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Abstract. A common feature of many duality results is that the involved equivalence functors are
liftings of hom-functors into the two-element space resp. lattice. Due to this fact, we can only expect
dualities for categories cogenerated by the two-element set with an appropriate structure. A prime
example of such a situation is Stone’s duality theorem for Boolean algebras and Boolean spaces, the
latter being precisely those compact Hausdorff spaces which are cogenerated by the two-element discrete
space. In this paper we aim for a systematic way of extending this duality theorem to categories
including all compact Hausdorff spaces. To achieve this goal, we combine duality theory and quantale-
enriched category theory. Our main idea is that, when passing from the two-element discrete space
to a cogenerator of the category of compact Hausdorff spaces, all other involved structures should be
substituted by corresponding enriched versions. Accordingly, we work with the unit interval [0, 1] and
present duality theory for ordered and metric compact Hausdorff spaces and (suitably defined) finitely
cocomplete categories enriched in [0, 1].
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1. Introduction

In [Baez and Dolan, 2001], the authors make the seemingly paradoxical observation that “. . . an equa-
tion is only interesting or useful to the extent that the two sides are different!”. Undoubtedly, a moment’s
thought convinces us that an equation like eiω = cos(ω) + i sin(ω) is far more interesting than the rather
dull statement that 3 = 3. A comparable remark applies if we go up in dimension: equivalent categories
are thought to be essentially equal, but an equivalence is of greater interest if the involved categories
look different. Numerous examples of equivalences of “different” categories relate a category X and the
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dual of a category A. Such an equivalence is called a dual equivalence or simply a duality, and is
usually denoted by X ' Aop. Like for every other equivalence, a duality allows us to transport prop-
erties from one side to the other. The presence of the dual category on one side is often useful since
our knowledge of properties of a category is typically asymmetric. Indeed, many “everyday categories”
admit a representable and hence limit preserving functor to Set. Therefore in these categories limits are
“easy”; however, colimits are often “hard”. In these circumstances, an equivalence X ' Aop together with
the knowledge of limits in A help us understand colimits in X. The dual situation, where colimits are
“easy” and limits are “hard”, frequently emerges in the context of coalgebras. For example, the category
CoAlg(V ) of coalgebras for the Vietoris functor V on the category BooSp of Boolean spaces and contin-
uous functions is known to be equivalent to the dual of the category BAO with objects Boolean algebras
B with an operator h : B → B satisfying the equations

h(⊥) = ⊥ and h(x ∨ y) = h(x) ∨ h(y),

and with morphisms the Boolean homomorhisms which also preserve the additional unary operation (see
[Halmos, 1956]). It is a trivial observation that BAO is a category of algebras over Set defined by a
(finite) set of operations and a collection of equations; every such category is known to be complete and
cocomplete. Notably, the equivalence CoAlg(V ) ' BAOop allows to conclude the non-trivial fact that
CoAlg(V ) is complete. This argument also shows that, starting with a category X, the category A in a
dual equivalence X ' Aop does not need to be a familiar category. It is certainly beneficial that A = BAO
is a well-known category; however, every algebraic category describable by a set of operations would be
sufficient to conclude completeness of X = CoAlg(V ). We refer to [Kupke et al., 2004; Bonsangue et al.,
2007] for more examples of dualities involving categories of coalgebras.

The example above as well as the classical Stone-dualities for Boolean algebras and distributive lattices
(see [Stone, 1936, 1938a,b]) are obtained using the two-element space or the two-element lattice. Due
to this fact, we can only expect dualities for categories cogenerated by 2 = {0, 1} with an appropriate
structure. For instance, the category BooSp is the full subcategory of the category CompHaus of compact
Hausdorff spaces and continuous maps defined by those spaces X where the cone (f : X → 2)f is point-
separating and initial. In order to obtain duality results involving all compact Hausdorff spaces, we need
to work with a cogenerator of CompHaus rather than the 2-element discrete space. Of course, this is
exactly the perspective taken in the classical Gelfand duality theorem (see [Gelfand, 1941]) or in several
papers on lattices of continuous functions (see [Kaplansky, 1947, 1948] and [Banaschewski, 1983]) that
consider functions into the unit disc or the unit interval. However, in these approaches, the objects of
the dual category of CompHaus do not appear immediately as generalisations of Boolean algebras.

This is the right moment to mention another cornerstone of our work: the theory of quantale-enriched
categories. Our main motivation stems from Lawvere’s seminal paper [Lawvere, 1973] that investigates
metric spaces as categories enriched in the quantale [0,∞]. Keeping in mind that ordered sets1 are
categories enriched in the two-element quantale 2, our thesis is that the passage from the two-element
space to the compact Hausdorff space [0,∞] should be matched by a move from ordered structures to
metric structures on the other side. In fact, we claim that some results about lattices of real-valued
continuous functions hiddenly talk about (ultra)metric spaces; for instance, in Section 2, we point out
how to interpret Propositions 2 and 3 of [Banaschewski, 1983] in this way. Roughly speaking, in analogy
with the results for the two-element space, we are looking for an equivalence functor (or at least a full
embedding)

CompHaus −→ (metric spaces with some (co)completeness properties)op

and, more generally, with OrdsComp denoting the category of separated (=anti-symmetric) ordered com-
pact Hausdorff spaces and monotone continuous maps, a full embedding

OrdsComp −→ (metric spaces with some (co)completeness properties)op.

1In this paper, an order relation need not be anti-symmetric; we require only reflexivity and transitivity.
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Inspired by [Halmos, 1956], we obtain this as a restriction of a more general result about a full embedding
of the Kleisli category [Kleisli, 1965] OrdsCompV of the Vietoris monad V on OrdsComp:

OrdsCompV −→ (“finitely cocomplete” metric spaces)op.

The Vietoris monad has its roots in [Vietoris, 1922] and various generalisations of this “power construc-
tion” are extensively studied in [Schalk, 1993]. The notion of “finitely cocomplete metric space” should
be considered as the metric counterpart to semi-lattice, and “metric space with some (co)completeness
properties” as the metric counterpart to (distributive) lattice. This way we also exhibit the algebraic
nature of the dual category of OrdsComp which resembles the classical result stating that CompHausop is
a ℵ1-ary variety (see [Isbell, 1982; Marra and Reggio, 2017]).

For technical reasons, we consider structures enriched in a quantale based on [0, 1] rather than in
[0,∞]; nevertheless, since the lattices [0, 1] and [0,∞] are isomorphic, we still talk about metric spaces.
In Section 2 we recall the principal facts about quantale-enriched categories needed in this paper, and
in Section 3 we present the classification of continuous quantale structures on the unit interval [0, 1]
obtained in [Faucett, 1955] and [Mostert and Shields, 1957]. Since the Vietoris monad V on the category
OrdsComp plays a key role in the results of Section 6, we provide the necessary background material in
Section 4. We review duality theory in Section 5; in particular, for a monad T, we explain the connection
between functors XT → Aop and certain T-algebras. After these introductory parts, in Section 6 we
develop a duality theory for the Kleisli category OrdsCompV of V. We found a first valuable hint for
doing so in [Shapiro, 1992] where the author gives a functional representation of the classical Vietoris
monad on CompHaus using the algebraic structure on the non-negative reals. Inspired by this result,
for every continuous quantale structure on [0, 1], we obtain a functional representation of the Vietoris
monad on OrdsComp, which leads to a full embedding of OrdsCompV into a category of monoids of
finitely cocomplete [0, 1]-categories. We also identify the continuous functions in OrdsCompV as precisely
the monoid homomorphisms on the other side. Section 7 presents a Stone–Weierstraß type theorem
for [0, 1]-categories which helps us to establish a dual equivalence involving the category OrdsCompV.
Finally, since we moved from order structures to structures enriched in [0, 1], it is only logical to also
substitute the Vietoris monad, which is based on functions X → 2, by a monad that uses functions of
type X → [0, 1] defined on metric generalisations of ordered compact Hausdorff spaces. In Sections 8 and
9 we extend our setting from ordered compact Hausdorff spaces to “metric compact Hausdorff spaces”
and consider the enriched Vietoris monads introduced in [Hofmann, 2014]. Denoting these monads by V
as well, in analogy to the ordered case, for certain quantale structures on [0, 1] we obtain a full embedding

(metric compact Hausdorff spaces)V −→ (“finitely cocomplete” [0, 1]-categories)op.

Last but not least, we would like to point out that this is not the first work transporting classical
duality results into the realm of metric spaces. An approach version (see [Lowen, 1997]) of the duality
between the categories of sober spaces and continuous maps and of spatial frames and homomorphisms is
obtained in [Banaschewski et al., 2006] and extensively studied in [Van Olmen, 2005] (see also [Van Olmen
and Verwulgen, 2010]). By definition, an approach frame is a frame with some actions of [0,∞]; keeping in
mind the results of Section 2, we can describe approach frames as particular (co)complete metric spaces.
This point of view is taken in [Hofmann and Stubbe, 2011].

2. Enriched categories as actions

To explain the passage from the ordered to the metric case, it is convenient to view ordered sets and
metric spaces as instances of the same notion, namely that of a quantale-enriched category. All material
presented here is well-known, we refer to the classical sources [Eilenberg and Kelly, 1966], [Lawvere, 1973]
and [Kelly, 1982]. A very extensive presentation of this theory in the quantaloid-enriched case can be
found in [Stubbe, 2005, 2006, 2007]. We would also like to point the reader to [Kelly and Lack, 2000],
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[Kelly and Schmitt, 2005] and [Clementino and Hofmann, 2009] where enriched categories with certain
colimits are studied.

Definition 2.1. A (commutative and unital) quantale V is a complete lattice which carries the structure
of a commutative monoid ⊗ : V × V → V with unit element k ∈ V such that u ⊗ − : V → V preserves
suprema, for each u ∈ V.

Hence, every monotone map u⊗− : V → V has a right adjoint hom(u,−) : V → V which is characterised
by

u⊗ v ≤ w ⇐⇒ v ≤ hom(u,w),

for all v, w ∈ V.

Definition 2.2. Let V be a quantale. A V-category is a pair (X, a) consisting of a set X and a map
a : X ×X → V satisfying

k ≤ a(x, x) and a(x, y)⊗ a(y, z) ≤ a(x, z),

for all x, y, z ∈ X. Given V-categories (X, a) and (Y, b), a V-functor f : (X, a) → (Y, b) is a map
f : X → Y such that

a(x, y) ≤ b(f(x), f(y)),

for all x, y ∈ X.

For every V-category (X, a), a◦(x, y) = a(y, x) defines another V-category structure on X, and the
V-category (X, a)op := (X, a◦) is called the dual of (X, a). Clearly, V-categories and V-functors define a
category, denoted as V-Cat. The category V-Cat is complete and cocomplete, and the canonical forgetful
functor V-Cat→ Set preserves limits and colimits. The quantale V becomes a V-category with structure
hom : V × V → V. For every set S, we can form the S-power VS of V which has as underlying set all
functions h : S → V, and the V-category structure [−,−] is given by

[h, l] =
∧
s∈S

hom(h(s), l(s)),

for all h, k : S → V.

Examples 2.3. Our principal examples are the following.
(1) The two-element Boolean algebra 2 = {0, 1} of truth values with ⊗ given by “and” &. Then

hom(u, v) = (u =⇒ v) is implication. The category 2-Cat is equivalent to the category Ord of
ordered sets and monotone maps.

(2) The complete lattice [0,∞] ordered by the “greater or equal” relation > (so that the infimum
of two numbers is their maximum and the supremum of S ⊆ [0,∞] is given by inf S), with
multiplication ⊗ = +. In this case we have

hom(u, v) = v 	 u := max(v − u, 0).

For this quantale, a [0,∞]-category is a generalised metric space à la Lawvere and a [0,∞]-functor
is a non-expansive map (see [Lawvere, 1973]). We denote this category by Met.

(3) Of particular interest to us is the complete lattice [0, 1] with the usual “less or equal” relation ≤,
which is isomorphic to [0,∞] via the map [0, 1] → [0,∞], u 7→ − ln(u) where − ln(0) = ∞. As
the examples below show, metric, ultrametric and bounded metric spaces appear as categories
enriched in a quantale based on this lattice. More in detail, we consider the following quantale
operations on [0, 1] with neutral element 1.
(a) The tensor ⊗ = ∗ is the multiplication and then

hom(u, v) = v � u :=

min( vu , 1) if u 6= 0,

1 otherwise.
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Via the isomorphism [0, 1] ' [0,∞], this quantale is isomorphic to the quantale [0,∞] de-
scribed above, hence [0, 1]-Cat ' Met.

(b) The tensor ⊗ = ∧ is infimum and then

hom(u, v) =

1 if u ≤ v,

v otherwise.

In this case, the isomorphism [0, 1] ' [0,∞] establishes an equivalence between [0, 1]-Cat and
the category UMet of ultrametric spaces and non-expansive maps.

(c) The tensor ⊗ = � is the Łukasiewicz tensor given by u � v = max(0, u + v − 1), here
hom(u, v) = min(1, 1 − u + v) = 1 − max(0, u − v). Via the lattice isomorphism [0, 1] →
[0, 1], u 7→ 1 − u, this quantale is isomorphic to the quantale [0, 1] with “greater or equal”
relation > and tensor u⊗ v = min(1, u+ v) truncated addition. This observation identifies
[0, 1]-Cat as the category BMet of bounded-by-1 metric spaces and non-expansive maps.

Every V-category (X, a) carries a natural order defined by

x ≤ y whenever k ≤ a(x, y),

which can be extended pointwise to V-functors making V-Cat a 2-category. Therefore we can talk about
adjoint V-functors; as usual, f : (X, a) → (Y, b) is left adjoint to g : (Y, b) → (X, a), written as f a g,
whenever 1X ≤ gf and fg ≤ 1Y . Equivalently, f a g if and only if

b(f(x), y) = a(x, g(y)),

for all x ∈ X and y ∈ Y . We note that maps f and g between V-categories satisfying the equation above
are automatically V-functors.

The natural order of V-categories defines a faithful functor V-Cat → Ord. A V-category is called
separated whenever its underlying ordered set is anti-symmetric, and we denote by V-Cats the full
subcategory of V-Cat defined by all separated V-categories. Tautologically, an ordered set is separated
if and only if it is anti-symmetric. Hence, Ords denotes the category of all separated ordered sets and
monotone maps. In the sequel we will frequently consider separated V-categories in order to guarantee
that adjoints are unique. We note that the underlying order of the V-category V is just the order of the
quantale V, and the order of VS is calculated pointwise. In particular, VS is separated.

Definition 2.4. A V-category (X, a) is called V-copowered whenever the V-functor a(x,−) : (X, a)→
(V,hom) has a left adjoint x⊗− : (V,hom)→ (X, a) in V-Cat, for every x ∈ X.

We note that this operation is better known under the name “V-tensored”; however, we prefer to use
the designation “V-copowered” since it is a special case of a colimit. Elementwise, this means that, for
all x ∈ X and u ∈ V, there exists some element x⊗ u ∈ X, called the u-copower of x, such that

a(x⊗ u, y) = hom(u, a(x, y)),

for all y ∈ X.

