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Foi desenvolvido de raiz um sistema experimental que permite carregar 

amostras através de uma descarga controlável num tríodo de corona. O 

sistema desenvolvido permite produzir uma descarga de polaridade positiva ou 

negativa, aplicar o método de carregamento com corrente de carga constante, 

seguir em tempo real o aumento do potencial de superfície da amostra, 

controlar a temperatura de descarga até 200 ºC e possui uma atmosfera 

reprodutível de baixa humidade. 

O sistema foi desenvolvido com o intuito de carregar com uma descarga de 

corona negativa revestimentos bioactivos de hidroxiapatite depositados por 

dois processos: spray de plasma e CoBlast, este último um processo 

relativamente recente. 

Foram estudados os seguintes parâmetros de processo do CoBlast: razão 

mássica entre abrasivo e dopante, distância de ejeção e pressão de ejeção. 

Mostrou-se que razões mássicas de 50/50 e distâncias inferiores a 30 mm são 

vantajosas. 

O método de carregamento com corrente de carga constante não é possível 

ser aplicado nos revestimentos produzidos por CoBlast, pois estes são 

caracterizados como tendo regiões onde substrato metálico está directamente 

exposto à descarga. Os revestimentos produzidos por spray de plasma, com 

uma espessura média de 70 m, foram carregados negativamente a 200 ºC 

com sucesso, atingindo potenciais de superfície na gama dos - 1400-1800 V, 

traduzindo-se em campos eléctricos nas amostras praticamente impossíveis 

de serem atingidos por polarização convencional de contacto. O controlo de 

corrente de carga é melhor para mais baixas correntes de carga. Ensaios e 

medidas complementares feitas em pastilhas de hidroxiapatite revelaram 

densidades de carga armazenada na gama dos 10-5 - 10-4 C/cm2, bem como 

uma estabilidade temporal da carga armazenada muito promissora. 

Os testes biológicos in vitro revelaram uma maior proliferação osteoblástica 

nos revestimentos carregados comparativamente com os revestimentos de 

controlo não carregados, indicando também um estágio mais avançado de 

formação de nova hidroxiapatite em solução simuladora de fluido corporal.  
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abstract A corona triode experimental system was developed “from scratch”. The 

developed system is able to produce a negative or positive discharge, to apply 

the constant charging current method, to follow in real-time the surface potential 

buildup of the sample, to control the discharge temperature up to 200 ºC and a 

low humidity, reproducible atmosphere is maintained in all the charging 

experiments. 

The system was developed in order to charge with a negative corona discharge 

hydroxyapatite bioactive coatings produced by two processes: plasma spray 

and CoBlast, the former being a relatively recent process. 

The following CoBlast process parameters were studied: the weight ratio 

between the abrasive and dopant, the blasting distance and the blasting 

process. It was shown that a weight ratio of 50/50 and distances lower than 30 

mm are preferable. 

The constant charging current method cannot be applied in the coatings 

produced through the CoBlast process, because they are characterized by 

having regions where the metallic substrate is directly exposed to the discharge. 

The coatings produced through the plasma spray process, with an average 

thickness of 70 m, were successively charged at 200 ºC, reaching surface 

potentials in the - 1400-1800 V range, translating in electric fields across the 

samples which are practically impossible of being reached through conventional 

contact polarization. The charging current controllability is better for lower 

charging current values. Complementary experiments performed in 

hydroxyapatite coatings revealed stored charge densities in the 10-5 – 10-4 

C/cm2 range, as well as a very promising temporal stability of the stored charge. 

The in vitro biological tests revealed an increased osteoblastic proliferation in 

the charged coatings compared to non-charged control coatings, also indicating 

a more advanced stage of new hydroxyapatite development in a simulated body 

fluid solution. 
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Chapter 1 Introduction 

1.1 State of the Art 

 1.1.1 A growing market 

The global market of orthopaedics reached US$49 billion in 2017, about 1/5 of the 

Portuguese gross domestic product in that year, and shows an increasing trend, being 

projected to reach US$60 billion by the year of 2022, fuelled by a global increasing demand 

and need of orthopaedic surgical interventions [1, 2]. The prevailing factors behind this 

increasing demand are related to unhealthy lifestyles and aging of the worldwide 

population. An unhealthy lifestyle, characterized by a lack of physical activity and poor 

dietary habits, causing overweight problems, is prejudicial to our hard tissues. Mechanical 

stimuli are a key factor to keep our bones in a healthy state because they are constantly 

being remodelled to cope with the mechanical loads they are subjected to [3]. Lack of 

exercise and mechanical stimuli will weaken the bones, decreasing their density and 

leading to diseases such as osteoporosis. This is the reason why astronauts, in a zero-gravity 

condition during a space mission, are required to do vigorous exercise every day, in order 

to maintain musculoskeletal health after the mission. Overweight issues are also promoting 

osteoarthritis conditions. The aging of the global population, together with the increase of 

the average lifespan, are also important factors leading to a progressively higher amount of 

orthopaedical surgeries. More surprisingly, the number of younger patients is growing, 

due, among other factors, to the practice of dangerous and physical-damaging sports 

activities [2, 4]. Younger people will have a much higher probability to need additional and 

revision surgeries compared with older people since the average lifespan of the majority of 

the biomedical implants is not “planned” for the younger. An example of a fact that 

corroborates this discussion is the increasing number of total hip replacement (THR) 

surgical interventions. Fig. 1.1 shows a THR, embodying the femoral stem, the femoral head 

and the acetabular cup [4]. The femoral stem is usually made from titanium (Ti) or the 

Ti6AL4V alloy and the femoral head is made from alumina (Al2O3 - Alu) or Ti. The 

acetabular cup is normally a Ti cup containing an Alu insert (or sometimes a polymer is 
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used, such as polyethylene), as fig. 1.1 depicts. However, Alu is being preferred due to a 

much lower wear rate than metal on polyethylene contact. Moreover, the release of small 

polymer particles can trigger inflammatory processes. Over the past years, a great number 

of orthopaedic implants are coated with a bioactive ceramic material known as 

hydroxyapatite. The rationale behind this bioactive coating will be explained in detail on 

the following topics, but basically it is able to promote a direct bonding between the metallic 

implant and the surrounding biologic bone. It should be noted that, for example, that when 

the surgeons place a THR inside the body, they will open a cavity in the femur where they 

introduce the implant (observe fig. 1.1). In consequence, the implant is surrounded by 

biologic bone, especially in the femoral stem region, and a small gap exists between them. 

As it will be shown, the non-coated Ti implant is not able to promote a direct and stable 

bonding with the biologic bone, because it is bioinert, while the bioactive hydroxyapatite 

coating is able to promote such bonding. In fig. 1.1, the hydroxyapatite [Ca10(PO4)6(OH)2, 

Hap] coating can be seen in both the femoral stem and acetabular cup components. 

  

Figure 1.1 In the left: A total hip replacement (THR) [4]. In the right: The acetabular cup: a Ti or Ti 

alloy metallic cup with an Alu insert (ceramic insert) or with a polymer (polyethylene) insert. 

In the United States, based on the U.S. National Center for Health Statistics, the 

number of THR interventions increased from 138.700 in 2000 up to 310.800 in 2010. While 

the replacements increased 92% among patients aged 75 or older, they increased by 205% 

Femoral stem  

Femoral head 

Acetabular 

cup  
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among patients aged 45 to 54 [5]. In Portugal, the number of THR performed in 2010 is 

estimated to be more than 6000, only supplanted by total knee replacements [6]. In fact, 

THR and total knee replacements are two of the most common orthopaedic implants that 

people receive every year. Here, we decided to focus on THR statistics. In Germany, 

between 2003 and 2009, 1.38 million THR were performed [4]. This large number is related 

to the fact that the German healthcare system is considered the most restriction-free and 

consumer-oriented in Europe, allowing patients to get an easy access to any type of 

treatment they wish, with short waiting times. On the flip side of the coin, medical 

professional organizations and the media have been criticizing cases where THR 

procedures are carried out while there is no medical evidence that such procedure would 

be required for that particular patient [4]. In England, the National Joint Registry recorded 

that more than 790.000 THR were performed between 2003 and 2015. In South Korea, the 

Health Insurance Review and Assessment Service informed that more than 60.000 THR 

were performed between 2010 and 2017. 

The United States is currently the largest market in the world, however the Asia-

Pacific region (India, China, Australia, Indonesia, Taiwan, etc.) represents the fastest 

growing market in the world, mainly led by the fast-developing countries, which are 

improving their healthcare systems and infrastructures, as well as the money spent per 

capita on the population health issues. Globally, the market growth is also benefiting from 

the advancements in the research and development of new bone substitutes and implants 

with improved properties, such as the level of bioactivity. Additionally, new advantageous 

and low-cost processing techniques, e.g. new techniques for deposition of a bioactive film 

in the surface of a metallic implant, are being researched and developed, opening new 

doors towards new paths of differentiation in a growing market [2].  

 Table 1.1 shows the total orthopaedic sales performance ($millions) of the “big 

players” in the market [1]. The data does not include the dental implants market. This 

industry reached $49 billion in 2017. The seven companies explicitly referred in table 1.1 

held about 66% of the total market in 2017. The three largest product segments by revenue 
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are joint reconstruction (THR, knee replacement, etc.), spine interventions and trauma 

(fractures, broken bones). In 2017, they represented about 70% of the total revenue [1]. 

Table 1.1 Total orthopaedic sales performance ($millions) concerning the years 2016 and 2017 [1].  

 

 

1.1.2 Human bone: an ingenious functional gradient composite 

With the branching of physics into different interdisciplinary fields, physicists, 

depending on their subject of interest, are required to acquire knowledge about different 

fields such as medicine, geology, biology, etc. The biology and medicine concepts discussed 

in this thesis are presented in such a way that they should allow a relatively easy 

comprehension for those who are not experts on the subjects, as it is our case. We will not 

dive into unneeded complexity and details, because the dynamics and interactions between 

the human bone and the surrounding physiological medium are very complex, involving 

many players and complex biochemical, biophysical and mechanical processes. We expect 

that these concepts support and enrich the main physical core of this thesis.  

Even the best materials research scientist will be a layman when compared to 

Nature. Human bones are complex natural functional gradient composites containing both 

an organic component, mainly type-I collagen, and a mineral inorganic component, 

comprised of Hap parallelepipedic nanocrystals with dimensions of about ~ 50x25x3 nm, 

as shown in fig. 1.2, at the nanostructural hierarchical level [7]. The Hap nanocrystals are 
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oriented with their c-axis parallelly aligned to the collagen fibrils, providing the strength 

and toughness of the bone while the collagen provides the flexibility and the medium for 

the precipitation of the Hap nanocrystals. These organic and inorganic components 

represent about 95 wt% of the dry bone [7].  

On a macroscopic scale, there are basically two types of bone: cortical bone, which 

is denser and stronger and comprises about 80% of the skeleton and the trabecular (also 

known as cancellous or spongy) bone, less dense (porosity ranges between 50 and 90%) and 

having weaker mechanical properties, such as a considerable lower modulus of elasticity. 

Cortical bone is found in shafts of long bones (e.g. femur, tibia, etc.) and in the surfaces of 

the flat bones (e.g. skull, mandible, etc.) while trabecular bone can be found primarily in 

the extremities of long bones and in the inner part of flat bones, as it is also shown in fig. 

1.2 [8]. Cortical bone has additionally an outer fibrous structure that allows the presence of 

nutrient supplying blood vessels, nerve endings and bone specialized cells known as 

osteoclasts and osteoblasts, the function of which be discussed on the following topic 1.1.3. 

At the microstructural level, the building block of cortical bone is the osteon, while for 

trabecular bone is a porous network of trabeculae, as illustrated in fig. 1.2 [7].  

 

Figure 1.2 The hierarchical structure of the human bone across several characteristic length scales, 

ranging from the macrostructure down to the nanostructure [7]. 
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Table 1.2 shows some important mechanical properties of human bones and also 

other skeletal-related tissues, known as soft connective tissues (articular cartilage and 

tendon, the former is a tissue that connects the muscle to the bone) [4]. The connection 

between all the different tissues, including bones and muscles, together with the “carefully 

planned” differences in the mechanical parameters of each component, namely the Young’s 

modulus, is characterized by a smooth and balanced gradient of mechanical stresses 

distribution along all the connections. One of the mechanical problems that can occur at the 

bone/biomedical implant interface is the stress shielding of the natural biologic bone: 

considering that the implant constituent materials have typically larger modulus of 

elasticity compared to both cortical and cancellous bone, the implant will sustain almost all 

of the mechanical loads. However, since bone needs mechanical stimulation to remain 

healthy, the insufficient loading may result in bone weakening in the affected areas. Hence, 

work is under progress in order to develop implant materials with a modulus that 

approaches that of biologic bone. In an ideal situation, an “isoelastic” implant should be 

developed, which, so far, is an impossible task considering the materials typically used. 

Nonetheless, there are materials which have a very similar modulus compared to bone 

(cortical bone, more particularly), as it is the case of the 45S5 bioglass®.  

 

Table 1.2 Some important mechanical physical properties of human bones and also other skeletal-

related tissues [4]. 
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Overall, it is safe to claim that human bones comprise a natural ingenious functional 

gradient composite system.  

 

1.1.3 Osteocytes, osteoclasts and osteoblasts: the bone remodelling agents 

  Osteoclasts and osteoblasts are bone specialized cells, fundamental in the bone 

remodelling dynamics, a continuous process within our body. In fact, our bones are not 

static, they are continuously being rebuilt and remodelled in order to adapt to the external 

stimuli requirements. This continuous adaptation can include processes such as density 

changes, replacement of old bone by new bone, resorption and removal of damaged bone 

and formation of new bone in the resorption area. The damaged areas being repaired are 

not necessarily related to large defects such as fractures, but actually, microdamaged areas 

are frequently being repaired. 

 Osteoblasts have a much higher abundance than osteoclasts and their functions 

include the production and mineralization of the bone matrix: they are able to synthesize 

both the organic (collagen) and inorganic (Hap) components. Additionally, and not least 

important, they are the cells that regulate both the amount of formed bone and the number 

of osteoclasts, i.e., the expression and differentiation of osteoclasts are controlled by the 

osteoblasts [9].  Osteoclasts, on its turn, are specialized in the degradation of the bone tissue, 

both the organic component, by the secretion of several proteolytic enzymes, and the 

inorganic component, by the secretion of H+ ions which increase the acidity of the 

surrounding physiologic fluid, causing the Hap dissolution. Abnormal osteoclastic 

formation and activity is related to pathogenic mechanisms leading to bone loss in diseases 

such as osteoporosis, periodontitis and peri-implantitis, metastatic tumor diseas and 

loosening of implants [9]. There is still another type of cells, the osteocytes, that actually 

comprise more than 90% of all bone cells, and most of the times they are found enclosed 

within the bones. They are essentially osteoblasts that were incorporated into the bone 

matrix. Recent researches have shown that they are responsible for the regulation of both 

osteoblastic and osteoclastic activities, by expressing activators and inhibitors of both kinds 

of activities. In fig. 1.3, the left diagram shows the communication paths between the bone 
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cells: osteocytes express RANKL (receptor activator of nuclear factor kappa B ligand, a 

specific protein) to control the osteoclastic activity and sclerostin (another specific 

communication protein) to control the osteoblastic activity [10]. Bone remodelling and 

repair dynamics is, therefore, a balance between the osteoblastic and the osteoclastic 

activities, as depicted in fig. 1.3. Osteocytes also contribute to the systemic control of 

phosphate metabolism [9]. Phosphate is essential for various cellular metabolic processes 

and of course for Hap mineralization in our bones. It is the sixth most abundant ion in the 

human body, and of its total content, 80 up to 85% is located in the Hap of our bones [11].  

 
 

Figure 1.3 In the left: the bone specialized cells - osteocytes regulate the osteoclastic and 

osteoblastic activity through the expression of RANKL and sclerostin proteins, respectively [10]. 

In the right: bone remodelling and repair dynamics is a balance between osteoblastic and 

osteoclastic activities. 

 

 In conclusion, our bones are not static but instead, they are a complex system always 

adapting to the external stimuli they are subjected to. They are also frequently remodelled 

due to frequent formation of microcracks. For such duties, three bone specialized cells are 

in constant activity: osteocytes, osteoblasts and osteoclasts, the bone remodelling agents. 

   

1.1.4 Biomaterials: from the prehistory to the present day 

There are different definitions of what is a biomaterial, but one of the most accepted 

was established in 1982 during the conference “Clinical Applications of Biomaterials”, held 

at the National Institutes of Health, in Maryland, USA. It states: “a biomaterial is defined 

as any substance (other than a drug) or combination of substances, synthetic or natural in 
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origin, which can be used for any period of time, as a whole or as a part of a system, which 

treats, augments, or replaces any tissue, organ, or function of the body” [12].  

