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Abstract. Motivated by the need to reason about hybrid systems, we study limits in categories of
coalgebras whose underlying functor is a Vietoris polynomial one — intuitively, the topological analogue
of a Kripke polynomial functor. Among other results, we prove that every Vietoris polynomial functor
admits a final coalgebra if it respects certain conditions concerning separation axioms and compactness.
When the functor is restricted to some of the categories induced by these conditions the resulting
categories of coalgebras are even complete.

As a practical application, we use these developments in the specification and analysis of non-
deterministic hybrid systems, in particular to obtain suitable notions of stability, and behaviour.

1. Introduction

1.1. Motivation and context. Coalgebras [Rut00, Adá05, Jac12] form a powerful theory of state-based
transition systems where definitions and results are formulated at a high level of genericity that covers
several families of systems at once, from deterministic automata and Kripke frames to different kinds
of probabilistic models. Traditionally, these formulations are elaborated in a set-based context; i.e. no
further structure in the system’s state space than that of a set is assumed. In many cases, however, a
switch of context is needed. The projects on the coalgebraic foundations of stochastic systems, where the
Giry functor and measurable spaces have a central role (cf. [Vig05, Pan09, Dob09]), are evident examples
of this. Research on coalgebras over Stone spaces (e.g. [KKV04, BFV10, VV14]) and coalgebras over
pseudometric spaces [BBKK14] forms equally important cases. In [KKV04, BFV10, VV14], the aim is
to provide a suitable coalgebraic semantics for finitary modal logics by taking advantage of a Vietoris
functor, while in [BBKK14] is to introduce a notion of distance between states.

In this paper our focus is on coalgebras over arbitrary topological spaces, because we believe that
they provide important mechanisms to the design and analysis of hybrid systems [Tab09, Alu15, Sta01].
Briefly put, hybrid systems are those that possess both discrete and continuous behaviour, a result of the
complex interaction between digital devices, and physical processes like velocity, movement, temperature,
and time. Two recurring examples are the cruise control system, basically a digital device with influence
over velocity, and the bouncing ball. In the latter, movement and velocity have a continuous nature, while
the impact on the ground is assumed to be a discrete event that instantaneously alters the current velocity.
As we will see in the following sections, such an interaction between discrete and continuous behaviour calls
for a shift from the set-based setting to richer contexts, in particular to topological ones so that suitable
notions of stability, bisimulation, and behaviour can be obtained. These are the practical motivations
for the theoretical results that this paper provides. But we stress that coalgebras over topological spaces
have the potential for much more – the works [Vig05, Pan09, Dob09, BFV10, VV14, BBKK14, KKV04],
for example, elegantly attest this. Our results are therefore applicable to a much broader context than
that of hybrid systems.

Each functor F : C→ C induces a category of coalgebras CoAlg(F ) that can be seen as a framework for
a particular family of state-based transition systems, whose transition type is determined by F : C → C

(cf. [Rut00]). The powerset P : Set→ Set, for example, often associated with non-deterministic behaviour,
gives rise to Kripke frames.
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In such a context, the systematic study of (co)limits in categories of coalgebras is a natural research
line. In fact, final coalgebras, which form a specific type of limit, are often searched for, as they encode a
canonical notion of behaviour for all F -coalgebras. Another special kind of limit, equalisers of coalgebras,
is extensively used in coalgebraic specification (cf. [Rut00, Adá05]). It provides a notion of subsystem,
and is essential to characterise a system induced by a set of coequations.

1.2. Contributions and related work. As mentioned before, this paper concerns coalgebras over ar-
bitrary topological spaces. More concretely, coalgebras whose underlying functor is defined over the
category Top of topological spaces and continuous maps. Analogously to what has already been done in
Set (e.g. [Rut00, GS01]), the aim here is to investigate the existence of limits in categories of coalgebras
whose underlying functor is Vietoris polynomial — the topological analogue of a Kripke polynomial
functor. The former is called ‘Vietoris polynomial’ because it arises from the composition of different Vi-
etoris functors [Vie22, Mic51, CT97] (the topological analogues of the powerset functor) with polynomial
functors over Top. To keep the nomenclature simple, we call every coalgebra whose underlying functor is
Vietoris polynomial a Vietoris coalgebra.

As composites of constant, (co)product, identity, and powerset functors, Kripke polynomial functors
have long since been recognised as a particularly relevant class of functors (cf. [Rut00, BRS09, KKV04]).
They are intuitive and the corresponding coalgebras subsume several types of state-based systems. More-
over, they are well-behaved in regard to the existence of limits in their categories of coalgebras if the
powerset functor is submitted to certain cardinality restrictions. We will see that somewhat similar re-
sults hold for Vietoris polynomial functors as well. Actually, an instance of a Vietoris functor, which we
call compact Vietoris functor, has already been studied multiple times in the coalgebraic setting (e.g.
[KKV04, BFV10, VV14, DDG16]), and will appear in a book on coalgebras that is currently in prepara-
tion [AMM16]. In particular, [KKV04] shows that compact Vietoris polynomial functors in the category
Stone of Stone spaces and continuous maps admit a final coalgebra. Also, document [DDG16] presents a
theorem that can be generalised to show that the compact Vietoris functor in the category CompHaus of
compact Hausdorff spaces and continuous maps, admits a final coalgebra. In fact, this generalised result
is also implicitly mentioned in [Eng89, page 245]. Related to this, but in a broader setting, we collect a
number of results scattered in coalgebraic and topological literature, and

• add to this collection some results of our own. In particular, we generalise Hughes’ theorem (The-
orem 2.14) and prove that, under certain conditions, functors between categories of coalgebras
are topological. Topological functors have powerful properties such as the existence of left and
right adjoints, lifting of limits, and lifting of factorisations [AHS90].

• This collection of results allows us to obtain several new results about limits in categories of
Vietoris coalgebras. For example, that categories of polynomial coalgebras over Top are complete,
and that categories of compact Vietoris coalgebras over CompHaus are complete as well. Using
in particular [Zen70, Lemma B], we also show that categories of compact Vietoris coalgebras are
complete in the category Haus of Hausdorff spaces and continuous maps. Moreover we will see
that all categories of Vietoris coalgebras over Top have equalisers.

• We then take advantage of the limit-preserving properties of the inclusion functors CompHaus→
Top and Haus → Top to show that every compact Vietoris polynomial functor F : Top → Top

that can be restricted either to CompHaus or Haus admits a final coalgebra.

Our setting is a broader one also because we consider different instances of Vietoris functors, a partic-
ular case being what we call the lower Vietoris functor, studied in a coalgebraic setting in [BKR07].

• We will show that every lower Vietoris polynomial functor behaves well in the category StablyComp

of stably compact spaces and spectral maps. In particular, that its category of coalgebras is com-
plete.

• In order to extend these results to more variants of Vietoris functors, we study the existence of
adjunctions between categories of coalgebras. One positive result is that, assuming the existence
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of a monomorphic natural transformation between the underlying functors, such an adjunction
exists under mild conditions.

To illustrate the practical side of these developments, and, more generally, the potential of coalgebras
over Top to the design and analysis of hybrid systems, we argue that the coalgebraic specification in Set

of the bouncing ball has some deficiencies. Among them, the incapability to reason about the system’s
stability, and the non-existence of a suitable final coalgebra if non-determinism is taken into account. We
will see that these issues can be solved, to some extent, by adopting the category Top as the underlying
semantic universe.

1.3. Roadmap. The ensuing section introduces some categorial notions, provides an overview, and ex-
tends some results about limits in categories of coalgebras. Then, it formally reviews the concept of
Vietoris coalgebra and different instances of Vietoris functors — as already mentioned, our agenda has a
broader scope than most coalgebraic literature on Vietoris functors, which mainly focuses on one specific
case.

Section 3 starts with our study about polynomial coalgebras over Top, and topological functors between
categories of coalgebras. Then, it adds two instances of Vietoris functors (the lower and the compact)
to the mix which, as expected, introduce a number of difficulties. A number of topological concepts are
recalled at this point to help us achieve some of the results mentioned above.

Section 4 explores the existence of adjunctions between categories of coalgebras induced by natural
transformations relating functors on the underlying categories. As already stated, this allows to extend
the results of the previous section to subfunctors of Vietoris polynomial ones, thus covering at once several
variants of Vietoris functors.

Section 5 illustrates an application of this work to the design of hybrid systems. Finally, Section 6
suggests possible research lines for future work and concludes.

We assume that the reader has basic knowledge of category theory [Mac71, AHS90], topology [Kel55,
Gou13], and coalgebras [Rut00, Adá05, Jac12].

2. Preliminaries

2.1. Categorial notions. Some categorial notions that the reader may not frequently meet will be used.
This section provides a brief overview about them.

Definition 2.1. A diagram D : I → C is said to be codirected whenever I is a codirected partially
ordered set, that is, I is non-empty and for all i, j ∈ I there is some k ∈ I with k → i and k → j. A cone
for a codirected diagram is called a codirected cone. In particular, a limit of a codirected diagram is
called codirected.

Example 2.2. Inverse sequence (or ωop) diagrams, which have the shape depicted below, are codirected.

· ←− · ←− · ←− . . .

Inverse sequence diagrams have a central role in showing that a given functor admits a final coalgebra
(see Theorem 2.10).

Remark 2.3. The codirected limit of a diagram D : I → Set is given by the subset{
(xi)i∈I ∈

∏
i∈I

D(i) | ∀j → i ∈ I,D(j → i)(xj) = xi

}
of the product

∏
i∈I D(i).