Example 2.5. The V-category V is V-copowered, with copowers given by the multiplication of the
quantale V. More generally, for every set S, the V-category VS is V-copowered: for every h ∈ VS and
u ∈ V, the u-copower of h is given by (h⊗ u)(x) = h(x)⊗ u, for all x ∈ S.

Remark 2.6. If (X, a) is a V-copowered V-category, then, for every x ∈ X and u = ⊥ the bottom element
of V, we have

a(x⊗⊥, y) = hom(⊥, a(x, y)) = >
for all y ∈ X. In particular, x⊗⊥ is a bottom element of the V-category (X, a).

Every V-copowered and separated V-category comes equipped with an action ⊗ : X × V → X of the
quantale V satisfying
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(1) x⊗ k = x,
(2) (x⊗ u)⊗ v = x⊗ (u⊗ v),
(3) x⊗

∨
i∈I

ui =
∨
i∈I

(x⊗ ui);

for all x ∈ X and u, v, ui ∈ V (i ∈ I). Conversely, given a separated ordered set X with an action
⊗ : X×V → X satisfying the three conditions above, one defines a map a : X×X → V by x⊗− a a(x,−),
for all x ∈ X. It is easy to see that (X, a) is a V-copowered V-category whose order is the order of X
and where copowers are given by the action of X. Writing V-CoPows for the category of V-copowered
and separated V-categories and copower-preserving V-functors and OrdVs for the category of separated
ordered sets X with an action ⊗ : X×V → X satisfying the three conditions above and action-preserving
monotone maps, the above construction yields an isomorphism

V-CoPows ' OrdVs .

We also note that the inclusion functor V-CoPows → V-Cat is monadic.

Remark 2.7. The identification of certain metric spaces as ordered sets with an action of [0, 1] allows us
to spot the appearance of metric spaces where it does not seem obvious at first sight. For instance, [Ba-
naschewski, 1983] considers the distributive lattice DX of continuous functions from a compact Hausdorff
space X into the unit interval [0, 1], and, for a continuous map f : X → Y , the lattice homomorphism
Df : DY → DX, ψ 7→ ψ · f is given by composition with f . In [Banaschewski, 1983, Proposition 2] it
is shown that a lattice homomorphism ϕ : DY → DX is of the form ϕ = Df , for some continuous map
f : X → Y , if and only if ϕ preserves constant functions. Subsequently, [Banaschewski, 1983] consideres
the algebraic theory of distributive lattices augmented by constants, one for each element of [0, 1]; and
eventually obtains a duality result for compact Hausdorff spaces. Motivated by the considerations in this
section, instead of adding constants we will consider DX as a lattice equipped with the action of [0, 1]
defined by

(f ⊗ u)(x) = f(x) ∧ u,

and then [Banaschewski, 1983, Proposition 2] tells us that the lattice homomorphisms ϕ : DY → DX

of the form ϕ = Df are precisely the action-preserving ones. Hence, Banaschewski’s result can be
reinterpreted in terms of [0, 1]-copowered ultrametric spaces.

The notion of copower in a V-category (X, a) is a special case of a weighted colimit in (X, a), as we
recall next. In the remainder of this section we write G to denote the V-category (1, k); note that G is a
generator in V-Cat.

For a quantale V and sets X, Y , a V-relation from X to Y is a map X ×Y → V and it will be repre-
sented by X −→7 Y . As for ordinary relations, V-relations can be composed via “matrix multiplication”.
That is, for r : X −→7 Y and s : Y −→7 Z, the composite s · r : X −→7 Z is calculated pointwise by

(s · r)(x, z) =
∨
y∈Y

r(x, y)⊗ s(y, z),

for every x ∈ X and z ∈ Z. We note that the structure of a V-category is by definition a reflexive and
transitive V-relation, since the axioms dictate that, for a V-category (X, a), 1X ≤ a and a · a ≤ a. A
V-relation r : X −→7 Y between V-categories (X, a) and (Y, b) is called a V-distributor (called bimodule
in [Lawvere, 1973]) if r · a ≤ r and b · r ≤ r, and we write r : (X, a) −→◦ (Y, b).

A weighted colimit diagram in X is given by a V-category A together with a V-functor h : A→ X

and a V-distributor ψ : A −→◦ G, the latter is called the weight of the diagram. A colimit of such a
diagram is an element x0 ∈ X such that, for all x ∈ X,

a(x0, x) =
∧
z∈A

hom(ψ(z), a(h(z), x)).

If a weighted colimit diagram has a colimit, then this colimit is unique up to equivalence. A V-functor
f : X → Y between V-categories preserves the colimit of this diagram whenever f(x0) is a colimit of
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the weighted colimit diagram in Y given by fh : A → Y and ψ : A −→◦ G. For more details we refer to
[Kelly, 1982].

Examples 2.8. (1) For A = G, a weighted colimit diagram in X is given by an element x : G→ X

and an element u : G −→◦ G in V, a colimit of this diagram is the u-copower x⊗ u of x.
(2) For a family h : I → X, i 7→ xi in X we consider the distributor ψ : I −→◦ G defined by ψ(z) = k,

for all z ∈ I. Then x̄ is a colimit of this diagram precisely when

a(x̄, x) =
∧
i∈I

a(xi, x),

for all x ∈ X; that is, x̄ is an order-theoretic supremum of (xi)i∈I and every a(−, x) : X → Vop

preserves this supremum. Such a supremum is called conical supremum.
Recall that a V-copowered V-category (X, a) can be viewed as an ordered set X with an action

⊗ : X × V → X. In terms of this structure, (X, a) has all conical suprema of a given shape I if
and only if every family (xi)i∈I has a supremum in the ordered set X and, moreover,(∨

i∈I
xi

)
⊗ u '

∨
i∈I

(xi ⊗ u)

for all u ∈ V. This follows from the facts that
∨
i∈I xi ⊗− is left adjoint to a(

∨
i∈I xi,−) and

V ∆V−−→ VI
∏

i∈I
(xi⊗−)

−−−−−−−−−→ XI

∨
−−→ X

is left adjoint to

X
∆X−−−→ XI

∏
i∈I

a(xi,−)
−−−−−−−−−→ VI

∧
−−→ V.

A V-category X is called cocomplete if every weighted colimit diagram has a colimit in X. One can
show that X is cocomplete if and only if X has the two types of colimits described above, in this case
the colimit of an arbitrary diagram can be calculated as

x0 =
∨
z∈A

h(z)⊗ ψ(z).

In particular, the V-category V is cocomplete, and so are all its powers VS .
A V-functor f : X → Y between cocomplete V-categories is called cocontinuous whenever f preserves

all colimits of weighted colimit diagrams; by the above, f is cocontinuous if and only if f preserves
copowers and order-theoretic suprema.

Definition 2.9. A V-category X is called finitely cocomplete whenever every weighted colimit diagram
given by h : A→ X and ψ : A −→◦ G where the underlying set of A is finite has a colimit in X. We call a
V-functor f : X → Y between finitely cocomplete V-categories finitely cocontinuous whenever those
colimits are preserved.

Therefore:

• X is finitely cocomplete if and only if X has all copowers, a bottom element, all order-theoretic
binary suprema and, moreover, these suprema are preserved by all V-functors a(−, x) : X → Vop.
• A map f : X → Y between finitely cocomplete V-categories is a finitely cocontinuous V-functor if
and only if f is monotone and preserves copowers and binary suprema. Note that, by Remark 2.6,
the preservation of copowers guarantees the preservation of the bottom element.

In the sequel we write V-FinSup to denote the category of separated finitely cocomplete V-categories
and finitely cocontinuous V-functors. We also recall that the inclusion functor V-FinSup → V-Cat is
monadic; in particular, V-FinSup is complete and V-FinSup→ V-Cat preserves all limits.
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Remark 2.10. By the considerations of this section, V-FinSup can also be seen as a quasivariety (for more
information on algebraic categories we refer to [Adámek and Rosický, 1994] and [Adámek et al., 2010]).
In fact, a separated finitely cocomplete V-category can be described as a set X equipped with a nullary
operation ⊥, a binary operation ∨, and unary operations −⊗u (u ∈ V), subject to the following equations
and implications:

x ∨ x = x, x ∨ y = y ∨ x, x ∨ (y ∨ z) = (x ∨ y) ∨ z, x ∨ ⊥ = x,

x⊗ k = x, (x⊗ u)⊗ v = x⊗ (u⊗ v), ⊥⊗ u = ⊥, (x ∨ y)⊗ u = (x⊗ u) ∨ (y ⊗ u);

for all x, y, z ∈ X and u, v ∈ V. We also have to impose the conditions

x⊗ v =
∨
u∈S

(x⊗ u),

for all x ∈ X and S ⊆ V with v =
∨
S; however, this is not formulated using just the operations above.

Writing x ≤ y as an abbreviation for the equation y = x ∨ y, we can express the condition “x⊗ v is the
supremum of {x⊗ u | u ∈ S}” by the covert equational conditions

x⊗ u ≤ x⊗ v, (u ∈ S)

and the implication ∧
u∈S

(x⊗ u ≤ y) =⇒ (x⊗ v ≤ y).

Furthermore, the morphisms of V-FinSup correspond precisely to the maps preserving these operations.
By the considerations above, with λ denoting the smallest regular cardinal larger than the size of V, the
category V-FinSup is equivalent to a λ-ary quasivariety. From that we conclude that V-FinSup is also
cocomplete. Finally, if the quantale V is based on the lattice [0, 1], then it is enough to consider countable
subsets S ⊆ V, and therefore V-FinSup is equivalent to a ℵ1-ary quasivariety.

Another important class of colimit weights is the class of all right adjoint V-distributors ψ : A −→◦ G.

Definition 2.11. A V-category X is called Cauchy-complete whenever every diagram (h : A→ X,ψ :
A −→◦ G) with ψ right adjoint has a colimit in X.

The designation “Cauchy-complete” has its roots in Lawvere’s amazing observation that, for met-
ric spaces interpreted as [0,∞]-categories, this notion coincides with the classical notion of Cauchy-
completeness (see [Lawvere, 1973]). We hasten to remark that every V-functor preserves colimits weighted
by right adjoint V-distributors.

In this context, [Hofmann and Tholen, 2010] introduces a closure operator (−) on V-Cat which facil-
itates working with Cauchy-complete V-categories. As usual, a subset M ⊆ X of a V-category (X, a) is
closed whenever M = M and M is dense in X whenever M = X. Below we recall the relevant facts
about this closure operator.

Theorem 2.12. The following assertions hold.
(1) For every V-category (X, a), x ∈ X and M ⊆ X, x ∈M ⇐⇒ k ≤

∨
z∈M

a(x, z)⊗ a(z, x).

(2) If V is completely distributive (see [Raney, 1952] and [Wood, 2004]) with totally below relation
� and k ≤

∨
u�k u ⊗ u, then x ∈ M if and only if, for every u � k, there is some z ∈ M

with u ≤ a(x, z) and u ≤ a(z, x). By [Flagg, 1992, Theorem 1.12], the quantale V satisfies
k ≤

∨
u�k u⊗ u provided that the subset A = {u ∈ V | u� k} of V is directed.

(3) The V-category V is Cauchy-complete.
(4) The full subcategory of V-Cat defined by all Cauchy-complete V-categories is closed under limits

in V-Cat.
(5) Let X be a Cauchy-complete and separated V-category and M ⊆ X. Then the V-subcategory M

of X is Cauchy-complete if and only if the subset M ⊆ X is closed in X.
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The notion of weighted colimit is dual to the one of weighted limit, of the latter we only need the
special case of u-powers, with u ∈ V.

Definition 2.13. A V-category (X, a) is called V-powered whenever, for every x ∈ X, the V-functor
a(−, x) : (X, a)op → (V,hom) has a left adjoint in V-Cat.

Elementwise, this amounts to saying that, for every x ∈ X and every u ∈ V, there is an element
x t u ∈ X, called the u-power of x, satisfying

hom(u, a(y, x)) = a(y, x t u),

for all y ∈ X. The V-category V is V-powered where w t u = hom(u,w), more generally, VS is V-powered
with (h t u)(x) = hom(u, h(x)), for all h ∈ VS , u ∈ V and x ∈ S.

Remark 2.14. For every V-functor f : X → Y , x ∈ X and u ∈ V, f(u t x) ≤ u t f(x).

3. Continuous quantale structures on the unit interval

In this paper we are particularly interested in quantales based on the complete lattice [0, 1]. We
succinctly review the classification of all continuous quantale structures ⊗ : [0, 1]× [0, 1]→ [0, 1] on [0, 1]
with neutral element 1. Such quantale structures are also called continuous t-norms. The results
obtained in [Faucett, 1955] and [Mostert and Shields, 1957] show that every such tensor is a combination
of the three structures mentioned in Examples 2.3(3). A more detailed presentation of this material is in
[Alsina et al., 2006].

We start by recalling some standard notation. An element x ∈ [0, 1] is called idempotent whenever
x⊗ x = x and nilpotent whenever x 6= 0 and, for some n ∈ N, xn = 0. The number of idempotent and
nilpotent elements characterises the three tensors ∧, � and ⊗ on [0, 1] among all continuous t-norms.

Proposition 3.1. Assume that 0 and 1 are the only idempotent elements of [0, 1] with respect to a given
continuous t-norm. Then

(1) [0, 1] has no nilpotent elements, then ⊗ = ∗ is multiplication.
(2) [0, 1] has a nilpotent element, then ⊗ = � is the Łukasiewicz tensor. In this case, every element

x with 0 < x < 1 is nilpotent.

To deal with the general case, for a continuous t-norm ⊗ consider the subset E = {x ∈ [0, 1] |
x is idempotent}. Note that E is closed in [0, 1] since it can be presented as an equaliser of the diagram

[0, 1]
identity//
−⊗−

// [0, 1]

in CompHaus.

Lemma 3.2. Let ⊗ be a continuous t-norm on [0, 1], x, y ∈ [0, 1] and e ∈ E so that x ≤ e ≤ y. Then
x⊗ y = x.

Corollary 3.3. Let ⊗ be a continuous t-norm on [0, 1] so that every element is idempotent. Then ⊗ = ∧.

Before announcing the main result of this section, we note that, for idempotents e < f in [0, 1], the
closed interval [e, f ] is a quantale with tensor defined by the restriction of the tensor on [0, 1] and neutral
element f .

Theorem 3.4. Let ⊗ be a continuous t-norm on [0, 1]. For every non-idempotent x ∈ [0, 1], there exist
idempotent elements e, f ∈ [0, 1], with e < x < f , such that the quantale [e, f ] is isomorphic to the
quantale [0, 1] with either multiplication or Łukasiewicz tensor.

Proof. See [Mostert and Shields, 1957, Theorem B]. �

Remark 3.5. We note that every isomorphism [e, f ]→ [0, 1] of quantales is necessarily a homeomorphism.
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The following consequence of Theorem 3.4 will be useful in the sequel.

Corollary 3.6. Let (u, v) ∈ [0, 1]× [0, 1] with u⊗ v = 0. Then either u = 0 or vn = 0, for some n ∈ N.
Hence, if there are no nilpotent elements, then u = 0 or v = 0.