The use of foreign materials to be applied as implants within the human body for 

hard tissue substitution is already a very old practice. Some archaeological findings showed 

that efforts to replace missing teeth date back to the prehistoric period [13]. There are also 

reports that indicate that the replacement/substitution of harshly damaged hard tissues is 

a practice with over than 2000 years [14]. The materials applied back were typically based 

on metals such as copper and bronze, but also shells, corals and ivory, mainly from 

elephant tusks [13, 14]. Metals, in particular, became the most popular materials used for 

bone substitution for a long time period, and a “science” in which other materials than 

copper and bronze were regarded as potential good bone substitutes was not developed 

until the middle of the XIX century. One of the main problems of metals such as copper is 

that it corrodes in the physiological media of the human body, causing the release of Cu2+ 

ions (which in high concentrations may become biotoxic), which often led to severe 

infections which threaten the life of the patients [14]. In 1880, based on the resemblance 

between the composition of ivory and the bone, Gluck et al. applied an ivory prosthesis 

using anchoring cement based on colophony [15]. In 1902, Jones et al. implanted some gold 

capsules between the knee joints, with good long-term results [15]. This led to the general 

knowledge that chemically inert materials are more desirable and stable within the 

organism [15, 16]. Smith-Peterson et al., in 1923, conducted some studies in order to achieve 

a stable and practical arthroplasty [15]. Initially, they used some glass-based capsules, 

which were found to be too fragile. Afterward, they applied a kind of celluloid that no 

longer is available in the market, which produced some unwanted reactions. Lastly, they 

discovered the Vitallium alloy, an alloy of cobalt-chromium which presented better 

characteristics than all the materials applied until that time, namely good mechanical 

resistance/stability and chemical inertness, having become one of the most applied 

materials [15, 16]. The first hip prosthesis with the Vitallium alloy was made in 1938, by 

Bires and Wills, and in 1939 by Bursh, which used PMMA (polymethylmethacrylate) for its 

fixation [16]. The Vitallium alloy kept being applied frequently until 1960, when it was 

found that the metal-metal contact was harmful, due to corrosion processes and release of 
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biotoxic ions [16]. In the following years, plastic-based materials gained popularity, and by 

the end of the sixties the use of polyethylene had become widespread [17]. However, 

several studies conducted on these plastic-based materials shown that they have 

carcinogenic potential, which raised doubts about long-term applications. Therefore, in the 

seventies, the search for new non-toxic materials had begun. Compounds based on Alu and 

zirconia (ZrO2) attracted the attention of Boutin et al. Around 1973, Nicolini started 

promising experiences in ceramic glasses, whose properties were found to be favourable 

compared to the majority of the materials applied until that time. Nonetheless, harmful 

reactions occurred in the bonding area between the prosthesis and the bone, mainly related 

to the heat released during the polymerization of the PMMA (the cement used for the 

prosthesis fixation), which can lead to temperatures in the order of 80-90 ºC. This is a serious 

problem because temperatures above 56 ºC can lead to the denaturation of the proteins, i.e., 

they may become unable to perform their function.  Another drawback is the cytotoxicity 

of the monomer contained in the mixture (cement) [17]. 

So, the need of applying a prosthesis together with the need of fixing them without 

using any cement encouraged the research of a material which is not bioinert, but 

biologically active, which stimulates a natural and strong fixation between the implant and 

the bone, i.e., a bioactive material. This bioactivity requirement is fulfilled by biomaterials 

such as calcium orthophosphate-based bioceramics, a group to which Hap belongs, and 

some bioactive glasses [17]. These new materials have chemical, physical and mechanical 

properties very appealing to be applied as bone (or dental) substitutes because some of 

their properties are similar to the natural biologic hard tissues of the human body. 

The ensuing topic explores the calcium orthophosphate ceramics group, with a 

strong emphasis on Hap. Additionally, some important concepts related to bioactive 

properties are introduced and defined. 
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1.1.5 Hydroxyapatite: the boss of the calcium orthophosphates 

 By definition, three major chemical elements integrate all calcium orthophosphate 

compounds: calcium with an oxidation state +2, phosphorous with an oxidation state +5 

and oxygen with a reduction state -2. Plus, many compounds include hydrogen in their 

chemical composition, as a hydroxide (e.g., Ca10(PO4)6(OH)2), incorporated water (e.g. 

CaHPO4.2H2O) or as an acidic orthophosphate (e.g., HPO4
2− and H2PO4

−). There are several 

possible combinations of CaO and P2O5 (we are dealing with the CaO-P2O5-H2O ternary 

system), and different compounds are distinguished and labelled by the type of the 

phosphate anion: ortho- (𝑃𝑂4
3−), meta- (PO3

−), pyro- (𝑃2𝑂7
4−and poly- [(𝑃𝑂3)𝑛

𝑛−] [18]. Table 

1.3 shows the list of existing calcium orthophosphate and their stability in aqueous solution 

[19].  

Table 1.3 List of existing calcium orthophosphate compounds and their stability on an aqueous 

solution. a Compounds that cannot be precipitated from aqueous solution (at least in one single 

step); b Accurate measurements not available; c Stable at temperatures above 100 ºC; d Always 

metastable; e Sometimes also designated as precipitated Hap; f In the case x = 1, CDHA has the 

following chemical formula Ca9(HPO4)(PO4)5(OH), also known as apatitic tricalcium phosphate 

[19]. 

 

Although there are several calcium orthophosphate compounds, practically only 

Hap, -TCP and -TCP are used in orthopaedic applications, as bioactive coatings in 

metallic implants, in bulk form, or as self-setting cements. Biphasic ceramics of Hap/-TCP 

or Hap/-TCP are also used. The reason explaining why only these three compounds are 

applied is that most of the calcium orthophosphates are not stable in the physiological 
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media conditions, and most of them would dissolve very quickly. Considering -TCP, -

TCP and Hap, the former is the most stable phase under the physiological conditions, with 

a lower solubility and thus lower resorption kinetics [19].  

For an insightful discussion about these compounds, it is required to introduce and 

define important concepts related to bioactivity. When inside the body, any foreign material 

will cause an immediate response of the organism. The type of response will depend on the 

classification of the biomaterial. Bioactivity, within the orthopaedic field, is defined as the 

ability of the biomaterial to promote and form a strong bond with the newly forming 

biologic bone, a phenomenon which was first observed in the sixties by Hench et al., in his 

works with silica-based bioactive glasses [13, 19, 20]. This bioactivity process is directly 

related to the biodegradation process of the biomaterial, which occurs by a mixture of 

cellular activity and dissolution in vivo, in the physiological media conditions. On the other 

hand, a bioinert material, instead of promoting a direct bond with the newly forming bone, 

it will evoke a physiological response consisting in the formation of a fibrous capsule 

around it, isolating the material from the physiological media and thus from the body, i.e., 

unlike the bioactive material, the body will recognize the bioinert material as a foreign 

material. The thickness of such fibrous capsule is sometimes used to evaluate the level of 

bioinertness of the material [19]. 

 There is a dichotomy between advantageous biological properties (bioactivity) and 

advantageous mechanical properties: bioactive materials like Hap tend to have poor 

mechanical properties and bioinert materials like Ti tend to have good mechanical 

properties [4]. The ideal material would be one that could combine a high bioactivity level 

with good mechanical properties, to confer them stability. In fig. 1.4 we can see this 

bioactivity versus mechanical properties dichotomy [4]. All the materials in the best 

biological properties column are bioactive (Hap, tricalcium phosphate, etc.), while all the 

others (Ti, Al, zirconia, etc.) with better mechanical properties are bioinert, and thus they 

do not evoke the desired physiological response. This is the reason why bulk Hap 

orthopaedic implants are rarely applied, especially in load-bearing applications, i.e., in 

parts of the human body that are regularly subjected to mechanical loads. Instead, the 
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favourite solution is to make bioactive coatings on metallic implants, in order to combine 

the advantageous mechanical properties of the metal with the bioactive properties of the 

coatings. In this way, the formation of the unwanted fibrous capsule is avoided, and the 

bonding between the implant and surrounding biologic bone is improved, therefore 

optimizing the implant stability and longevity.   

 

Figure 1.4 The dichotomy between the biological properties versus mechanical properties [4]. 

 

Let us consider a metallic implant, coated with Hap, which is applied in the human 

body. The Hap will soon start a biodegradation process, which generally occurs by two 

different mechanisms: biodegradation mediated by cellular activity, by both the osteoclasts 

and osteoblasts, as discussed in section 1.1.3, and biodegradation by dissolution in the 

physiological media [21]. The dissolution mechanism depends on parameters such as the 

acidity or basicity of the environment, the solubility of the material and the surface area to 

volume ratio [22].  Both different biodegradation mechanisms, occurring at the same time, 

cause the release to the surrounding physiological fluid of the chemical elements required 

for the precipitation of new Hap, namely calcium and orthophosphate ions, leading to the 

supersaturation of the physiological fluid and the precipitation of nanosized biologic Hap 

crystals [22]. Osteoblasts also contribute to the deposition of Hap. The precipitation of Hap 

is a consequence of the fact that it is the most stable calcium phosphate-based phase in the 

physiological conditions, therefore it is the thermodynamically favoured phase. However, 

the deposited Hap layer is more rigorously carbonated hydroxyapatite (CHap).  
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Another important concept needs now to be introduced: Hap is characterized by 

having a structure that allows a considerable number of ionic substitutions. Some frequent 

substitutions include the incorporation of carbonate ions, silicon, magnesium, fluoride, 

chlorine, among other elements. Actually, structural studies performed in biologic Hap and 

synthetic carbonated Hap, using combined analytical methods such as X-ray diffraction 

(XRD), Fourier-transform infrared spectroscopy (FTIR) and other chemical analysis 

techniques, demonstrated that the most recurrent substitution in biologic Hap is the 

incorporation of carbonate ions [13]. In fig. 1.5, a simple scheme shows some of the possible 

ionic substitutions in Hap. The occurrence of these substitutions can modify, in a higher or 

lower degree, some of the Hap properties: for example, the incorporation of fluorine leads 

to an increase in crystallite size and a higher stability in aqueous solution due to a solubility 

decrease (this is the reason why many mouthwashes and toothpastes contain fluorine), 

while the incorporation of carbonate ions causes a decrease in the crystallite size and an 

increase in solubility [13]. The substitutions have also influence on the cellular adhesion 

and may change the adhesion and orientation of the proteins which bind to calcium [23, 24] 

 

Figure 1.5 Some of the possible ionic substitutions that occur in Hap [13]. 

 

Returning to our discussion, it is agreed that the newly forming biologic bone bonds 

directly to the Hap coating through the carbonated CHap layer [22]. Fig. 1.6 shows a 

simplified scheme of the discussed bioactivity process, highlighting the biodegradation 

mechanisms and the precipitation and development of new biologic bone. The solubility 

and stability of the calcium phosphate compounds in the physiological conditions depend 

strongly on the calcium to phosphorous ratio (Ca/P ratio – see table 1.3). For lower ratios, 

the solubility increases, or in other words, the biodegradation kinetics increases. It is very 

important that the biomaterial is stable enough inside the organism to allow the formation 
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of the CHap layer. If the material dissolves very quickly, it will not allow the bonding with 

the newly forming bone. This is the reason why compounds with a Ca/P ratio lower than 

1.5 (table 1.3) are very rarely applied. Even pure -TCP and -TCP are rarely applied since 

their degradation kinetics is faster than the rate of new biologic bone formation. Instead, 

they are usually applied in biphasic formulations (BCP – biphasic calcium 

orthophosphates) of Hap/-TCP or Hap/-TCP, in order to achieve biomaterials with 

different degradation rates: the higher -TCP or -TCP content, the higher the degradation 

rate. On fig 1.6, it is also important to mention again that the precipitation and formation of 

new bone are both a consequence of the supersaturation condition and also of the 

osteoblastic activity [22]. 

 

Figure 1.6 Simplified scheme showing the bioactivity process of Hap, highlighting the 

biodegradation mechanisms, through the combined action of the cellular and dissolution 

processes, and the precipitation and development of new biologic bone along the Hap surface. 

 

 Last but not least, the experimental evidence. Fig. 1.7 shows the results of an in vivo 

study: (a) Ti6Al4V cube (5x5x5 mm), without a Hap coating, implanted on an adult dog’s 

femur; (b) Same setup, but in this case, the Ti6Al4V implant has a Hap bioactive coating. In 

(a) it clearly visible that between the implant and the bone there is the formation of the 
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fibrous capsule (connective tissue) that was mentioned before because Ti and Ti alloys are 

bioinert. This fibrous capsule ensures that the material has minimal interaction with the 

surrounding tissues, and therefore it does not provide a favourable environment for cellular 

adhesion and proliferation. Oppositely, in (b) it is visible a smooth and well-defined 

interface and bonding between the implant and bone, through the Hap bioactive coating. 

Consequently, the implant fixation is much weaker in (a) compared to (b), and thus the 

former has improved the mechanical stability and longevity.  

 

Figure 1.7 In vivo biological tests: (a) Ti6Al4V cube (5x5x5 mm) without a Hap coating, implanted 

on an adult dog’s femur; (b) Same setup, but in this case the Ti6Al4V metallic implant has a Hap 

bioactive coating [4].   

 

1.1.6 Structural and thermal properties of Hap 

 The most frequent crystalline structure of Hap is hexagonal, belonging to the P63/m 

space group, with lattice parameters a = b = 9.432 Å, c = 6.881 Å and = 120º. Fig. 1.8 shows 

the hexagonal structure, made of hydroxide ion (OH-) columns along the c-axis surrounded 

by the PO4 tetrahedra, with the Ca2+ ions interspaced between the tetrahedra. The Ca2+ ions 

can occupy two different sites in the network, as fig. 1.8 depicts: in the position Ca1 they 

are arranged in columns parallel to the c-axis and in the position Ca2 they are surrounded 

by six O2- ions belonging to the PO4 and OH structural groups, while in Ca1 they are 

surrounded by six O2- ions from the PO4 units. The Ca2+ ions and PO4 groups are mainly 

responsible for the structure and skeleton of Hap, while the OH- columns are the main 

responsible for most of its physical properties, as it will be elucidated in subsequent topics. 
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Figure 1.8 In the left: the arrangement of the structural groups around the c-axis. In the right: 

structural units of the hexagonal Hap. The vertices, represented by the full circles, represent the 

positions of the OH- ions [25].  

 

Hap can still exist in another form, the monoclinic crystalline structure [26]. This 

phase, discovered much later than the hexagonal, belongs to the space group P21/b and has 

lattice parameters a = 9.421 Å, b = 2a, c = 6.881 Å and = 120º. The structural differences 

between both phases are very subtle, the main difference being the orientation of the 

hydroxide ions in the columns: in the monoclinic structure, in a given column, all the 

hydroxide ions are aligned in the same direction, or in other words, the electric dipole 

moment vectors point in the same direction (like in fig. 1.8), and the direction is reversed in 

the next/adjacent column. In the hexagonal structure, in a given column, the hydroxide ions 

are successively aligned in the opposite direction, in one position the dipole moment points 

down and in the next it points up [26, 27]. Despite the structural differences between both 

phases being very small, they are reported to exert a strong impact on the Hap chemical 

and physical properties. However, the occurrence of the hexagonal phase is much more 

frequent, because the monoclinic phase requires an almost stoichiometric composition and, 

as discussed in section 1.1.5, Hap easily incorporates other ionic species in its structure. 

Characterized by a considerable amount of ionic substitutions, most abundantly CO3
2−, 

biologic Hap is always hexagonal. For this reason, the great majority of the studies focus on 

hexagonal Hap. In addition, it is very difficult to synthesize monoclinic Hap, because 
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impurities have to be minimized and the sinterization (or other required thermal 

treatments) creates vacancies in the Hap structure, causing the hexagonal phase to be the 

most stable.  

Regarding the thermal properties of Hap, fig. 1.9 shows the FTIR and XRD spectra 

of Hap (commercial powder) at different temperatures, up to 1500 ºC. Hap is stable up to 

1350 ºC, i.e., there is no thermal decomposition up to 1350 ºC [28]. However, a 

dehydroxylation process occurs, according to reaction 1 [29, 30]: 

𝐶𝑎10(𝑃𝑂4)6(𝑂𝐻)2 ↔ 𝐶𝑎10(𝑃𝑂4)6(𝑂𝐻)2−2𝑥𝑂𝑥[ ]𝑥 + 𝑥𝐻2𝑂 (1) 

where [ ]x represents an OH- vacancy. As the reaction shows, for two OH- ions released, one 

H+ proton vacancy (which is the same as an O2- anion) and one OH- vacancy are created. 

This reaction typically starts to occur between 800 and 900 ºC, and it is also known as the 

dehydration of Hap, since it releases water vapor. The 𝐶𝑎10(𝑃𝑂4)6(𝑂𝐻)2−2𝑥𝑂𝑥[ ]𝑥 

compound is known as oxyhydroxyapatite (OHap). In fact, probably almost all of the 

reports in the literature deal with OHap and not with Hap, because, for example, the 

sinterization treatments induce the formation of defects according to eq. 1. However, for 

practical reasons, researchers adopt the Hap designation. 

In fig. 1.9 it can be seen that, with the increase of the temperature, the absorbance of 

the OH- librational and stretching bands, at about 650 and 3572 cm-1, gradually decrease 

their intensity, while the bands at about 945 and 1025 cm-1, assigned as the characteristic 

bands of OHap, appear at around 1200 ºC [28]. The librational band completely disappears 

at 1300 ºC, while the stretching band is detected at temperatures as high as 1350 ºC, near 

the thermal decomposition, suggesting that Hap does not lose all the hydroxide groups. In 

the limit, if all the groups would be released, the OHap would be transformed into 

oxyapatite, with chemical formula 𝐶𝑎10(𝑃𝑂4)6𝑂. However, only in very strict conditions 

oxyapatite will be formed, due to its metastable nature and very narrow thermodynamic 

stability conditions. At 1400 ºC the thermal decomposition has already taken place, with the 

formation of tetracalcium phosphate (TTCP) and -TCP, whose chemical formula is 

included in table 1.3. Fig. 1.9 shows a clear change in the XRD spectra and the broadband 

between 950 and 1200 cm-1 is typical of -TCP and TTCP [28]. The sequence of chemical 
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reactions leading to this decomposition process starts with equation 1, the dehydroxylation 

of Hap, and subsequently the following reactions 2 and 3 take place [28, 30]: 

𝐶𝑎10(𝑃𝑂4)6(𝑂𝐻)2−2𝑥𝑂𝑥[ ]𝑥 ↔ 3𝐶𝑎3(𝑃𝑂4)2 + 𝐶𝑎𝑂 + (1 − 𝑥)𝐻2𝑂 (2) 

and the formation of TTCP: 

𝐶𝑎3(𝑃𝑂4)2 + 𝐶𝑎𝑂 → 𝐶𝑎4(𝑃𝑂4)2   (3) 

 

  

Figure 1.9 In the left: FTIR spectra of Hap at different temperatures, up to 1500 ºC. The librational 

and stretching absorption bands of the OH- ions are represented in the figure, to allow the 

visualization of their behaviour in function of the temperature [28]. In the right: XRD spectra of 

Hap at different temperatures, up to 1500 ºC [H – Hap; T – tetracalcium phosphate (TTCP); A – -

TCP] [28]. The heating rate is 10 ºC/min. 

Upon cooling the material, the Hap crystalline phase will be reconstructed, mainly 

due to rehydration reactions. In the same work, they cooled the Hap with a cooling rate of 

10 ºC/min, and the XRD and FTIR spectra show the reconstruction of Hap from TTCP and 
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-TCP, although not between 1350 and 1400 ºC, as in the heating situation. However, the 

reconstitution temperature is reported to be dependent on the cooling rate and atmosphere.  