Definition 2.4. A category C is said to be connected if it is non-empty and every two objects A,B ∈ C

can be connected by a finite zig-zag of morphisms as depicted below.

A← · → · · · ← · → B
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A diagramD : I → C is called connected diagram if I is connected, and a limit ofD is called connected
limit if D : I → C is connected.

Examples 2.5. Equalisers and codirected limits are two examples of connected limits.

We will see in the following section that polynomial functors over Top preserve connected limits, in
particular codirected ones.

Definition 2.6. Let F : A → B be a functor. A cone C = (C → Xi)i∈I in A is said to be initial
with respect to F if for every cone D = (D → Xi)i∈I and every morphism h : FD → FC such that
FD = FC · h, there exists a unique A-morphism h̄ : D → C with D = C · h̄ and h = Fh̄.

We simply say that the cone is initial whenever no ambiguities arise.

Examples 2.7. (1) A cone (fi : X → Xi) in Top is initial with respect to the forgetful functor
Top→ Set if and only if X is equipped with the so called initial (weak) topology. Explicitly, the
topology generated by the subbasis

f−1
i (U) (i ∈ I, U ⊆ Xi open).

(2) In the category CompHaus of compact Hausdorff spaces and continuous maps, a monocone is
initial in Top (cf. [Gou13, Theorem 4.4.27]). Interestingly, the converse also holds, as a initial
cone in Top whose domain is a T0 space is necessarily mono.

Remark 2.8. In Example 2.7(1) the subbasis is actually a basis if the cone is codirected.

Theorem 2.9 ([AHS90, Proposition 13.15]). Let F : A → B be a limit preserving faithful functor and
D : I → A a diagram. A cone C for D is a limit of D if and only if the cone FC is a limit of FD and C
is initial with respect to F .

2.2. Limits in categories of coalgebras. Let F : C→ C be an arbitrary functor. Then, dually to the
algebraic case, one can easily show that colimits in CoAlg(F ) exist if they do so in C (cf. [Rut00, Adá05]).
The story about limits in categories of coalgebras is, however, more complex. In this subsection we review
some well-known results on this topic, a special focus being given to those more relevant to the paper.
We start at a generic level, with the following two theorems (cf. [Rut00, Adá05]).

Theorem 2.10. Let C be a category with a final object 1 and F : C→ C a functor. If the category C has
a limit L of the diagram

1←− F1←− FF1←− . . .

and F preserves this limit, then the canonical isomorphism L→ FL is a final F -coalgebra.

Theorem 2.11. Assume that F : C → C preserves limits of a certain type. Then the forgetful functor
CoAlg(F )→ C creates limits of the same type.

An important consequence of the last theorem is that CoAlg(F ) has all types of limit that C has and that
the functor F : C → C preserves. Unfortunately, as we will witness later, this assumption is often too
strong. Resorting to the notion of covarietor, the following results will be more helpful.

Definition 2.12. A functor F : C → C is said to be a covarietor if the canonical forgetful functor
CoAlg(F )→ C is left adjoint.

This adjoint situation allows to take advantage of the theory of (co)monads regarding (co)completeness
of Eilenberg-Moore (co)algebras to derive the following theorem (cf. [Lin69]). See [Adá05, Remark 3.12]
for more details.

Theorem 2.13. Let F be a covarietor over a complete category. If CoAlg(F ) has equalisers then CoAlg(F )

is complete.
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Related to this, Hughes proved the following theorem in [Hug01, Theorem 2.4.2].

Theorem 2.14. Let C be regularly wellpowered, cocomplete, and possess equalisers. Moreover, assume
that it has an (Epi, RegMono)-factorisation structure, and that the functor F : C → C preserves regular
monomorphisms. Then CoAlg(F ) has equalisers.

Using Theorem 2.13, one can then easily deduce the following corollary.

Corollary 2.15. If the conditions in the last theorem hold and, additionally, C is complete and F is a
covarietor, then the category CoAlg(F ) is complete.

We refer the interested reader to other results on limits in categories of coalgebras. In particular, the
work of Kurz [Kur01], which shows that CoAlg(F ) is complete whenever it has a suitable factorisation
structure, F is a covarietor, and C is complete; document [GS01], where the authors study the existence
of equalisers and products in categories of coalgebras over Set; and the documents [PW98, GS01], where
the existence of limits is studied under the assumption of F being bounded.

To close this section, we provide an improvement to Hughes’ theorem. We start with notation.

Definition 2.16. For a small category I, a cone for I in a category C is given by a functor D : I → C

together with a cone (X → D(i))i∈I for D. Given a class M of cones for I, the category C is called
M-wellpowered if for every functor D : I → C there is up to isomorphism only a set of cones for D in
M.

Our first lemma is in the spirit of [AHS90, Section 12] and shows that “cocompleteness almost implies
completeness”.

Lemma 2.17. Let C be a cocomplete category and I a small category. Furthermore, let E be a class of
C-morphisms and M be a class of cones for I in C. If C is M-wellpowered and every cone for I has a
(E,M)-factorisation, then C has limits of shape I.

Proof. We will show that the diagonal functor

∆ : C→ CI

has a right adjoint, using Freyd’s General Adjoint Functor Theorem (see [Mac71]). By assumption, C is
cocomplete and the functor ∆ clearly preserves colimits, so we just need to show that the Solution Set
Condition holds. In this context it unfolds to the following condition: for every functor D : I → C, there
is a set S of cones for D such that every cone (fi : C → D(i))i∈I for D factors through a cone in S.

Since C isM-wellpowered we have, by assumption, a set S of representants for D inM. Moreover C
has a (E,M)-factorisation system for I, which means that the cone (fi : C → D(i))i∈I can be factorised
as depicted below

C
fi

//

e
��

D(i)

A

gi

==

with the cone (gi : A→ D(i))i∈I in S. �

The factorisation system assumed in this lemma may appear to be rather unconventional, but, as the
following remarks will show, it actually emerges from mild conditions.

Remark 2.18. Consider a category C equipped with classes E andM of morphisms so that E is contained
in the class of epimorphisms of C, every morphism in C has a (E,M)-factorisation and C isM -wellpowered.
Under additional assumptions, such factorisations can be extended to cones for I. To be more concrete:
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(1) Assume that C has products. Then we put

M =

{
all cones (fi : X → D(i))i∈I for I where 〈fi〉i∈I : X →

∏
i∈I

D(i) is in M

}
.

Clearly, every cone for I is (E,M)-factorisable (see [AHS90, Proposition 15.19]), and C is M-
wellpowered.

(2) In order to relate the previous lemma with Hughes’ theorem, assume that I = {1 ⇒ 2}. The
class of cones

M = {all cones (fi : X → D(i))i∈I for I with f1 in M} ,

makes every cone for I (E,M)-factorisable and the category C isM-wellpowered.

In both cases, if the category C is (E,M)-structured then it is (E,M)-structured as well.

Finally, we apply the results above to categories of coalgebras.

Theorem 2.19. Let F : C → C be an endofunctor over a cocomplete category C and let I be a small
category. If C is (E,M)-structured for cones for I,M-wellpowered and F sends cones inM to cones in
M, then CoAlg(F ) has limits of shape I.

Proof. The assumptions guarantee that the factorisation system in C lifts to the category CoAlg(F ) (cf.
[Adá05, Che14]). The claim then follows from Lemma 2.17. �

Let us now relate in a more precise manner the previous theorem with Hughes’ theorem.

Theorem 2.20. Let F : C → C be an endofunctor over a cocomplete category C. If C is regularly well-
powered, has an (Epi, RegMono)-factorisation structure and F : C→ C preserves regular monomorphisms,
then CoAlg(F ) has equalisers.

Proof. Let I = {1 ⇒ 2} and use Remark 2.18(2) to provide a (E,M)-factorisation system for cones for
I. The category C is clearlyM-wellpowered and by a simple reasoning one shows that F sends cones in
M to cones inM. Now apply Theorem 2.19. �

The last result shows that Hughes’ assumption of C having equalisers is not necessary. Another
interesting point is the ability that we gain to reason not just about equalisers but any type of limit. We
will take advantage of this generalisation in the next section (see Corollary 3.16).

Note also that the following corollaries can be obtained almost for free.

Corollary 2.21. Let F : Set → Set be a functor that preserves monocones of a certain type. Then the
category CoAlg(F ) has limits of the same type.

Recall that Top is an (Epi,initial monocones)-category and an (RegEpi,monocones)-category (cf.
[AHS90, Examples 15.3 (6)]). The following result can then be derived.

+

Corollary 2.22. Let F : Top→ Top be a functor that preserves either small monocones or small initial
monocones of a certain type. Then the category CoAlg(F ) has limits of the same type.

2.3. Vietoris polynominal functors. Although traditionally considered in Set (e.g. [BRS09, Jac12]),
the notion of a polynomial functor can be formally defined at a more generic level.

Definition 2.23. Let C be a category with (co)products. We call a functor F : C→ C polynomial if it
can be recursively defined from the grammar below

F ::= F + F | F × F | A | Id

where A corresponds to an object of C.
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Remark 2.24. Alternatively, one can define the class of polynomial functors as the smallest class of
functors F : C→ C that contains the identity functor, all constant functors, and is closed under products
and sums of functors. Here, for functors F,G : C → C, the product of F and G, and the sum of F and
G are, respectively, the composites

C
〈F,G〉−−−−→ C× C

×−→ C, and C
〈F,G〉−−−−→ C× C

+−→ C.