Proof. Assume u > 0. The assertion is clear if there is some idempotent e with 0 < e ≤ u. If there is
no e ∈ E with 0 < e ≤ u, then there is some f ∈ E with u < f and [0, f ] is isomorphic to [0, 1] with
either multiplication or Łukasiewicz tensor. Since u ⊗ v = 0, v < f . If [0, f ] is isomorphic to [0, 1] with
multiplication, then v = 0; otherwise there is some n ∈ N with vn = 0. �

In conclusion, the results of this section show that every continuous t-norm on [0, 1] is obtained
as a combination of infimum, multiplication and Łukasiewicz tensor. Conversely, continuous quantale
structures on [0, 1] can be defined piecewise using these three elementary t-norms; for more information
see [Alsina et al., 2006, Theorem 2.4.2].

4. Ordered compact spaces and Vietoris monads

The Vietoris monad on the category of separated ordered compact spaces plays a key role in the
duality results presented beginning from Section 6. We recall from [Nachbin, 1950, 1965] that an ordered
compact space consists of a compact space X equipped with an order relation ≤ so that

{(x, y) | x ≤ y} ⊆ X ×X

is a closed subset of the product space X×X. We denote by OrdsComp the category of separated ordered
compact spaces and monotone continuous maps.

Remark 4.1. It follows immediately from the definition that every separated ordered compact space is
Hausdorff since, for a separated order relation, the diagonal

∆ = {(x, y) | x ≤ y} ∩ {(x, y) | y ≤ x}

is a closed subset of X ×X.

Remark 4.2. There is a close connection between separated ordered compact spaces and a certain type
of sober topological spaces, the so-called stably compact spaces, which was first exposed in [Gierz et al.,
1980]. In fact, the category OrdsComp is isomorphic to the category StComp of stably compact spaces
and proper maps, for details we refer to [Gierz et al., 2003].

Given a separated ordered compact space X, keeping its topology but taking now its dual order
produces also a separated ordered compact space, denoted by Xop. Of particular interest to us are the
separated ordered compact space [0, 1] with the Euclidean topology and the usual “less or equal” relation,
and its dual separated ordered compact space [0, 1]op. For a subset A of X, we denote the up-closure
of A by

↑A = {y ∈ X | y ≥ x for some x ∈ A}

and the down-closure of A by

↓A = {y ∈ X | y ≤ x for some x ∈ A}.

To distinguish between order closed and topological closed sets we say that an up-closed set is upper
and a down-closed set is lower. Below we collect some facts about these structures which can be found
in, or follow from, [Nachbin, 1965, Proposition 4 and Theorems 1 and 4].

Proposition 4.3. If A is a compact subset of a separated ordered compact space X then the sets ↑A and
↓A are closed.

Corollary 4.4. Let A be a subset of a separated ordered compact space X. Then, ↑A ⊆ X is the smallest
closed upper subset containing A.
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Proposition 4.5 (Urysohn lemma). Let A and B be subsets of a separated ordered compact space X
such that A is a closed upper set, B is a closed lower set and A∩B = ∅. Then there exists a continuous
and monotone function ψ : X → [0, 1] such that ψ(x) = 1 for every x ∈ A, and ψ(x) = 0 for every x ∈ B.

These results imply immediately:

Proposition 4.6. The separated ordered compact space [0, 1] is an initial cogenerator in OrdsComp; that
is, for every separated ordered compact space X, the cone (ψ : X → [0, 1])ψ of all morphisms from X

to [0, 1] is point-separating and initial with respect to the canonical forgetful functor OrdsComp → Set
(see [Tholen, 2009; Hofmann and Nora, 2015] for a description of initial cones in OrdsComp). Since
[0, 1] ' [0, 1]op in OrdsComp, also [0, 1]op is an initial cogenerator in OrdsComp.

The Vietoris functor V : OrdsComp → OrdsComp sends a separated ordered compact space X to
the space V X of all closed upper subsets of X, with order containment ⊇, and the compact topology is
generated by the sets

{A ⊆ X | A closed upper and A ∩ U 6= ∅} (U ⊆ X open lower),

{A ⊆ X | A closed upper and A ∩K = ∅} (K ⊆ X closed lower).

Given a map f : X → Y in OrdsComp, the functor returns the map that sends a closed upper subset
A ⊆ X to the up-closure ↑f [A] of f [A]. The Vietoris functor V : OrdsComp → OrdsComp is part of a
monad V = (V, e,m) with unit and multiplication defined by

eX : X −→ V X, x 7−→ ↑{x} and mX : V V X −→ V X, A 7−→
⋃
A.

For more information about this construction (in the context of topological spaces, see Remark 4.2) we
refer to [Schalk, 1993, Section 6.3].

Furthermore, from the monad V on OrdsComp we obtain a monad V = (V,m, e) on the category
CompHaus of compact Hausdorff spaces and continuous maps via the canonical adjunction

OrdsComp >

forgetful
((

discrete

hh CompHaus.

The functor V : CompHaus→ CompHaus sends a compact Hausdorff space X to the space

V X = {A ⊆ X | A is closed}

with the topology generated by the sets

{A ∈ V X | A ∩ U 6= ∅} (U ⊆ X open) and {A ∈ V X | A ∩K = ∅} (K ⊆ X closed);

for f : X → Y in CompHaus, V f : V X → V Y sends A to f [A]. We note that this is indeed the original
construction introduced by Vietoris in [Vietoris, 1922].

Remark 4.7. In this paper we are interested in the Kleisli categories OrdsCompV and CompHausV. A
morphism X → V Y in CompHaus corresponds to a relation from X to Y , written as X −→7 Y . Likewise, a
morphism X → V Y in OrdsComp corresponds to a distributor between the underlying separated ordered
sets, and we write X −→◦ Y instead of X → V Y . Furthermore, in both cases composition in the Kleisli
category corresponds to relational composition. Also note that CompHausV is isomorphic to the full
subcategory of OrdsCompV determined by the discretely ordered compact spaces.

5. Dual adjunctions

In this section we present some well-known results about the structure and construction of dual ad-
junctions. There is a vast literature on this subject, we mention here [Lambek and Rattray, 1978, 1979],
[Dimov and Tholen, 1989], [Porst and Tholen, 1991], [Johnstone, 1986] and [Clark and Davey, 1998].
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We start by considering an adjunction

(5.i) X ⊥

F
((

G

hh Aop

between a category X and the dual of a category A. In general, such an adjunction is not an equivalence.
Nevertheless, one can always consider its restriction to the full subcategories Fix(η) and Fix(ε) of X
respectively A, defined by the classes of objects

{X | ηX is an isomorphism} and {A | εA is an isomorphism},

where it yields an equivalence Fix(η) ' Fix(ε)op. The passage from X to Fix(η) is only useful if this
subcategory contains all “interesting objects”. This, however, is not always the case; Fix(η) can be
even empty. En passant we mention that these fixed subcategories are reflective in A respectively in X
provided that the monad induced by the adjunction (5.i) on A respectively X is idempotent (see [Lambek
and Rattray, 1979, Theorem 2.0] for details).

Throughout this section we assume that X and A are equipped with faithful functors

| − | : X −→ Set and | − | : A −→ Set.

Definition 5.1. The adjunction (5.i) is induced by the dualising object (X̃, Ã), with objects X̃ in X
and Ã in A, whenever |X̃| = |Ã|, |F | = hom(−, X̃), |G| = hom(−, Ã) and the units are given by

ηX : X −→ GFX and εA : A −→ FGA;(5.ii)

x 7−→ evx a 7−→ eva

with evx and eva denoting the evaluation maps.

If the forgetful functors to Set are representable by objects X0 in X and A0 in A, then every adjunction
(5.i) is of this form, up to natural equivalence (see [Dimov and Tholen, 1989] and [Porst and Tholen,
1991]).

Remark 5.2. Consider an adjunction (5.i) induced by a dualising object (X̃, Ã). For every ψ : X → X̃

and ϕ : A→ Ã, the diagrams

X
ηX //

ψ ""

GFX

evψ
��
X̃

and A
εA //

ϕ
!!

FGA

evϕ
��
Ã

commute.

We turn now to the question “How to construct dual equivalences?”. Motivated by the considerations
above, we assume that X̃ and Ã are objects in X and A respectively, with the same underlying set
|X̃| = |Ã|. In order to obtain a dual adjunction, we wish to lift the hom-functors hom(−, X̃) : Xop → Set
and hom(−, Ã) : Aop → Set to functors F : Xop → A and G : Aop → X in such a way that the maps (5.ii)
underlie an X-morphism and, respectively, an A-morphism. To this end, we consider the following two
conditions.

(Init X): For each object X in X, the cone (evx : hom(X, X̃)→ |Ã|, ψ 7→ ψ(x))x∈|X| admits an initial
lift (evx : F (X)→ Ã)x∈|X|.

(Init A): For each object A in A, the cone (eva : hom(A, Ã) → |X̃|))a∈|A| admits an initial lift (eva :
G(A)→ X̃)b∈V (B).

Theorem 5.3. If conditions (Init X) and (Init A) are fulfilled, then these initial lifts define the object
parts of a dual adjunction (5.i) induced by (X̃, Ã).



ENRICHED STONE-TYPE DUALITIES 13

Clearly, if | − | : X → Set is topological (see [Adámek et al., 1990]), then (Init X) is fulfilled. The
following proposition describes another typical situation.

Proposition 5.4. Let A be the category of algebras for a signature Ω of operation symbols and assume
that X is complete and | − | : X → Set preserves limits. Furthermore, assume that, for every operation
symbol ω ∈ Ω, the corresponding operation |Ã|

I
→ |Ã| underlies an X-morphism X̃I → X̃. Then both

(Init X) and (Init A) are fulfilled.

Proof. This result is essentially proven in [Lambek and Rattray, 1979, Proposition 2.4]. Firstly, since
all operations on Ã are X-morphisms, the algebra structure on hom(X, X̃) can be defined pointwise.
Secondly, for each algebra A, the canonical inclusion hom(A, Ã) → |X̃||A| is the equaliser of a pair of
X-morphisms between powers of X̃. In fact, a map f : |A| → |Ã| is an algebra homomorphism whenever,
for every operation symbol ω ∈ Ω with arity I and every h ∈ |A|I ,

f(ωA(h)) = ω
Ã

(f · h).

In other words, the set of maps f : |A| → |Ã| which preserve the operation ω is precisely the equaliser of

πωA(h) : |Ã|
|A|
−→ |Ã|

and the composite

|Ã|
|A| −·h−−−→ |Ã|

I ω
Ã−−−→ |Ã|.

Since both maps underlie X-morphisms X̃ |A| → X̃, the assertion follows. �

Remark 5.5. The result above remains valid if
• the objects of A admit an order relation and some of the operations are only required to be
preserved laxly, and
• the order relation R→ |Ã| × |Ã| of Ã underlies an X-morphism R′ → X̃ × X̃.

In fact, with the notation of the proof above, the set of maps f : |A| → |Ã| with

f(ωA(h)) ≤ ω
Ã

(f · h)

for all h ∈ |A|I can be described as the pullback of the diagram

R

��
|Ã|
|A| // |Ã| × |Ã|.

Clearly, for every object X in X, the unit ηX : X → GF (X) is an isomorphism if and only if ηX is
surjective and an embedding. If the dual adjunction is constructed using (Init X) and (Init A), then, by
Remark 5.2,

ηX is an embedding if and only if the cone (ψ : X → X̃)ψ is point-separating and initial.
We hasten to remark that the latter condition only depends on X̃ and is independent of the choice of A.

If η is not componentwise an embedding, we can substitute X by its full subcategory defined by all those
objects X where (ψ : X → X̃)ψ is point-separating and initial; by construction, the functor G corestricts
to this subcategory. Again, this procedure is only useful if this subcategory contains all “interesting
spaces”, otherwise it is probably best to use a different dualising object. For exactly this reason, in this
paper we will consider the compact Hausdorff space [0, 1] instead of the discrete two-element space.

We assume now that η is componentwise an embedding. Then the functor F : X→ Aop is faithful, and
η is an isomorphism if and only if F is also full. Put differently, if η is not an isomorphism, then A has
too many arrows. A possible way to overcome this problem is to enrich the structure of A. For instance,
in [Johnstone, 1986, VI.4.4] it is shown that, under mild conditions, A can be substituted by the category
of Eilenberg–Moore algebras for the monad on A induced by the dual of the adjunction (5.i). However,
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in this paper we take a different approach: instead of saying “A has too many morphisms”, one might
also think that “X has too few morphisms”. One way of adding morphisms to a category is passing from
X to the Kleisli category XT, for a suitable monad T on X. In fact, and rather trivially, for T being
the monad on X induced by the adjunction (5.i), the comparison functor XT → Aop is fully faithful. In
general, this procedure will not give us new insights since we do not know much about the monad induced
by F a G. The situation improves if we take a different, better known monad T on X isomorphic to the
monad induced by F a G. We are then left with the task of identifying the X-morphisms inside XT in a
purely categorical way so that it can be translated across a duality.

Example 5.6. Consider the power monad P on Set whose Kleisli category SetP is equivalent to the
category Rel of sets and relations. Within Rel, functions can be identified by two fundamentally different
properties.

• A relation r : X −→7 Y is a function if and only if r has a right adjoint in the ordered category
Rel. This is actually a 2-categorical property; if we want to use it in a duality we must make sure
that the involved equivalence functors are locally monotone.
• A relation r : X −→7 Y is a function if and only if r is a homomorphism of comonoids in the
monoidal category Rel, that is, the diagrams

X �r //

�
>   

Y

_>
��
1

and X ×X �r×r // Y × Y

X

_∆

OO

�
r

// Y

_ ∆

OO

commute. In the second diagram, X × X denotes the set-theoretical product which can be
misleading since it is not the categorical product in Rel. To use this description in a duality
result, one needs to know the corresponding operation on the other side.

In the considerations above, the Kleisli category XT was only introduced to support the study of X;
however, at some occasions our primary interest lies in XT. In this case, a monad T on X is typically
given before-hand, and we wish to find an adjunction (5.i) so that the induced monad is isomorphic to
T. If a dualising object (X̃, Ã) induces this adjunction, we speak of a functional representation of T.
Looking again at the example CoAlg(V ) ' BAOop of Section 1, by observing that V is part of a monad
V = (V,m, e) on BooSp, we can think of the objects of CoAlg(V ) as Boolean spaces X equipped with
an endomorphism r : X −→7 X in BooSpV; the morphisms of CoAlg(V ) are those morphisms of BooSp
commuting with this additional structure. Halmos’ duality theorem [Halmos, 1956] affirms that the
category BooSpV is dually equivalent to the category FinSupBA of Boolean algebras with finite suprema
preserving maps. The duality CoAlg(V ) ' BAOop follows now from both Halmos duality and the classical
Stone duality BooSp ' BAop [Stone, 1936]. We note that [Halmos, 1956] does not talk about monads,
but in [Hofmann and Nora, 2015] we have studied this and other dualities from this point of view.