Fig. 1.10 shows the thermogravimetric analysis (TGA – thermogravimetric analysis) of Hap 

heated from 200 up to 1500 ºC and afterward cooled down to 200 ºC. Hap has usually two 

types of water in its structure: adsorbed and lattice water [28, 31]. The adsorbed water is 

reversibly removed up to temperatures around 200 ºC, being readsorbed below 200 ºC, 

without any change in the lattice parameters. On its turn, the lattice water is irreversibly 

lost between 200 - 400 ºC, with a contraction in the a-axis [31]. The adsorbed water release 

accounts for the mass loss visible in fig. 1.10 in such temperature ranges. Between 800-900 

ºC the dehydroxylation starts, and an inflection is visible in the thermogram. The 

dehydroxylation is not a narrow process in temperature, occurring across a broad 

temperature range, as the change of the FTIR absorbance bands in fig. 1.9 corroborate. The 

significant and abrupt weight loss between 1350 and 1400 ºC marks the thermal 

decomposition of Hap. On its turn, in the cooling curve, there is initially a small weight loss 

down to about 1290 ºC, and the weight increases fast in a narrow temperature range, right 

after 1290 ºC, corresponding to the Hap reconstruction from TTCP and -TCP. The 

reconstruction is based on a series of hydration reactions where OH- ions are reinserted in 

the structure, and the following reactions 4 and 5 are proposed [28]: 

3𝐶𝑎4𝑃2𝑂9 + 3𝐻2𝑂 → 𝐶𝑎10(𝑃𝑂4)6(𝑂𝐻)2 + 2𝐶𝑎(𝑂𝐻)2 (4) 

and 

10𝐶𝑎3(𝑃𝑂4)2 + 6𝐻2𝑂 → 3𝐶𝑎10(𝑃𝑂4)6(𝑂𝐻)2 + 2𝐻3𝑃𝑂4 (5) 

Subsequently, there is only a very small weight variation between approximately 

1000 down to 200 ºC, corresponding to the incorporation of some OH- ions in the Hap 

structure. Nonetheless, the structure will retain a considerable number of OH- and H+ ion 

vacancies, which, as it is discussed in the next chapter, is fundamental for the electrical 

polarization mechanisms of Hap. Such vacancies are usually created during the 

sinterization thermal treatments, which will be briefly discussed in the ensuing topic. 
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Figure 1.10 TGA thermogram of Hap heated from 200 up to 1500 ºC and afterward cooled down 

to 200 ºC. The heating/cooling rates are 10 ºC/min [28].  

 

1.1.7 Sinterization of Hap 

 In the quotidian vocabulary of most of the materials research scientists, sinterization 

is a paramount high-temperature thermal treatment of a shaped porous powder compact, 

leading to a compact dense ceramic without pores, depending on the defined temperature 

and treatment time. In this topic, we compile some of the information contained in the 

excellent and comprehensive review by E. Champion regarding the sinterization of calcium 

phosphate bioceramics. This topic is not analysed in detail, the purpose is essentially to 

provide some useful information regarding the sinterization of Hap bioceramics, primarily 

the typical temperatures of sinterization. 

 One of the experimental techniques that can be used to study the sintering ability of 

a material is the thermomechanical analysis (TMA), where the change in the dimensions of 

a sample as a function of the temperature is measured. Typically, a plot of the linear 

shrinkage versus the temperature is presented. The derivative curve gives the sintering rate, 

in K-1 units, versus the temperature. Fig. 1.11 depicts the derivative plots of TMA for some 
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calcium phosphate bioceramics, under different types of atmospheres [32]. The sintering 

ability and kinetics may change according to different physical parameters, such as the 

powder grain size distribution and specific surface area of the initial powder. There are two 

important stages during sinterization. In the first stage, at lower temperatures (starting at ~ 

400 ºC for Hap), there is superficial diffusion that leads to a decrease of the surface area of 

the Hap powder compacts, due to the welding of the grains through the formation of strong 

chemical bonds. This first stage occurs with practically no densification up to ~ 700 - 800 ºC, 

and it depends on the surface area of the initial powder. For this reason, the data presented 

in fig. 1.11 comprises powder with a similar surface area, 30 m2/g [32]. So, up to about 750 

ºC, the first stage occurs, and thermal expansion of the powder takes place. Afterward, the 

shrinkage and densification begin by elimination of the pores present in the powder 

compact. This densification proceeds in accordance with thermodynamic and kinetic 

conditions, which are summarized in the E. Champion review [32]. Two important 

parameters can be deduced from the derivative plots of TMA: TB is defined as the 

temperature at which the shrinkage begins and TM is defined as the temperature at which 

the sintering rate is maximum. In what concerns Hap, these parameters values are reported 

to be TB = 750 ºC and TM = 1050 ºC [32].  

 

Figure 1.11 The derivative plot of TMA 

for some calcium phosphate bioceramics, 

under different types of atmospheres 

(HA stands for hydroxyapatite, some 

authors like to use HA, others Hap, 

others HAp, etc.). The specific surface 

area of the initial powders is about 30 

m2/g, for all the data [32]. 

 

In practice, pressureless sintering (i.e., conventional sintering) of Hap is usually 

undertaken in the temperature range between 1100-1250 ºC. In this temperature range, 



37 

 

pressureless sintering of Hap is able to attain nearly fully dense ceramics keeping the grain 

size with dimensions ≤ 1 m [32]. Higher temperatures will promote grain growth. It is to 

be noted that sinterization can be seen as a competition between two thermally activated 

processes driven by solid-state diffusion of matter: densification and grain growth. Hap is 

stable up to ~ 1350 - 1400 ºC in ambient air, being this temperature dependent on the partial 

pressure of water vapour. Only partial dehydroxylation (equation 1) will occur, as it 

discussed in the previous topic.  

 

1.1.8 Electrical properties and polarization mechanisms 

This is an important topic, as the title of this thesis suggests. The electrical properties 

of Hap are in a great extent related to the c-axis and the ionic vacancies that it contains. 

Furthermore, the electrical properties are dependent on the water in the structure and 

thermal history of the material. This discussion is centered on polycrystalline Hap, and 

practically almost all the reports in literature deal with polycrystalline Hap, as well most of 

the practical applications. 

Beginning this topic with the electrical polarization mechanisms, the Hap structure 

is characterized by hydroxide anion columns along its c-axis, as it is discussed in the former 

topic 1.1.6. There are two types of defects in these columns: OH- vacancies and H+ proton 

vacancies (an O2- anion in the site of an OH-), as it is depicted in fig. 1.10 [33]. These defects 

have opposite effective charges: H+ vacancies have - 1 effective charge while OH- vacancies 

have + 1 effective charge. When one of these defects is created the other is also created, to 

fulfill the charge neutrality requirements, as equation 1 shows. Those defects are common 

in Hap due to the sinterization thermal treatments required for the consolidation and 

mechanical stability of the material, which activates the dehydroxylation reaction. As fig. 

1.12 details, when a high-intensity dc electric field is applied at a suitable high temperature, 

the H+ protons will be able to migrate along the columns in the direction of the applied field, 

as shown in fig. 1.12(b). As the protons migrate, both defects will tend to be left in pairs, 

and they will constitute a defect pair dipole polarization, with the individual electric dipole 
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vectors pointing from the H+ vacancy to the OH- vacancy (fig. 1.12(e)), in the direction of 

the applied field [33].  

 

 

 

Figure 1.12 The mechanism behind the 

defect pair dipole polarization of Hap. 

The H+ proton vacancies are 

highlighted in blue (as O2- anions) 

while the OH- vacancies are 

highlighted in pink. The H+ protons are 

able to migrate along the columns in 

the direction of the applied electric 

field, leaving both type of defects in 

pairs, consequently creating a defect 

pair dipole polarization [33]. 

 

In addition to the defect pair dipole polarization, another mechanism takes place: 

with the long-range migration of the protons and saturation of the defect pair polarization, 

the protons will tend to accumulate in the grain boundaries in the direction of the applied 

electric field, while the protons vacancies (the O2- anions) tend to accumulate in the opposite 

direction. Hence, a different charge distribution is achieved in the material and a space 

charge polarization is established within the material, as fig. 1.13 highlights [33].  
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Figure 1.13 The mechanism behind the establishment of the space charge polarization: the H+ 

proton vacancies tend to accumulate in the grain boundaries in the opposite direction of the 

applied electric fields, while the protons tend to accumulate in the direction of the field [33]. 

 

The measurement of thermally stimulated depolarization currents (TSDC) is a 

useful technique that allows to get valuable insight about these polarization processes and, 

as a matter of fact, most of the knowledge regarding the polarization processes in Hap was 

achieved through an encompassing analysis of the structural and thermal properties 

together with TSDC measurements. The theoretical and practical aspects of the TSDC 

technique are explained in detail in chapter 2, section 2.2. The analysis of the dependency 

of the polarization with the applied field Ep can provide useful information about the 

physical process behind a given depolarization process, allowing, for example, the 

distinction between electric dipolar reorientation and space charge detrapping processes, 

as it is the Hap case. Such analysis is commonly done by plotting the depolarization peak 

current density versus the electric field intensity. Fig. 1.14 (the inset) shows this analysis for 

Hap [33]. In the inset, the blue marks and circles represent the dependence of the lower and 

higher temperature depolarization processes, respectively, with Ep. The dipolar and space 

charge processes have distinct dependences on Ep: while the dipolar processes will show a 

linear dependence, the space charge processes have a hyperbolic relation, as equations 29 

and 30 of topic 2.2 shows. Evaluating again the inset of fig. 1.14, it is clear that the lower 

temperature process displays a linear dependence, while the higher temperature process 
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displays a nonlinear hyperbolic dependence. This fact, together with knowledge of the type 

of defects that occur in the c-axis of Hap, led to formulation of the polarization processes 

introduced at the beginning of this topic: the defect pair dipole polarization and the space 

charge polarization. The activation energies of the lower temperature depolarization 

process are reported to be around 0.75-0.80 eV, while for the higher temperature process 

the energies are higher: Yamashita et. al. reports a value of 1.02 eV, while in our publication 

we report a significantly higher value of 1.81 eV [33, 34]. The activation energy of the higher 

temperature process is interpreted as the potential barrier heights for detrapping the charge 

carriers from the defects in the grain boundaries. The difference between the reported 

activation energies is due to the fact that, in our work, we applied higher Tp and Ep 

thermoelectric process parameters, and therefore we were able to activate deeper traps 

located at the grain boundaries, therefore increasing the activation energy [33, 34].  

 

 

Figure 1.14 TSDC spectra of Hap 

polarized with electric fields Ep of 

increasing intensity. The 

polarization temperature and time 

are 350 ºC and 60 minutes, 

respectively. The inset shows the 

dependence of the peak current 

density (for both depolarization 

processes) with Ep [33]. 

When in a saturation condition. i.e., the polarization process parameters Tp and Ep 

saturate the polarization, a discernible dependence will not be visible in the current versus 

Ep plot, instead, the current values will tend to be around the same value. Certainly, it may 

be important to know the magnitude of the process parameters that saturate the 

polarization and stored charge density of the material under study. In fig. 1.14, it is obvious 

that the stored charge is not saturated. In our publication we found that a saturation 
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condition is achieved for a polarization temperature of 500 ºC and an electric field 

magnitude of 3 kV/cm, both for pure polycrystalline Hap samples and for biphasic samples 

with composition 75Hap + 25-TCP, in wt% [34]. 

Concerning the dielectric properties, they are essentially determined by the H+ 

protonic diffusion along the c-axis. Impedance spectroscopy (IS) measurements show that 

the dielectric behaviour of polycrystalline Hap can be interpreted as comprising high 

impedance grain boundaries and proton conductive grains, with reported conductivities of 

about 10-7 S/cm at 300 ºC and 10-4 S/cm at 700 ºC [35]. Both reported conductivity values are 

for polycrystalline samples with relative densities very near the theoretical density (3.16 

g/cm3). The IS spectra show two dielectric relaxation processes, as it can be seen in fig. 1.15 

[34]. In our publication, it is concluded that the dielectric relaxations in fig. 1.15 may be 

related to the TSDC depolarization processes. For the dielectric relaxation at lower 

temperatures (in the M’’ plot), the calculated activation energy through a plot of the 

Napierian logarithm of the relaxation frequency versus the inverse of temperature [ln(frelax) 

versus 1/T] yields 0.76 eV, which is in very good agreement with the TSDC results for the 

defect pair mechanism. Concerning the dielectric relaxation at higher temperatures, the 

calculated activated energy through the ln(frelax) versus 1/T plot yields 1.56 eV, which agrees 

satisfactorily with the results of the TSDC measurements for the space charge mechanism. 

This space charge mechanism is only visible in the M’’ plot, as the high-temperature 

relaxation. The modulus formalism is known to suppress the conductivity effects, 

highlighting processes that may be overshadowed by the conductivity. In the TSDC spectra 

of our report, the space charge depolarization mechanism is overlapping with the thermally 

activated intrinsic ionic conductivity (appears as a shoulder), and for this reason is only 

clearly visible on the M’’ representation [34]. Moreover, we verified that with the applied 

process parameters (Tp = 500 ºC and Ep = 2, 3, 4 and 5 kV/cm), which, as mentioned, saturate 

the magnitude of the polarization, the contribution of the space charge mechanism to the 

total stored charge density is strongly dominant, accounting about 96.4% of the total stored 

charge, while the defect pair mechanism has only a contribution of about 3.6%. For smaller 

process parameters values like those of fig. 1.14, the contribution of the space charge will 

be considerably lower because the saturation state is very far from being reached. For 
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example, in fig. 1.14, for lower field intensities, the area of both depolarization peaks is 

similar, implying that they will have an identical contribution to the total stored charge. But 

for higher fields the contribution of the space charge mechanism clearly starts to become 

dominant.  

  

Figure 1.15 In the left: Dependency of the imaginary part of the dielectric modulus with the 

temperature and frequency for a polycrystalline Hap sample. In the right: Dependency of the loss 

tangent with the temperature and frequency for a polycrystalline Hap sample [34]. 

 

The sinterization atmosphere will also influence the magnitude of the measured 

depolarization currents, thus of the total stored charge density. The dehydroxylation 

process (equation 1), responsible for the creation of the defects that will make possible the 

migration of the H+ ions along the c-axis, is affected by the atmosphere: a water vapour rich 

atmosphere will decrease the defect density, because equation 1 involves the release of 

water vapour,  hence a water vapour rich atmosphere will hinder the reaction. On the other 

hand, a nitrogen (or a noble gas) atmosphere, without water vapour, should maximize the 

creation of defects. Fig. 1.16 presents the TSDC spectra oh Hap samples sintered under 

different atmospheres: w-Hap – water vapour reach atmosphere, a-Hap – room air 

atmosphere and n-Hap – nitrogen rich atmosphere. It is clear that the water vapour 

atmosphere causes a significant decrease in the magnitude of the measured depolarization 

currents, implying that the reaction in equation 1 is hindered during the sinterization. For 

the nitrogen rich atmosphere, the currents are higher, because it is a water vapour free 

atmosphere. 
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Figure 1.16 TSDC spectra of Hap 

sintered under different atmospheres: 

w-Hap – water vapour rich 

atmosphere, a-Hap – room air 

atmosphere and n-Hap – nitrogen rich 

atmosphere. The polarization 

conditions are: Tp = 400 ºC, Ep = 1 kV/cm 

and tp (time of electric field application 

at Tp) = 60 minutes [33].  

 

Fig. 1.17 depicts the real and imaginary parts of the complex permittivity, for Hap 

samples sintered under different conditions: (a) and (b) - 1473 K, 2 h; (c) and (d) - 1593 K, 2 

h; (e) and (f) – 1653 K, 9 h [35]. The aim of fig. 1.17 is to show the effect of the grain size on 

the complex permittivity components, especially the real part ’, i.e., the dielectric constant. 

The average grain sizes are: 0.82 ± 0.24 m, 2.1 ± 0.7 m and 13.8 ± 7.0 m for (a) and (b), (c) 

and (d) and (e) and (f), respectively. Two dielectric relaxations can be seen, which are 

labeled as A and B (A for lower frequency and B for the higher frequency). The activation 

energies are in the range of 0.64-0.71 eV for A and 0.66-0.76 eV for B. Relaxation A is 

assigned to H+ proton conduction along the c-axis, i.e., the same mechanism of the defect 

pair polarization, while relaxation B is assigned to OH- ions reorientations in the c-axis [35]. 

The relaxation A is strongly dependent on the grain size, while the relaxation B does not 

show a great dependency. Analysing the dielectric constant values A and B, the first 

increases sharply with the increase of the grain size, whereas the former remains around 

the same value, suggesting that the relaxation strength of the OH- reorientations is not 

affected by the grain size, but it is strongly influenced by the OH- concentration, as 

demonstrated in reference [36]. A Hap sample sintered under a water vapour rich 

atmosphere will have a higher relaxation strength due to hindering of the reaction in 

equation 1.    
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Figure 1.17 Real and imaginary parts of the complex permittivity of Hap sintered under different 

conditions: (a) and (b) 1473 K, 2 h; (c) and (d)  1593 K, 2 h; (e) and (f)  1653 K, 9h [35]. 

 

The electrical properties of Hap are also dependent on the adsorbed and lattice types 

of water [37]. Gittings et al. reported about IS measurements on dense and porous Hap 

ceramics sintered in the air or in a water vapour-rich atmosphere. The samples were labeled 

as dense(air), porous(air), dense(water) and porous(water). Fig. 1.18  shows the ac conductivity 

logarithm, at 1 kHz, as a function of the temperature, for the samples denser(water), dense(air) 

and porous(water), for the heating cycle 1 [37]. The samples were thermally cycled in order to 

investigate the influence of the adsorbed and lattice water on the conductivity and dielectric 

permittivity. Cycle 1 is the first heating ramp from RT up to 1000 ºC. It is visible in fig. 1.18 

that there is an initial decrease in the conductivity, with increasing temperature, up about 

200 ºC, which can be possibly assigned to the loss of adsorbed water. Note that the porous 

material, with a much higher surface area, has the highest conductivity at lower 

temperatures, presumably due to its greater ability to adsorb higher amounts of surface 

water. In the temperature region between 400-600 ºC, there is kind of a small conductivity 

peak for all the samples. The dense samples exhibit higher conductivities at higher 

temperatures, due to a predominance of the bulk ionic conductivity [37].    
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Figure 1.18 The ac conductivity logarithm, at 1 

kHz, for the samples dense(water), dense(air) and 

porous(water), for the heating cycle 1 [37].    