Note that if the functors F,G : C → C preserve limits of a certain type the functor F × G : C → C

preserves limits of the same type as well. Note also that

Proposition 2.25. The functor (+) : Top× Top→ Top preserves connected limits.

Proof. It is well-known that the functor (+) : Set× Set→ Set preserves connected limits. Then observe
that (+) : Top× Top→ Top preserves initial cones and apply Theorem 2.9. �

Corollary 2.26. If the functors F,G : Top→ Top preserve connected limits the functor F +G : Top→
Top preserves connected limits as well.

In the set-based context, the powerset functor P : Set → Set is traditionally used in conjunction with
polynomial functors to bring non-deterministic behaviour into the scene, the resulting functor being a so
called Kripke polynomial functor. The situation is more complex in the topological context because
a number of functors can be seen as ‘analogues’ of the powerset. Most of them have their roots in the
Hausdorff metric (cf. [Pom05, Hau14]) and in Vietoris’ “Bereiche zweiter Ordnung” [Vie22]. Informally,
we call them Vietoris functors. The remainder of this section provides some details about them.

Consider a compact Hausdorff space X, the classic Vietoris space VX [Vie22] consists of the set
of all closed subsets of X, i.e.

VX = {K ⊆ X | K is closed}

equipped with the ‘hit-and-miss topology’ generated by the subbasis of sets of the form

U♦ = {A ∈ VX | A ∩ U 6= ∅} (“A hits U”) ,

U� = {A ∈ VX | A ⊆ U} (“A misses X \ U”),

where U ⊆ X is open. Nowadays there are several well-studied variants of this archetype that give rise
to endofunctors over specific subcategories of Top. The interested reader will find in [Mic51] and [CT97]
more details about these constructions. For now, we concentrate on two particular cases, described below.

Examples 2.27. (1) For a topological space X, define VX = {K ⊆ X | K is compact } with the
topology generated by the sets U� and U♦, with U ranging over all open subsets U ⊆ X. Then,
given a continuous map f : X → Y , define Vf : VX → VY as Vf(A) = f [A]. We call this variant
compact Vietoris functor. It is well-known that VX is compact Hausdorff whenever X is. In
fact, for compact Hausdorff spaces this construction coincides with the classic one [Vie22].

(2) For a topological space X, define VX = {K ⊆ X | K is closed} with the topology generated
by the sets U♦, with U ranging over all open subsets U ⊆ X. Then, given a continuous map
f : X → Y , define Vf : VX → VY as Vf(A) = f [A], where f [A] denotes the closure of f [A].
This variant is called lower Vietoris functor.

Remark 2.28. The classic Vietoris construction, with closed sets, does not define an obvious functor on
Top. That is, adding the sets U� to the subbasis of Example 2.27 (2) does not define a functor. To see
why, consider the set {1, 2, 3} equipped with the topology generated by the sets {1, 2} and {2, 3}. For
the subspace embedding i : {1, 2} → {1, 2, 3}, (V i)−1[{1, 2}�] = {∅, {1}}. However, every open set of
V{1, 2} that contains {1} contains {1, 2}.

A number of projects on (coalgebraic) modal logic studied the compact Vietoris functor in the category
of Stone spaces (e.g. [KKV04, VV14]) and in the category of compact Hausdorff spaces [BBH12]. The
second case was explored by [CLP91, Pet96, BKR07] in the context of Priestley spaces.



8 DIRK HOFMANN, RENATO NEVES, AND PEDRO NORA

Definition 2.29. Let V : Top → Top be the lower Vietoris functor. We call a functor F : Top → Top

lower Vietoris polynomial if it can be recursively defined from the grammar below.

F ::= F + F | F × F | A | Id | V

Similarly, if we consider the compact Vietoris functor V : Top → Top in lieu of the lower one, then we
speak of a compact Vietoris polynomial functor.

3. On limits in categories of Vietoris coalgebras

3.1. Polynomial functors in Top. Using standard results, we now show that for a polynomial functor
F : Top → Top the associated category of coalgebras CoAlg(F ) is complete. A useful fact for this proof
is that the category Top is (co)complete (cf. [AHS90]). Moreover, note that

Theorem 3.1. All polynomial functors F : Top→ Top preserve connected limits.

Proof. Clearly the identity functor Id : Top → Top preserves all limits, and the constant functor A :

Top→ Top trivially preserves connected limits. The claim now follows from Remark 2.24 and Corollary
2.26. �

From the theorem above one can derive the following results in a straightforward manner.

Proposition 3.2. All polynomial functors F : Top→ Top preserve regular monomorphisms.

Proof. First note that the diagrams associated with equalisers are connected. Then, recall that a regular
monomorphism is an equaliser of a pair of morphisms. �

Theorem 3.3. All polynomial functors F : Top→ Top are covarietors.

Proof. Since a polynomial functor F : Top → Top preserves connected limits (Theorem 3.1) it preserves
the codirected ones as well. The claim is then a direct consequence of [Bar93, Theorem 2.1]. �

In regard to equalisers in CoAlg(F ), one can easily show that the necessary requirements to apply Theorem
2.14 are met. Actually, it is well-known that the category Top is regularly wellpowered (cf. [AHS90]),
and we already saw that it is (co)complete. Moreover, it has an (Epi, RegMono)-factorisation structure
(cf. [AHS90]). Therefore,

Corollary 3.4. If F : Top→ Top is a polynomial functor, the category CoAlg(F ) has equalisers.

Proof. A direct consequence of Theorem 2.14 and Proposition 3.2. �

Theorem 3.5. If F : Top→ Top is a polynomial functor, the category CoAlg(F ) is complete.

Proof. Observe that F is a covarietor (Theorem 3.3), and that the category CoAlg(F ) has equalisers
(Corollary 3.4). Then, apply Theorem 2.13. �

We will now use ‘less standard’ results to go further than the previous theorem. More concretely, we
will show that not only is CoAlg(F ) complete but also that there is a functor with powerful properties
from CoAlg(F ) to the analogous category of coalgebras over Set. By going further we also mean that the
results that we will introduce next may be used in categories different than Top, prime examples are the
category of preordered sets Ord and the category of pseudometric spaces PMet.

The general idea is that starting with a category B with good properties and assuming the existence
of a functor A→ B that lifts these properties to a category A, there will often be a functor CoAlg(F )→
CoAlg(F ) with the same lifting properties than A → B for functors F : A → A, F : B → B making the
diagram below commute.

A
F
//

U
��

A

U
��

B
F
// B
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The following definition recalls the notion of topological functor, which lifts several properties of a
category.

Definition 3.6. A functor U : A→ B is called topological if every cone C = (X → UXi)i∈I in B has a
U -initial lifting, i.e. a initial cone D = (A→ Xi)i∈I with respect to U : A→ B such that C = UD.

Remark 3.7. Every topological functor is both left and right adjoint, lifts limits and certain types of
factorisations (see [AHS90]).

Proposition 3.8. Consider two categories A,B a functor U : A→ B, endofunctors F : A→ A, F : B→
B, and a natural transformation

δ : UF → FU.

Then, there is a functor U : CoAlg(F )→ CoAlg(F ) defined by the equations

U(X, c) = (UX, δX · Uc), Uf = Uf

that makes the diagram below commute.

CoAlg(F ) //

U

��

A

U

��

CoAlg(F ) // B

Moreover,

Proposition 3.9. If the functor U : A → B is faithful, then the induced functor U : CoAlg(F ) →
CoAlg(F ) is faithful.

Lemma 3.10. Assume that the natural transformation δ : FU → UF is mono and U is faithful. Let
(fi : (X, c)→ (Yi, di))i∈I be a cone in CoAlg(F ), and (fi : X → Yi)i∈I be initial with respect to U : A→ B.
Then, the cone (fi : (X, c)→ (Yi, di))i∈I is initial with respect to the functor U : CoAlg(F )→ CoAlg(F ).

Proof. Let (fi : (X, c) → (Yi, di))i∈I be a cone in CoAlg(F ) and (fi : X → Yi)i∈I be initial with respect
to U : A → B. Then, consider another cone (gi : (Z, e) → (Yi, di))i∈I in CoAlg(F ) and assume that its
U -image is factorised as shown by the diagram below.

U(Z, e)

h

��

Ugi

%%

U(X, c)
Ufi

// U(Yi, di)

The forgetful functor CoAlg(F )→ B yields the following factorisation of the cone (Ugi : UZ → UYi)i∈I .

UZ

h

��

Ugi

""

UX
Ufi

// UYi

Since the cone (fi : X → Yi)i∈I is initial with respect to U : A→ B, there is a unique arrow h : Z → X

in A such that for all i ∈ I we have

gi = fi · h, Uh = h.
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It remains to show that the arrow h : Z → X is also a coalgebra homomorphism h : (Z, e)→ (X, c). For
this, consider the diagram below.

Z
h
//

e

��

X
fi
//

c

��

Yi

di
��

FZ
F h

// FX
Ffi

// FYi

By assumption, the equation Fh · δZ · Ue = δX · Uc · h holds. Then reason in the following manner:

Fh · δZ · Ue = δX · Uc · h ⇐⇒ FUh · δZ · Ue = δX · Uc · Uh

⇐⇒ δX · UF h · Ue = δX · Uc · Uh

=⇒ UF h · Ue = Uc · Uh

⇐⇒ U(F h · e) = U(c · h)

=⇒ F h · e = c · h.

�

Theorem 3.11. Assume that F : A→ A preserves initial cones and that UF = FU . Then if the functor
U : A→ B is topological, the functor U : CoAlg(F )→ CoAlg(F ) is topological as well.