As we explained above, our aim is to construct and analyse functors F : XT → Aop which extend a
given functor F : X → Aop that is part of an adjunction F a G induced by a dualising object (X̃, Ã). It
is well-known that such functors F : XT → Aop correspond precisely to monad morphisms from T to the
monad induced by F a G, and that monad morphisms into a “double dualisation monad” are in bijection
with certain algebra structures on X̃ (see [Kock, 1971], for instance). In the remainder of this section,
we explain these correspondences in the specific context of our paper.

Let X and A be categories with respresentable forgetful functors

| − | ' hom(X0,−) : X −→ Set and | − | ' hom(A0,−) : A −→ Set,

T = (T,m, e) a monad on X and F a G an adjunction

X ⊥

F
((

G

hh Aop
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induced by (X̃, Ã). We denote by D the monad induced by F a G. The next result establishes a
connection between monad morphisms j : T → D and T-algebra structures on X̃ compatible with the
adjunction F a G.

Theorem 5.7. In the setting described above, the following data are in bijection.
(1) Monad morphisms j : T→ D.
(2) Functors F : XT → Aop making the diagram

XT
F // Aop

X

FT

OO

F

==

commutative.
(3) T-algebra structures σ : TX̃ → X̃ such that the map

hom(X, X̃) −→ hom(TX, X̃), ψ 7−→ σ · Tψ

is an A-morphism κX : FX → FTX, for every object X in X.

Proof. The equivalence between the data described in (1) and (2) is well-known, see [Pumplün, 1970], for
instance. We recall here that, for a monad morphism j : T→ D, the corresponding functor F : XT → Aop

can be obtained as
XT

composition with j−−−−−−−−−−−−→ XD
comparison−−−−−−−→ Aop.

To describe the passage from (1) to (3), we recall from [Johnstone, 1986, Lemma VI.4.4] that X̃ becomes
a D-algebra since X̃ ' GA0 and G : Aop → X factors as

Aop

G
''

comparision // XD

forgetful
��

X.

A little computation shows that the D-algebra structure on X̃ is

GFX̃
ev1

X̃−−−→ X̃.

Composing ev1
X̃

with j
X̃

gives a T-algebra structure σ : TX̃ → X̃. Furthermore, the functor F : XT →
Aop sends 1TX : TX −→7 X in XT to the A-morphism FjX · εFX : FX → FTX which sends ψ ∈ FX to
FjX(evψ) = evψ ·jX . On the other hand,

σ · Tψ = ev1
X̃

·j
X̃
· Tψ = ev1

X̃

·GFψ · jX = evψ ·jX ;

which shows that κX = FjX ·εFX is an A-morphism. For a compatible T-algebra structures σ : TX̃ → X̃

as in (3),
(ϕ : X → TY ) 7−→ (FY κY−−→ FTY

Fϕ−−→ FX)
defines a functor F : XT → Aop making the diagram

XT
F // Aop

X

FT

OO

F

==

commutative. The induced monad morphism j : T→ D is given by the family of maps

jX : |TX| −→ hom(FX, Ã), x 7−→ (ψ 7→ σ · Tψ(x)).

Furthermore, the T-algebra structure induced by this j is indeed

ev1
X̃

·j
X̃

= σ · T1
X̃

= σ.



16 DIRK HOFMANN AND PEDRO NORA

Finally, for a monad morphism j : T → D, the monad morphism induced by the corresponding algebra
structure σ has as X-component the map sending x ∈ TX to

σ · Tψ(x) = evψ ·jX(x) = jX(x)(ψ). �

Remark 5.8. The constructions described above seem to be more natural if X̃ = TX0 with T-algebra
structure mX0 , see [Hofmann and Nora, 2015, Proposition 4.3]. In this case, the functor F : XT → Aop

is a lifting of the hom-functor hom(−, X0) : XT → Setop. Furthermore, interpreting the elements of TX
as morphisms ϕ : X0 −→7 X in the Kleisli category XT allows to describe the components of the monad
morphism j using composition in XT:

jX : |TX| −→ hom(FX, Ã), ϕ 7−→ (ψ 7→ ψ · ϕ).

In Section 9 we apply this construction to a variation of the Vietoris monad on a category of “metric
compact Hausdorff spaces”. Unlike the classical Vietoris functor, the functor of this monad sends the
one-element space to [0, 1]op (see Example 2.3 (3) for the introduction of [0, 1]-categories as metric spaces).

6. Duality theory for continuous distributors

In this section we apply the results presented in Section 5 to the Vietoris monad V on X = OrdsComp,
with X̃ = [0, 1]op (see Section 4) and V-algebra structure

V ([0, 1]op) −→ [0, 1]op, A 7−→ sup
x∈A

x.

Then, for a category A and an adjunction

OrdsComp ⊥

C
((

G

hh Aop

induced by ([0, 1]op, [0, 1]) and compatible with the V-algebra structure on [0, 1]op, the corresponding
monad morphism j has as components the maps

jX : V X −→ GC(X), A 7−→ (ΦA : CX → [0, 1], ψ 7→ sup
x∈A

ψ(x)).

We wish to find an appropriate category A so that j is an isomorphism. Our first inspiration stems from
[Shapiro, 1992] where the following result is proven.

Theorem 6.1. Consider the subfunctor V1 : CompHaus→ CompHaus of V sending X to the space of all
non-empty closed subsets of X. The functor V1 : CompHaus→ CompHaus is naturally isomorphic to the
functor which sends X to the space of all functions

Φ : C(X,R+
0 ) −→ R+

0

satisfying the conditions (for all ψ,ψ1, ψ2 ∈ C(X,R+
0 ) and u ∈ R+

0 )

(1) Φ is monotone,
(2) Φ(u ∗ ψ) = u ∗ Φ(ψ),
(3) Φ(ψ1 + ψ2) ≤ Φ(ψ1) + Φ(ψ2),
(4) Φ(ψ1 · ψ2) ≤ Φ(ψ1) · Φ(ψ2),
(5) Φ(ψ1 + u) = Φ(ψ1) + u,
(6) Φ(u) = u.

The topology on the set of all maps Φ : C(X,R+
0 ) → R+

0 satisfying the conditions above is the initial
one with respect to all evaluation maps evψ, where ψ ∈ C(X,R+

0 ). The X-component of the natural
isomorphism sends a closed non-empty subset A ⊆ X to the map ΦA : C(X,R+

0 )→ R+
0 defined by

ΦA(ψ) = sup
x∈A

ψ(x).
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One notices immediately that, for A = ∅, ΦA does not satisfy the last two axioms above. In fact, as
we show below, the condition (5) is not necessary for Shapiro’s result; moreover, when generalising from
multiplication ∗ to an arbitrary continuous quantale structure ⊗ on [0, 1], we change + in (5) to truncated
minus, which is compatible with the empty set. Thanks to (2), the condition (6) can be equivalently
expressed as Φ(1) = 1, and this is purely related to A 6= ∅ (see Proposition 6.7) and therefore the case
A = ∅ does not present any problem. To fit better into our framework, in the sequel we will consider
functions into [0, 1] instead of R+

0 , and also consider binary suprema ∨ instead of + in (3).

Assumption 6.2. From now on ⊗ is a quantale structure on [0, 1] with neutral element 1. Note that
then necessarily u ⊗ v ≤ u ∧ v, for all u, v ∈ [0, 1]. In order to be able to combine continuous functions
ψ1, ψ2 : X → [0, 1], we assume that ⊗ : [0, 1]× [0, 1]→ [0, 1] is continuous with respect to the Euclidean
topology on [0, 1]. In other words, we consider a continuous t-norm on [0, 1].

Remark 6.3. There is also interesting work of Radul on a “functional representation of the Vietoris
monad” in terms of functionals, notably [Radul, 1997, 2009]. In particular, Radul shows that the Vietoris
monad is isomorphic to the monad defined by all real-valued “functionals which are normed, weakly
additive, preserve max and weakly preserve min”.

As we explain already in Section 1, in this paper we wish to introduce types of [0, 1]-categories which
resemble the order-theoretic notions of distributive lattice and Boolean algebra appearing in the classical
duality theorems of Stone and Halmos. Note that a distributive latticeX is in particular a finite sup-lattice
equipped with a commutative monoid structure ∧ : X ×X → X with neutral element the top-element of
X and where, moreover, the maps x∧− : X → X preserve finite suprema. Also note that every monotone
map f : X → Y between lattices laxly preserves infima, that is, f(x∧x′) ≤ f(x)∧f(x′), for all x, x′ ∈ X.
Below we introduce a [0, 1]-enriched counterpart of distributive lattices where the monoid structure need
not be the infimum since the tensor product on [0, 1] need not be the infimum; we think of these [0, 1]-
categories as generalised [0, 1]-enriched (distributive) lattices. We recall that [0, 1]-FinSup denotes the
category of separated finitely cocomplete [0, 1]-categories and finite colimit preserving [0, 1]-functors; the
unit interval [0, 1] equipped with hom : [0, 1]× [0, 1]→ [0, 1] is certainly an object of [0, 1]-FinSup.

• The category
[0, 1]-GLat

has as objects separated finitely cocomplete [0, 1]-categories X equipped with an associative and
commutative operation } : X ×X → X with unit element 1 which is also the top-element of X
and so that the map x}− : X → X is a finitely cocontinuous [0, 1]-functor, for every x ∈ X; the
morphisms of [0, 1]-GLat are the finitely cocontinuous [0, 1]-functors preserving the unit and the
multiplication }.
• The category

[0, 1]-LaxGLat

has the same objects as [0, 1]-GLat and the morphisms are finitely cocontinuous [0, 1]-functors
f : X → Y preserving laxly the monoid structure, that is,

f(x} x′) ≤ f(x)} f(x′),

for all x, x′ ∈ X.

Note that, for every u ∈ [0, 1] and x ∈ X, we have

x} (1⊗ u) = (x} 1)⊗ u = x⊗ u,

therefore we can think of } : X × X → X as an “extension” of ⊗ : X × [0, 1] → X and write x ⊗ x′

instead of x}x′. Thinking more in algebraic terms, [0, 1]-GLat is a ℵ1-ary quasivariety; in fact, by adding
to the algebraic theory of [0, 1]-FinSup (see Remark 2.10) the operations and equations describing the
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monoid structure, one obtains a presentation by operations and implications. It follows in particular that
[0, 1]-GLat is complete and cocomplete. The forgetful functor

[0, 1]-GLat −→ [0, 1]-FinSup

preserves limits, and it is easy to see that the faithful functor

[0, 1]-GLat −→ [0, 1]-LaxGLat

preserves limits as well.
In the sequel we consider the [0, 1]-category [0, 1] as an object of [0, 1]-GLat with multiplication given

by the tensor product ⊗ : [0, 1] × [0, 1] → [0, 1] of [0, 1]. Note that ⊗ : [0, 1]op × [0, 1]op → [0, 1]op is a
morphism in OrdsComp. From Theorem 5.3 and Remark 5.5, we obtain:

Proposition 6.4. The dualising object ([0, 1]op, [0, 1]) induces a natural dual adjunction

OrdsComp ⊥

C
((

G

hh [0, 1]-LaxGLatop.

Here CX is given by OrdsComp(X, [0, 1]op) with all operations defined pointwise, and GA is the space
[0, 1]-LaxGLat(A, [0, 1]) equipped with the initial topology with respect to all evaluation maps

eva : [0, 1]-LaxGLat(A, [0, 1]) −→ [0, 1]op, Φ 7−→ Φ(a).

Proof. In terms of the algebraic presentation of the [0, 1]-category [0, 1] of Remark 2.10, the operations ∨
and −⊗ u are morphisms ∨ : [0, 1]op × [0, 1]op → [0, 1]op and −⊗ u : [0, 1]op → [0, 1]op in OrdsComp, and
the order relation of [0, 1]op is closed in [0, 1]op×[0, 1]op. Therefore the assertion follows from Theorem 5.3
and Proposition 5.4. �

The separated ordered compact space [0, 1]op is a V-algebra with algebra structure sup : V ([0, 1]op)→
[0, 1]op, and one easily verifies that

hom(X, [0, 1]op) −→ hom(V X, [0, 1]op), ψ 7−→ (A 7→ sup
x∈A

ψ(x))

is a morphism CX → CV X in [0, 1]-LaxGLat. By Theorem 5.7 and Remark 5.8, we obtain a commutative
diagram

OrdsCompV
C // [0, 1]-LaxGLatop,

OrdsComp

gg

C

66

of functors; where, for ϕ : X −→◦ Y in OrdsCompV,

Cϕ : CY −→ CX

ψ 7−→
(
x 7→ sup

xϕ y
ψ(y)

)
.

The induced monad morphism j is precisely given by the family of maps

jX : V X −→ [0, 1]-LaxGLat(CX, [0, 1]), A 7−→ ΦA,

with
ΦA : CX −→ [0, 1], ψ 7−→ sup

x∈A
ψ(x).

In order to show that j is an isomorphism, it will be convenient to refer individually to the components
of the structure of CX; that is, we consider the following conditions on a map Φ : CX → [0, 1].

(Mon): Φ is monotone.
(Act): For all u ∈ [0, 1] and ψ ∈ CX, Φ(u⊗ ψ) = u⊗ Φ(ψ).
(Sup): For all ψ1, ψ2 ∈ CX, Φ(ψ1 ∨ ψ2) = Φ(ψ1) ∨ Φ(ψ2).
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(Ten)lax: For all ψ1, ψ2 ∈ CX, Φ(ψ1 ⊗ ψ2) ≤ Φ(ψ1)⊗ Φ(ψ2).
(Ten): For all ψ1, ψ2 ∈ CX, Φ(ψ1 ⊗ ψ2) = Φ(ψ1)⊗ Φ(ψ2).
(Top): Φ(1) = 1.

Remark 6.5. The condition (Act) implies Φ(0) = 0 and (Sup) and implies (Mon). Also note that, by
(Mon) and (Act), if ψ(x) ≤ u for all x ∈ X, then Φ(ψ) ≤ u. Finally, if ⊗ = ∧, then (Ten)lax is a
consequence of (Mon).

Clearly, Φ : CX → [0, 1] is a morphism in [0, 1]-LaxGLat if and only if Φ satisfies the conditions (Mon),
(Act), (Sup) and (Ten)lax; and Φ : CX → [0, 1] is a morphism in [0, 1]-GLat if and only if Φ satisfies the
conditions (Mon), (Act), (Sup), (Top) and (Ten).

Definition 6.6. A closed upper subset A ⊆ X of a separated ordered compact space is called irreducible
whenever, for all closed upper subsets A1, A2 ⊆ X with A1 ∪A2 = A, one has A = A1 or A = A2.

With this definition, the empty set ∅ is irreducible; by soberness of the corresponding stably compact
space (see Remark 4.2), the non-empty irreducible closed subset A ⊆ X are precisely the subsets of the
form A = ↑x, for some x ∈ X.

Proposition 6.7. Let X be a separated ordered compact space and A ⊆ X a closed upper subset of X.
Then the following assertions hold.

(1) A 6= ∅ if and only if ΦA satisfies (Top).
(2) A is irreducible if and only if ΦA satisfies (Ten).