In the heating cycle 2 the samples were cooled from 1000 down to 125 ºC and then 

heated again up to 1000 ºC. The temperature of 125 ºC was chosen to minimize water 

resorption after cycle 1. Afterward, the samples were cooled down to RT and heated again 

up to 1000 ºC, consisting in cycle 3. Fig. 1.19 shows the logarithm of the ac conductivity, at 

1 kHz, for the sample porous(water), for all the heating cycles. It can be seen that in cycle 2, the 

initial conductivity decrease in cycle 2 is minimal, and the small conductivity peak is not 

detected. The reason for the small peak is actually not very clear, but it can be related to 

strongly-bounded water (it is very improbable to be related to the dehydroxylation process 

because this process starts at higher temperatures). In cycle 3, the initial conductivity 

decrease is detected again as well as the small peak, although smaller than cycle 1. For 

higher temperatures all the samples have very similar conductivity values, and therefore 

the conductivity is independent of the thermal history [37]. 

 

 

Figure 1.19 Logarithm of the ac 

conductivity, at 1 kHz, for the sample 

porous(water), for all the heating cycles [37].  

 



46 

 

Regarding the OH- ions orientation, they are responsible for the ferroelectric 

character of Hap, which possibly can be observed and measured mostly at the nanosize 

dimension [38]. Fig. 1.20, shows a scheme of the OH- ions orientations and configuration 

energy of the nonpolar (P21/b) and polar symmetries (P21 and P63) in Hap [38]. The polar 

symmetry P21 is monoclinic and the P63 is hexagonal, both non-centrosymmetric. 

Surprisingly, both piezoelectricity and ferroelectricity in synthetic Hap have been 

demonstrated only a few years ago, despite the fact that a piezoelectric effect in bone was 

first observed in 1957 [38]. Until very recently, the piezoelectric effect in bone was thought 

to be due to the organic component of the bone, i.e., collagen, because it was thought that 

Hap could not display such property. The problem is that almost all of the reported 

synthetic Hap bioceramics have grain sizes in the range of the few micrometers, and the 

manifestation of polar effects is very weak due to averaging effects [38]. In fig. 1.20, it can 

be seen that there is a small energy difference between the non-polar anti-ferroelectric 

configuration and the polar ferroelectric configurations. It is reported that the smaller 

nanosized Hap crystals can stabilize the polar configurations due to the higher surface 

energy of these nanocrystals. Effectively the ferroelectricity of nanocrystalline Hap thin 

films on silicon substrates was demonstrated by measuring a reversal of spontaneous 

polarization under an external electric field, using the piezoresponse force microscopy 

technique, as reported in reference [38]. The piezoelectric effect observed in Hap thin films 

has a magnitude comparable to other piezoelectric materials such as zinc oxide and 

polyvinylidene fluoride. As shown in topic 1.1.2, biologic Hap is nanocrystalline, and 

therefore the piezoelectric and ferroelectric effects may be enhanced. These effects are 

thought to be important in the biomineralization dynamics, in the bone’s density and 

mechanical stability and ultimately in the hierarchical structure of the bone. However, the 

mechanisms behind the influence of these effects are still not yet understood, stimulating 

academic research in different fields of knowledge and applied science.  
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Figure 1.20 Scheme of the OH- ions orientations and configuration energy of the nonpolar (P21/b) 

and polar symmetries (P21 and P63) in Hap [38].  

 

1.1.9 Electrical polarization: the bioactivity catalyst 

 It was in the mid-nineties, with the research developed by Yamashita et al., that it 

was discovered that the electrical polarization of Hap bioceramics enables the storage of a 

large charge density magnitude which significantly enhances the bioactivity level. The 

direct bond and rate of new biologic bone formation (topic 1.1.5) are accelerated due to the 

stimulation of cellular activity and alteration of the surface properties of the bioceramic [39, 

40].  Increased bioactivity has been demonstrated both in vivo and in vitro in polarized Hap-

based materials. Typically, in the literature, the electrical polarization is undertaken at 

temperatures ranging between 250 and 500 ºC (higher than 400 ºC is uncommon), with 

applied electric fields in the range of 1-5 kV/cm [37, 41]. Reported stored charge density 

magnitudes are typically in the 10-6-10-5 C/cm2 range (higher magnitudes are much less 

frequent), depending, among other factors, on the thermoelectrical polarization process 

parameters, i.e., temperature and electric field. The enhancement of bioactivity is in part 

related to the fact that the adsorption of specific proteins and the adsorption and 
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differentiation of osteoblasts are stimulated by the superficial charge density, although the 

reason for this proteic and cellular stimulation is not yet quite understood. Another 

interesting issue concerns the signal of the electric charge which benefits the most the 

bioactivity level: the majority of the research points out that a negative charge density is 

preferred, with some (few) contradictory reports being present in the literature, stating that 

the positive charge is equally favourable [37]. Nonetheless, the almost general consensus 

falls on the negative charge. Some researchers, observing that the Hap heterogeneous 

nucleation in a simulated body fluid (SBF) solution (in vitro testing) is most favoured by 

negatively charged surfaces, hypothesize that the electrostatic-driven accumulation of Ca2+ 

ions in the negative surface triggers the initial nucleation and speeds up the precipitation 

of the CHap layer [42]. Thus, the enhancement of the bioactivity level through the electrical 

polarization has two components: one is the stimulation of the cellular activity while the 

other is comprises a bioactivity enhancement in the physiological media related to the 

interaction of its ionic content with the charged/polarized material. The first component is 

usually tested and verified through in vitro biological tests with osteoblasts, comprising the 

analysis of their activity through specific protein tagging, and the second component is 

verified through in vitro tests using SBF solutions. 

 In the proceeding discussion, some concrete and relevant biological studies 

regarding the electrical polarization effects on the bioactivity are presented. The discussion 

includes in vivo studies, but the majority of the reported studies are performed in vitro.  

Sagawa et al. studied the in vivo response of polarized and non-polarized (test 

control samples) Hap/-TCP composites, with composition 70Hap-30-TCP, in wt% [43]. 

They implanted Hap/-TCP cylindrical blocks on the femoral condyle of several rabbits, as 

depicted in fig. 1.21. As for the polarized implants, both bases of the cylinder are positively 

charged while the lateral surface is negatively charged, as it is also shown in fig. 1.21. The 

samples were polarized in air atmosphere at 400 ºC for one hour, with an applied DC field 

of 2 kV/cm. The TSDC measurements revealed an average stored charge density of 19.5 

C/cm2 [43].  
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Figure 1.21 Scheme showing the 

implantation of the Hap/-TCP cylindrical 

blocks, in drilled holes with matching size, 

implanted in the femoral condyle of a 

rabbit. In the polarized implants, both 

bases of the cylinder are positively charged 

(P-surfaces) while the lateral surface is 

negatively charged (N-surface) [43].    

In order to evaluate and quantify the bioactivity performance of the samples, some 

parameters were measured and estimated. The B.Ar parameter is the newly formed bone 

area directly contacting the implant, the contact length C.Le parameter is the percentage of 

newly formed bone directly attaching to the implant and lastly the N.Oc/T.Le parameter 

provides the ratio between the number of osteoclasts and the total length of the surface [43]. 

The quantification of osteoclasts and osteoblasts is usually performed using histological 

staining techniques, in this case, tartrate-resistant acid phosphatase (TRAP) activities were 

analysed to quantify the number of osteoclasts present. In fig. 1.22, it is possible to compare 

the biological results six weeks after insertion. The results shown in (B) are for a non-

polarized implant (control sample) and in (A) for a negative N-surface. It is clear that the 

area of newly formed bone, as well as the areas of direct bonding between the implant and 

the new biologic bone, are much higher for the polarized implant. As a matter of fact, they 

concluded that after six weeks of insertion, the bioactivity results of the non-polarized 

implant match, at most, those observed after three weeks in the polarized implant [43]. 

  

Figure 1.22 Histology staining results of the N-surface (A) and the non-polarized (B) surfaces six 

weeks after insertion. The scale bar is 100 m [43]. 
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The quantitative information contained in the histograms of fig. 1.23 supports this 

assumption. The results are a clear indicator of the bioactivity level enhancement caused by 

the electrical polarization: the B.Ar. and C.Le. values of 3W-N (three weeks after 

immersion) are practically the same of 6W-O, and therefore the results show that the time 

required for a strong bonding between the implant and the surrounding biologic bone may 

be reduced to half by the electrical polarization. It is to be noted that in the cited work they 

focused on the negatively charged surface. Moreover, Hap is still able to store a 

considerable higher charge density than the one reported in this work (19.5 C/cm2) , and 

therefore it can still have the potential to reduce the bonding time, assuming that we are 

not in a saturation condition, i.e., further increases in the stored charge density magnitude 

will not further enhance the bioactivity level. If one thinks in human patients, the 

implications of such time reduction in the recovery period are very significant for both the 

patient's comfort and well-being and for the cost-reduction related to the healthcare 

systems.  

  

 

 

Figure 1.23 (A) the B.Ar., (B) C.Le. and (C) 

N.Oc/T.Le bioactivity parameter values (mean 

and standard deviation) for the non-polarized 

and polarized samples after three weeks (3W) 

and six weeks (6W) of insertion [43].  
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In another study, the bonding ability (osteobonding) of polarized and non-polarized 

Hap implants was analysed by histological staining section experiments for different 

implantation times [44]. The Hap ceramics, sintered in a water vapour-rich atmosphere at 

1250 ºC, were electrically polarized (with a pair of platinum electrodes) at 300 ºC with an 

applied field of 1 kV/cm, during one hour. The sterilized samples, with an average stored 

charge density of 3.9 m/cm2, were implanted in tibial and femoral diaphyses of ten male 

New Zeland white rabbits. The samples were collected at one, two and four weeks after 

implantation. The histological evaluations were performed using the hematoxylin eosin 

staining method, allowing the visualization of the deposited biologic bone [44]. Fig. 1.24 

shows the histology staining results of the collected samples, after different implantation 

times. It should be noted that the samples were implanted in a way so that a small gap, 

between 0.2 - 0.7 mm, exists between the implant and the surrounding cortical bone. In fig. 

1.24, the gap between the Hap implant and the cortical bone is visible. After one week, a 

thin 0.02 - 0.05 mm thick compact layer is in direct contact with almost all of the N-surface, 

while in the regions without bone tissue, fibrin layers with some flattened fibroblastic cells 

are present together with many clusters of osteoid tissues (a non-mature bone tissue is 

usually designated as an osteoid, often it only contains the organic component, lacking the 

mineralization of Hap). The newly formed bone is surrounded by single layers of 

osteoblasts and osteocytes (see fig. 1.24). At two weeks, the area of newly formed bone 

increases very significantly and a good gap filling and bonding is already achieved, and at 

four weeks all the gap is filled and reconstruction/fixation is finished. In the case of the 

positive P-surface, after one week, a smaller amount, compared to the N-surface, of newly 

formed bone contacts the Hap surface, whereas most of the surface is still only covered with 

osteoid tissues. After two weeks the gap starts to be filled, however, there is a clear delay 

compared to the N-surface. Finally, at four weeks, most of the gap is almost filled, although 

some relevant inclusions remain near the Hap surface. On the non-polarized 0-surface, after 

one week the histological analysis shows the abundance of flattened fibroblast-like cells 

rather than newly formed biologic bone. At two weeks, despite the fact that the gap is 

occupied with a considerable amount of newly formed bone, according to the authors most 

of the bone chunks are isolated from each other by layered structures of fibroblast-like cells. 
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At four weeks, most of the gap is filled with newly formed bone, although they have only 

partial contact with the 0-surface [44].  

 

Figure 1.24 Histology staining results of the collected samples, polarized (N- and P- surfaces) and 

non-polarized (O-surface), after different in vivo implantation times. The N-surface, at 1 and 2 

weeks, is clearly in a more advanced gap-filling stage compared to the other surfaces [44]. 

 

As a small note regarding both the presented in vivo studies, although it is not the 

intent of this thesis to explore such topics, all the procedures were strictly performed 

according to ethical and experimental guidelines regarding the care and use of animals for 
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experimental procedures. In the first study, for instance, both guidelines of the National 

Institutes of Health (NIH) of the USA and of the Tokyo Medical and Dental University were 

followed.    

Finally, the last report being presented is an in vitro study. In this work, the influence 

of surface charge and its polarity on the in vitro bone specialized cells adhesion, 

proliferation and differentiation on electrically polarized Hap coatings on Ti substrates was 

studied [45]. The sol-gel derived Hap coatings, with an average thickness of 20 ± 1.38 m, 

were electrically polarized at 400 ºC with a dc field of 2 kV/cm applied for one hour. The 

stored charge density was calculated to be around 1.69 C/cm2. Non-polarized Hap 

coatings and uncoated Ti substrates were used as control samples. The in vitro 

mineralization study was performed by immersion on a simulated body fluid (SBF) 

solution. Remember that the SBF solution, typically used in in vitro tests, simulates the ionic 

composition of the human blood plasma. Typically, during the immersion period, the 

solution is kept at 37 ºC, in order to mimic the human body conditions. After immersion 

and being cleaned and dried, the samples were gold-sputtered and their microstructure 

was observed through SEM microscopy. The weight change was measured to 

quantitatively characterize the mineralization process. The cytotoxicity, cell morphology 

and proliferation were also inspected (the particular experimental methodology of each 

measurement can be consulted in the reference under analysis). Note that the immersion in 

SBF is a different test than the cell-related tests: the SBF gives information about the 

mineralization of CHap layers on the surface of the sample, while the cell-related tests give 

information about their viability and proliferation, differentiation and morphology. The 

former tests are usually performed with colorimetric MTT (tetrazolium dye) assays and 

microtiter plates, where the metabolic activity can be studied by means of colorimetry and 

cell proliferation by performing optical density measurements. Starting with the report 

results, fig. 1.25 presents SEM micrographs of the samples´ surface after immersion in SBF, 

at 37 ºC, during five days [45]. On the N-surface, fig. 1.25(a), it is clear that the 

mineralization is taking place at a fast rate, with the surface being already completely 

covered with an apatite layer, mostly amorphous in nature. The magnification in (b) shows 

that there is a preferred needle shape morphology, typical of Hap nanocrystals (probably 
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some crystallization is already taking place). On the positively charged sample, fig. 1.25(c), 

the surface presents large amounts of NaCl salt-like deposition. The non-polarized Hap 

coating, in fig. 1.25(d), shows no signal of apatite layer deposition, i.e., it is visible the top 

of the Hap coating on the Ti substrate. And lastly, the bioinert surface of the uncoated Ti 

substrate, fig. 1.25(e), has no indication of mineralization [45]. Additionally, fig. 1.25 

includes a graphic of the weight change (mg/cm2) as a function of the immersion time, for 

all the samples. After one day of immersion, all the samples do not show any detectable 

weight change. After five days, it is clear the n-surface shows the highest weight change, 

comparing to the P-surface and the non-polarized surface. The uncoated Ti bioinert surface 

does not show any detectable weight change up to seven days of immersion in SBF [45]. 

Contrarily to an in vivo test, where the growth of new bone is also a cellular mediated 

process, in an in vitro test with a SBF solution, where there is no cellular content, only the 

ionic content of the blood plasma is replicated, it is usually assumed that a selective 

electrostatic attraction of Ca2+ ions in the N-surface, with respect to other solution cations 

with lower diffusivity and electrostatic attraction (such as Na+ and K+), may have an 

important role in the new bone mineralization acceleration, because the reaction with 

surrounding anions such as HPO4
2−, HCO3

− and OH- would be enhanced, and thus also the 

heterogeneous nucleation process [45, 46]. In contrast, the P-surface, Cl- ions are selectively 

attracted to the Hap surface and react with surrounding cations such as Na+, Mg2+ and Ca2+, 

etc. Since the ionic concentration (~ 142.0 mmol/dm3) of Na+ ions in a SBF solution is much 

higher than other cations (e.g., Mg2+ - 1.5 mmol/dm3, Ca2+ - 2.5 mmol/dm3), the formation of 

NaCl salts is much more probable on the P-surface,as fig. 1.25 demonstrates [46]. 

Fig. 1.26 displays optical density measurements translating the osteoblastic cell 

proliferation on the studied samples, for increasing culture times. For all the analysed 

culture times, there are significant differences between the N-surface and the other samples: 

the osteoblastic density on the N-surface is always significantly higher. Moreover, the P-

surface inhibited cell proliferation in the early stages, because it presents a lower optical 

density compared to the non-polarized surface. At eleven days, the differences between the 

samples are reduced, which is expected, since the cell differentiation and proliferation 
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stages are achieved faster on the N-surface, therefore stabilizing and saturating the number 

of osteoblasts for higher culture times in the N-surface. 

  

  

  

Figure 1.25 SEM micrographs of the samples surface after immersion in SBF, at 37 ºC, for five days. 

Additionally, the graphic in the lower right corner shows the weight change (mg/cm2) as a 

function of the immersion time for all the analysed samples [45]. 
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Figure 1.26 Optical density 

measurements translating the 

osteoblastic cell proliferation on 

the studied samples, for 

increasing culture times (*p < 

0.05, n = 5) and (**p > 0.05, n = 5) 

[45].  

 

 

With regard to the cellular metabolic activity, fig. 1.27 shows the vinculin protein 

distribution on the samples surface, after five days of culture, evaluated by 

immunochemical analysis using confocal imaging [45]. Vinculin is a protein expressed by 

the osteoblasts which is involved in the creation of focal adhesion sites on the surface where 

they are going to adhere. Fig. 1.27(a) displays a very strong and well-distributed green 

fluorescence, indicating the vinculin abundance and therefore a strong bonding between 

osteoblasts and the surface. On the other hand, the P-surface, fig. 1.27(b), the green 

fluorescence is very weak, revealing a weak and fragile cellular adhesion to the surface. On 

fig. 1.27(c), the non-polarized coating surface, the green fluorescence, despite having a 

stronger signal compared to the P-surface, is still clearly weaker compared to the N-surface. 

