the fol-
lowing property: If one has an algorithm for a function f : R} — R, then
AAD maps each A € R™ to the linear combinations of 0, f

{A.agg), z'zl...n} (1)

*MathLogic LTD, London, UK., dmitri@matlogica.com

TCIDMA, Department of Mathematics, University of Aveiro, Aveiro 3810-193, Portugal
and MathLogic LTD, London, UK., lakshtanov@matlogica.com

1Single Input Multiple Data



https://core.ac.uk/display/333883449?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1901.04200v2

the computation cost does not exceed that of f which is usually between 2
and 10 (depending on a specific AAD tool used).

The utilization of parallel computations appears naturally in calculation
of expectations since it assumes the numerous independent calculation of an
integrand. Suppose that one needs to calculate the %Ey, the algorithm for
the %y is first determined and then the average using parallel computations.
From that point of view, the AD should avoid differentiate expectations.
However, in case of the Adjoint AD, this approach becomes mandatory. The
point is that the adjoint differentiation algorithm is not local (e.g. []) i.e.
it requires analysis of the whole algorithm for f, thus the differentiation
of expectation requires much more memory than taking expectation of the
derivative.

Some important problems involve computations that include an expecta-
tion as an intermediate operation. It is not a trivial question how one can use
AAD and avoid differentiation of expectations. In a recent article [7], Fries
suggest a general recipe for this problem (see Appendix). However, Fries did
not provide the accurate analysis for the computational cost of the proposed
algorithm. This work conducts a step-by-step computation of the following
simple but important example.

Consider a functional of the type

m

¢ =5 3By - O, 2)

1

where y; are random variables on a filtered probability space (2, Q, {F;})
and C; are some given target conditions, ¢ = 1,...n. It is assumed that we
are provided with a forward algorithm

F : RN SRy

which calculates y; for a given set of M parameters and N independent
random variables in frames of a time-discretization of the stochastic process.

We assume that the AAD tool provides the algorithm R (so called "re-
verse” algorithm, e.g. [4]) which calculates the full set of derivatives (II])E
We also assume that the AAD tool produces parallelized versions F, and
R,. This means that F, (or R,) provides the execution of F' (or R) for ¢

2it can be applied only after the F' was launched.



independent sets of input data. For example, the natural value of ¢ for the
case of an AAD-tool tuned to the Intel AVX512 architecture is

¢ = 8 x Number_of_Cores. (3)

Is noted that the first factor in (3)) equals to 1 in all known to us C++ AAD
tools.

We consider the operations F©' — F, and F' — R, as a simple way to
parallelize calculations and we are interested to check if there is a way to use
this tool effectively.

Correction coefficients Kr and Ky are defined via the following expression

K K
Cost(F,) = TFCost(F), Cost(Ry) = TRCost(F) (4)

and they reflect the quality of the AAD tool. Ideally, K = 1, but in practice,
the different software optimization and different hardware specifics can never
make it perfect. One reason is that the executable version of F' is produced
with all compiler’s optimization abilities turned On, including the ability
SIMD vectorization.

Some remarks on the Monte-Carlo simulations. We approximate
expectations by

number_of_Paths

Ey ~ ! Z y(we),

number_of _Paths —

where the set {w;} contains Monte-Carlo simulations of a given stochastic
process and each w; is a simulated sample path of sequences of random vari-
ables. It is assumed that drawings are Q-uniform.

In particular,the cost of the independent evaluation for the set {Ey;,i =
1,...,m}is

Cost({Ey}) = Re x number_of Paths x Cost(F). (5)
c

Calculation of the gradient of G (introduced in (2))). For any
parameter x; we get that

¢ (& dy; -
a—%—E<;<Eyz CZ>8%), j=1,. M.

It leads to the following algorithm :




1. Calculate Ey; using F,. The costs of this calculation is given by ([Hl).

2. Fix a path w. Using formula (Il) for the vector A with components
A = By; — C; we get the set

1=1

For ¢ paths, it costs (Kp+ Kpg)Cost(F) since for each path w the reverse
algorithm can be executed only after the forward algorithm has been
launched, unless execution results of the first step can be stored in the
memory for each w. In case memory usage is not constrained, the cost
is KrCost(F)

3. Summation over paths w. To calculate the cost of this operation we take
into account that the integrand should be calculated number_of _Paths
times.

Summarizing, we get the total cost

 2Kp + Kg

Cost(G) .

x number_of Paths x Cost(F). (6)

For C++, AAD-compiler produced by MathLogic LTD can be rewritten as

B 2Ky + Kgr
8 x number_of_Cores

Cost(G) x number_of Paths x Cost(F).
where 8 reflects that the AVX512 architecture allows 8 doubles per vector
register.

Test on the Heston Stochastic Local Volatility model calibration.
For financial institutions, the model calibration is a routine day-to-day pro-
cedure. Although the Partial Differential Equation (PDE)-based techniques
became quite popular e.g. [6], [LI], practitioners more often use direct nu-
meric simulations due to the simplicity of the technique.

Consider the Heston SLV model given by a process

dS; = pSidt + \/ViL(t, S;) S, dW
AV, = k(0 — V) dt + E/VdWY
AWEdWY = pdt.