Proof. (1) is clear, and so is the implication “ =⇒ ” in (2). Assume now that ΦA satisfies (Ten) and let
A1, A2 ⊆ X be closed upper subsets with A1 ∪ A2 = A. Let x /∈ A1 and y /∈ A2. We find ψ1, ψ2 ∈ CX
with

ψ1(x) = 1, ψ2(y) = 1, ∀z ∈ A .ψ1(z) = 0 or ψ2(z) = 0.

Therefore
0 = ΦA(ψ1 ⊗ ψ2) = ΦA(ψ1)⊗ ΦA(ψ2).

By Corollary 3.6, ΦA(ψ1) = 0 or, for some n ∈ N, ΦA(ψn2 ) = ΦA(ψ2)n = 0, hence x /∈ A or y /∈ A. We
conclude that A = A1 or A = A2. �

Recall from Example 5.6 that a relation is a function if and only if it is a comonoid in the monoidal
category Rel. Hence, we have the following corollary of Proposition 6.7.

Corollary 6.8. Let ϕ : X −→◦ Y in OrdsCompV. Then:
(1) ϕ is a total relation if and only of Cϕ preserves 1.
(2) ϕ is a partial function if and only if Cϕ preserves ⊗.

Our next goal is to invert the process A 7→ ΦA. Firstly, following [Shapiro, 1992], we introduce the
subsequent notation.

• For every map ψ : X → [0, 1], Z(ψ) = {x ∈ X | ψ(x) = 0} denotes the zero-set of ψ. If ψ is a
monotone and continuous map ψ : X → [0, 1]op, then Z(ψ) is an closed upper subset of X.

• For every map Φ : CX → [0, 1], we put

Z(Φ) =
⋂
{Z(ψ) | ψ ∈ CX, Φ(ψ) = 0} ⊆ X.

Note that Z(Φ) is a closed upper subset of X.
There is arguably a more natural candidate for an inverse of jX . First note that, given a set {Ai | i ∈ I}

of closed upper subsets of X with A =
⋃
i∈I Ai, for every ψ ∈ CX one verifies

ΦA(ψ) = sup
x∈
⋃
i∈I

Ai

ψ(x) = sup
i∈I

ΦAi(ψ).
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Hence, the monotone map jX preserves infima2 and therefore has a left adjoint which sends a morphism
Φ : CX → [0, 1] to

A(Φ) =
⋂

ψ∈CX

ψ−1[0,Φ(ψ)].

In the sequel it will be convenient to consider the maps Z and A defined on the set {Φ : CX → [0, 1]} of
all maps from CX to [0, 1]. We have the following elementary properties.

Lemma 6.9. Let X be a separated ordered compact space X.
(1) The maps A,Z : {Φ : CX → [0, 1]} → V X are monotone.
(2) A(Φ) ⊆ Z(Φ), for every map Φ : CX → [0, 1].
(3) For every A ∈ V X, Z ·jX(A)) = A = A ·jX(A)).
(4) For every map Φ : CX → [0, 1] and every ψ ∈ CX, jX · A(Φ)(ψ) ≤ Φ(ψ).

Corollary 6.10. For every separated ordered compact space X, the map jX : V X → GCX is an order-
embedding.

Now, we wish to give conditions on Φ : CX → [0, 1] so that jX restricts to a bijection between V X
and the subset of {Φ : CX → [0, 1]} defined by these conditions. In particular, we consider:

(A) For all x ∈ X and all ψ ∈ CX, if ψ(x) > Φ(ψ) = 0, then there exists some ψ̄ ∈ CX with ψ̄(x) = 1
and Φ(ψ̄) = 0.

Lemma 6.11. Let X be a separated ordered compact space.
(1) If Φ : CX → [0, 1] satisfies (Mon), (Act) and (Ten)lax, then Φ satisfies (A).
(2) If the quantale [0, 1] does not have nilpotent elements and Φ : CX → [0, 1] satisfies (Mon) and

(Act), then Φ satisfies (A).

Proof. Assume ψ(x) > Φ(ψ) = 0. Put v = ψ(x) and take u with 0 < u < v. Put A = ψ−1([0, u]). By
Proposition 4.5, there is some ψ̄ ∈ CX with A ⊆ Z(ψ̄) and ψ̄(x) = 1. Furthermore,

u⊗ ψ̄ ≤ u ∧ ψ̄ ≤ ψ

and therefore u ⊗ Φ(ψ̄) ≤ Φ(ψ) = 0. Since u 6= 0, we get Φ(ψ̄)n = 0 for some n ∈ N. If there are no
nilpotent elements, then Φ(ψ̄) = 0. In general, using condition (Ten)lax we obtain Φ(ψn) ≤ Φ(ψ′)n = 0
and ψn(x) = 1. �

Inspired by Shapiro’s proof we get the following result.

Proposition 6.12. Let X be a separated ordered compact space. For every Φ : CX → [0, 1] satisfying
(Mon), (Act), (Sup) and (A),

Φ(ψ) ≤ jX · Z(Φ)(ψ),

for all ψ ∈ CX.

Proof. Let ψ ∈ CX, we wish to show that Φ(ψ) ≤ supx∈Z(Φ) ψ(x). To this end, consider an element
u ∈ [0, 1] with supx∈Z(Φ) ψ(x) < u. Put

U = {x ∈ X | ψ(x) < u}.

Clearly, U is open and Z(Φ) ⊆ U . Let now x ∈ X \ Z(Φ). There is some ψ′ ∈ CX with Φ(ψ′) = 0 and
ψ′(x) 6= 0; by (A) we may assume ψ′(x) = 1. Let now α < 1. For every ψ′ ∈ CX we put

suppα(ψ′) = {x ∈ X | ψ′(x) > α}.

By the considerations above,

X = U ∪
⋃
{suppα(ψ′) | ψ′ ∈ C(X),Φ(ψ′) = 0};

2Note that the order is reversed.
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since X is compact, we find ψ1, . . . , ψn with Φ(ψi) = 0 and

X = U ∪ suppα(ψ1) ∪ · · · ∪ suppα(ψn).

Hence,
α⊗ ψ ≤ u ∨ (ψ1 ⊗ ψ) ∨ · · · ∨ (ψn ⊗ ψ),

and therefore

α⊗ Φ(ψ) ≤ u ∨ Φ(ψ1 ⊗ ψ) ∨ · · · ∨ Φ(ψn ⊗ ψ) ≤ u ∨ Φ(ψ1) ∨ . . .Φ(ψn) = u. �

Hence, under the conditions of the proposition above, we have

sup
x∈A(Φ)

ψ(x) ≤ Φ(ψ) ≤ sup
x∈Z(Φ)

ψ(x),

for all ψ ∈ CX. We investigate now conditions on Φ : CX → [0, 1] which guarantee Z(Φ) = A(Φ).

Proposition 6.13. Assume that ⊗ = ∗ is the multiplication or ⊗ = � is the Łukasiewicz tensor. If Φ
satisfies (Mon), (Act) and (Ten)lax then Z(Φ) = A(Φ).

Proof. We consider first ⊗ = ∗, in this case the proof is essentially taken from [Shapiro, 1992]. For every
ψ ∈ CX and every open lower subset U ⊆ X with U ∩Z(Φ) 6= ∅, we show that infx∈U ψ(x) ≤ Φ(ψ). To
see this, put u = infx∈U ψ(x). Since there exists z ∈ U ∩ Z(Φ), there is some ψ′ ∈ CX with U{ ⊆ Z(ψ′)
and ψ′(z) = 1; thus Φ(ψ′) 6= 0. Then u ∗ ψ′ ≤ ψ ∗ ψ′ and therefore u ∗ Φ(ψ′) ≤ Φ(ψ) ∗ Φ(ψ′). Since
Φ(ψ′) 6= 0, we obtain u ≤ Φ(ψ).

Let x ∈ Z(Φ), ψ ∈ CX and v > Φ(ψ). Put U = {x ∈ X | ψ(x) > v}. By the discussion above,
U ∩ Z(Φ) = ∅, hence ψ(x) ≤ v. Therefore we conclude that x ∈ A(Φ).

Consider now ⊗ = �. Let x /∈ A(Φ). Then, there is some ψ ∈ CX with ψ(x) > Φ(ψ). With u = ψ(x),
we obtain

hom(u, ψ(x)) = 1 > hom(u,Φ(ψ)) = u t Φ(ψ) ≥ Φ(u t ψ),
using Remark 2.14 and that hom(u,−) : [0, 1] → [0, 1] is monotone and continuous. Therefore we may
assume that ψ(x) = 1. Since Φ(ψ) < 1, there is some n ∈ N with Φ(ψ)n = 0, hence ψn(x) = 1 and
Φ(ψn) = 0. We conclude that x /∈ Z(Φ). �

From the results above we obtain:

Theorem 6.14. Assume that ⊗ = ∗ is the multiplication or ⊗ = � is the Łukasiewicz tensor. Then the
monad morphism j between the monad V on OrdsComp and the monad induced by the adjunction C a G
of Proposition 6.4 is an isomorphism. Therefore the functor

C : OrdsCompV −→ [0, 1]-LaxGLatop

is fully faithful.

For Φ : CY → CX in [0, 1]-LaxGLat, the corresponding distributor ϕ : X −→◦ Y is given by

xϕ y ⇐⇒ y ∈
⋂

Φ(ψ)(x)=0

Z(ψ).

From Corollary 6.8 one obtains:

Corollary 6.15. Assume that ⊗ = ∗ is the multiplication or ⊗ = � is the Łukasiewicz tensor. Then the
functor

C : OrdsComp −→ [0, 1]-GLatop

is fully faithful.

The following examples show that Theorem 6.14 and Corollary 6.15 cannot be generalised to arbitrary
continuous quantale structures on [0, 1]; not even if, in the case of Theorem 6.14, we restrict OrdsCompV
to the full subcategory CompHausV. However, in Theorem 6.23 we show that Corollary 6.15 still holds if
we restrict OrdsComp to the full subcategory CompHaus.
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Examples 6.16. Consider ⊗ = ∧.
• For X = 1, the set V 1 contains two elements; however, for every α ∈ [0, 1], the map Φ = α ∧− :

[0, 1]→ [0, 1] satisfies (Mon), (Act), (Sup) and (Ten)lax.
• For the compact Hausdorff space X = {0, 1}, the set V X contains four elements; however, for
every α ∈ [0, 1], the map

Φα : [0, 1]× [0, 1] −→ [0, 1], (u, v) 7−→ u ∨ (α ∧ v)

satisfies (Mon), (Act), (Sup) and (Ten)lax (but, in general, not (Ten)); moreover, α = Φα(0, 1)
and therefore Φα 6= Φβ for α 6= β.
• For the separated ordered compact space X = {0 ≥ 1}, CX = {(u, v) ∈ [0, 1] × [0, 1] | u ≤ v}
and V X contains three elements; however, for every α ∈ [0, 1], the map

Φα : CX −→ [0, 1], (u, v) 7−→ u ∨ (α ∧ v)

satisfies (Mon), (Act), (Sup), (Ten) and (Top). In comparison with the previous example, the non-
discrete order of X allows to show that Φα satifies (Ten). To see this, take (u, v), (u′, v′) ∈ CX.
Then,

Φα(u, v) ∧ Φα(u′, v′) = (u ∧ u′) ∨ (α ∧ u ∧ v′) ∨ (α ∧ v ∧ u′) ∨ (α ∧ v ∧ v′)

= (u ∧ u′) ∨ (α ∧ v ∧ v′) = Φα
(
(u, v) ∧ (u′, v′)

)
.

To deal with the general case, we introduce the following condition on a map Φ : CX → [0, 1] where
	 denotes truncated minus on [0, 1].

(Min): For every u ∈ [0, 1] and every ψ ∈ CX, Φ(ψ 	 u) = Φ(ψ)	 u.
Clearly, for every closed upper subset A ⊆ X, the map ΦA : CX → [0, 1] satisfies (Min).

Proposition 6.17. Let X be a separated ordered compact space and Φ : CX → [0, 1] a map satisfying
(Min). Then

A(Φ) = Z(Φ).

Proof. Assume x /∈ A(Φ). Then there is some ψ ∈ CX with ψ(x) > Φ(ψ). Put u = Φ(ψ). Then
Φ(ψ 	 u) = 0 and (ψ 	 u)(x) > 0, hence x /∈ Z(Φ). �

Therefore we obtain:

Proposition 6.18. Let X be a separated ordered compact space. The map

jX : V X −→ {Φ : CX → [0, 1] | Φ satisfies (Mon), (Act), (Sup), (Ten)lax and (Min)}, A 7−→ ΦA

is bijective. If the quantale [0, 1] does not have nilpotent elements, then jX is bijective even if the condition
(Ten)lax is dropped on the right hand side.

Accordingly, we introduce the categories

[0, 1]-GLat	 and [0, 1]-LaxGLat	

defined as [0, 1]-GLat and [0, 1]-LaxGLat respectively, but the objects have an additional action 	 : X ×
[0, 1]→ X and the morphisms preserve it. With the action 	 : [0, 1]× [0, 1]→ [0, 1], (u, v) 7→ u	 v, the
[0, 1]-category [0, 1] is an object of both categories. As before (see Proposition 6.4 and Theorem 6.14),
we obtain:

Theorem 6.19. Under Assumption 6.2, the dualising object ([0, 1]op, [0, 1]) induces a natural dual ad-
junction

OrdsComp ⊥

C
((

G

hh ([0, 1]-LaxGLat	)op.
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Here CX is given by OrdsComp(X, [0, 1]op) with all operations defined pointwise, and GA is the space
[0, 1]-LaxGLat	(A, [0, 1]) equipped with the initial topology with respect to all evaluation maps

eva : [0, 1]-LaxGLat	(A, [0, 1]) −→ [0, 1]op, Φ 7−→ Φ(a).

Furthermore, we obtain a commutative diagram

OrdsCompV
C // ([0, 1]-LaxGLat	)op,

OrdsComp

gg

C

66

of functors, and the induced monad morphism j between V and the monad induced by C a G is an
isomorphism. Therefore the functor

C : OrdsCompV −→ ([0, 1]-LaxGLat	)op

is fully faithful, and so is the functor

C : OrdsComp −→ ([0, 1]-GLat	)op.

Remark 6.20. Once we know that C : OrdsComp → ([0, 1]-GLat	)op is fully faithful, we can add on the
right hand side further operations if they can be transported pointwise from [0, 1] to CX. For instance,
if hom(u,−) : [0, 1]→ [0, 1] is continuous, then CX has u-powers with (ψ t u)(x) = hom(u, ψ(x)), for all
x ∈ X. Furthermore, every morphism Φ : CX → CY in [0, 1]-GLat	 preserves u-powers.

In 1983, Banaschewski showed that CompHaus fully embeds into the category of distributive lattices
equipped with constants from [0, 1] and constant preserving lattice homomorphisms. As we pointed out
in Remark 2.7, instead of adding constants to the lattice CX of continuous [0, 1]-valued functions, one
could as well consider an action u∧ψ of [0, 1] on the lattice CX. Therefore Banaschewski’s result should
appear as a special case of Theorem 6.14 (for ⊗ = ∧). Unfortunately, this is not immediately the case
since we need the additional operation 	. However, using some arguments of [Banaschewski, 1983], we
finish this section showing that ΦZ(Φ) = Φ, for every compact Hausdorff space and every Φ : CX → [0, 1]
in [0, 1]-GLat.