Finally, the Ti uncoated surface, fig. 1.27(d) shows similar results as the P-surface [45].  
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Figure 1.27 Vinculin distribution on the samples surface, after five days of culture, evaluated by 

immunochemical analysis and using confocal imaging [45]. The green fluorescence signals 

antibody bound to vinculin, while the red colour signals the osteoblasts nuclei. 

 

 To finish the analysis of this biological study, the distribution and abundance of 

another important protein expressed by the osteoblasts, the alkaline phosphatase (ALP) 

was investigated. This protein is expressed by differentiated osteoblasts, during the bone 

remodelling process, and therefore it is used as a differentiation stage marker for 

osteoblasts. On fig. 1.28(a), a moderate green fluorescence on the N-surface points out that 

already at day 5 the cells started to differentiate, while in fig. 1.28(b), the results for the P-

surface suggest that the cells are still in the growth stage, accounting for the minimal 

expression of ALP. In the non-polarized coating, the cells are equally in a pre-differentiation 



58 

 

stage, though in a more advanced stage compared to the P-surface, and lastly the uncoated 

Ti surface seems to be on a similar stage as the non-polarized surface. In this study it is 

presented also an ALP distribution confocal image for eleven days of culture where it can 

be seen that for the N-surface the osteoblasts are already in the final stages of their activity 

differentiation, suggesting an advanced state of osteoid formation and bone matrix 

mineralization. Disparately, the P-surface showed only restricted osteoblastic 

differentiation and the non-polarized surface was found to be in an early stage of 

differentiation.  On the uncoated Ti surface, differentiation had not yet occurred [45].  

  

  

Figure 1.28 Alkaline phosphatase (ALP) distribution on the samples surface, after five days of 

culture, evaluated by immunochemical analysis and using confocal imaging. The green 

fluorescence signals antibody bound to ALP, while the red colour signals the osteoblasts nuclei 

[45].   
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 As a conclusion to this topic, it is experimental evidence that the surface charge 

density and its polarity have a strong influence on both the in vitro mineralization and on 

the cellular attachment, proliferation and differentiation. Particularly, negatively charged 

surfaces are those which demonstrate the best in vitro and in vivo results: early osteoblastic 

adhesion, proliferation and differentiation are demonstrated on those surfaces, promoting 

early mechanical stability of the implant and therefore providing it a superior functionality 

compared to the options available in the market. It is important to mention that there are 

reports stating that a minimum stored charge density in the magnitude order of 10-6 C/cm2 

is required to show significant differences in the biological response both in vitro and in vivo 

[45]. Despite the fact that other properties such as wettability and surface energy are 

thought to have an influence of the bioactivity of Hap-based biomaterials, the electrical 

polarization is proven to be by far the most efficient bioactivity catalyst, opening new doors 

towards the next generation of differentiated bioactive coatings intended for orthopaedic 

applications.   

 

1.2 Coating deposition processes  

The purpose of the present section is to explore some of the most popular processes 

to produce bioceramic coatings on metallic substrates. The spotlight on this section will be 

given to the plasma spray (PS) process, because it is the dominant and certified industrial 

process to make bioceramic coatings. By addressing PS with more detail, it will be possible 

to compare it with the CoBlast process, which is presented separately in section 1.3, because 

is a relatively recent process.  

Despite the vast number of reported coating processes, they can be in a general way 

divided into thermal and non-thermal processes, although sometimes the distinction may 

not be completely clear, as it is the case of processes that require a final heat-treatment to 

crystallize the Hap, like the sol-gel and the electrochemical deposition processes. The non-

thermal processes take place at temperatures lower than the Hap melting temperature. As 

said, most of these processes may require a subsequent heat-treatment to crystallize Hap 

from amorphous calcium phosphate (ACP) or dehydroxylated precursor phases, such as 
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octacalcium phosphate. They might also require the calcination of organic components and 

solvents used during coating deposition [4].  

 

1.2.1 Sol-gel 

The first process to be discussed is the sol-gel deposition, framed in the non-thermal 

category. It is usually performed at RT. As it is known, this wet-chemical process involves 

reactions of inorganic precursors and/or hydrolysis of organo-metallic alkoxides producing 

a gel of hydrous oxides that requires a sinterization treatment to produce a dense ceramic 

material. The process usually starts with very small colloidal particles, typically around the 

few nanometers (the sol) and as the particle concentration increases, they react and form 

bonds and chains, yielding a three-dimensional network (the gel) that increasingly fills the 

liquid phase. Subsequently, with the drying step, the liquid phase is further reduced and 

the gel hardens, densifies and shrinks. The sinterization further densifies the materials, and 

eventually all the porosity may be removed. Before the sinterization, the gel can be shaped 

and dimensioned as one desires, which can be considered as a positive point [4]. Also, one 

of the main advantages of sol-gel is the high purity of the final material, since the mixing 

process occurs at the molecular level. However, there are important drawbacks that tend to 

“repel” industrial interest, particularly the high cost of the organometallic precursors and 

also the tendency of the dried moulded gel to crack during the thermal treatment, due to 

the high amount of shrinkage [4]. There are several “recipes” reported for the sol-gel 

synthesis of Hap, using different precursor chemicals. The calcium and phosphorous 

sources are usually mixed according to the stoichiometric Hap Ca/P molar ratio, 1.67. 

Examples of precursors for the synthesis of Hap coatings are triethyl phosphite and calcium 

nitrate and calcium 2-ethylhexanoate [Ca(O2C8H15)2] and 2-ethyl-hexyl-phosphate. The pH 

control is very important: Hap precipitation is favoured for an alkaline pH, typically >10. It 

was shown that pH values between 6-9 may yield significant amounts of impurity phases 

such as TCP [47]. Furthermore, it was demonstrated that the choice of the calcium source 

compound influences the crystallinity and morphology of the Hap particles: the use of 

calcium nitrate and triethyl phosphate yields particles with spherical morphology, while 
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calcium acetate yields particles with a fibrous morphology [4]. The sol aging time is also 

another very important parameter: low aging times, lower than 24 h, do not provide enough 

time to complete the reactions, and therefore secondary phases such as CaO can be 

obtained. Several calcination temperatures are reported, but typically, temperatures above 

400 ºC are required to promote the Hap crystallization. For example, Liu et. al. deposited 

Hap films on sand-blasted 316L stainless steel substrates, by means of a water-based sol-

gel process [4, 48]. The sand-blasting of the stainless steel surface is required to provide a 

higher surface area for the coating adhesion to the substrate. It was found that temperatures 

≥ 400 ºC are required to promote a good crystallinity, while lower temperatures showed 

poor crystallinity. The dense coatings reached an average adhesive strength of 44 MPa, as 

determined in accordance to the standard ASTM C633-13 (2013), which is a very good 

value, better than the typical adhesion strengths of plasma sprayed coatings (typically in 

the 20 - 30 MPa range, sometimes lower than 20 MPa). However, the coatings heat-treated 

at temperatures ≥ 400 ºC revealed some surface cracking, which may be connected to factors 

such as the non-uniform coating thickness, due to the surface roughness caused by the 

sand-basting process, and the contraction caused by crystallization of the amorphous or 

poorly crystalline apatite phase (the authors refer to the contraction caused by sinterization, 

however as it can be seen in topic 1.1.7, Hap sinterization is not active at such low 

temperatures because the provided energy is not enough to activate the solid-state diffusion 

of matter). In another study, Hap coatings were deposited on Ti substrates by sol-gel [49]. 

Organic and inorganic precursors were used as phosphorous and calcium sources: TEP 

[P(C2H5O)3] and calcium nitrate [Ca(NO3)2.4H2O]. The mixture of solutions containing both 

precursors, mixed according to the Ca/P ratio of Hap and with the desired pH adjustment, 

was stirred at RT for 72 h and then at 40 ºC for 24 h. The coatings were obtained by dip-

coating at a withdrawal speed of 5 mm/min and were dried in an oven at 80 ºC for 12 h and 

then heat-treated at 500 ºC for 1 h in air. The coatings were free from impurity phases, were 

dense and uniform and had a thickness of about 5 m. In vitro tests revealed a higher degree 

of cell proliferation and ALP expression for the coated samples compared to pure Ti 

samples [49].  
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Although many more things could be said about the sol-gel technique, the brief 

overview that was presented serves the intent of section 2.1. Another non-thermal process 

will be presented in the subsequent topic: the electrochemical deposition (ECD).    

 

1.2.2 Electrochemical deposition (ECD) 

This a three-electrode setup that is immersed in an electrolyte solution, as the 

scheme in fig. 1.29 illustrates. All electrodes are connected to an electrical generator. One of 

the electrodes consists of a cathode (often designated as the working electrode), which 

comprises the metallic substrate to be coated, in this case a Ti6Al4V alloy, and finally there 

are the platinum counter electrode and a reference electrode. The electrolyte solution for 

Hap deposition typically consists of Ca2+ and H2PO4
− ions. 

 

Figure 1.29 Scheme of an electrochemical processing cell for deposition of calcium phosphate-

based materials [4]. 

The following electrochemical reactions take place at the electrode-electrolyte 

interface [4]:  

2𝐻2𝑂 → 𝑂2(𝑔) + 4𝐻
+ + 4𝑒− (6) 

and 

2𝐻2𝑂 + 2𝑒
− → 𝐻2(𝑔) + 2𝑂𝐻

− (7) 
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Reaction 6 consists in the anodic oxidation of water while reaction 7 in the cathodic 

reduction of water. The water reduction implies an increase of the pH value at the cathode-

electrode interface leading to acid-base reactions caused by the pH variation near the 

cathode. The H2PO4
− ions are stable in the pH range between 3 < pH < 6. When the pH 

increases to the range between 7.2 < pH < 11.8 the HPO4
2−(hydrogenphosphate) ions are 

predominant and when it increases above 11.8 the PO4
3−phosphate ions will be predominant 

[4]. The abundance of these ions near the cathode will cause a local supersaturation leading 

to the precipitation of calcium phosphate phases, according to their solubility and 

thermodynamic stability in the pH local conditions. Hence, at pH values lower than 6.5, 

calcium diphosphate dihydrate (CaHPO42H2O) precipitates, between 6.5 and 12, 

octacalcium phosphate (Ca8(HPO4)2(PO4)4 precipitates and above 12 Hap precipitates 

according to the following reaction [4]: 

10𝐶𝑎2+ + 6𝑃𝑂4
3− + 2𝑂𝐻− → 𝐶𝑎10(𝑃𝑂4)6(𝑂𝐻)2 (8) 

Eventually, some deviations from stoichiometric can lead to the precipitation of 

calcium-deficient hydroxyapatite (CDHap), with chemical formula Ca10-x(HPO4)x(PO4)6-

x(OH)2-x. CDHap is able to comprise Ca/P ratios between 1.33 < CDHap < 1.67. The current 

density is also an important parameter since it has also influence on the local pH near the 

cathode [50]. In one study it is reported that Hap precipitation is favoured for current 

densities above 10 mA/cm2, while for lower densities other phases such as calcium 

diphosphate dihydrate can become significant [50]. Still about the former study, fig. 1.30 

displays a cross-sectional SEM micrograph of a Hap coating on a Ti substrate, deposited by 

ECD with a current density of 10 mA/cm2 and heat-treated at 500 ºC during 1 h. Also, the 

EDS profiles, along the AB line, of the Ca, P and Ti elements are shown [50]. The coating 

thickness is about 18.6 m and the average Ca/P ratio was 1.48, lower than the theoretical 

value, indicating the deposition of CDHap. More recent methodologies include some 

additions to the electrolyte, such as hydrogen peroxide (H2O2), that after heat-treatment 

yield stoichiometric Hap. The Ca and P EDS line profiles in fig. 1.30 appear to be relatively 

uniform over the coating thickness. The mechanical stability was investigated by scratch 

testing, by plotting a friction-load curve. The coating revealed considerably superior 
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mechanical properties, for instance in terms of shear stress, compared to the average 

reported values both for PS and sol-gel coatings [50]. 

 

 

 

Figure 1.30 Above: cross-sectional SEM micrograph of a Hap coating on a Ti substrate, deposited 

by ECD. Below: EDS profile, along the AB line, of the Ca, P and Ti elements [50].  
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1.2.3 Plasma Spray (PS) 

Entering in the thermal deposition processes, PS is currently the only certified 

industrial process to produce Hap coatings on orthopaedic and dental implants. Among 

the different variations of PS, the classic atmospheric plasma spray (APS) is the most 

popular. PS processes essentially consist in a rapid solidification process, where the 

material to be deposited is driven into a plasma jet that melts and projects at high velocity 

the material against the substrate to be coated. PS can be applied to metallic and ceramic 

materials with a well-defined melting temperature. As we will see, PS coatings still face 

some problems regarding the adhesion level to the substrate and the high residual 

mechanical stresses within the coatings [4]. Fig. 1.31 shows the main components of an APS 

experimental system [51]. The thermal energy in PS is provided by a high energy plasma 

which is formed within the plasma gun section. The plasma gun is constituted by a cathode 

and an anode (nozzle anode) separated by a small gap. A DC current is supplied to the 

cathode, creating an electric arc discharge in the gap between the cathode and the anode. A 

plasma ionising gas, such as argon (Ar), helium (He) or an argon/hydrogen mixture, is fed 

into the electric arc, where it is ionised and forms a high-temperature plasma, which can 

reach temperatures as high as 14000 ºC. A recirculated cooling system prevents the plasma 

gun components from overheating during spraying, increasing the components lifetime. In 

the nozzle (anode), a rapid expansion of the plasma gas takes place, speeding it up to 

velocities well above the speed of sound, around 800 m/s. During the path within the 

nozzle, the plasma becomes unstable, due to the rapid expansion, and recombines to form 

a gas again, releasing a large amount of thermal energy in the form of a plasma jet. The 

coating powder is usually injected in the point of exit of the plasma jet after the plasma gun 

perpendicularly to the jet, as depicted in fig. 1.31 [4, 51]. Process parameters in PS include 

the arc current intensity, spraying distance, powder feeding rate, gun transverse speed, and 

also other parameters related to the feeding powder particle morphology, size distribution, 

etc. We will refer to some of them, but the readers interested in more particular information 

go through the references provided in the present section. 
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Figure 1.31 Illustration of the main components of an APS experimental system [51]. 

 

Momentum is transferred from the plasma jet to the injected powder, and the 

powder particles acceleration, dVp/dt, depends on several factors, as equation 9 shows [4]: 

𝑑𝑉𝑝

𝑑𝑡
= [
3𝐶𝐷 . 𝜌𝑔

4𝑑𝑃 . 𝜌𝑝
] (𝑉𝑔 − 𝑉𝑝)|𝑉𝑔 − 𝑉𝑃| (9) 

where the drag coefficient is given by 𝐶𝐷 = 2[𝐹𝐷 𝐴𝑃⁄ ]/[𝜌𝑔𝜇𝑅
2] (FD is the Stokesian drag force, 

AP is the cross-sectional area of the particle, g is the gas density and R = Vg-Vp); Vg-Vp is the 

velocity gradient between the gas velocity and the particle velocity, dp is the particle 

diameter and p is the particle density. Eq. 9, known as the Basset-Boussinesq equation of 

motion, shows the direct and inverse proportionalities of the acceleration imparted to the 

particles entering in the plasma jet, and that APS is a complex process affected by many 

parameters [4, 52]. Moreover, the amount of heat that a particle will gain is given by a 

balance between two forms of energy transfer, the heat acquired by convective energy 

transfer, given by 𝑄𝐶 = ℎ𝐴(𝑇∞ − 𝑇𝑆) and the heat lost by radiative energy transfer 𝑄𝑅 =

𝜎𝜀𝐴(𝑇𝑆
4 − 𝑇𝑎

4). In the former energy transfer equations, h is the convective energy transfer 

coefficient, A is the surface area of the particle, 𝑇∞ is the plasma temperature, TS is the 

surface temperature of the particle, Ta is the temperature of the surrounding atmosphere,  

is the Stefan-Boltzmann constant and  is the particle emissivity [4]. The powder particles 

in APS will always undergo a significant degree of melting. In fact, thermal decomposition 
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of the Hap during APS occurs, leading to the presence of other calcium phosphate 

crystalline phases in the coatings, such as -TCP, -TCP, TTCP and calcium oxide, although 

-TCP is the one which is predominantly detected besides Hap [52]. Additionally, the high 

cooling rates experienced by the particles will also lead to the presence of ACP in the 

coatings, producing the habitual amorphous halos observable in the XRD diffractograms. 

It is important to be aware of the fact that there are international standards that regulate 

products for biomedical applications. Hap coatings for orthopaedic implants are regulated 

by a number of ISO (ISO – International Organization for Standardization) and ASTM (it 

was funded in 1898 as American Society for Testing Materials, but nowadays is known as 

ASTM International, due to its international scope) standards, that cover different aspects 

of the coating production, such as the raw materials specifications, the control of the coating 

process and of the coating properties [52, 53]. ISO 13779-2 specifies that, among other 

properties not mentioned here, Hap coatings must have a crystallinity percentage higher 

than 45 %, that the Hap weight percentage must be ≥ 50 %, and that the weight percentage 

of -TCP, -TCP, TTCP and CaO secondary crystalline phases must each be ≤ 5% (if they 

are detected, of course) [53]. With the development, understanding and refinement of the 

APS process, nowadays virtually all of the coatings comply with the requirements. McCabe 

et. al. indicate in their review article the typical values that commercial PS Hap coatings 

present regarding the properties defined in ISO 13779-2 and also in other standards [53]. 

For instance, typical values consist of 80% of crystallinity, ~92.7% of Hap mass fraction, 

3.2% of -TCP mass fraction and 4.1% of -TCP mass fraction [53]. However, as we referred, 

in many reports only Hap and -TCP are detected through XRD measurements, together 

with the habitual amorphous halo assigned to ACP. 

When the particles collide with the substrate, they will produce a typical splash 

pattern. Fig. 1.32 displays the typical surface features of a Hap APS coating [4]. 

Characteristic overlapping particle splats and some spherical-shaped incompletely melted 

particles, attached to the surface, can be observed. 
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Figure 1.32 Typical surface features of a Hap APS coating [4]. 

  

Another important aspect of PS processes, in general, is that the substrate has to be 

prepared prior to deposition. Substrate texture and roughness are crucial for the adhesion 

strength of the coatings. The most important step in substrate preparation is the surface 

roughening, as it greatly improves the coating adhesion strength. In this step, a grit blasting 

process is used, where the substrate is bombarded with irregular grit particles, typically Al, 

at high velocity [54]. Surface roughness values in the range of 3-4 m have been found to 

be sufficient to produce sufficient adhesion strengths for Hap coatings [54].  