Proof. Let (fi : (X, c)→ U(Yi, di))i∈I be a cone in CoAlg(F ). Since the functor U : A→ B is topological,
the induced cone (fi : X → UYi)i∈I admits a U -initial lifting

(f i : A→ Yi)i∈I .

By assumption, the cone (F f i : FA→ FYi)i∈I is also initial. Moreover, note that the following equations
hold,

U

(
A

fi→ Yi
di→ FYi

)
=
(
X

fi→ UYi
Udi→ FUYi

)
U

(
FA

F fi→ FYi

)
=
(
FX

Ffi→ FUYi

)
(i ∈ I)

and that we have the factorisation below.

X
Udi·fi

##

c

��

FX
Ffi

// FUYi

This provides an arrow c : A→ FA such that Uc = c, and that makes the diagram below to commute.

A
di·fi

""
c
��

FA
F fi

// FYi

We thus have a cone (f i : (A, c) → (Yi, di))i∈I in CoAlg(F ). To finish the proof recall that the cone
(f i : A→ Yi)i∈I is initial with respect to the functor U : A→ B and apply Lemma 3.10. �

Corollary 3.12. Let U : A→ B be a topological functor and consider two functors F : A→ A, F : B→ B

such that F : A → A preserves initial cones. Moreover assume that UF = FU . Then the category
CoAlg(F ) is complete iff CoAlg(F ) is complete.
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The forgetful functor Top → Set is topological (cf. [AHS90]) and it is straightforward to show that
all polynomial functors over Top preserve initial cones. Using the previous corollary this entails that all
categories of coalgebras of a polynomial functor over Top are complete.

As hinted before, Corollary 3.12 has stronger consequences than Theorem 3.5: it considers all functors
in Top that preserve initial cones (and not just the polynomial ones) and it does not make any assumption
about the category A being Top. In fact, the only assumption about the category A is that it has
a topological functor A → B. We invite the reader to examine in [AHS90] several examples of such
categories.

3.2. Some notes about Vietoris functors. The last corollary is a positive result of our study of limits
in categories of polynomial coalgebras. On the other hand, the addition of Vietoris functors to the mix
brings a whole new level of difficulty that calls for a number of topological concepts, an investigation of
Vietoris functors and some of their preservation properties. The study of such properties is the main goal
of this section.

Lemma 3.13. Let X be a topological space and B a base for the topology of X.

(1) The set {B♦ | B ∈ B} is a subbase for the lower Vietoris space VX ( cf. Example 2.27(2)).
(2) If B is closed under finite unions, then the set {B♦ | B ∈ B} ∪ {B� | B ∈ B} is a subbase for the

compact Vietoris space VX ( cf. Example 2.27(1)).

Proof. Let S be a set of open subsets of X. First note that, for both the lower and the compact Vietoris
space, (⋃

S
)♦

=
⋃{

S♦ | S ∈ S
}
.

This proves the first statement. To see that the second one is also true, observe that(⋃
S
)�

=
⋃{(⋃

F
)�
| F ⊆ S finite

}
since we only consider compact subsets of X. �

Lemma 3.14. Both the compact and the lower Vietoris functor V : Top→ Top preserve initial codirected
cones.

Proof. Let (fi : X → Xi)i∈I be an initial codirected cone in Top. Then the set{
f−1
i (U) | i ∈ I, U ⊆ Xi open

}
is a base for the topology of X (Remark 2.8). Moreover, the base is closed under finite unions. Therefore,
by the lemma above, the proof follows from the equations

((fi)
−1(U))� = (Vfi)−1(U�) ((fi)

−1(U))♦ = (Vfi)−1
(
U♦
)
,

for all i ∈ I and U ⊆ Xi open, which are straightforward to show. �

Theorem 3.15. The lower Vietoris functor preserves initial codirected monocones. The compact Vietoris
functor preserves initial codirected monocones of Hausdorff spaces.

Proof. First note that for a topological space X the lower Vietoris space VX is T0, and if X is Hausdorff
the compact Vietoris space VX is Hausdorff as well (cf. [Mic51]). Then recall that a initial cone in Top

whose domain is T0 (or T2) is necessarily mono and apply Lemma 3.14. �

Together with Proposition 3.2 it follows:

Corollary 3.16. Every compact polynomial functor and every lower polynomial functor F : Top→ Top

preserves regular monomorphisms.



12 DIRK HOFMANN, RENATO NEVES, AND PEDRO NORA

Proof. We already saw that all polynomial functors preserve regular monomorphisms (Proposition 3.2),
and that the lower Vietoris functor preserves them as well (Theorem 3.15). Moreover, we saw that the
compact Vietoris functor preserves initial monomorphisms (Lemma 3.14) and it is straightforward to
show that it preserves monomorphisms. �

From Theorem 3.15 and Corollary 2.19 we obtain the following results.

Corollary 3.17. For every lower Vietoris polynomial functor F : Top→ Top the category CoAlg(F ) has
codirected limits. For every compact Vietoris polynomial functor F : Top → Top the category CoAlg(F )

has codirected limits of Hausdorff spaces.

Corollary 3.18. For every Vietoris polynomial functor F : Top → Top the category CoAlg(F ) has
equalisers.

Proof. Direct consequence of Theorem 2.20 and Corollary 3.16. �

Remark 3.19. The assumption above about codirectedness is essential: neither the compact nor the lower
Vietoris functor V : Top→ Top preserve monocones in general. Take, for instance, a compact Hausdorff
space X with at least two elements. Then A = {(x, x) | x ∈ X} is a closed subset of X ×X, and A is
different from B = X×X. However, with π1 : X×X → X and π2 : X×X → X denoting the projection
maps,

Vπ1(A) = Vπ1(B) = X = Vπ2(A) = Vπ2(B);

which shows that the cone (Vπ1 : V(X ×X)→ VX,Vπ2 : V(X ×X)→ VX) is not mono.

Theorem 3.15 shows some good behaviour with respect to codirected initial monocones. However, none
of the functors of Examples 2.27 preserves codirected limits in Top.

Examples 3.20. (1) We consider I = N with the natural order, and the functor D : N→ Set which
sends n ≤ m to the inclusion map {0, . . . n} ↪→ {0, . . . ,m}. Clearly, the set of natural numbers
N is a colimit of this directed diagram. Then, the composite Set(−,N) ·Dop : Nop → Set yields
a codirected diagram with limit Set(N,N), the limit projections pn : Set(N,N) → Set(D(n),N)

being given by restriction. Equipping all sets with the indiscrete topology, we obtain a codirected
limit in Top. The compact Vietoris functor does not send this limit to a monocone since (V pn)n∈N

cannot distinguish between the sets Set(N,N) and

{f : N→ N | {n ∈ N | f(n) 6= 0} is finite}.

(2) The next example is based on the “empty inverse limit” of [Wat72]. Here I is the set of all finite
subsets of R, with order being containment ⊇. For F ∈ I, let D(F ) be the discrete space of
all injective functions F → N, and the map D(G ⊇ F ) is given by restriction. Note that each
connecting map D(G ⊇ F ) is surjective. Then the limit of this diagram in Top is empty since an
element of this limit would define an injective function R→ N. The lower Vietoris functor sends
the limit cone for D to a monocone but not to a limit cone since the limit of VD has at least
two elements: (∅)F∈I and (D(F ))F∈I . Using the indiscrete topology instead of the discrete one
shows that the lower Vietoris functor does not preserve codirected limits of diagrams of compact
spaces and closed maps.

(3) In the example above we can use other topologies to show that the lower or the compact Vietoris
functor does not preserve certain codirected limits. As an example, we consider here N equipped
with the topology

{↑n | n ∈ N} ∪ {∅};

where ↑n = {k ∈ N | n ≤ k}. Note that N is T0 and every non-empty collection of open subsets
of N has a largest element with respect to inclusion ⊆. The latter implies that, for every finite
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set F , every subset of NF is compact. To see this, let C ⊆ NF and assume that C is covered by
subbasic open subsets of NF :

C ⊆
⋃
λ∈Λ

π−1
iλ

[↑nλ].

Note that the set K = {iλ | λ ∈ Λ} ⊆ F is finite. For every i ∈ K, let ki = min{nλ | λ ∈ Λ, iλ =

i}. Then
C ⊆

⋃
i∈K

π−1
i [↑ki].

Using now Alexander’s Subbase Theorem (cf. [Kel55]), we conclude that C is compact.
With I being as in the previous example, we consider now D(F ) as a subspace of NF . Then,

for every G ⊇ F , the map D(G ⊇ F ) : D(G) → D(F ) is continuous. Hence, this construction
defines a codirected diagram D : I → Top where each D(F ) is T0, compact, and locally compact;
and the limit of this diagram is empty. With the same argument as above, neither the lower nor
the compact Vietoris functor preserve this limit.

3.3. Vietoris polynomial functors. Section 3.1 studied limits in categories of polynomial coalgebras,
essentially by analysing the preservation of connected limits in Top and by providing sufficient conditions
for the existence of topological functors between categories of coalgebras. In the current section our focus
is on Vietoris coalgebras. In fact, Examples 3.20 already showed that it is highly problematic to consider
all topological spaces, because the lower and the compact Vietoris functors do not preserve codirected
limits in Top. Hence, we will restrict our attention to different subcategories of Top where more positive
results appear.

Definition 3.21. A topological space X is called stably compact whenever X is T0, locally compact,
well-filtered and every finite intersection of compact saturated subsets is compact [Jun04]. A continuous
map between stably compact spaces is called spectral whenever the inverse image of compact saturated
subsets is compact. Stably compact spaces and spectral maps form a category which we denote by
StablyComp.