In analogy to Proposition 6.7, we have:

Proposition 6.21. Let X be a separated ordered compact space and assume that Φ : CX → [0, 1] satisfies
(Mon), (Act), (Sup)and (Ten)lax.

(1) If Φ satisfies also (Top), then Z(Φ) 6= ∅.
(2) If Φ satisfies also (Ten), then Z(Φ) is irreducible (see Definition 6.6).

Proof. To see the first implication: 1 = Φ(1) ≤ supx∈Z(Φ) 1, hence Z(Φ) 6= ∅. The proof of the second
one is the same as the corresponding proof for Proposition 6.7. �

Lemma 6.22. Let X be a compact Hausdorff space and Φ : CX → [0, 1] in [0, 1]-GLat. We denote by x0

the unique element of X with Z(Φ) = {x0}. Then, for every ψ ∈ CX, ψ(x0) = Φ(ψ).

Proof. By Proposition 6.12, Φ(ψ) ≤ ψ(x0). To see the reverse inequality, let u < ψ(x0). Then x0 /∈ {x ∈
X | ψ(x) ≤ u}, therefore there is some ψ′ ∈ CX with ψ′(x0) = 0 and ψ′ is constant 1 on {x ∈ X | ψ(x) ≤
u}. Hence, u ∨ ψ′ ≤ ψ ∨ ψ′. Since Φ(ψ′) ≤ ψ′(x0) = 0, we conclude that u = Φ(u) ≤ Φ(ψ). �

Theorem 6.23. Under Assumption 6.2, the functor

C : CompHaus −→ [0, 1]-GLatop

is fully faithful.
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7. A Stone–Weierstraß theorem for [0, 1]-categories

In this section we adapt the classical Stone–Weierstraß approximation theorem [Stone, 1948a,b] to the
context of [0, 1]-categories, which is an important step towards identifying the image of the fully faithful
functor

C : OrdsCompV −→ ([0, 1]-LaxGLat	)op.

To do so, we continue working under Assumption 6.2.
We recall that, for every separated ordered compact space X, the V-category CX is finitely cocomplete

with [0, 1]-category structure
d(ψ1, ψ2) = inf

x∈X
hom(ψ1(x), ψ2(x)),

for all ψ1, ψ2 ∈ CX. Furthermore, by Theorem 2.12, for all M ⊆ CX and ψ ∈ CX we have ψ ∈M if and
only if, for every u < 1, there is some ψ′ ∈ M with u ≤ d(ψ,ψ′) and u ≤ d(ψ′, ψ). Relative to a subset
L ⊆ CX, we consider the following separation axiom on an separated ordered compact space X:

(Sep): for every (x, y) ∈ X ×X, with x � y, there exists ψ ∈ L and an open neighbourhood Uy of y
such that ψ(x) = 1 and, for all z ∈ Uy, ψ(z) = 0.

Lemma 7.1. Let L ⊆ CX be closed in CX under finite suprema, the monoid structure and the action
of [0, 1]; that is, for all ψ1, ψ2 ∈ L and u ∈ [0, 1], ψ1 ∨ ψ2 ∈ L, ψ1 ⊗ ψ2 ∈ L, 1 ∈ L and u⊗ ψ1 ∈ L. Let
ψ ∈ CX. If the map hom : im(ψ)× [0, 1]→ [0, 1] is continuous and L satisfies (Sep), then ψ ∈ L.

Proof. Fix x ∈ X. Let (ψy)y∈X be the family of functions defined in the following way.
• If y � x, then let ψy be a function guaranteed by (Sep) and Uy the corresponding neighborhood.
• If y ≤ x, then ψy is the constant function function ψ(x).

By hypothesis, the functions hom(ψ(x),−) : [0, 1]→ [0, 1] and ψ are continuous. Thus, the set

Ux = {z ∈ X | u < hom(ψ(x), ψ(z))}

is an open neighborhood of every y ≤ x, and for such y ∈ X we put Uy = Ux. Consenquently, the
collection of sets Uy (y ∈ X) is an open cover of X. By compactness of X, there exists a finite subcover
Uy1 , . . . , Uyn , Ux of X. Considering the corresponding functions ψy1 , . . . , ψyn , ψx, we define φx = ψy1 ⊗
· · · ⊗ ψyn ⊗ ψx.

By construction, φx has the following properties:
• φx(x) = ψ(x), since ψyi(x) = 1 for 1 ≤ i ≤ n and ψx(x) = ψ(x);
• for every z ∈ X, u⊗ φx(z) ≤ ψ(z), since z ∈ Ux or z ∈ Uyi , for some i.

Now, for every x ∈ X the set

Vx = {z ∈ X | u < hom(ψ(z), φx(z))}

is open because the functions hom : im(ψ) × [0, 1] → [0, 1], φx and ψ are continuous. Therefore the
collection of the sets Vx is an open cover of X. Again, by compactness of X, there exists a finite subcover
Vx1 , . . . , Vxm of X. By defining φ = φx1 ∨ · · · ∨ φxm we obtain a function in L such that for every z ∈ X:

• u⊗ φ(z) =
m∨
j=1

u⊗ φxj (z) ≤
m∨
j=1

u⊗ ψyi(z), for some ψyi such that u⊗ ψyi ≤ ψ(z);

• u⊗ ψ(z) ≤ φ(z). �

Remark 7.2. For the Łukasiewicz tensor, the lemma above affirms that L is dense in CX in the usual
sense since, in this case,

hom(u, v) ≥ 1− ε ⇐⇒ max(v − u, 0) ≤ ε,

for all u, v ∈ [0, 1]. However, if the tensor product is multiplication, the function hom : [0, 1]×[0, 1]→ [0, 1]
is not continuous in (0, 0); which requires us to add a further condition involving truncated minus (see
Lemma 7.4). Finally, if the tensor is the infimum, we cannot expect to obtain a useful Stone–Weierstraß
theorem using this closure. For example, for the separated ordered compact space 1 = {∗} the topology
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in CX ' [0, 1] is generated by the sets {u} and ]u, 1] with u 6= 1. For x 6= 1 and M ⊆ [0, 1], this means
that the seemingly weaker condition x ∈M implies that x ∈M .

Lemma 7.3. Let ⊗ = � be the Łukasiewicz tensor and L ⊆ CX. Assume that L is closed in CX under
the monoid structure and u-powers, for all u ∈ [0, 1], and that the cone (f : X → [0, 1]op)f∈L is initial;
that is, for all x, y ∈ X, x ≥ y if and only if, for all ψ ∈ L, ψ(x) ≤ ψ(y). Then L satisfies (Sep).

Proof. Let (x, y) ∈ X × X with x � y. By hyphotesis, there exists ψ ∈ L and c ∈ [0, 1] such that
ψ(x) > c > ψ(y). Let u = ψ(x). Since L is closed for u-powers then ψ′ = hom(u, ψ) ∈ L. By
Corollary 3.6 there exists n ∈ N such that cn = 0. Therefore ψ′n(x) = 1 and for all z ∈ Uy = ψ−1[0, c[,
ψ′n(z) = 0. �

Lemma 7.4. Let ⊗ = ∗ be the multiplication and L ⊆ CX. Assume that L is closed in CX under
u-powers and − 	 u, for all u ∈ [0, 1], and that the cone (f : X → [0, 1]op)f∈L is initial. Then L

satisfies (Sep).

Proof. Let (x, y) ∈ X × X with x � y. By hyphotesis, there exists ψ ∈ L and c ∈ [0, 1] such that
ψ(x) > c > ψ(y). Let ψ′ = ψ 	 c and u = ψ′(x). Let ψ′′ = hom(u, ψ′) ∈ L and Uy = ψ′−1[0, c[. Clearly,
ψ′′(x) = 1 and, since u > 0, for all z ∈ Uy we obtain ψ′′(z) = 0. �

The results above tell us that certain [0, 1]-subcategories of CX are actually equal to CX if they are
closed in CX. To ensure this property, we will work now with Cauchy-complete [0, 1]-categories. First
we have to make sure that the [0, 1]-category CX is Cauchy-complete.

Lemma 7.5. The subset
{(u, v) | u ≤ v} ⊆ [0, 1]× [0, 1]

of the [0, 1]-category [0, 1]× [0, 1] is closed.

Proof. Just observe that {(u, v) | u ≤ v} can be presented as the equaliser of the [0, 1]-functors ∧ :
[0, 1]× [0, 1]→ [0, 1] and π1 : [0, 1]× [0, 1]→ [0, 1]. �

Corollary 7.6. For every ordered set X (with underlying set |X|), the subset

Ord(X, [0, 1]op) ⊆ [0, 1]|X|

of the [0, 1]-category [0, 1]|X| is closed.

With U : Set→ Set denoting the ultrafilter functor, we write

ξ : U [0, 1] −→ [0, 1], ξ(x) = sup
A∈x

inf
u∈A

u = inf
A∈x

sup
u∈A

u.

for the convergence of the Euclidean topology of [0, 1].

Lemma 7.7. For every set X and every ultrafilter x on X, the map

Φx : [0, 1]X −→ [0, 1], ψ 7−→ ξ · Uψ(x)

is a [0, 1]-functor.

Proof. Since domain and codomain of Φx are both V-copowered, the assertion follows from

ξ · Uψ ≤ ξ · Uψ′ and ξ · U(ψ ⊗ u) = (ξ · Uψ)⊗ u,

for all u ∈ [0, 1] and ψ,ψ′ ∈ [0, 1]X with ψ ≤ ψ′. �

Corollary 7.8. For every compact Hausdorff space X, the subset

CompHaus(X, [0, 1]) ⊆ [0, 1]|X|

of the [0, 1]-category [0, 1]|X| is closed.
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Proof. For an ultrafilter x ∈ UX with convergence point x ∈ X, a map ψ : X → [0, 1] preserves this
convergence if and only if ψ belongs to the equaliser of Φx and πx. �

Proposition 7.9. For every separated ordered compact space X, the [0, 1]-category CX is Cauchy-
complete.

We will now introduce a category A of [0, 1]-categories which depends on the chosen tensor ⊗ on [0, 1].

For the Łukasiewicz tensor ⊗ = �: A is the category with objects all [0, 1]-powered objects in the
category [0, 1]-GLat, and morphisms all those arrows in [0, 1]-GLat which preserve powers by
elements of [0, 1].

For the multiplication ⊗ = ∗: A is the category with objects all [0, 1]-powered objects in the category
[0, 1]-GLat	, and morphisms all those arrows in [0, 1]-GLat	 which preserve powers by elements
of [0, 1].

Remark 7.10. The category A over Set is a ℵ1-ary quasivariety and, moreover, a full subcategory of a
finitary variety. Therefore the isomorphisms in A are precisely the bijective morphisms.

Proposition 7.11. Assume that ⊗ = ∗ is the multiplication or ⊗ = � is the Łukasiewicz tensor. Let
m : A→ CX be an injective morphism in A so that the cone (m(a) : X → [0, 1]op)a∈A is point-separating
and initial with respect to the canonical forgetful functor OrdsComp → Set. Then m is an isomorphism
in A if and only if A is Cauchy-complete.

Proof. Clearly, ifm is an isomorphism, then A is Cauchy-complete since CX is so. The reverse implication
is clear for ⊗ = � by Lemmas 7.1 and 7.3. Consider now ⊗ = ∗ multiplication. Let ψ ∈ CX. Put
ψ′ = 1

2 ∗ ψ + 1
2 , then ψ

′ is monotone and continuous. By Lemmas 7.1 and 7.4, ψ′ ∈ im(m) and therefore
also ψ = hom( 1

2 , ψ
′ 	 1

2 ) belongs to CX. �

We say that an object A of A has enough characters whenever the cone (ϕ : A → [0, 1])ϕ of all
morphisms into [0, 1] separates the points of A.

Theorem 7.12. Let A be an object in A. Then A ' CX in A for some separated ordered compact space
X if and only if A is Cauchy-complete and has enough characters.

Proof. If A ' CX in A, then clearly A is Cauchy-complete and has enough characters. Assume now
that A has this properties. Then, by [Lambek and Rattray, 1979, Proposition 2.4], X = hom(A, [0, 1]) is
a separated ordered compact space with the initial structure relative to all evaluation maps eva : X →
[0, 1]op (a ∈ A). The map m : A→ CX, a 7→ eva is injective since A has enough characters and satisfies
the hypothesis of Proposition 7.11, hence m is an isomorphism. �

Finally, Theorem 7.12 allows us to describe the image of the fully faithful functors of Theorem 6.14
and Corollary 6.15, and we end this section presenting duality results for OrdsCompV and OrdsComp
where the objects on the dual side should be thought of as “metric distributive lattices”. To do so, we
consider now the following categories.

• A[0,1],cc denotes the full subcategory of A defined by the Cauchy-complete objects having enough
characters.

• B[0,1],cc denotes the category with the same objects as A[0,1],cc, and the morphisms of B[0,1],cc are
the finitely cocontinuous [0, 1]-functors which laxly preserve the multiplication.

Theorem 7.13. For ⊗ = ∗ the multiplication or ⊗ = � the Łukasiewicz tensor,

OrdsCompV ' Bop
[0,1],cc and OrdsComp ' Aop

[0,1],cc.
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8. Metric compact Hausdorff spaces and metric Vietoris monads

As we pointed already out in Remark 5.8, the constructions leading to dualities for Kleisli categories
seem to be more “canonical” if we work with a monad T = (T,m, e) satisfying T1 ' [0, 1]op. In [Hofmann,
2014] we introduce a generalisation of the Vietoris monad with this property in the context of “enriched
topological spaces”, more precisely, models of topological theories as defined in [Hofmann, 2007]. Such
a topological theory involves a Set-monad and a quantale together with an Eilenberg–Moore algebra
structure on the underlying set of the quantale, subject to further axioms. In this paper we consider
only the ultrafilter monad U = (U,m, e) and a quantale with underlying lattice [0, 1]. The convergence
of the Euclidean compact Hausdorff topology on [0, 1] defines an Eilenberg–Moore algebra structure for
the ultrafilter monad:

ξ : U [0, 1] −→ [0, 1], ξ(x) = sup
A∈x

inf
u∈A

u = inf
A∈x

sup
u∈A

u.

We continue assuming that the multiplication of the quantale [0, 1] is continuous and has 1 as neutral
element; that is, we continue working under Assumption 6.2. Under these conditions, U = (U, [0, 1], ξ)
is a strict topological theory as defined in [Hofmann, 2007]. In order to keep the amount of background
theory small, we do not enter here into the details of monad-quantale enriched categories but give only
the details needed to understand the Kleisli category of the [0, 1]-enriched Vietoris monad. We refer to
[Hofmann, 2014, Section 1] for an overview, and a comprehensive presentation of this theory can be found
in [Hofmann et al., 2014].

The functor U : Set → Set extends to a 2-functor Uξ : [0, 1]-Rel → [0, 1]-Rel where UξX = UX for
every set X and

Uξr(x, y) = {ξ · Ur(w) | w ∈ U(X × Y ), Uπ1(w) = x, Uπ2(w) = y} = sup
A∈x,B∈y

inf
x∈A,y∈B

r(x, y)

for all r : X −→7 Y in [0, 1]-Rel, x ∈ UX and y ∈ UY .