Argon is typically used as a plasma gas since it has many advantages: it is relatively 

cheap, easily ionizable and inert, protecting the powder particles and the electrodes from 

the environment. The morphology and microstructure of the powders have also an effect 

on the quality of the coatings: spherical particles have better flow properties compared to 

irregular ones. Powders with a narrow size distribution are also desirable to produce a more 

consistent and uniform coating. Further, powder size affects the melting characteristics 

within the plasma flame. Larger particles are reported to experience a lower degree of 

melting compared to smaller particles. In consequence, the coating properties tend to 

deteriorate with increasing particle size: larger sizes lead to coatings with partial unmelted 

particles, cavities and macroporosity which deteriorate the mechanical properties [55]. 
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Typical particle size used in PS is in the 20-90 m range, being reported that sizes in the 

range of 20-45 m produce much denser, lamellar coatings [55]. Typical distances between 

the plasma gun and the substance, known as the working distance, are around 10 cm. 

 A very important subject regarding PS coatings is the residual internal stresses. 

They can be generally defined as mechanical stresses that exist in material under the 

absence of external mechanical loads. Residual stresses are inherently induced in the 

coatings deposited by thermal coating processes because of the differences in the thermal 

properties of the coating and substrate materials. In the case of Hap, for example, the 

differences between the thermal expansion coefficients of the different phases within each 

particle and within the coatings, as well as the temperature gradients experienced by 

different regions of the coating at different times during the deposition process, contribute 

additionally to the internal residual stresses [56]. These mechanical stresses can be a 

problem: delamination between the Hap coating and substrate can prejudice the adhesion 

level between them. In fact, reoperation cases have been reported due to loosening or 

dislocation of APS coated implants that were attributed to interfacial fracture of the Hap 

coating [57].  

 In the PS processes family, alternatives to APS exist and have been developed, in 

order to address some of the problems inherent to APS. Nonetheless, APS is still clearly the 

dominant industrial process. One of the alternatives is the Low-Pressure Plasma Spray 

(LPPS). In this process, as the name suggests, the plasma chamber is evacuated and after 

vacuum stabilization, an inert gas, typically argon or helium, is introduced in the chamber, 

maintaining a low pressure in the range of 50-250 mbar [4]. This process has added the 

advantage to allow coating reactive materials by preventing oxidation. The lower pressure 

in the plasma chamber leads to a much longer plasma jet with lower temperatures 

compared to APS. As mentioned, in APS the plasma temperature can reach ~ 14000 ºC, 

while reported values for LPPS are around 10000 ºC at 0.25 bar and 5000 ºC at 0.07 bar. 

Regarding the plasma jet lengths, for APS they are reported to be ≤ 70 mm, whereas for 

LPPS the lengths are ≤ 150 mm and ≤ 500 mm at 0.25 and 0.07 bar, respectively [4]. The 

higher particle speeds in LPPS (250 - 600 m/s) are reported to be associated with denser 
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coatings and considerably higher adhesion strengths compared to APS. Additionally, the 

combination of the lower plasma jet temperature together with the reduced time in the 

plasma jet (higher particle velocity) prevents the thermal decomposition of Hap observed 

in APS. Therefore, LPPS should be adopted to coat oxidation sensitive materials, such as Ti 

alloys, especially when high adhesion strengths and coating densities are required, as it is 

generally the case of coatings intended for orthopaedic applications. However, as the 

prevalent philosophy of a religion known as capitalism, corporations and industries are not 

interested in providing the best solution to the patients, but the most profitable. LPPS 

encloses a more complex technology, higher power demands, up to 100 kW, and higher gas 

consumption rates, and consequently it is not expected to replace APS, despite the 

advantages.   

 

1.2.4 Cold gas dynamic spraying (CGDS) 

The CoBlastTM (trademark of ENBIO Ltd., Irish company; from now one the process 

will be written as CoBlast, leaving out the trademark symbol) process can be referred as a 

variation of a process family generally labeled as cold gas dynamic spraying (CGDS). CGDS 

includes process temperatures up to 700 ºC or even higher, yet, they can be considered as 

“cold” compared to APS. However, as will be shown, CoBlast takes place near RT. The basic 

idea behind CGDS is to use a high-pressure gas, such as nitrogen, helium and also air, to 

accelerate powder particles up to very high speeds (2 up to 4 times the speed of sound) onto 

the substrate to be coated. Fig. 1.33 illustrates the typical components of a CGDS 

experimental system [4]. Most of the setups use a Laval-type spray nozzle design to 

accelerate the powder, and as it will be seen, CoBlast does not require such type of nozzles 

[58]. Whereas in APS and LPPS the particles experience some degree of melting, in CGDS 

they remain in the solid-state. Therefore, fast shrinkage during cooling is avoided, reducing 

considerably the internal stresses within the coatings. Furthermore, due to the nature of the 

process, the impact of the “cold” solid particles on the substrate and the induced strains 

tend to stress the coating in compression and not in tension, helping to achieve higher 

adhesion strengths between the substrate and the coating [4]. In CGDS the powder retains 
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its original properties, especially in terms of chemistry and phase composition, consisting 

of an important advantage. Only some mechanical deformation can occur, such as, for 

example, reduction of grain size during impact (the grains can fragment into smaller grains, 

this is observed in CoBlast). Still, regarding CGDS methodologies, bonding between the 

impacting powder particles and the substrate is reported to occur for velocities higher than 

a critical speed, which, among others, depends on the mechanical properties of the coating 

particles [58]. The following equation 10 provides an estimate for the critical speed [58]: 

𝑣𝑐𝑟𝑖𝑡 =
√
𝐹1. 4. 𝜎𝑇𝑆. (1 −

𝑇𝑖 − 𝑇𝑅
𝑇𝑚 − 𝑇𝑅

)

𝜌
+ 𝐹2. 𝑐𝑝. (𝑇𝑚 − 𝑇𝑖) 

(10) 

where the tensile strength (TS), density (), specific heat (cp) and melting temperature (Tm) 

can be taken from standard materials databases [58]. Other parameters are the impact 

temperature Ti, which reflects the spray conditions, and the reference temperature (TR) can 

be set as RT. Finally, F1 and F2 are mechanical and thermal calibration factors, calculated by 

correlating calculated critical velocities based on the properties of the material, with 

experimentally determined critical velocities [58].  

 

Figure 1.33 The typical components of a CGDS experimental system [4].  

  

Fig. 1.34 shows calculated critical velocity values, using equation 10, for different 

metals and alloys, with increasing density from left to right, assuming a grain size of 25 m 

[58]. Although there is a faint trend for decreased critical velocities with the increase of the 
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density, fig. 1.34 shows that the other equation parameters (equation 10), translating the 

material strength and melting temperature, cause substantial deviations from this trend 

[58].  

 

Figure 1.34 Calculated critical velocity values, using equation 10, for different metals and alloys, 

assuming a grain size of 25 m [58]. 

  

Reports on the CGDS of bioceramic materials, particularly Hap, are still scarce. In 

part, because one of the drawbacks related to CGDS is that coating materials are restricted 

to ductile metals such as Ti and Ti alloys, stainless steel, aluminum, etc. These materials are 

bioinert (remember the discussion of fig. 1.4). Hard and brittle materials, such as 

bioceramics like Hap, cannot be sprayed in pure form, is most of the time applied as 

composites within a ductile matrix phase [4]. Substrate materials are also required to be 

able to stand the abrasive action of the highly accelerated solid particles, which for example 

excludes most of the polymers. Nonetheless, since the majority of the substrates used in 

biomedical implants are Ti, Ti alloys and stainless steel (this last one mostly in poorer 

countries), the substrate requirement is not a big problem, since these metals can withstand 

the abrasive action. The first problem, the coating materials restriction, makes that the few 

available reports deal with metal/Hap composites, and usually Hap is the minor component 

in the composite. For example, composite coatings of sponge-type Ti (a porous form of Ti) 

and Hap were studied by means of CGDS. The experimental setup is essentially the same 
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as the one depicted in fig. 1.33. It was concluded that dense coatings could be deposited 

with Hap contents up to 30 wt%, mainly due to difficulties arising from the widely different 

physical characteristics of the Ti and Hap powders [59]. Fig. 1.35 depicts, in the left, a cross-

sectional micrograph of a sponge-Ti + 20 wt% Hap composite coating, deposited at 600 ºC 

with an ejection pressure of 35 bar, while the right micrograph displays a magnification of 

the same coating, accurately polished and etched to reveal the boundaries [59]. The left 

micrograph shows a dense coating with well-distributed encapsulated Hap particles. These 

encapsulated Hap particles distributed within the Ti ductile matrix are shown in the 

magnification. It was also found that despite the initial powder mixture contained 20 wt% 

of Hap, about 4 wt% of Hap was lost during deposition (probably due to the very high 

deposition velocities, some particles may rebound). The adhesion strength was averaged to 

be around 24 MPa, comparable or higher than PS coatings, and higher deposition pressures 

and temperature will not improve the adhesion strength. Also, the majority of the 

mechanical failures were cohesive in nature (within the coating), and not at the 

coating/substrate interface [59]. The characteristic large coating thicknesses, as it can be 

inferred from fig. 1.35, is a factor which increases considerably the probability of cohesive 

failures. Further discussion on adhesive and cohesive failures is included in section 2.4, 

chapter 2. 

  

Figure 1.35 In the left: Cross-sectional micrograph of a sponge-Ti + 20 wt% Hap composite coating, 

deposited at 600 ºC with an ejection pressure of 35 bar. In the right: Magnification of the same 

coating, accurately polished and etched to reveal the boundaries [59].  
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 Fig. 1.36 shows a cross-sectional micrograph of a sponge-Ti + 50 wt% Hap composite 

coating, deposited at 700 ºC, with an ejection pressure of 30 bar. In this case, though a 

considerable amount of Hap powder was encapsulated in the coating, voids are observed 

within the coating, containing some Hap fragments crushed during the deposition process. 

In relation to the coating displayed in fig. 1.35, it was observed that decreasing the pressure 

to around 30 bar and increasing the temperature up to 700 ºC favoured the deposition of 

composites with larger weight contents of Hap. However, the voids within the coating 

worsen its mechanical properties, with average adhesion strengths of 18.2 MPa. The failures 

in the adhesion tests are always cohesive, within the coating. Additionally, the amount of 

lost Hap powder increased in comparison to the deposition conditions of fig. 1.35, up to 15 

wt% [59].  

 

 

 

Figure 1.36 Cross-sectional micrograph 

of a sponge-Ti + 50 wt% Hap composite 

coating, deposited at 700 ºC with an 

ejection pressure of 30 bar [59]. 

 

1.3 The CoBlastTM deposition process  

 The Coblast deposition process is a recent low-temperature variant of the CGDS 

process, developed and patented (patent no. US 8,119,183 B2) in 2007 by ENBIO Ltd. There 

are still not many reports on the CoBlast process, and not all of them discuss Hap coatings 

on metallic substrates. CoBlast, being an advanced version of typical micro-blasting 

systems, uses a co-incident stream of abrasive and dopant particles, both in powder form, 

projected into the same region of the substrate at the same time. While the inert abrasive 
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material disrupts the superficial oxide layer (in the case of metallic substrates such as Ti) 

and the underneath surface, the dopant material gets impregnated in the surface through a 

combination of mechanical interlocking and chemical bond formation between the 

bioceramic material and the exposed metal substrate [60-62]. A schematic view of these 

steps is presented in fig. 1.37 [63]. Despite the fact that fig. 1.37 indicates abrasive particles 

of approximately 50 m, most of the reports use particles with higher average sizes, around 

100 m. It is visible in fig. 1.37 that the Hap particles building up in the disrupted surface 

fragment into smaller particles during the blasting process. At the end of the process, the 

Hap build-up will produce an adhesive Hap layer [63]. The mechanisms behind the 

tribochemical bonding will not be discussed here, they do not fit the scope of this thesis, 

but the interested readers may consult references [64, 65].  

 

Figure 1.37 The CoBlast deposition steps leading to the buildup and adhesion of a Hap coating in 

the metallic substrate [63].   

 

Fig. 1.38 depicts an example of an experimental system of the CoBlast deposition 

process. The processing chamber contains both an abrasive and Hap (of course, in the case 
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of Hap being the coating material) jet systems, with the respective powder feeders, 

mounted on a sealed chamber with a proper powder extraction system.  

 

Figure 1.38 Example of a CoBlast experimental system [66]. 

 

It is visible in fig. 1.38 that the system contains contain two nozzles, one for the 

abrasive and another for the dopant. However, the CoBlast developers concluded that a 

system containing only one nozzle, where both the abrasive and coating materials leave 

through at the same time, yields the same results as a system with two separated nozzles 

for each component, reducing the cost (also only one powder feeder is required) and the 

complexity of the system, including the programming of the nozzles operation and 

movements [67]. The experimental setup used in this thesis has a one-nozzle configuration, 

as shown in topic 2.3, fig. 2.24. Typically reported process parameters in CoBlast are ejection 

distances, i.e., the distance between the nozzle and the substrate, in the range of 10-30 mm 

(although sometimes higher distances, up to 50 mm, are reported) and ejection pressures in 

the range of 4-6 bar. Comparing to pressures such as 35 bar, as in the CGDS process (fig. 

1.35), it can be seen that CoBlast takes place at much lower pressures. Regarding the choice 

of abrasive material, Alu is commonly used due to its well-known superior mechanical 

properties and also because it is bioinert, thus it will not lead to unwanted cytotoxic 
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reactions within the organism. It is to be noted that, as it will be shown, a small amount of 

Alu impregnation can occur within the coating. 

One of the main advantages of the CoBlast is undoubtedly being a low-temperature 

deposition process, taking place practically at RT. Fig. 1.39 shows a thermal analysis image 

of the CoBlast process during deposition on a Ti-6Al-4V metallic substrate [66]. The process 

parameters are a blast distance of 20 mm, ejection pressure of 5.8 bar for Hap and 4.2 bar 

for the abrasive (Al), a travel speed of ~ 10 mm/s and a raster offset of 2 mm (offset is defined 

as the distance between adjacent blast scannings, i.e., imagining a square substrate, the 

nozzle would make one scan along one dimension, move 2 mm to the side, make another 

scan, until all the surface is covered). Sometimes different pressures are used for the dopant 

and abrasive when a two-nozzle configuration is used. However, there are reports where 

the same pressure is used, and, in a one-nozzle configuration, the same pressure has 

necessarily to be applied. In fig. 1.39, the blast-zone and the deposition track are visible and 

distinguishable by the different temperature values. The average maximum temperature, 

which occurs in the blast zone, was 35 ºC, and sometimes the temperature would increase 

to a maximum value of 47 ºC [66]. It is clear that the process temperature of CoBlast is much 

lower in comparison to other processes such as APS or even CGDS.  

 

Figure 1.39 Thermal analysis image of the CoBlast deposition process (during deposition) [66]. 
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An importance advantage concerning the low process temperature is the 

preservation of the substrate properties. As discussed in the historical background, topic 

1.1.4., metals like copper, bronze and gold became progressively replaced by Ti and Ti 

alloys, due to their low success rates. Currently, as defined by ASTM International, six 

classes of Ti and Ti alloys may be considered as materials for orthopaedic implants: four 

classes of commercially pure Ti (CpTi) and two Ti alloys.  Regarding the CpTi, the physical 

properties will differ according to the residual oxygen in the metallic matrix and four 

classes are distinguished: classes 1, 2, 3 and 4. Besides oxygen, the CpTi also contains trace 

amounts of carbon, hydrogen, iron and nitrogen. The concentration of these elements 

increases with the increase of the class number, and their particular composition can be 

consulted in reference [68]. The two Ti alloys most commonly applied in orthopaedic 

applications are the Ti-6Al-4V and the Ti-6Al-4V (ELI – extra low interstitial alloy) alloys. 

These alloys can exist in three structural forms, ,  and -, and their proportion will 

depend on the elements in the alloy: aluminium is an -phase stabilizer, increasing the 

mechanical resistance and decreasing the density, while vanadium is a -phase stabilizer, 

so that it exists as a combination of  and  phases (-), providing the alloy mechanical 

strength [68, 69]. The mechanical properties of all the CpTi and Ti alloys can also be 

consulted in reference [68]. The selection of which material to use, by the clinicians, will 

depend on the patient history of parafunctional habits and on the dimensions of the 

implant: small diameter implants with thin walls will require higher-strength materials 

[68]. CpTi class 2 and the Ti-6Al-4V alloy are clearly the most commonly applied implant 

materials in orthopaedics. Proceeding with the CoBlast discussion, its low temperature 

prevents any change on the Ti and Ti alloys properties. However, in APS, for example, the 

substrate is subjected to high temperatures (commonly between 400 - 500 ºC) and 

temperature gradients, which are reported to change the proportion of  and  phases at a 

superficial level, therefore potentially worsening the mechanical properties at the 

coating/substrate interface, or, at least, adding some degree of uncertainty in the final 

product. These problems may be aggravated for low mass implants, like dental implants, 

where the low mass to volume ratio hinders heat dissipation [66].        
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Regarding the choice of abrasive material, Alu and sintered Hap (also known as 

MCD) are reported for CoBlast Hap surfaces. Fig. 1.40 shows SEM micrographs revealing 

the surface morphology of CoBlast Hap coatings, using MCD and Alu as abrasives, and of 

a PS deposited Hap coating. Additionally, a topographical line profile for each surface is 

presented. The CoBlast deposited coatings present similar morphologies regardless of the 

chosen abrasive material. The line profiles are similar. Contrarily, the APS coating reveals 

a much rougher surface morphology, including visible cracks as highlighted by the arrows 

in fig. 1.40. Moreover, higher magnification micrographs of the APS deposited coating 

revealed a glassy appearance, suggesting that a significant melting of the Hap powder had 

taken place during deposition [66].  

 

 

Figure 1.40 (A) - SEM micrographs revealing the surface morphology of CoBlast and PS Hap 

coatings. The arrows point out cracks in the APS deposited coating (scale bar is 100 m). (B) - 

Topographical line profile for each surface [66]. 