Remark 3.22. Note that every stably compact space is compact. More information on this type of space
can be found in [GHK+03] and [Jun04].

Theorem 3.23. The category StablyComp is complete and regularly wellpowered. The inclusion functor
StablyComp→ Top preserves limits and finite coproducts.

Proof. It is straightforward to check that the finite coproduct of stably compact spaces is stably compact
(cf. [Gou13, Proposition 9.2.1]). The other claims follow from monadicity of StablyComp→ Top which is
shown in [Sim82]. We note that [Sim82] uses the designation well-compacted instead of stably compact.

�

Further properties of StablyComp can be easily derived if ones uses a order-theoretic perspective.

Definition 3.24. A partially orderered compact space is a triple (X,≤, τ) consisting of a set X, a
partial order ≤ on X and a compact topology τ on X so that the set

{(x, y) ∈ X ×X | x ≤ y}

is closed with respect to the product topology.

Remark 3.25. Every partially ordered compact space (X,≤, τ) is necessarily Hausdorff as the antisym-
metry property of the relation ≤ implies that the diagonal {(x, x) | x ∈ X} is closed in X ×X.

The category StablyComp is isomorphic to the category PosComp of partially orderered compact spaces
and monotone continuous maps (cf. [GHK+80]). The isomorphism PosComp → StablyComp commutes
with the underlying forgetful functors to Set, sending a partially ordered compact space (X,≤, τ) to
the stably compact space with the same underlying set and the topology defined by the upper-open
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sets of (X,≤, τ). Its inverse functor uses the specialisation order of a topological space, defined by
x ≤ y ⇐⇒ x ∈ {y}. It maps a stably compact space (X, τ) into a space (X, τ ′,≤) where the relation
≤ is the specialisation ordering and τ ′ the patch topology of (X, τ), i.e. the topology generated by the
complements of compact saturated subsets and also the opens in (X, τ).

Remark 3.26. The canonical forgetful functor PosComp → CompHaus has a left adjoint which equips a
compact Hausdorff space with the discrete order. Using the isomorphism above, the adjunction

PosComp >

forgetful
((

discrete

hh CompHaus

reads in the language of stably compact spaces as

StablyComp >

patch
((

inclusion

hh CompHaus.

In the sequel we will freely jump between both perspectives.

Theorem 3.27. The category PosComp is cocomplete and the epimorphisms of PosComp are precisely
the surjective morphisms.

Proof. Cocompleteness of PosComp follows from [Tho09, Corollary 2]. Combining several results of
[Nac65], it is shown in [HNN18] that every epimorphism in PosComp is surjective. �

Clearly, (Surjections,Substructure) is a factorisation structure for morphisms in PosComp. Since the
surjections are precisely the epimorphisms in PosComp, we conclude that PosComp is (Epi,RegMono)-
structured, and thus also the category StablyComp. Moreover, the regular monomorphisms in StablyComp

are precisely the topological subspace embeddings.
Let us turn our attention back to the study of Vietoris functors with the isomorphism StablyComp '

PosComp in mind. The lower Vietoris functor on Top restricts to a functor V : StablyComp→ StablyComp

(cf. [Sch93]). Its counterpart on PosComp can be described in the following manner.

Proposition 3.28. Under the isomorphism StablyComp ' PosComp, the lower Vietoris functor V :

StablyComp→ StablyComp corresponds to the functor

PosComp→ PosComp

which sends a partially ordered compact space X to the space of all lower-closed subsets of X, with order
inclusion ⊆, and compact topology generated by the sets

{A ⊆ X | A lower-closed and A ∩ U 6= ∅} (U ⊆ X upper-open),(3.i)

{A ⊆ X | A lower-closed and A ∩K = ∅} (K ⊆ X upper-closed).

Given a map f : X → Y in PosComp, the functor returns the map that sends a lower-closed subset A ⊆ X
to the down-closure ↓f [A] of f [A].

Proof. Let (X,≤, τ) be a partially ordered compact space with corresponding stably compact space
(X,σ). Clearly, the underlying set of V(X,σ) is the set of all lower-closed subsets of X. We will show
that the patch topology of V(X,σ) coincides with the topology defined by (3.i). First note that every set
of the form

{A ⊆ X | A lower-closed and A ∩ U 6= ∅} (U ⊆ X upper-open),

is open in V(X,σ) and therefore is also in the patch topology. For K ⊆ X upper-closed, the complement
of the set

{A ⊆ X | A lower-closed and A ∩K = ∅}
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is equal to K♦. Using Alexander’s Subbase Theorem, it is straightforward to verify that K♦ is compact
in V(X,σ). Since the specialisation order of V(X,σ) is subset inclusion, K♦ is also saturated. Hence,
the topology defined by (3.i) is coarser than the patch topology of V(X,σ). Since it is also Hausdorff,
by [Jun04, Lemma 2.2], both topologies coincide (cf. [Eng89]). In particular, the construction of the
proposition defines indeed a partially ordered compact space.

In regard to maps in PosComp, [Nac65, Proposition 4 on page 44] tells that for every map f : X → Y

in PosComp and every lower-closed subset A ⊆ X, the down-closure ↓f [A] of f [A] is closed in Y , and
therefore coincides with the closure of f [A] in the stably compact topology of Y . �

Recall that the lower Vietoris functor preserves codirected initial monocones (see Theorem 3.15).
Hence, for every codirected diagram D : I → StablyComp with limit cone (pi : LD → D(i))i∈I , the
canonical comparison map

h : VLD → LVD, K 7→ (pi[K])i∈I

is an embedding. To show that V : StablyComp→ StablyComp preserves these limits, we are left with the
task of proving that h is also surjective. To do so, we use the fact that StablyComp inherits a nice char-
acterisation of codirected limits from the category CompHaus. A first hint of the latter characterisation
is in [Bou42], but, to the best of our knowledge, is rarely used in the literature. Actually, we were not
able to find a proof in the literature, except for [Hof99]; so we sketch a proof below.

Theorem 3.29. Let D : I → CompHaus be a codirected diagram and C = (pi : L→ D(i))i∈I a cone for
D. The following conditions are equivalent:

(1) The cone C is a limit of D.
(2) The cone C is mono and, for every i ∈ I, the image of pi contains the intersection of the images

of all D(j → i), in symbols
im pi ⊇

⋂
j→i

imD(j → i).

Proof. Assume first that (pi : L → D(i))i∈I satisfies the two conditions and let (fi : X → D(i))i∈I be a
cone for D. Let x ∈ X, and, for every i ∈ I, put Ai = p−1

i (fi(x)). Clearly, Ai is closed, moreover, Ai is
non-empty since

im fi ⊆
⋂
j→i

imD(j → i) = im pi

Since the family (Ai)i∈I is codirected and L is compact, there is some z ∈
⋂
i∈I Ai. We put f(x) = z, this

way we define a map f : X → L with pi · f = fi, for all i ∈ I. Since (pi : L → D(i))i∈I is a monocone,
we conclude that (pi : L → D(i))i∈I is a limit of D. Conversely, if (pi : L → D(i))i∈I is a limit, then it
is clearly a monocone. Let now i0 ∈ I and x ∈

⋂
j→i0 imD(j → i0). We may assume that i0 is final in I.

For each i ∈ I, we put

Ai = {(xi)i∈I ∈
∏
i∈I

D(i) | xi0 = x and, for all i→ j ∈ I, xj = D(i→ j)(xi)}.

Then Ai is non-empty, and it is a closed subset of
∏
i∈I D(i) since it is an equaliser of continuous maps

between Hausdorff spaces. Furthermore, for i → j ∈ I, Ai ⊆ Aj . Hence there is some z ∈
⋂
i∈I Ai; by

construction, z ∈ L and pi0(z) = x. �

Remark 3.30. For every cone (pi : C → D(i))i∈I the inequality im pi ⊆
⋂
j→i imD(j → i) holds. Hence,

in the theorem above, the reverse inequality, distinguishes monocones from limit cones.

Proposition 3.31. Let A be a codirected set of closed subsets of a partially ordered compact space X.
Then, ↓

⋂
A∈AA =

⋂
A∈A ↓A.

Proof. Clearly, ↓
⋂
A∈AA ⊆

⋂
A∈A ↓A. To show that the reverse inequality holds, consider z ∈

⋂
A∈A ↓A.

Then, for every A ∈ A, the set ↑z ∩ A is non-empty, and closed because {z} is compact (cf.[Nac65,
Proposition 4 on page 44]). Moreover, since A is codirected, the set {↑z ∩ A | A ∈ A} has the finite
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intersection property. Therefore, by compactness, it follows that ↑z ∩
⋂
A∈AA 6= ∅, which implies that

z ∈ ↓
⋂
A∈AA. �

Proposition 3.32. Let D : I → PosComp be a codirected diagram, (pi : LD → D(i))i∈I a limit for D
and (LVD → VD(i))i∈I a limit for VD : I → PosComp. Then the function h : VLD → LVD defined by
K 7→ (↓pi[K])i∈I is surjective.

Proof. Let (Ki)i∈I ∈ LVD. For every i ∈ I, Ki ⊆ D(i) is closed, hence, Ki ∈ PosComp. For every i ∈ I
and j → i ∈ I, take K(i) as Ki and K(j → i) as the continuous and monotone map of type Kj → Ki

given by the restriction of D(j → i) to Kj . This way, by Remark 2.3, we obtain a codirected diagram
K : I → PosComp such that for every j → i ∈ I, ↓K(j → i)[K(j)] = [K(i)].