Definition 8.1. A U-category is a set X equipped with a [0, 1]-relation

a : UX ×X −→ [0, 1],

subject to the axioms

1 = a(eX(x), x) and Uξa(X, x)⊗ a(x, x) ≤ a(mX(X), x),

for all X ∈ UUX, x ∈ UX and x ∈ X. Given U-categories (X, a) and (Y, b), a U-functor f : (X, a) →
(Y, b) is a map f : X → Y such that

a(x, x) ≤ b(Uf(x), f(x)),

for all x ∈ UX and x ∈ X.

Clearly, the composite of U-functors is a U-functor, and so is the identity map 1X : (X, a) → (X, a),
for every U-category (X, a). We denote the category of U-categories and U-functors by U-Cat. The
most notable example is certainly the case of ⊗ = ∗ being multiplication: since [0, 1] ' [0,∞], U-Cat is
isomorphic to the category App of approach spaces and non-expansive maps (see [Lowen, 1997; Clementino
and Hofmann, 2003]).

The category U-Cat comes with a canonical forgetful functor U-Cat→ Set which is topological, hence
U-Cat is complete and cocomplete and the forgetful functor U-Cat → Set preserves limits and colimits.
For example, the product of U-categories (X, a) and (Y, b) can be constructed by first taking the Cartesian
product X × Y of the sets X and Y , and then equipping X × Y with the structure c defined by

c(w, (x, y)) = a(Uπ1(w), x) ∧ b(Uπ2(w), y),

for all w ∈ U(X × Y ), x ∈ X and y ∈ Y . More important to us is, however, a different structure c on
X × Y derived from the tensor product of [0, 1], namely

c(w, (x, y)) = a(Uπ1(w), x)⊗ b(Uπ2(w), y).
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We denote this U-category as (X, a) ⊗ (Y, b); in fact, this construction extends naturally to morphisms
and yields a functor −⊗− : U-Cat× U-Cat→ U-Cat.

Every U-category (X, a) defines a topology on the set X with convergence

x→ x ⇐⇒ 1 = a(x, x),

and this construction defines a functor U-Cat → Top which commutes with the forgetful functors to
Set. The functor U-Cat → Top has a left adjoint Top → U-Cat which sends a topological space to the
U-category with the same underlying set, say X, and with the discrete convergence

UX ×X −→ [0, 1], (x, x) 7−→

1 if x→ x,

0 otherwise.

This functor allows us to interpret topological spaces as U-categories. Note that, for a topological space X
and a U-category Y , we have X⊗Y = X×Y in U-Cat. There is also a faithful functor U-Cat→ [0, 1]-Cat
which commutes with the forgetful functors to Set and sends a U-category (X, a) to the [0, 1]-category
(X, a0) where a0 = a · eX ; hence a0(x, y) = a(eX(x), y), for all x, y ∈ X. We also note that the natural
order of the underlying topology of an U-category (X, a) coincides with the order induced by the [0, 1]-
category (X, a0). We refer to this order as the underlying order of (X, a).

Remark 8.2. An important example of a U-category is given by [0, 1] with convergence (x, u) 7→ hom(ξ(x), u).
In the underlying topology of [0, 1], x→ u precisely when ξ(x) ≤ u; hence, the closed subsets are precisely
the intervals [v, 1] where v ∈ [0, 1]. From now on [0, 1] refers to this U-category; to distinguish, [0, 1]e de-
notes the standard compact Hausdorff space with convergence ξ, and [0, 1]o denotes the ordered compact
Hausdorff space with the usual order and the Euclidean topology.

The enriched Vietoris monad V = (V,m, e) on U-Cat sends a U-category X to the U-category V X
with underlying set

{ϕ : X −→ [0, 1] | ϕ is a U-functor},

the underlying [0, 1]-category structure of the U-category V X is given by

[ϕ,ϕ′] = inf
x∈X

hom(ϕ′(x), ϕ(x)),

and therefore

ϕ ≤ ϕ′ ⇐⇒ ϕ(x) ≥ ϕ′(x), for all x ∈ X

in its underlying order. It is shown in [Hofmann, 2014] that this monad restricts to the [0, 1]-enriched
counterpart of the category of stably compact spaces and proper maps: the category of separated repre-
sentable U-categories. A U-category (X, a) is representable whenever a · Uξa = a ·mX and there is a
map α : UX → X with a = a0 · α. If (X, a) is separated, then α : UX → X is unique and an U-algebra
structure on X; that is, the convergence of a compact Hausdorff topology on X. The separated repre-
sentable U-categories are the objects of the category U-Rep, a morphism f : (X, a)→ (Y, b) in U-Rep is a
[0, 1]-functor f : (X, a0)→ (Y, b0) where f is also continuous with respect to the corresponding compact
Hausdorff topologies; that is, f · α = β · Uf . We also note that the category U-Rep is complete and the
inclusion functor U-Rep → U-Cat preserves limits. For (X, a) in U-Rep with a = a0 · α, also (X, a◦0 · α)
is a separated representable U-category, called the dual of (X, a) and denoted as (X, a)op. In fact, this
construction defines a functor (−)op : U-Rep → U-Rep leaving maps unchanged. The U-category [0, 1]
is separated and representable, with hom : V −→7 V being the underlying [0, 1]-category structure and
ξ : U [0, 1]→ [0, 1] the convergence of the corresponding compact Hausdorff topology. We note that now
V 1 is isomorphic to [0, 1]op. Below we collect some important properties.

Proposition 8.3. The following assertions hold.
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(1) The maps

∧ : [0, 1]× [0, 1] −→ [0, 1], ∨ : [0, 1]× [0, 1] −→ [0, 1], ⊗ : [0, 1]⊗ [0, 1] −→ [0, 1]

are morphisms in U-Rep.
(2) For every u ∈ [0, 1], u ⊗ − : [0, 1] → [0, 1] is a morphism of U-Rep. Therefore the map u ⊗ −

preserves non-empty infima.
(3) Let u ∈ [0, 1] so that hom(u,−) is continuous of type hom(u,−) : [0, 1]e → [0, 1]e. Then

hom(u,−) : [0, 1]→ [0, 1] is a morphism in U-Rep.
(4) inf : [0, 1]I → [0, 1] is a U-functor, for every set I.
(5) For every v ∈ [0, 1], hom(−, v) : [0, 1]op → [0, 1] is a U-functor.

Proof. The first assertion follows directly from our Assumption 6.2. Note that [0, 1]⊗ [0, 1] is in U-Rep,
see [Hofmann, 2013, Remark 4.9]. The second assertion is a direct consequence of the first one, and the
third one follows form hom(u,−) : [0, 1]→ [0, 1] being a [0, 1]-functor. Regarding the forth assertion, see
[Hofmann, 2007, Corollary 5.3]. Regarding the last assertion, the condition of [Hofmann, 2007, Lemma
5.1] can be verified using [Hofmann, 2007, Lemma 3.2]. �

Remark 8.4. Similarly to the connection between stably compact spaces and separated ordered compact
spaces (see Remark 4.2), representable U-categories can be seen as compact Hausdorff spaces with a com-
patible [0, 1]-category structure. More precisely, in [Tholen, 2009] it is shown that the Set-monad U ex-
tends to a monad on [0, 1]-Cat, and there is a natural comparison functor K : ([0, 1]-Cat)U → U-Cat send-
ing a [0, 1]-category (X, a0) with Eilenberg–Moore algebra structure α : U(X, a0) = (UX,Uξa0)→ (X, a0)
to the U-category (X, a0 · α). The functor K restricts to an equivalence between the full subcategory of
([0, 1]-Cat)U defined by all separated [0, 1]-categories and the category U-Rep (see also [Hofmann, 2014]
for details).

We do not need to say much about the enriched Vietoris monad V = (V,m, e) here, it is enough to
have a better understanding of the Kleisli category U-RepV. A morphism X → V Y in U-Rep corresponds
to a [0, 1]-distributor between the underlying [0, 1]-categories, we call such a distributor a continuous
[0, 1]-distributor between the separated representable U-categories X and Y . Similar to the classical
case, composition in U-RepV corresponds to composition of [0, 1]-relations, and the identity morphism on
X is given by a0 (see [Hofmann, 2014, Section 8]).

The adjunction

U-Cat >

forgetful
((

discrete

hh Top

restricts to an adjunction

U-Rep >

forgetful
((

discrete

hh OrdsComp,

which allows us to transfer V to a monad V = (V,m, e) on OrdsComp. The Kleisli category OrdsCompV
for this monad can be identified with the full subcategory of U-RepV defined by the U-categories in the
image of OrdsComp discrete−−−−−→ U-Rep. Furthermore, the Kleisli category of the Vietoris monad of Section 4
on OrdsComp can be identified with the subcategory of this “new” Kleisli category OrdsCompV defined
by those [0, 1]-distributors ϕ : X −→◦ Y where the map ϕ : X × Y → [0, 1] takes only values in {0, 1}; we
refer to these distributors as 2-distributors.

The functor U-Rep forgetful−−−−−→ OrdsComp sends the U-category [0, 1] to the ordered compact Hausdorff
space [0, 1]o and [0, 1]op to [0, 1]op

o , the latter follows from the fact that this functor commutes with
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dualisation. Finally, there is also a canonical adjunction

U-Rep >

forgetful
((

discrete

hh CompHaus

sending a separated representable U-category to its corresponding compact Hausdorff space (see also
[Hofmann, 2014, Remark 2.6]).

Since the construction of dual adjunctions typically involves initial lifts, below we give a description
of initial cones in U-Rep.

Proposition 8.5. Let (ψi : (X, a)→ (Xi, ai))i∈I be a point-separating cone in U-Rep. Then the following
assertions are equivalent.

(i) For all x, y ∈ X, a0(x, y) = inf
i∈I

ai0(ψi(x), ψi(y)).
(ii) The cone (ψ : X → Xi)i∈I is initial with respect to the forgetful functor U-Rep→ CompHaus.
(iii) The cone (ψ : X → Xi)i∈I is initial with respect to the forgetful functor U-Rep→ Set.
(iv) The cone (ψ : X → Xi)i∈I is initial with respect to the forgetful functor U-Cat→ Set.

Proof. This follows from the description of initial structures for the functor ([0, 1]-Cat)U → [0, 1]-Cat
given in [Tholen, 2009, Proposition 3], the fact that every point-separating cone is initial with respect
to CompHaus → Set, and the description of initial structures for the functor U-Cat → Set in [Hofmann
et al., 2014, Proposition III.3.1.1]. �

Definition 8.6. A point-separating cone in U-Rep is called initial whenever it satisfies the first and
hence all of the conditions of Proposition 8.5.

9. Duality theory for continuous enriched distributors

In this section we will use the setting described in Section 8 and aim for results similar to the ones
obtained in Section 6 for ordered compact Hausdorff spaces. To do so, we continue working under
Assumption 6.2. We stress that in the setting of [0, 1]-distributors the results seem more canonical since
now we can dispense the monoid structure and work with [0, 1]-FinSup instead of [0, 1]-GLat.

By Propositions 8.3 and 5.4, the dualising object ([0, 1]op, [0, 1]) induces a natural dual adjunction

U-Rep ⊥

C
((

G

hh [0, 1]-FinSupop;

here CX has as underlying set all morphisms X → [0, 1]op in U-Rep. For every separated representable
U-category X, the map

hom(X, [0, 1]op) −→ hom(V X, [0, 1]op), ψ 7−→ (ϕ 7→ ψ · ϕ = sup
x∈X

ψ(x)⊗ ϕ(x))

is certainly a morphism CX → CV X in [0, 1]-FinSup, by Theorem 5.7 and Remark 5.8 we obtain a
commutative diagram

U-RepV
C // [0, 1]-FinSupop

U-Rep

dd

C

88

of functors. For ϕ : X −→◦ Y in U-RepV, we have

Cϕ : CY −→ CX, ψ 7−→ ψ · ϕ.

If ϕ is a 2-distributor, then Cϕ coincides with what was defined in the Section 6.
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Remark 9.1. If X is a separated ordered compact space, then, for all ψ1, ψ2 ∈ CX, the composite

X
∆X−−→ X ×X ' X ⊗X ψ1⊗ψ2−−−−→ [0, 1]op ⊗ [0, 1]op ' ([0, 1]⊗ [0, 1])op ⊗op

−−→ [0, 1]op

is also in U-Rep. Therefore we can still consider ψ1 ⊗ ψ2 ∈ CX; however, Cϕ does not need to preserve
this operation, not even laxly.

The functor C : U-RepV → [0, 1]-FinSupop induces a monad morphism j whose component at X is
given by the maps

(9.i) jX : V X −→ [0, 1]-FinSup(CX, [0, 1]), (ϕ : 1 −→◦ X) 7−→
(
ψ 7→ ψ · ϕ = sup

x∈X
(ψ(x)⊗ ϕ(x))

)
.

For every Φ : CX → [0, 1] in [0, 1]-FinSup, we define a map ϕ : X → [0, 1] by

ϕ(x) = inf
ψ∈CX

hom(ψ(x),Φ(ψ)).

For every ψ ∈ CX,
X

ψ−→ [0, 1]op hom(−,Φ(ψ))−−−−−−−−−→ [0, 1]

is a U-functor, and so is ϕ : X → [0, 1] since it can be written as the composite (with I = CX)

X −→ [0, 1]I inf−−→ [0, 1].

In other words, ϕ ∈ V X. For Φ,Φ′ : CX → [0, 1] in [0, 1]-FinSup with corresponding map ϕ,ϕ′ : X →
[0, 1],

[ϕ′, ϕ] = inf
x∈X

hom( inf
ψ∈CX

hom(ψ(x),Φ(ψ)), inf
ψ∈CX

hom(ψ(x),Φ′(ψ)))

= inf
x∈X

inf
ψ∈CX

hom( inf
ψ∈CX

hom(ψ(x),Φ(ψ)),hom(ψ(x),Φ′(ψ)))

≥ inf
x∈X

inf
ψ∈CX

hom(hom(ψ(x),Φ(ψ)),hom(ψ(x),Φ′(ψ)))

≥ inf
x∈X

inf
ψ∈CX

hom(Φ(ψ),Φ′(ψ)) (hom(ψ(x),−) is a [0, 1]-functor)

= [Φ′,Φ].

Therefore Φ 7→ ϕ defines a [0, 1]-functor GCX → V X. Furthermore, one easily verifies that these
constructions define an adjunction in [0, 1]-Cat:

Proposition 9.2. Let X be a separated representable U-category. Then the following assertions hold.
(1) For every ϕ ∈ V X and every x ∈ X,

ϕ(x) ≤ inf
ψ∈CX

hom(ψ(x), sup
y∈X

ψ(y)⊗ ϕ(y)).

(2) For every Φ : CX → [0, 1] in [0, 1]-FinSup and every ψ ∈ CX,

sup
x∈X

ψ(x)⊗ inf
ψ′∈CX

hom(ψ′(x),Φ(ψ′)) ≤ Φ(ψ).