 

The arithmetic average roughness (Ra) values presented in fig. 1.41 corroborate the 

topographical line profiles of fig. 1.40. The Ra values are presented for the Hap surface and 

the metallic substrate surface after the coating removal. It can be seen that the choice of 

abrasive material in CoBlast has statistical influence in the Ra values: a change in the 

abrasive type from MCD to Alu yields an increase in Ra from 0.84 to 1.31 m, which is 
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attributed to the harder Alu particles. We highlight that the average grain size of both the 

MCD and Alu powders used in the cited report is very similar, around 100 m, and 

differences in the Ra values are explained by differences the mechanical properties of the 

materials and by kinetic energy considerations, since the mass transported per particle is 

different due to their different density values and not due to their different size.  

 

 

Figure 1.41 Arithmetic 

average roughness (Ra) of 

CoBlast and PS Hap 

coatings. The Ra values are 

presented for the Hap 

surface and the metal 

surface, after the coating 

removal [66].   
 

 

Lastly, to finish with the report under analysis, fig. 1.42 presents SEM cross-sectional 

micrographs of the Hap/Ti alloy interfaces for both the CoBlast and APS processes. The PS 

coatings have an average thickness of about 26.9 m, while the CoBlast coatings have an 

average of 2.5 m. The cross-sectional micrograph of the APS coating also shows the 

presence of cracks, which go deep down to the interface, a factor known to cause a 

deterioration of the coating mechanical properties and potentially unpredictable high 

dissolution rates, due to an increase in the surface area exposed to the physiological 

conditions [66]. This problem can be aggravated when other, more soluble calcium 

phosphate-based secondary phases (-TCP, TTCP, etc.) are present within the coating, as it 

can be the case of APS coatings. The same type of morphology and cracks in APS Hap 

coatings can be found in other reports [70]. The authors also detected the presence of Alu 

particles beneath the Hap coating [66]. The reason for the presence of Alu particles at the 

substrate/coating interface is that PS requires a priori surface treatment where surface 
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roughness is created in the metallic substrate in order to promote mechanical interlocking 

(also known as mechanical anchoring) between the coating and the substrate, therefore 

increasing the mechanical adhesion. This surface treatment, known as grit blasting, 

involves blasting the substrate surface with large abrasive particles, typically Al, with sizes 

between ~ 200 - 400 mm (sometimes the Alu used in grit blasting has a relatively large size 

distribution) [71]. Grit blasting will always leave grit residues on the surface, which may 

affect factors such as diffusion between substrate and coating, wetting properties of the 

powder droplets on the substrate and thermal stresses due to thermal expansion coefficient 

mismatch between the grit and the metallic matrix [71]. The amount of grit residue on the 

surface increases with the increase of blasting time [71].  

 

 

Figure 1.42 SEM cross-sectional micrographs of the Hap/Ti interfaces for both the CoBlast and 

APS processes. The arrows point out cracks in the APS coating. The scale bars are 10 m for 

CoBlast and 50 m for APS. The micrographs relate to the samples in fig. 1.40 and fig. 1.41 [66]. 

 

In another report, the influence of two abrasive materials on the deposition of Hap 

onto a Ti substrate, using CoBlast, was studied. Additionally, PS coated samples were also 

studied and considered for comparative purposes [72]. The Hap and abrasive material were 

projected in the same stream through a single nozzle onto the same region of the substrate, 

with a jet pressure of 5.5 bar, distance of 50 mm from the substrate, travel speed of 13 

mm/min and an offset of 4.5 mm. The PS samples were provided by a specialized company. 

It is relevant to inspect both XRD diffractograms presented in the report under analysis. 

Fig. 1.43 depicts, in the left, XRD diffractograms of the as-received Hap powder, the 
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sHa/HA (sHA - sintered Hap, as labeled by the authors) and Al2O3/HA CoBlast surfaces 

and the PS surface. In the right, XRD diffractograms of the supplied class II CpTi and the 

modified substrates, after removal of the Hap and PS coatings via acid etch, are presented 

[72]. It can be seen in fig. 1.43, in the left, that in the PS coating an amorphous halo is present, 

and peaks assigned to -TCP are detected, due to the high temperature and temperature 

gradients characteristic of the process, as explained previously in topic 1.2.3. The CoBlast 

coatings, on their turn, do not exhibit an amorphous halo and no secondary phases are 

detected, as expected. Concerning the diffractograms in the right of fig. 1.43, the substrates 

blasted with Alu both contain peaks assigned to Al2O3. The intensity of the Alu peaks is 

larger for the PS coatings compared to the Al2O3/HA CoBlast coatings, indicating a higher 

amount of Alu impregnation in the PS substrate [72].     

 

  

Figure 1.43 In the left: XRD diffractograms of the as received Hap powder, the sHa/HA (sintered 

Hap as abrasive) and Al2O3/HA CoBlast surfaces and the PS surfaces. In the right: XRD 

diffractograms of the supplied class II CpTi and the modified substrates after removal of the Hap 

and PS coatings via an acid etch [72].  

 

Fig. 1.44 shows the Ra values of the Hap surface and the metallic substrate surface 

after coating removal [72]. It is clear that compared to the as supplied CpTi, the Ra values 

increased after the CoBlast and PS processes. In this case, the Ra values for the CoBlast 

samples are larger than those in fig 1.41, which is a consequence, in part, of the chosen 

process parameters. It seems to be lacking in the literature studies providing an overview 

of the influence of the CoBlast process parameters on some properties of the final 
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substrate/coating system, not only of intrinsic CoBlast process parameters, such as blast 

pressure and distance, but also of extrinsic process parameters, such as the mass ratio 

between the abrasive and the dopant. This thesis addresses some of these problems. 

Proceeding with the analysis of fig. 1.44, and also considering fig. 1.41, the CoBlast coatings 

tend to present the same Ra values for the coating surface and the disrupted surface, i.e., the 

roughness of the disrupted substrate surface is transferred to the surface of the coating. In 

PS the behaviour is different. Again, as in fig. 1.41, the Al2O3/HA samples have larger Ra 

values compared to sHa/HA.  

 

 

Figure 1.44 Effect of the 

abrasive material on the 

coating and substrate 

surfaces roughness, for 

both CoBlast and PS 

processes [72]. 

 

The thickness of the CoBlast samples is much lower than the PS samples, as Fig. 1.45 

testifies [72]. The CoBlast samples have average thicknesses lower than 10 m, while the PS 

commercial coatings have typical thicknesses 50-100 m range. In CoBlast, the reported 

thicknesses of the Hap coatings are usually below 5 m, in the 2-5 m range, and they are 

dependent on the chosen process parameters, abrasive/dopant mass ratio, etc. It is however 

independent of the blasting time, because, since it is a process characterized by a balance 

between abrasion and deposition, increasing the blasting time and additional passes 

through the same region will only remove the previously deposited Hap and deposit new 

Hap, while the thickness will only be modified marginally [66, 72].  
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Figure 1.45 SEM cross-sectional micrographs of the sHA/HA, Al2O3/HA and PS samples, related 

to fig. 1.43 and fig. 1.44 [72].  

We have discussed before that the PS process produces significant changes in the 

metallic substrate, in the case of Ti alloys, for example, changing the proportion between 

the  and  phases at a superficial level. The term “superficial” is not the most accurate 

since the modifications go to a depth of many dozens of micrometers. Fig. 1.46 displays 

SEM cross-sectional micrographs showing the effect of the blasting media on the CpTi class 

II substrates microstructure after coating removal by acid etch [72]. As a small note, the 

microstructure of CpTi is characterized by equiaxed  grains. The plasma samples revealed 

the presence of a heat-affected zone (HAZ, as identified in fig. 1.46) which extends to a 

depth of about 60 m. The HAZ encloses two regions: a severely deformed surface layer 

and a region containing coarse back-transformed  grains. Back-transformed means that 

they form again from  grains, which, in their turn, form because PS is able to heat up the 

Ti above the  phase transition temperature (882 ºC). After the HAZ, the CpTi class II retains 

its microstructure. The formation of back-transformed  grains is reported to be associated 

with the formation of -case Ti, an oxygen-enriched surface phase, hard and brittle, which 

may form when the Ti is heat-treated in a normal atmosphere. Due to its poor mechanical 

properties, if present, the -case should be removed before putting the metallic part in 

service, otherwise the risk of delamination is greatly increased. With regard to the CoBlast 

samples, a region characterized by gross deformation of the grains, which shows the 

presence of twins, as shown in fig. 1.46, is observed. The formation of twins is stimulated 

by a high strain shock loading and relatively large grain size. The depth of the 

microstructure change is dependent on the abrasive material. While the depth of 

microstructure change for the substrate blasted with sHA is about 25 m, the depth 
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increases up to 35 m for the substrates blasted with AlO3, which is explained by 

differences in the mechanical properties and kinetic energy of the particles bombarding the 

substrate, Al2O3 has a higher abrasion power than sintered hydroxyapatite. 

 

 

Figure 1.46 SEM cross-sectional 

micrographs showing the effect of 

the blasting media on the CpTi 

class II substrates microstructure, 

after coating removal by acid 

etch. The blast media include 

alumina and sintered Hap (sHA, 

as labeled by the authors) for the 

CoBlast process. The micrographs 

relate to the samples in figs. 1.43, 

1.44 and 1.45. The plasma samples 

revealed the presence of a heat-

affected zone (HAZ, as identified 

in the figure) [72].   

We shall focus now on the mechanical properties of the CoBlast Hap coatings, by 

addressing some tensile bond strength and scratch tests reported in the literature. The 

methodologies behind these processes and some important concepts regarding mechanical 

properties are discussed in chapter 2, section 2.4. The adhesion between the coating and the 

substrate is a fundamental property when considering orthopaedic applications. Its 

importance justifies the existence of ASTM standards that regulate minimum limits for the 

adhesion magnitude. Specifically, the ASTM F1147 defines, for Hap coatings on metallic 

substrates, that a minimum value of 15 MPa is required for the static tensile strength. For 

the static shear strength, there is no particular requirement, although there are some 

guidance lines provided by ASTM F1044 and FDA. O’hare et al. performed a comparative 
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study regarding two different approaches to produce a Hap coating on a metallic alloy: the 

CoBlast process and direct micro-blasting of Hap onto the metallic surface, i.e., simply 

bombarding MCD onto the metallic surface [61]. We will just address the mechanical 

characterization, nonetheless the CoBlast coatings revealed significantly better biological in 

vitro and in vivo results [61]. To coat the CpTi grade V substrates, the Hap powder was fed 

into one nozzle at a pressure of 6.2 bar and at a distance of 20 mm from the substrate, while 

the Alu abrasive, 100 m in size, was fed into the second nozzle at a pressure of 6.2 bar and 

distance of 18 mm, both nozzles moving at a speed of 12 mm/s. The coating adhesion 

properties were determined by mechanical scratch testing, using a Teer Scratch tester 

equipped with a Rockwell ´C´ Spherical cone indenter. The scratches were conducted from 

an initial load of 5 N to a final load of 50 N, increased continuously along the length of the 

scratch. Fig. 1.47 shows optical images of the scratch tracks created in (a) the Hap micro-

blasting coating and (b) the CoBlast coating [61]. Higher magnification images, highlighting 

a section of the track, are presented for both samples. Fig. 1.47(a) shows the Ti substrate all 

along the track, indicating that the tip broke near the start of the scratch. Contrarily, in the 

CoBlast sample, fig. 1.47(b), the Hap coating is observed all along the track. 

 

 

Figure 1.47 Optical images of the scratch 

tracks created in the (a) Hap micro-

blasting coating and (b) CoBlast coating. 

Higher magnification sections are 

presented for both samples. 

 

Fig. 1.48 presents EDX results showing the atomic percentage of elements detected 

at the start, middle and end locations of the scratch tracks displayed in fig. 1.47 [61]. The 

EDX analysis shows that the CoBlast sample exhibits significant levels of Ca and P in the 
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totality of the scratch length, while the micro-blasting sample, already in the middle, only 

shows residual levels of Ca and P. These results confirm that the CoBlast coating is strongly 

bounded to the Ti substrate, while the micro-blasting coating is poorly bounded to the 

substrate [61].    

 

Figure 1.48 EDX results showing the atomic percentage of elements detected at the start, middle 

and end locations of the scratch tracks displayed in fig. 1.47. (a) Hap micro-blasting coating and 

(b) Hap CoBlast coating [61]. 

Generally, tensile adhesion testing according to standards ASTM C633 and ASTM 

F1147-05 is the most common procedure to determine quantitative adhesion values 

between the coating and substrate. However, many reports perform such adhesion testing 

according to variations of the methodologies proposed in the referred standards, because 

most of the times it is more convenient and cost-effective to perform such testing with other 

materials and equipment. In addition, such standards are established for materials intended 

for commercialization, thus companies have indeed to demonstrate that the requirements 

of such standards are met by their products. At an academic level, other kinds of 

methodologies to test the adhesion between coating and substrate are perfectly valid as the 

methodologies defined in the standards. Moreover, fatigue, scratch and pull-out testing, as 

well as wear resistance, are among the most valuable techniques that provide valuable 

additional information on the mechanical properties of the coatings. Regarding the report 

of Barry et al., i.e., the samples analysed in figs. 1.41, 1.42 and 1.43, for the determination of 

the adhesion of the Hap coatings to the Ti alloy substrates a modified ASTM F1147 tensile 

test was performed [66]. Epoxy coated 2.7 mm diameter aluminum studs were fixed and 
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cured to the Hap coatings for 1 h at 150 ºC and then left to cool at RT. The tensile tests were 

performed after a preload of 1-2 MPa was reached at load of 0.5 mm/min. The tensile bond 

strength (force/area) was determined by measuring the force required to remove the stud 

from the surface. The tensile bond strength test results were calculated based on an average 

of five separate tests. Fig. 1.49 displays, in the left, the test pins on the APS and CoBlast Hap 

coated samples after the tensile tests and, in the right, the tensile bond strength (MPa) 

values obtained for the CoBlast samples (MCD and alumina) and the plasma samples [66]. 

The bond strength is 6% higher for alumina compared to MCD, which is associated to the 

larger area for mechanical interlocking between the coating and the substrate, because, as 

we saw, alumina has a larger abrasion power compared to MCD. The plasma samples 

revealed very poor adhesion strengths, which is very surprising and not easily explainable, 

considering that the samples were supplied by a commercial provider, therefore, in the 

worst case, they should reveal values around the minimum required value of 15 MPa, 

mandatory for commercial products. Usually, the reported values for PS coatings are 

considerably higher, in the 20-30 MPa range. The cracks observed in the APS coatings, fig. 

1.40, maybe a factor that contributes to the lower adhesion strengths. EDX measurements 

performed on the pull-studs after testing and removal revealed that all failures were 

adhesive, at the coating/substrate interface [66].    

 
 

Figure 1.49 On the left: Test pins on the APS (left) and CoBlast (right) Hap coated samples after 

the tensile tests. In the right: Tensile bond strength (MPa) values obtained for the CoBlast samples 

(MCD and alumina) and the plasma samples [66].  
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 Even higher tensile bond strength values are reported for CoBlast Hap coatings, in 

the 50-60 MPa range, whereby the superior adhesion of CoBlast coating is undoubtedly 

demonstrated [72].   

 Another advantageous characteristic of CoBlast is the possibility to coat complex 

structures while retaining its macrostructure. Fig. 1.50 displays an example of a Hap coated 

Ti grade V foam [73]. The microstructure of the foam was affected in a similar way as 

depicted in fig. 1.46, although the degree of alteration was lower because grade V Ti has 

better mechanical properties compared to grade II Ti, particularly, in what concerns the 

fatigue behaviour [73]. The APS technology is also able to coat complex geometries. 

Nonetheless, the large thickness of APS coatings, in the 50 - 100 m range, makes them 

unsuitable for coating Ti foams without altering or occluding small pore sizes, while the 

CoBlast typical lower average thicknesses, in the 2 - 5 m range, preserves the pore size of 

the material [73].  

 

 

Figure 1.50 SEM micrographs of the surface of an as-supplied Ti foam and the same foam coated 

with Hap, using the CoBlast process [73].  

To conclude this topic, a curiosity regarding CoBlast. Scheduled for launch in 2020, 

the Solar Orbiter spacecraft, property of the European Space Agency (ESA), will study the 

Sun at close range, closer than any previous mission. Needless is to say that things will get 

warm in there. The Solar Orbiter will study the Sun about forty-two million kilometers, 

closer than Mercury, and it will investigate the heliosphere and its connection to the internal 

dynamics in the Sun. Such high temperatures and radiation environment required ESA to 

find next-generation thermal protection systems for the craft’s main heat-shield (3.1 x 2.4 
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m). Furthermore, such thermal protection has to be electrically conductive to avoid the 

build-up of space charge, which might cause a potentially destructive discharge to the 

spacecraft.  CoBlast comes into play through ENBIO Ltd., which collaborates with ESA 

since 2011. From that collaboration, two functional coatings have emerged, SolarBlack and 

SolarWhite, both planned to be used in the Solar Orbiter and, of course, both applied 

through the CoBlast process. SolarBlack will be the first line of defense of the heat-shield, 

being described as a “CoBlast skin of black calcium phosphate, which will be applied to the 

outermost titanium sheet of the Solar Orbiter’s multi-layered heatshield” [74]. Black 

calcium phosphate is actually a carbonaceous calcium phosphate material, known as bone 

char, produced via calcination of bovine bone under a reduced-oxygen atmosphere. The 

absence of oxygen during the calcination process avoids the oxidation and combustion of 

the organic hydrocarbon compounds in the bone matrix, resulting in the formation of 

carbon-rich ash with a black colour. Bone char was used in quite different and interesting 

applications, for example as a black pigment in the 30.000-year-old Chauvet Cave paintings 

in the south of France [75]. SolarBlack possesses high levels of both absorptivity and 

emissivity while maintaining the electrical conductivity and flexibility of the uncoated 

metallic substrates, being stable in a temperature range between - 150 up to 550 ºC [75]. 

SolarWhite is an inorganic coating with minimal absorption and high emissivity, stable in 

the same temperature range, but intended for applications in the Solar Orbiter which 

demand lower service temperatures [74].    

 

1.4 Motivation 

The penultimate section of chapter 1 is the motivation behind this work. The 

motivation of particular research work is always grounded on a state of the art and on 

particular problems that need to be solved, or certain properties that may be improved. 