Let (pi : LK → K(i))i∈I be a limit for K. By construction, LK ⊆ LD is lower-closed. Thus,
LK ∈ VLD. We claim that h(Lk) = (Ki)i∈I . Let i0 ∈ I. Since the following diagram of forgetful functors

PosComp

!!

// CompHaus

||

Set

commutes and the functor PosComp→ CompHaus preserves limits, from Theorem 3.29 we obtain

pi0 [LK ] =
⋂
j→i0

K(j → i0)[Kj ].

Therefore, by Proposition 3.31,

↓pi0 [LK ] = ↓
⋂
j→i0

K(j → i0)[K(j)] =
⋂
j→i0

↓K(j → i0)[K(j)] = Ki0 .

�

As expected, we obtain the following results.

Corollary 3.33. The lower Vietoris functor V : StablyComp→ StablyComp preserves codirected limits.

Proof. A direct consequence of the previous proposition. �

Corollary 3.34. All lower Vietoris polynomial functors F : StablyComp → StablyComp preserve codi-
rected limits.

Proof. Analogous to that of Theorem 3.1. �

Theorem 3.35. For every lower Vietoris polynomial functor F : StablyComp→ StablyComp, the category
CoAlg(F ) is complete.

Proof. Firstly, observe that Theorems 3.23, 3.27 and Corollary 3.16 guarantee the hypothesis of Theo-
rem 2.14, therefore the category CoAlg(F ) has equalisers. Then the assertion follows from Corollary 3.34
and [Bar93, Theorem 2.1]. �

In regard to final coalgebras, there is still room to improve the theorem above. Indeed, the inclusion
functor I : StablyComp→ Top is well-behaved with respect to limits, in particular it preserves and reflects
them (cf. [Sim82]); this allows us to derive the following theorem.

Theorem 3.36. Every lower Vietoris polynomial functor in Top that can be restricted to StablyComp

admits a final coalgebra.

The lower and the compact Vietoris functors on Top are seemingly unrelated, notwithstanding, these
functors are closely related when restricted, respectively, to StablyComp and CompHaus. From the
description of the lower Vietoris functor V on PosComp we obtain that the compact Vietoris functor
V : CompHaus→ CompHaus is the composite

CompHaus
discrete−−−−−→ PosComp

V−→ PosComp
forgetful−−−−−→ CompHaus.
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Being right adjoint, the functor PosComp
forgetful−−−−−→ CompHaus preserves limits, but also the inclusion

functor CompHaus → PosComp does so. As an interesting consequence, studying preservation of limits
by the lower Vietoris functor in StablyComp ' PosComp encompasses studying preservation of limits by
the compact Vietoris in CompHaus. In particular, the following results come for free.

Corollary 3.37. The compact Vietoris V : CompHaus→ CompHaus preserves codirected limits.

Corollary 3.38. All compact Vietoris polynomial functors F : CompHaus → CompHaus preserve codi-
rected limits.

By taking advantage of the fact that a compact subspace of an Hausdorff space is a compact Hausdorff
space, [Zen70] proves this property of the compact Vietoris functor even for Hausdorff spaces.

Theorem 3.39. The compact Vietoris functor V : Haus→ Haus preserves codirected limits.

The following results then emerge in a straightforward manner.

Theorem 3.40. All compact Vietoris polynomial functors F : Haus→ Haus preserve codirected limits.

Proof. Follows from the previous theorem and the fact that all polynomial functors F : Haus → Haus

preserve codirected limits. �

Corollary 3.41. Let F : Haus→ Haus be a compact Vietoris polynomial functor. The associated category
of coalgebras CoAlg(F ) is complete.

Proof. Being an epireflective subcategory of Top, the category Haus is complete and cocomplete, and
regularly wellpowered. Furthermore, Haus is (Epi,RegMono)-structured; but note that f : X → Y in
Haus is a regular monomorphism if and only if f is a closed embedding. It is straightforward to prove
that the compact Vietoris functor preserves closed embeddings; therefore, by Theorem 2.14, CoAlg(F )

has equalisers. As an alternative, Haus is also (Surjection, Embedding)-structured; and now use Corol-
lary 2.19 and Corollary 3.16 to conclude that CoAlg(F ) has equalisers. Then the assertion follows from
Theorem 3.40 and [Bar93, Theorem 2.1]. �

Theorem 3.42. Let F : Top → Top be a Vietoris polynomial functor that can be restricted to Haus.
Then, the category CoAlg(F ) has a final coalgebra.

Proof. A consequence of the fact that I : Haus→ Top preserves and reflects limits (cf. [AHS90]). �

To close this section we will relate its results with the works [KKV04, BKR07]. Recall that the former
considers compact Vietoris polynomial functors over Stone. The latter consider coalgebras for the lower
Vietoris functor in the category Spec of spectral spaces and spectral maps.

The categories Stone and Spec have a close relation with some of the categories we considered so far,
in particular CompHaus and StablyComp. By taking advantage of this relation we will see that the fact
that every compact Vietoris functor F : Stone → Stone admits a final coalgebra (as shown in [KKV04])
is actually a consequence of Corollary 3.38, and the fact that every lower Vietoris polynomial functor
F : Spec→ Spec admits a final coalgebra is a direct consequence of Theorem 3.35.

Remark 3.43. Recall that a Stone space X is a compact Hausdorff space with a basis of clopen sets. This
is equivalent to saying that X is compact Hausdorff and that the cone of continuous maps (X → 2) to
the discrete two-point-space is initial.

Lemma 3.44. Let (X → Xi)i∈I be a initial cone in CompHaus where Xi is a Stone space for every i ∈ I.
Then X is a Stone space as well.

Proof. Follows from the fact that each space Xi defines a initial cone of continuous maps (Xi → 2) and
that initial cones are closed under composition. �
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Corollary 3.45. The canonical forgetful functor Stone→ CompHaus creates limits. Hence, the category
Stone is complete, and the functor Stone→ CompHaus preserves and reflects limits.

Theorem 3.46. Every compact Vietoris polynomial functor F : Stone → Stone preserves codirected
limits.

Proof. Observe that every compact Vietoris polynomial functor F : Stone → Stone is also a functor
F : CompHaus → CompHaus and that the diagram below commutes. The claim then follows directly
from the fact that the functor Stone→ CompHaus preserves and reflects limits.

Stone

��

F
// Stone

��

CompHaus
F
// CompHaus

�

Corollary 3.47. Every compact Vietoris polynomial functor F : Stone→ Stone admits a final coalgebra.

Analogous results can be achieved for the category Spec. To see this let us start a remark akin to
Remark 3.43.

Remark 3.48. Recall that a spectral space X is a stably compact space with a basis of compact open
subsets. This is equivalent to saying that X is stably compact and that the cone of spectral maps (X → 2)

to the Sierpiński space is initial.

Lemma 3.49. Let (X → Xi)i∈I be a initial cone in StablyComp where Xi is a spectral space for every
i ∈ I. Then X is a spectral space as well.

Proof. Follows from the fact that each space Xi defines a initial cone of continuous maps (Xi → 2) to
the Sierpiński space and that initial cones are closed under composition. �

Corollary 3.50. The canonical forgetful functor Spec→ StablyComp creates limits. Hence, the category
Spec is complete, and the functor Spec→ StablyComp preserves and reflects limits.

Theorem 3.51. Every lower Vietoris polynomial functor F : Spec→ Spec preserves codirected limits.

Proof. Observe that every lower Vietoris polynomial functor F : Spec → Spec is also a functor F :

StablyComp→ StablyComp and that the diagram below commutes. The claim then follows directly from
the fact that the functor Spec→ StablyComp preserves and reflects limits.

Spec

��

F
// Spec

��

StablyComp
F
// StablyComp

�

Corollary 3.52. Every lower Vietoris polynomial functor F : Spec→ Spec admits a final coalgebra.

4. Limits via adjunction

In this section we extend the results of the previous section to subfunctors of (Vietoris) polynomial
functors, by making use of adjunction. To achieve this we introduce a number of conditions which
guarantee that a functor CoAlg(F )→ CoAlg(G) induced by a natural transformation F → G has a right
adjoint: note that if the functor CoAlg(F )→ CoAlg(G) is also fully faithful, then we can easily show that
CoAlg(F ) is “as complete as” CoAlg(G). A key property we use here is a straightforward generalisation
of the notion of taut natural transformation originally introduced in [Möb83] and [Man02].

We start with the definition below.
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Definition 4.1. Every natural transformation σ : F → G induces a functor I : CoAlg(F ) → CoAlg(G),
defined by

I(X, c) = (X,σX · c), If = f.

Note that the functor I : CoAlg(F )→ CoAlg(G) is faithful. Moreover,

Proposition 4.2. If σ : F → G is a monomorphic natural transformation, then the functor I :

CoAlg(F )→ CoAlg(G) is also full.

Proof. Take a homomorphism f : I(X, c)→ I(Y, d). By assumption, the equation Gf · σX · c = σY · d · f
holds. Then, use naturality and the fact that σY : FY → GY is a monomorphism to show that Ff · c =

d · f . �

We will now show that, under some assumptions on the natural transformation σ : F → G, the functor
above has a right adjoint.

Assumption 4.3. In the remainder of this section the letter C denotes a category with an (E,M)-
factorisation structure where M is included in the class of monomorphisms. We assume that C is M -
wellpowered, that σ : F → G is a natural transformation between endofunctors on C where every
component σX is in M , and that G sends morphisms in M to morphisms in M .