Our implementation utilizes the standard Euler discretization (e.g. 3.4 of
[8]) and European options in the quality of the y;,7 =,...,m. The set of
optimization parameters consists values of the piecewise constant Leverage
function {L(t;,5;)} (where the set of interpolation nodes {¢;,S;} is fixed)
and five standard Heston model parameters. We applied the AADC by
MathLogic LTD and observed the following values for coefficients Kr and
Kp defined in ().

N.Cores=1 KF/C KR/C numbor-o?_olf;ifs)XCost(F)
AVX2 0.39 | 0.23 1.01
AVX512 0.23 | 0.12 0.58

Tests were executed on one core. The values of the aforementioned coeffi-
cients became almost constant when number of time intervals and number
of optimization instruments m grow. As mentioned, all optimization param-
eters (like vectorization) were turned on while the evaluation of the Cost(F).

Conclusion. We consider a situation when a straighforward applica-
tion of the AAD software is not possible i.e. for functions of the form
G = 1> V(By; — C;)%. We propose a two-step algorithm which leads to
the estimate (@) and therefore, provides a perfect SIMD parallelization. A
numeric implementation of the algorithm is realized for the Heston model
using the AAD-Compiler by matlogica.com. Presented results are in good
concordace with ((@]).

Appendix. Expected Backward Automatic Differentiation Algorithm
following [7]. Consider a scalar function y given by a sequence of operations:

Yy =N (7>
zm = fm(x'f"ml? LR ?szi7rL)’ ]' S m < N (8)

where the number of variables i,, is either 0 and it means that the z,, is
an independent variable or 1 < i,, < m. Evidently for function 7,, we have
1 <7, <m. We assume that k—th operator is an expectation operator and
others f,,,m # k given by a closed-form{].

Sequentially,

3C4+ AAD-tool produced by matlogica.com

4i.e. it can be evaluated in a finite number of the ”well-known” operations, see e.g.
wikipedia https://en.wikipedia.org/wiki/Closed-form_expression for the detailed defini-
tion.



e Initialise Dy = 1 and D,, =0, m < N.

e For all m = N, N — 1,...,1 (iterating backward through the operator
list)

— for all j = 7,1, ..., Tl (iterating through the argument list)

B-— Ej"—ﬁm%, m;ék;,
! E]—FEﬁm, m=k.

Then, forall 1 <i< N
dy
ox;
Acknowledgments. E.L. was partially supported by Portuguese funds
through the CIDMA - Center for Research and Development in Mathematics
and Applications and the Portuguese Foundation for Science and Technology
(“FCT-Fundcao para a Ciéncia e a Tecnologia”), within project UID/MAT/
0416/2019.

E

References

[1] http://www.autodiff.org/?module=Applications

[2] Baydin, Atilim Gunes, et al. (2018), Automatic differentiation in ma-

chine learning: a survey. Journal of Marchine Learning Research, 18,
1-43.

[3] Bartholomew-Biggs, M., Brown, S., Christianson, B., Dixon, L. (2000).
Automatic differentiation of algorithms. Journal of Computational and
Applied Mathematics, 124(1-2), 171-190.

[4] Capriotti, L. (2011). Fast Greeks by algorithmic differentiation. The
Journal of Computational Finance, 14(3), 3.

[5] Goossens, B., Luong, H., Philips, W. (2017, September). GASPACHO:
a generic automatic solver using proximal algorithms for convex huge
optimization problems. In Wavelets and Sparsity XVII (Vol. 10394, p.
1039410). International Society for Optics and Photonics.


http://www.autodiff.org/?module=Applications

[6]

Crépey, S. (2003). Calibration of the local volatility in a generalized
black—scholes model using tikhonov regularization. STAM Journal on
Mathematical Analysis, 34(5), 1183-1206.

Christian P. Fries. Stochastic Automatic Differentiation: Automatic
Differentiation for Monte-Carlo Simulations. In: SSRN (2017). DOL:
10.2139/ ssrn.2995695.

Glasserman, P. (2013). Monte Carlo methods in financial engineering
(Vol. 53). Springer Science & Business Media.

Pock, T., Pock, M., Bischof, H. (2007). Algorithmic differentiation:
Application to variational problems in computer vision. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 29(7), 1180-1193.

Srajer, F., Kukelova, Z., Fitzgibbon, A. (2018). A benchmark of se-
lected algorithmic differentiation tools on some problems in computer
vision and machine learning. Optimization Methods and Software, 1-
14.

Saporito, Y. F., Yang, X., Zubelli, J. P. (2017). The Calibration of
Stochastic-Local Volatility Models-An Inverse Problem Perspective.
arXiv preprint arXiv:1711.03023.

Savine, A. (2018). Modern Computational Finance: AAD and Parallel
Simulations. John Wiley & Sons.

Hans-Jorgen F., Huge B., Savine A. Practical implementation of aad for
derivatives risk management, xva and rwa. Global Derivatives (2015).

Savine A., Computation Graphs for AAD and Machine Learning Part
I: Introduction to Computation Graphs and Automatic Differentiation.
Wilmott, 2019, 2019.104: 36-61.


http://arxiv.org/abs/1711.03023