Recall from Proposition 4.6 that [0, 1]op
o is an initial cogenerator in OrdsComp; so far we do not know

if [0, 1]op is an initial cogenerator in U-Rep. Therefore we define:

Definition 9.3. A separated representable U-category X is called [0, 1]op-cogenerated if the cone (ψ :
X → [0, 1]op)ψ∈CX is point-separating and initial.

Of course, [0, 1]op is [0, 1]op-cogenerated, and so is every separated ordered compact space. Our next
question is whether V : U-Rep→ U-Rep restricts to [0, 1]op-cogenerated representable U-categories.

Lemma 9.4. Assume that the tensor product ⊗ on [0, 1] is either ∗, � or ∧. Let X be [0, 1]op-cogenerated.
Then, for all x, y ∈ X,

a0(y, x) = inf
ψ∈CX,ψ(x)=1

ψ(y).
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Proof. Since X is [0, 1]op-cogenerated, we certainly have

a0(y, x) = inf
ψ∈CX

hom(ψ(x), ψ(y)) ≤ inf
ψ∈CX,ψ(x)=1

ψ(y).

Assume first that ⊗ = ∗ or ⊗ = �. For ψ ∈ CX, put u = ψ(x). Then

hom(ψ(x), ψ(y)) = (u t ψ)(y)

and (u t ψ)(x) = hom(u, ψ(x)) = 1. Since u t ψ ∈ CX, the assertion follows.
Assume now that ⊗ = ∧. The assertion follows immediately if a0(y, x) = 1. Let now ψ ∈ CX, we

may assume that ψ(x) > ψ(y). Let b ∈ [0, 1] with ψ(y) ≤ b < ψ(x). Consider the piecewise linear map
h : [0, 1] → [0, 1] with h(v) = v for all v ≤ b and h(u) = 1 for all u ≥ ψ(x). Then hop · ψ ∈ CX since
h : [0, 1]e → [0, 1]e is continuous and h : [0, 1]→ [0, 1] is a [0, 1]-functor. To see the latter, let u, v ∈ [0, 1].
If hom(u, v) = 1, then hom(h(u), h(v)) = 1 since h is monotone. Assume now u > v. We distinguish the
following cases.
If ψ(x) ≤ v: In this case, hom(h(u), h(v)) = 1 ≥ hom(u, v).
If v < ψ(x) ≤ u: Now we have hom(u, v) = v ≤ h(v) = hom(h(u), h(v).
If v < u < ψ(x): Assume first that b ≤ u. Then hom(u, v) = v and v ≤ hom(h(u), h(v)) since v⊗h(u) ≤

v ≤ h(v). Finally, if v < u < b, then the assertion follows from u = h(u) and v = h(v).
We conclude that h(ψ(y)) = ψ(y) and h(ψ(x)) = 1. �

Also note that, for every ψ : X → [0, 1]op in U-Rep, the canonical extension ψ♦ : V X → [0, 1]op of ψ
to the free V-algebra V X over X sends ϕ ∈ V X to supx∈X ϕ(x)⊗ ψ(x); and the diagram

V X

ψ♦ ##

jX // GC(X)

evψ
��

[0, 1]op

commutes.

Lemma 9.5. Assume that the tensor product ⊗ on [0, 1] is either ∗, � or ∧. For every [0, 1]op-cogenerated
X in U-Rep, the cone (ψ♦ : V X → [0, 1]op)ψ∈CX is point-separating.

Proof. Let ϕ1, ϕ2 ∈ V X and x ∈ X with ϕ1(x) < u < ϕ2(x). Let y ∈ X. By Lemma 9.4, and since every
v ⊗− : [0, 1]→ [0, 1] preserves non-empty infima,

inf
ψ∈CX,ψ(x)=1

(ϕ1(y)⊗ ψ(y)) = ϕ1(y)⊗
(

inf
ψ∈CX,ψ(x)=1

ψ(y)
)

= ϕ1(y)⊗ a0(y, x) ≤ ϕ1(x) < u.

Therefore there is some ψy ∈ CX with ψy(x) = 1 and ϕ1(y)⊗ ψy(y) < u. The composite

(X,α) 〈ϕ1,ψy〉−−−−−→ [0, 1]× [0, 1]e ' [0, 1]⊗ [0, 1]e −→ [0, 1]⊗ [0, 1] ⊗−→ [0, 1]

is in U-Cat and therefore also continuous with respect to the underlying topologies, which tells us that
the set

Vy = {z ∈ X | ϕ1(z)⊗ ψy(z) < u}
is open in the compact Hausdorff space (X,α).

By construction, (Vy)y∈X is an open cover of the compact Hausdorff space (X,α); therefore we find
n ∈ N and y1, . . . , yn in X with X = Vy1 ∪ · · · ∪ Vyn . Put ψ = ψy1 ∧ · · · ∧ ψyn , clearly, ψ ∈ CX. Then,
for all y ∈ Y ,

ϕ1(y)⊗ ψ(y) < u and ψ(x) = 1;

consequently,

sup
y∈X

(ψ(y)⊗ ϕ1(y)) ≤ u and sup
y∈X

(ψ(y)⊗ ϕ2(y)) ≥ ψ(x)⊗ ϕ2(x) > u,

and the assertion follows. �
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Corollary 9.6. Assume that the tensor product ⊗ on [0, 1] is either ∗, � or ∧. For every [0, 1]op-
cogenerated separated representable U-category X, jX : V X → GCX is injective.

Corollary 9.7. Assume that the tensor product ⊗ on [0, 1] is either ∗, � or ∧. Let X be a [0, 1]op-
cogenerated separated representable U-category. Then jX : V X → GCX is an embedding in [0, 1]-Cat
and therefore also in U-Rep. Consequently, the cone (ψ♦ : V X → [0, 1]op)ψ∈CX is point-separating and
initial; and therefore V X is [0, 1]op-cogenerated.

Proof. Since jX is injective by Corollary 9.6, the inequality in (1) of Proposition 9.2 is actually an equality;
and therefore jX is a split mono in [0, 1]-Cat. �

We write U-CogRep and U-CogRepV to denote the full subcategory of U-Rep respectively U-RepV
defined by the [0, 1]op-cogenerated separated representable U-categories. Under the conditions of Corol-
lary 9.7, the monad V can be restricted to U-CogRep and then U-CogRepV is indeed the Kleisli category
for this monad on U-CogRep.

In the remainder of this section, our arguments use the continuity of the map hom(u,−) : [0, 1]e →
[0, 1]e, for all u ∈ [0, 1]. Unfortunately, this property excludes ⊗ = ∧; which leaves us with only two
choices for ⊗:

• u⊗ v = u ∗ v is the multiplication, here hom(u, v) = v � u is truncated division where 0 � 0 = 1;
and

• u⊗ v = u� v = max(0, u+ v− 1) is the Łukasiewicz tensor, here hom(u, v) = 1−max(0, u− v).

Lemma 9.8. Assume that ⊗ = ∗ is the multiplication or ⊗ = � is the Łukasiewicz tensor. Then, for
every separated representable U-category X, every Φ : CX → [0, 1] in [0, 1]-FinSup and every x ∈ X,

inf
ψ∈CX

hom(ψ(x),Φ(ψ)) = inf
ψ∈CX,ψ(x)=1

Φ(ψ).

Proof. Clearly, the left-hand side is smaller or equal to the right-hand side. Let now ψ ∈ CX and put
u = ψ(x). Then (ψ t u)(x) = hom(u, ψ(x)) = 1 and

Φ(ψ t u) ≤ hom(u,Φ(ψ)) = hom(ψ(x),Φ(ψ)). �

Proposition 9.9. Assume that ⊗ = ∗ is the multiplication or ⊗ = � is the Łukasiewicz tensor. Then,
for every separated representable U-category X, the second inequality of Proposition 9.2 is actually an
equality.

Proof. Let Φ : CX → [0, 1] in [0, 1]-FinSup and ψ ∈ CX. Put u0 =
∨
x∈X ψ(x)⊗infψ′∈CX hom(ψ′(x),Φ(ψ′))

and consider u0 < u. Let x ∈ X. Then

u > ψ(x)⊗ inf
ψ′∈CX

hom(ψ′(x),Φ(ψ′)) = inf
ψ′∈CX,ψ′(x)=1

ψ(x)⊗ Φ(ψ′),

hence there is some ψ′ ∈ CX with ψ′(x) = 1 and

ψ(x)⊗ Φ(ψ′) < u.

Let now α < 1. For every ψ′ ∈ CX, we put

Uα(ψ′) = {x ∈ X | ψ(x)⊗ Φ(ψ′) < u} ∩ {x ∈ X | ψ′(x) > α}.

Then Uα(ψ′) is open in the compact Hausdorff topology of X, and

X =
⋃

ψ′∈CX

Uα(ψ′).

Since X is compact, we find ψ1, . . . , ψn so that

X = Uα(ψ1) ∪ · · · ∪ Uα(ψn).
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For every i ∈ {1, . . . , n} we put Di = {x ∈ X | ψ(x) ⊗ Φ(ψi) ≥ u}, then Uα(ψi) ∩ Di = ∅. Let
ψ̂i : X → [0, 1] be a function (not necessarily a morphism) which is constant 1 on Uα(ψi) and constant 0
on Di. Then, for all x ∈ X,

α⊗ ψ(x) ≤ (ψ̂1(x)⊗ ψ1(x)⊗ ψ(x)) ∨ · · · ∨ (ψ̂n(x)⊗ ψn(x)⊗ ψ(x)).

For every i ∈ {1, . . . , n} we put wi = supx∈X ψ̂i(x)⊗ ψ(x); with the inequality above we get

α⊗ ψ ≤ (w1 ⊗ ψ1) ∨ · · · ∨ (wn ⊗ ψn).

Let now i ∈ {1, . . . , n}. Then, for every x ∈ X,

ψ̂i(x)⊗ ψ(x)⊗ Φ(ψi) ≤ u,

and therefore wi ⊗ Φ(ψi) ≤ u. Consequently, α ⊗ Φ(ψ) ≤ u for all α < 1 and u > u0; which implies
Φ(ψ) ≤ u0. �

From Proposition 9.9 we obtain immediately:

Theorem 9.10. For ⊗ = ∗ being the multiplication or ⊗ = � the Łukasiewicz tensor, the functor

C : U-CogRepV −→ [0, 1]-FinSupop

is fully faithful.

Our next aim is to identify those morphisms in [0, 1]-FinSup which correspond to ordinary relations
between separated ordered compact spaces on the other side. Recall from Remark 9.1 that, for X being
a separated ordered compact Hausdorff space, we can still consider ψ1 ⊗ ψ2 in CX.

Proposition 9.11. For ⊗ = ∗ being the multiplication or ⊗ = � the Łukasiewicz tensor, a morphism
ϕ : X −→◦ Y in U-RepV between separated ordered compact spaces is a 2-distributor if and only if Cϕ
satisfies (Ten)lax.

Proof. Clearly, if ϕ : X −→◦ Y is a 2-distributor, then Cϕ satisfies (Ten)lax. To see the reverse implication,
note first that u ∈ {0, 1} precisely when u ≤ u ⊗ u. It is enough to consider the case ϕ : 1 −→◦ X, and
assume now that the corresponding Φ : CX → [0, 1] satisfies (Ten)lax. Then, for all x ∈ X,

ϕ(x)⊗ ϕ(x) =
(

inf
ψ∈CX,ψ(x)=1

Φ(ψ)
)
⊗
(

inf
ψ′∈CX,ψ′(x)=1

Φ(ψ′)
)

= inf
ψ∈CX,ψ(x)=1
ψ′∈CX,ψ′(x)=1

Φ(ψ)⊗ Φ(ψ′)

≥ inf
ψ∈CX,ψ(x)=1
ψ′∈CX,ψ′(x)=1

Φ(ψ ⊗ ψ′)

= inf
ψ∈CX,ψ(x)=1

Φ(ψ) = ϕ(x). �

The proposition above together with Theorem 9.10 is certainly related to Theorem 6.14; however,
in Section 6 we consider finitely cocomplete V-categories equipped with an additional monoid structure
which is not needed in this section. In fact, Theorem 9.10 allows us to characterise the monoid operation
of CX within [0, 1]-FinSup.

Lemma 9.12. Assume that ⊗ = ∗ is the multiplication or ⊗ = � is the Łukasiewicz tensor. Let X be a
separated ordered compact space and let ψ0 ∈ CX. Let Φ : CX → CX in [0, 1]-FinSup with Φ(1) ≤ ψ0

and Φ(ψ) ≤ ψ, for all ψ ∈ CX. Then Φ = ψ0 ⊗− provided that ψ0 ⊗ ψ ≤ Φ(ψ), for all ψ ∈ CX.

Proof. Let x ∈ X and consider
CX

Φ−−→ CX
evx−−−→ [0, 1]

in [0, 1]-FinSup. By Theorem 9.10, this arrow corresponds to the continuous [0, 1]-distributor ϕ : 1 −→◦ X

given by
ϕ(y) = inf

ψ∈CX
hom(ψ(y),Φ(ψ)(x)),
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for all y ∈ X. Let now y ∈ X, we consider the following two cases.

y 6≥ x: By Proposition 4.6, there exists some ψ ∈ CX with ψ(y) = 1 and ψ(x) = 0. Since Φ(ψ) ≤ ψ, we
obtain Φ(ψ)(x) ≤ ψ(x) = 0; hence ϕ(y) = 0.

y ≥ x: Firstly, for every ψ ∈ CX,

hom(ψ(y),Φ(ψ)(x)) ≥ hom(ψ(x),Φ(ψ)(x)) ≥ ψ0(x)

since ψ0(x)⊗ ψ(x) ≤ Φ(ψ)(x). Secondly, hom(1,Φ(1)(x)) ≤ ψ0(x). Therefore ϕ(y) = ψ0(x).

Finally, we obtain

Φ(ψ)(x) = sup
y∈X

(ϕ(y)⊗ ψ(y)) = sup
y≥x

(ψ0(x)⊗ ψ(y)) = ψ0(x)⊗ ψ(x),

for all ψ ∈ CX. �

Theorem 9.13. Assume that ⊗ = ∗ is the multiplication or ⊗ = � is the Łukasiewicz tensor. Let X
be a separated ordered compact space. Then, for every ψ0 ∈ CX, ψ0 ⊗ − : CX → CX is the largest
morphism Φ : CX → CX in [0, 1]-FinSup satisfying

Φ(1) ≤ ψ0 and Φ(ψ) ≤ ψ, for all ψ ∈ CX.(9.ii)

Proof. Clearly, ψ0 ⊗− satisfies (9.ii), and the lemma above tells us already that it is maximal among all
those maps. Let now Φ1,Φ2 : CX → CX be in [0, 1]-FinSup satisfying (9.ii). Then also the composite
arrow

CX
〈Φ1,Φ2〉−−−−−→ CX × CX ∨−→ CX

satisfies (9.ii), therefore the collection of all morphism Φ : CX → CX in [0, 1]-FinSup satisfying (9.ii) is
directed. Consequently, ψ0 ⊗− : CX → CX is the largest such morphism. �
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