Theorem 4.4. Under Assumption 4.3 with C cocomplete, the functor I : CoAlg(F ) → CoAlg(G) is left
adjoint.

Proof. We will show that the assumptions of the General Adjoint Functor Theorem hold. Since C is
cocomplete, the category CoAlg(F ) is cocomplete as well. Moreover, I : CoAlg(F )→ CoAlg(G) preserves
colimits, as UI : CoAlg(F ) → C preserves colimits, and the forgetful functor U : CoAlg(G) → C reflects
them. It remains to verify the Solution Set Condition. For this, take a coalgebra d : Y → GY . Let S0

be a set of representatives of the collection of all C-objects Q admitting an M -morphism Q → Y , and
let S be the set of all F -coalgebras based on an object in S0. Let now (X, c) be an F -coalgebra and
f : (X,σX · c) → (Y, d) be a homomorphism of G-coalgebras. By hypothesis, f : X → Y factorises as
f = m · e

X
e−→ Q

m−−→ Y

with e ∈ E and m ∈ M . Since σQ : FQ → GQ and Gm : GQ → GY are in M , there is a diagonal
q : Q→ FQ so that the right hand square and the lower-left square in

GX
Ge
// GQ

Gm
// GY

FX

σX

OO

Fe
// FQ

σQ

OO

X

c

OO

e
// Q

m
//

q

OO

Y

d

OO

commute; the upper-left square commutes since σ is a natural transformation. This proves that f :

(X,σX · c)→ (Y, d) factorises via the image of an object in S. �

Corollary 4.5. The category CoAlg(F ) has all (co)limits of a certain type if CoAlg(G) does so.

Corollary 4.6. Let F : Top → Top be a compact Vietoris polynomial functor that can be restricted to
Haus. Every subfunctor of F admits a final coalgebra.

Remark 4.7. The Corollary above applies to various interesting variants of the compact Vietoris functor
that were not yet mentioned. In particular,

• the one that discards the empty set,
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• analogously to the finitary powerset functor, the one that takes infinite sets out of comission, and
• the one which considers only compact and connected subsets (cf. [Dud72]).

All these variants are subfunctors of the compact Vietoris functor. In conjunction with the polynomial
ones, they form a family of subfunctors of compact Vietoris polynomial functors.

Corollary 4.8. Let F : Top → Top be a lower Vietoris polynomial functor that can be restricted to
StablyComp. Every subfunctor of F admits a final coalgebra.

The proof of Theorem 4.4 gives us also a hint on how to construct a coreflection of a G-coalgebra (Y, d):
take the “largest M -subcoalgebra of (Y, d)”. In the sequel we make this idea more precise. To do so,
motivated by [Möb83] and [Man02], we introduce the following notion.

Definition 4.9. A natural transformation σ : F → G is M-taut if each naturality square induced by a
morphism in M is a pullback square; that is, for every morphism m : X → Y in M , the diagram below
is a pullback square.

FX
Fm
//

σX

��

FY

σY

��

GX
Gm
// GY

Recall from [AHS90, Definition 7.79] that, for monomorphisms m1 : M1 → X and m2 : M2 → X in a
category, m1 is smaller than m2 (written as m1 ≤ m2) whenever there is some m : M1 → M2 with
m2 · m = m1. Note that m is necessarily a monomorphism. Assuming that C has pullbacks, take a
G-coalgebra (Y, d) and consider the pullback square

(4.i) S

i

��

// FY

σY

��

Y
d
// GY

in C. Note that i : S → Y is in M , by [AHS90, Proposition 14.15].

Lemma 4.10. (1) For every F -coalgebra (X, c) and every homomorphism m : (X,σX · c) → (Y, d)

with m ∈M , m is smaller than i : S → Y .
(2) Assume now that the natural transformation σ : F → G is M -taut and let m : (Q, q)→ (Y, d) be

a homomorphism in CoAlg(G) where m ∈ M and m ≤ i. Then there is a F -coalgebra structure
q′ : Q→ FQ on Q with σQ · q′ = q.

Proof. An easy calculation, and [AHS90, Proposition 14.9] show that the first claim is true. In regard to
the second one, let m̄ : Q→ S be the arrow in C with i · m̄ = m. Then, since in the diagram

Y
d

// GY

S

i

??

// FY

σY

<<

GQ

Gm

OO

Q

m̄

OO

c

JJ

m

22

// FQ

Fm

OO

σQ
==

the right hand parallelogram is a pullback square and the outer diagram and the top parallelogram
commute. This provides the desired arrow Q→ FQ. �
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For a G-coalgebra (Y, d), the class of all subcoalgebras m : (X, c) → (Y, d) with m ∈ M is preordered
under the smaller-than relation. Since C is M -wellpowered, this class is equivalent to an ordered set; and
by a slight abuse of language we will speak of the ordered set of M -subobjects of (Y, d).

Recall from Proposition 4.2 that the induced functor I : CoAlg(F ) → CoAlg(G) is fully faithful since
σ : F → G is a monomorphic natural transformation. Hence, we can consider CoAlg(F ) as a full
subcategory of CoAlg(G). From the results above we obtain:

Theorem 4.11. In addition to Assumption 4.3, assume that C has pullbacks, σ is M -taut and, for every
G-coalgebra (Y, d), the ordered set of M -subobjects is complete. Then, for every G-coalgebra (Y, d), the
coreflection of (Y, d) is given by the supremum (Q̄, q̄) → (Y, d) of all G-homomorphisms (Q, q) → (Y, d)

with (Q, q) in CoAlg(F ) and m : Q → Y in M smaller than i : S → Y (defined by the pullback square
(4.i)).

Remark 4.12. If C has coproducts, then also CoAlg(G) has coproducts which guarantees completeness of
the ordered set ofM -subobjects of (Y, d). In fact, let (mi : (Xi, ci)→ (Y, d))i∈I a family of subcoalgebras
of (Y, d) with mi ∈M , for every i ∈ I. Then the supremum m : (X, c)→ (Y, d) of this family is given by
the (E,M)-factorisation of the canonical map f :

∐
i∈I(Xi, ci)→ (Y, d) induced by this family.

∐
i∈I(Xi, ci)

e
//

f

''

(X, c)
m
// (Y, d)

(X, ci)

ki

OO

mi

44

5. Vietoris coalgebras at work

Moving to the more practical side, recall the bouncing ball system mentioned in the introduction. For-
mally, it consists of a ball that is dropped at a certain height (p), and with an initial velocity (v). Due to
the gravitional effect (g), it falls into the ground and then bounces back up, losing, for example, half of
its kinetic energy. As the documents [NBHM16, NB16, NB17] show, such a behaviour can be described
coalgebraically, with the help of the functor defined below.

Definition 5.1. Let T denote the topological space R≥0. Then define H : Top → Top as the functor
such that for any topological space X, and any continuous map g : X → Y ,

HX = {(f, d) ∈ XT × D | f ·fd = f}, Hg = gT × id

where D is the one-point compactification of T and fd = min(_ , d).

Intuitively, the functor H : Top → Top captures continuous behaviour as considered in hybrid systems,
i.e. the continuous evolutions of physical processes, such as the movement of a plane, or the temperature
of a room. Document [NB16] provides the following specification for the bouncing ball described above.

Definition 5.2. Use S,O as shorthand to R≥0 × R, and R, respectively. The bouncing ball is given by
the Set-coalgebra 〈nxt, out〉 : S → S × UHO

〈nxt, out〉 (p, v) =
(
(0, u), (mov(p, v, _ ), d)

)
where variable u corresponds to the (abrupt) change of velocity due to the collision with the ground,
function mov(p, v, _ ) : T → O describes the ball’s movement between jumps, and d denotes the time
that the ball takes to reach the ground. In symbols,

u = (v + gd)×−0.5, mov(p, v, t) = p+ vt+ 1
2gt

2, d =

√
2gp+v2+v

g .
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Recall that for each set A the functor ( _ × A) : Set → Set has a final coalgebra (cf. [Rut00]), thus
providing a notion of behaviour for the ball. To be more concrete, the coalgebra

(
S, 〈nxt, out〉

)
has

a canonical homomorphism [( _ )] : S → (UHO)ω to the final coalgebra
(
(UHO)ω, 〈tl, hd〉

)
, where

tl : (UHO)ω → (UHO)ω, and hd : (UHO)ω → UHO are the ‘tail’ and ‘head’ functions, respectively. The
map 〈tl, hd〉 computes the behaviour of the ball for a given height and velocity. For example, the first
three elements of [((0, 5))] yield the following plots.
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In order to bring non-determinism into the scene, suppose, for example, that when the ball hits the
ground it loses part of its kinetic energy non-deterministically. In this context, one may consider the
coalgebra 〈nxt, out〉 : S → PS × UHO

〈nxt, out〉 (p, v) =
(
U, (mov(p, v, _ ), d)

)
with U =

{ (
0, (v+ gd)× c

)
∈ S | c ∈ [−0.7,−0.5]

}
. However, the functor (P×UHO) : Set→ Set has no

final coalgebra (cf. [Rut00]), and thus there is no canonical notion of behaviour for the non-deterministic
bouncing ball specified above. We will show that the issue can be fixed by shifting to Top. For this, the
following result is useful.

Proposition 5.3. Let V : Top→ Top be the compact Vietoris functor. The family τ = (τX,Y ) of maps

τX,Y : (VX)× Y → V(X × Y )

(S, y) 7→ S × {y}

defines a natural transformation

Top× Top
×
//

V×Id

��

Top× Top

V
��

Top× Top
×

// Top.

CKτ

Proof. Let X and Y be topological spaces. For all S ∈ VX and y ∈ Y , since S is compact, the product
S × {y} is also compact, which entails that S × {y} ∈ V(X × Y ). Then, continuity of the map τX,Y is a
direct consequence of the equalities below.

τ−1
X,Y

[(⋃
i∈I

Ui × Vi
)♦ ]

=
⋃
i∈I

(Ui)
♦ × Vi

τ−1
X,Y

[(⋃
i∈I

Ui × Vi
)� ]

=
⋃{( ⋃

i∈F
Ui

)�
×
⋂
i∈F

Vi | F ⊆ I finite
}

The proof that all naturality squares commute is straightforward. �

Remark 5.4. When the compact Vietoris functor is equipped with the natural transformation above it
becomes a strong functor. The latter concept was introduced in [Koc72] and is widely adopted in monadic
programming.
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With the natural transformation above, it becomes straightforwad to consider the non-deterministic
bouncing ball in a topological setting. Actually, it can be shown to be a coalgebra

〈nxt, out〉 : S → VS ×HO

First, the map out : S → HO was already shown to be continuous in [NBHM16]. Then, observe that the
map nxt : S → VS can be rewritten as a composite

S
〈f,g〉

// VS × SS τ
// V(S × SS)

V ev
// VS

f (p, v) = {0} × [0.5, 0.7]

g (p, v) = λ(x, y) ∈ S. (0, (v + gd)×−y)

which proves our claim. One more result is needed.

Theorem 5.5. The functor H : Top→ Top can be restricted to the category of Hausdorff spaces.

Proof. Let X be a locally compact space and Y an Hausdorff space. Then, the function space Y X

equipped with the compact-open topology is Hausdorff (cf. [Kel55]). The claim now follows from Haus-
dorff spaces being closed under products, and subspaces. �

As discussed in the previous sections, every compact Vietoris polynomial functor that can be restricted
to the category of Hausdorff spaces has a final coalgebra, which, according to Theorem 5.5, is the case for
V ×HO : Top→ Top. Intuitively, the elements of the final (V ×HO)-coalgebra can be seen as compactly
branching trees, i.e. trees where the set of sons of each node is compact. This is similar to the property
imposed to finitely branching trees, which occur in the final coalgebras involving the finite powerset
functor (cf. [Rut00]). Interestingly, the functor V×HO : Top→ Top admits an alternative representation:
superimpose the evolutions of each level of the tree. To illustrate this, the non-deterministic bouncing
ball yields the following plots for the first two bounces, with the pair (5, 0) as the initial state.
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The notion of stability [Sta01] is another important aspect in the development of hybrid systems.
Roughly put, the term ‘stability’ refers to a system’s stability in regard to its behaviour against per-
turbations; the system is called stable if small changes in its state (or input) only produce small changes
in its behaviour — such a notion is directly related to that of distance between behaviours, which was
already studied in a coalgebraic setting [BBKK14].

In a Set-based context it is difficult to reason about the stability of a system, because its state space,
which is assumed to be just a set, lacks sufficient structure. In the topological setting, however, the issue
can be better handled. To start with, observe that topological spaces already carry a notion of proximity,
given by the open sets. Moreover, note that the notion of a stable system is closely related to that of
a continuous map, as discussed, for example, in [Sta01]. This relation can be precisely described in a
coalgebraic context: take a functor F : Top → Top, and assume that CoAlg(F ) has a final coalgebra
(νF , ωF ). Then, for any F -coalgebra (S, c) there is a continuous map [( _ )] : S → νF such that for each
state s ∈ S, [(s)] is the associated behaviour. Since the map is continuous, ‘close’ states must have ‘close’
behaviours, which coincides with our notion of system stability. This suggests the following coalgebraic
definition of stability.
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Definition 5.6. Let F : Top→ Top be a functor that admits a final coalgebra. Then a (not necessarily
continuous) map c : X → FX is called stable if it is a member of CoAlg(F ). In other words, if it is a
continuous map.

Examples 5.7. The bouncing balls 〈nxt, out〉 : S → S × HO, and 〈nxt, out〉 : S → VS × HO are
continuous maps, and, consequently, stable systems. In this case calling either of the bouncing balls
stable, is to say that a small change in their initial position and velocity does not drastically alter their
(possible) trajectories over time.

Finally, note that the systems considered here jump between states discretely, as opposed to their outputs
which are, essentially, evolutions in time of specific values. One possible way to accomodate the evolution
of states as well is to consider coalgebras in CoAlg(H). We will use the results of the previous sections to
show that this category is also complete.

Definition 5.8. Let F : C→ C be a functor over a category C with (co)products. We call F exponent
polynomial if it can be recursively defined from the grammar below, with letters A and B denoting,
respectively, an arbitrary object and an exponentiable object of C.

F ::= F + F | F × F | A | Id | FB

Since all exponential functors (_ )B : C→ C are right adjoints, the following results come almost for free.

Proposition 5.9. All exponent polynomial functors F : Top→ Top preserve connected limits.

Corollary 5.10. The categories of coalgebras of all exponent polynomial functors over Top are complete.

Theorem 5.11. The category of coalgebras CoAlg(H) is complete.

Proof. The previous corollary assures that the category CoAlg
(
( _ )T × D

)
is complete. Then, observe

that the functor H : Top→ Top is a subfunctor of ( _ )T × D : Top→ Top, and apply Theorem 4.4. �

The previous theorem takes advantage of the adjoint situation below.

CoAlg
(
( _ )T × D

)
>

((

hh CoAlg (H)

Then, with the theorem below, and using the results of the previous sections, we obtain a specific
method to construct coreflections of (( _ )T × D)-coalgebras.

Theorem 5.12. The ‘inclusion’ natural transformation ι : H→ ( _ )T × D is mono-taut.

Proof. Consider a monomorhism m : X → Y in Top. We will show that the diagram below is a pullback
square.

HX
Hm

//

ιX
��

HY

ιY
��

XT × D
mT×id

// Y T × D

Thus, take two morphisms f : Z → XT × D, g : Z → HY , and assume that the equation below holds.

(mT × id) · f = ιY · g

Let z ∈ Z and put (x, y) = f(z) and (a, b) = g(z). Then, by the definition of H, a = a · fb since
im g ⊆ HY . Using (mT× id) · f = ιY · g, one gets m ·x = m ·x ·fy; and from this, one obtains x = x ·fy
since m : X → Y is a monomorphism. This shows that the condition im f ⊆ HX holds. Then, since the
map ιX : HX → XT×D is an embedding, and im f ⊆ im ιX , there must be a unique arrow h : Z → HX

such that ιX · h = f . It remains to show that g = Hm · h. This is a direct consequence of the diagram
above being commutative, and the map ιY : HY → Y T × D mono. �
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6. Conclusions and future work

Even if most coalgebraic literature takes Set as the base category, state-based transition systems often
call for a shift to other categories, where mechanisms that suitably handle their intricacies are available.
Such was the case in [Pan09, Dob09], two research lines on the topic of stochastic systems, and in
[KKV04, BFV10, VV14], where the category of Stone spaces and continuous maps plays a key role in
setting an appropriate coalgebraic semantics for finitary modal logics.

In our case the base category adopted was Top. As discussed in the previous section, this was because
the Set-based context proved to be insufficient for the design of (non-deterministic) hybrid systems,
namely in what concerns canonical representations of behaviour and stability. The shift to the topological
setting provided, almost for free, a notion of stability (in the spirit of [Sta01]), and showed that a number
of non-deterministic hybrid systems in Top have an associated final coalgebra, even if in Set they do not.
Both results were achieved using this paper’s theoretical developments. But again, we stress that the
latter can be applied to other contexts as well.

The relevance of Vietoris coalgebras for different topics is further witnessed by the common existence
of important limits in their categories of coalgebras. We saw that every compact Vietoris polynomial
functor admits a final coalgebra if it can be restricted to the category Haus while every lower Vietoris
polynomial functor admits a final coalgebra if it can be restricted to StablyComp. Moreover, we saw that
several variants of such functors also inherit these results and that all categories of Vietoris coalgebras
have equalisers.

However, several theoretical questions concerning limits in categories of Vietoris coalgebras still re-
main open. For example, we studied codirected limit preservation by Vietoris functors under different
topological contexts (see Section 3), showing cases in which they were preserved, and cases in which they
were not. But we are still not precisely sure what is the ‘weakest’ context in which they are preserved.
Another example concerns the existence of products in categories of Vietoris coalgebras. Recall also
our study of topological functors between categories of coalgebras. Among other things, it provides a
full characterisation of situations in which it is possible to systematically lift well-known results about
coalgebras over Set to coalgebras over other categories. We saw that this is indeed the case between
coalgebras of polynomial functors over Set and their counterparts in Top, but we are also interested in
other situations. Two prime examples that we will explore in future work pertain coalgebras over the
category Ord and coalgebras over the category PMet. These coalgebras have significant relevance within
the coalgebraic community (e.g. [BBKK14, BK11, BKV13]) and we believe that our study can contribute
to the topic.

On a note closer to practice, the use of topologies to specify and analyse (non-deterministic) hybrid
systems brings a number of benefits, which were just barely grasped in this paper. Our main goal is to
further explore them in the near future. The plan is to do so in a coalgebraic component-based approach
[Bar03, HJ11], where simple hybrid systems can be composed to form more complex ones. The results
that this paper reports provide an interesting step in this direction.
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