Accordingly, we decided to address the motivation at the end of chapter 1. Although this 

section can be read and fairly appreciated as a “stand-alone” text, without requiring an in-

depth knowledge of the state of the art, it will certainly be fully appreciated having in mind 

the information which was provided and discussed during the course of chapter 1. 
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 We will adopt an analogous approach of that in topic 1.1.1: to present facts and 

statistics, more particularly, related to THR implants. We could also mention, for example, 

statistics related to total knee replacements, which follow the same trend of those of THR. 

Nevertheless, we will focus on THR data, having in mind that similar trends are observable 

for other orthopaedic implants. 

 One of the first questions that the patients who will receive a THR will ask their 

orthopaedic surgeon is the following: “How long will my hip replacement last”? The 

surgeon, in case of being informed about the statistics, will likely answer: “Expect it to last 

15 years without any problem”. The fact is that 90 to 95% of the THR’s will last about 15 

years without requiring any revision or corrective surgery, thus it is true that they are 

expected to last 15 years without any significant problem [76]. However, by the 20-year 

mark, 15% of the patients will need a corrective surgery. Recalling the numbers that we 

provided on topic 1.1.1, 15% is a very considerable number of people. But now the problem 

gets far worse: up to 35% of the younger patients in their 50’s will require corrective surgery 

and sometimes even a third surgery. Moreover, this problem tends to increase every year. 

In some regions, the number of younger patients increased more than 200% in just 10 years 

(see the US case provided in topic 1.1.1). What does this mean? It means higher costs for 

patients and for the national healthcare systems. For example, in the US, in 2018, the 

average cost of a THR was about 40.000 US$. Actually, the US is one of the most expensive 

countries to perform a THR, while, on the other extreme, Poland was one of the cheapest 

countries in 2018, with an average cost of 5.500 US$ [77]. However, in Poland, it might be 

cheaper for those who have dollars or euros and are able to perform “medical tourism”, but 

it is certainly not cheap and easily affordable for the average Polish citizen. Considering 

these data and statistics, a serious problem arises, primarily affecting the patients: while 

most health insurance plans tend to cover THR procedures, the same is not true for 

corrective/revision surgeries. Further, corrective surgeries are more complex and longer 

than the first surgery (known as the primary THR), and they enclose higher risks of 

complications, such as, for example, higher infection rates. Thus, revision surgeries are as 

expensive as the primary THR surgeries, potentially comprehending a heavy financial 

burden for the people.  
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A possible solution for this problem was discussed during the present chapter: it 

was found in the middle of the nineties that Hap is able to store a considerable electric 

charge density (reported values typically in the 10-6 – 10-5 C/cm2 range) that significantly 

increases its bioactivity level, demonstrated both by in vitro and in vivo biological tests. As 

referred to in topic 1.1.1, when surgeons place an implant inside the body, in some regions 

there will be a small gap between the implant surface and the surrounding biologic bone. 

For a THR, the surgeons carefully open a cavity in the femur where they introduce the 

implant, thus most of the femoral stem component is surrounded by biologic bone. In the 

concrete in vivo study presented in topic 1.1.9, the negatively charged Hap surface took only 

two weeks to already achieve good gap filling and bonding, while the positive and non-

charged surfaces were clearly much delayed. In summation, we are talking about reducing 

the probability of early post-operative failures and infections, improvement of short- and 

long-term stability and reduction of costs, for both the patients and the healthcare systems.  

The biggest challenge is now upon us: how can we electrically charge these bioactive 

coatings? Classic poling contact methods, where electrodes are placed in pressure against 

the sample, are out of the question, because, as we have shown, these coatings are 

characterized by considerable surface roughness values, in the micrometric range. The 

deposition (sputtering for example) of electrodes is also out of the question, for two main 

reasons. Firstly, these materials will be applied in vivo inside the human body, and 

materials, where metallic electrodes were previously deposited in the coating, will certainly 

face big hurdles to be certified according to the ISO’s and ASTM’s standards that regulate 

this market. Secondly, taking into the account the temperatures at which the conventional 

polarization of Hap-based materials is usually performed, in the 250–500 ºC range, it is very 

likely that metallic atoms or ions may diffuse from the electrodes into the coating, so that, 

for example, a polishing step would not solve the problem. Considering, for example, PS 

coatings, they possess some cracks which may further promote the diffusion, despite the 

large thicknesses in the 50-100 m range. In fact, this is an evidence that we verified during 

the course of this work: if, for example, a silver conductive paint is applied to a ~ 70 m 

thick PS coating, at RT, the electrical resistance of the coating will drop off to the point of 

practically becoming shorted with the Ti substrate. Moreover, these metallic elements will 
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evidently interfere with the bioactivity in vivo by altering the expected cellular response to 

the biomaterial.  

We believe that the answer to this technical challenge is a technique known as the 

corona triode charging. The main motivation behind this work is to be able to charge Hap 

coatings on Ti substrates using the corona triode and to demonstrate their superior 

bioactivity compared to non-charged Hap coatings. We also highlight all the innovative 

character of this work, and the challenges resulting therefrom, as a motivation fuelling this 

work. The concept of producing a stable electric charge density on bioactive coatings 

intended for orthopaedic applications, through a controllable and non-invasive approach, 

is indeed a novelty in the literature, and we hope that the first approach undertaken in this 

work will become a reference in this concept and technical challenge. 

 

1.5 Objectives 

The main objectives of this work are the following: 

1. To develop “from scratch” a corona triode experimental system. The developed 

system must be able to allow the reversal of the discharge polarity, i.e., to produce 

a positive or a negative corona discharge, to allow the determination of the surface 

potential buildup of the sample, to allow the discharge temperature to be controlled 

and to maintain a low-humidity reproducible atmosphere. 

 

2. To electrically charge Hap coatings on Ti metallic substrates, through the corona 

triode charging technique. A negative discharge will be used, taking into account 

the almost general consensus in the literature regarding the benefits of a negative 

charge density compared to a positive charge density. Two types of coatings will be 

tested: coatings produced by APS, provided to us by Ceramed, S.A. (Portuguese 

company), and coatings produced by us using the CoBlast process. 
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3.  To perform in vitro biological tests on charged and non-charged Hap coatings in 

order to assess the influence of the stored charge density on the bioactivity level of 

the coatings. Accordingly, the intention is to perform SBF tests, in order to get 

information about the mineralization of bone-like CHap layers on the surface of the 

coatings and also cellular tests with osteoblasts. In the SBF tests, the temporal 

evolution of the Ca2+ and P5+ ionic concentrations and the pH value for increasing 

immersion times of the coatings in the SBF solution will be assessed. The cellular 

tests will include the assessment of the osteoblastic proliferation for increasing 

culture times in the charged and non-charged coatings. Additionally, the abundance 

and distribution of two proteins expressed by the osteoblasts in contact with the 

coatings will be visualized: the vinculin protein provides useful information 

regarding the adhesion level/”force” of the osteoblasts and the ALP (alkaline 

phosphatase) protein provides information regarding their differentiation stage. 

 

.
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Chapter 2 Experimental procedure and concepts 

In the present chapter, it is not intended to describe common experimental 

techniques such as XRD, SEM-EDX, Raman, etc., since they are extensively reported and 

well known in the solid-state physics community. Instead, the focus is given to the essential, 

differentiating techniques used in this work, most notably the corona triode charging 

technique, the thermally stimulated depolarization currents (TSDC) measurements, the 

CoBlast deposition process and the tensile pull-off tests. Some theory supporting the 

discussed techniques is also included, so both theoretical and experimental aspects can be 

found in the same section, enriching the comprehension of the particular technique.   

We also point out that one of the main objectives of this work is the development of 

a corona triode experimental system. We explain the development of the system in the 

present chapter, so actually, although this is an “Experimental details” chapter, the section 

(2.1), where we discuss the development of the corona triode, should be interpreted as 

belonging to a “Results and discussion” chapter, considering that the development of such 

system is undoubtedly one of the most important achievements of this work. 

We also include in section 2.5 a description of the in vitro biological tests 

experimental protocol. This description is simplified and without some experimental 

technicalities, thus more adequate for those, like us, who are not experts on this type of 

biological tests. 

2.1 The corona triode 

2.1.1 Theoretical concepts 

The roots and development of the corona triode charging technique are strongly 

connected to Brazilian researchers and universities, which in the seventies and the eighties 

contributed decisively to its development and understanding. Consequently, names such 

as R.A. Moreno, B. Gross (born in Germany) and later J.A. Giacometti became intimately 

associated with the corona triode [78-80].  



96 

 

The corona discharge is a stable, self-sustainable, atmospheric electrical discharge 

that occurs when a sufficiently high potential difference is applied between two asymmetric 

electrodes, such as a point and plane. DC corona voltages, in the 10 - 15 kV range, under a 

“normal” or low-humidity atmosphere environment, are frequently applied [81]. The 

threshold potential difference to start the corona discharge depends upon the availability 

of free electrons which are able to ionize the surrounding gas molecules, being around 5 kV 

in a “normal” atmosphere [82]. Two different regions are defined in a corona discharge: the 

ionization and drift regions. The ionization region is bound to a region close to the point 

electrode while the drift region extends to the plane electrode. Fig. 2.1 schematizes both 

regions, including the electric field and ion flow lines [82]. The drift region contains ionic 

charge carriers of one polarity, and their mobility is relatively low, in the order of a few 

cm2/Vs. The current magnitude in the drift region is in the range of a few A, for potentials 

in the 10 - 15 kV interval. The corona current always increases with the increase of the 

corona potential (the potential applied to the point electrode), making the discharge 

controllable and therefore applicable to generate thermalized ions in order to charge 

dielectric samples [82].  

 

 

Figure 2.1 The corona discharge on a 

point and plane electrode system. Two 

regions are defined: the ionization 

region, confined close to the point, and 

the drift region, extending up to the 

plane electrode. Adapted from [82].   

Fig. 2.2 displays a model of positive corona discharge (the sample thickness is 

exaggerated in this figure) [83]. The corona plasma region, which contains the ionization 

region, is maintained by processes such as electron and ionic collisions and by photo-

ionization. The drift region contains ionic species of the same polarity, which are driven 

towards the sample covering the grounded electrode. The drift region may also contain 
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neutral species. In negative corona discharge, in part, electrons are generated by 

photoemission at the point electrode and captured to form negative ionic species. A very 

important feature of the corona discharge is that the thermal energy of the ions in the drift 

region reaching the sample is comparable to that of the environment. For this reason, these 

ions do not penetrate the sample or damage the surface, they just transfer their excess 

charge to the surface of the sample [84]. 

 

 

Figure 2.2 Model of a positive corona 

discharge. The discharge comprises 

two main regions: the corona plasma 

and the unipolar drift regions. The 

plasma region includes the ionization 

region. The sample thickness is 

exaggerated in this figure [83]. 

 

The ionic species generated in the positive or negative discharges in a normal 

atmosphere, determined using mass spectroscopy techniques, were found to be dependent 

on the relative humidity: in positive coronas, the dominant species have the generic 

chemical formula (H2O)nH+, where n is an integer that increases with increasing humidity. 

For lower relative humidity levels other species will become dominant, such as (H2O)nNO+ 

and (H2O)n(NO2)+. For negative corona discharges the most important ions are CO3- and the 

hydrated form (H2O)nCO3-, where n depends on the relative humidity [82]. 

The corona discharge has been widely applied in the electrical charging of polymer 

foils to be used in electret microphones, in the investigation of electret formation and charge 

stability in dielectric materials, especially in film/foil form, in the study of polarization 

phenomena in dielectrics and ferroelectrics, in electrophotographic processes, in the 
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charging of polymer wires to be used in electrostatic air filters and electrical separation of 

particles from gases (corona-based electrostatic precipitators have found widespread 

application in the treatment of contaminated gas in heavy industries) [82, 85].  

The first corona systems only had two electrodes, the point and plane, and some 

information would be lost during the charging process, particularly the final surface 

potential of the sample. Taking into account this limitation and also the necessity of an 

improved charging current radial uniformity reaching the sample, the corona triode was 

developed and introduced in 1976 [78]. Three electrodes are used, instead of two, as the 

name suggests. The introduction of a metallic grid electrode between the point and the 

plane allows to follow the surface potential buildup of the sample during the charging 

process and to improve significantly the charging current radial uniformity below the grid  

[78, 84]. Fig. 2.3 depicts a scheme of a corona triode. One of the voltage sources is connected 

to the point electrode, and therefore is responsible for producing the corona discharge. The 

other source is connected to the metallic grid, controlling the grid potential. A picoammeter 

is connected to the plane electrode (usually also designated as the measurement electrode) 

to measure the charging current that flows through the sample. The guard copper ring 

prevents eventual surface currents from reaching the measurement electrode. The sample 

(the thickness is exaggerated) is placed on the top of the measurement electrode and the 

guard ring. Typical point/measurement electrode and grid/measurement electrode 

distances reported in the literature are in the range of 5-10 cm and 2-5 mm, respectively [79, 

84].   

 

Figure 2.3 Scheme of a corona 

triode. As the name suggests, 

three electrodes are used: the 

point, grid and plane (or 

measurement) electrodes. 

Adapted from [84]. 
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The theory behind this technique is now going to be presented, in order to 

understand the purpose of the “feedback circuit” in fig. 2.3. Consider fig. 2.4, which shows 

the air gap between the metallic grid and the sample, as well as the relevant physical 

quantities to be considered for this problem [85]. For simplicity purposes, the physical 

quantities are assumed to be independent of the lateral position coordinate in the air gap, 

depending only on the vertical coordinate x perpendicular to the sample and grid surfaces 

[85]. The air gap conduction current is due to the transport of a unipolar ionic charge 

density gap(x,t), and the current density J(t) reaching the sample surface (J(t) = I(t)/A, where 

A is the sample area) is given by equation 11 [85, 86]:  

𝐽(𝑡) = [𝑣 + 𝜇𝐸𝑔𝑎𝑝(𝑥, 𝑡)]𝜌𝑔𝑎𝑝(𝑥, 𝑡) +
𝜀0𝜕𝐸𝑔𝑎𝑝(𝑥, 𝑡)

𝜕𝑡
 

(11) 

where the term vgap(x,t) is the current density due to gas movements produced by the 

discharge, known as corona wind and Egap(x,t)gap(x,t) is the ionic conduction term, where 

µ is the mobility. The corona wind term has a small influence on the magnitude of J(t), the 

ionic conduction term is much more relevant. Equation 11 also shows that J(t) depends on 

the time derivative of Egap(x,t) multiplied by 0. This is actually what is known as a 

displacement current density: a time-varying electric field in a dielectric medium will 

produce a displacement current contribution. This was discovered by Maxwell and led to 

the generalization of the Ampère law, producing the well known as the Maxwell-Ampère 

equation, which is included in the Maxwell equations. The integration of equation 11 over 

the air gap thickness, d, yields equation 12 [85]:      

𝐽(𝑡) =
1

𝑑
∫ [𝑣 + 𝜇𝐸𝑔𝑎𝑝(𝑥, 𝑡)]
𝐿+𝑑

𝐿

𝜌𝑔𝑎𝑝(𝑥, 𝑡)𝑑𝑥 +
𝜖0
𝑑

𝑑

𝑑𝑡
[𝑉𝑔𝑟𝑖𝑑(𝑡) − 𝑉𝑠𝑎𝑚𝑝𝑙𝑒(𝑡)] (12) 

where ΔVgap(t) = Vgrid(t) – Vsample(t) is the potential difference between the grid and the 

surface of the sample [Vsample(t)]. Thus, Vsample(t) is given by equation 13 [84, 85]: 

𝑉𝑠𝑎𝑚𝑝𝑙𝑒(𝑡) = 𝑉𝑔𝑟𝑖𝑑(𝑡) − ∆𝑉𝑔𝑎𝑝(𝑡) (13) 

Analyzing equations 12 and 13, it is reported that if the current density J(t) flowing 

through the sample is forced to be constant J(t) = J0, a stationary state for the gap ionic charge 

density gap(x,t) and for the gap electric field Egap(x,t) is reached, i.e., these quantities become 
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independent of the time [gap(x) and Egap(x)]. In such case, the second term in equation 12 is 

null and J0 is equal to the medium value of the first term, the conduction current. 

Furthermore, ΔVgap(t) becomes independent of the time. Equation 13 can be rewritten as 

[85, 87]: 

𝑉𝑠𝑎𝑚𝑝𝑙𝑒(𝑡) = 𝑉𝑔𝑟𝑖𝑑(𝑡) − ∆𝑉𝑔𝑎𝑝 (14) 

Note that in equation 14 ΔVgap, is a constant. Experimentally, ΔVgap is kept constant 

through the feedback circuit between the current flowing through the sample J(t) and the 

voltage applied to the grid. During the discharge, as the ionic species transfer their excess 

charge to the surface of the dielectric sample, its surface potential builds up. The feedback 

circuit forces J(t) to be at a constant defined value J0 by increasing the voltage applied to the 

grid in order to follow the voltage build-up of the surface of the sample, so that ΔVgap is 

constant. Therefore, during the corona charging, the potential of the surface of the sample 

can be directly calculated from the potential applied to the metallic grid through equation 

14, it is just required to subtract the constant gap potential drop [84, 85].   

 

Figure 2.4 Scheme of the air gap between the metallic grid and the sample, with the relevant 

physical quantities. 0 is the vacuum dielectric permittivity, Egap(x,t) is the gap electric field, 

gap(x,t) is the gap ionic charge density, L and d are the sample and gap thicknesses, Vgrid(t) is the 

metallic grid voltage and J(t) is the charging current density flowing through the sample. During 

the discharge, there is a potential difference between the grid and surface of the sample, ΔVgap(t). 

Adapted from [85]. 
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The ΔVgap constant is determined by calibration curves, i.e., the air gap potential 

drop is determined for the different experimental conditions of the system: for example, the 

distances between point/measurement electrode and grid/measurement electrode, the 

polarity of the discharge, the discharge potential applied to the point electrode and the 

temperature and relative humidity of the system. The calibration curves consist of J0 vs Vgrid 

plots, which are performed without any sample covering the measurement electrode. In 

this situation, it is easy to see that Vgrid = ΔVgap, because there is no sample, the potential 

applied to the grid is exactly the gap potential drop. Two examples of calibration curves 

will be presented. Fig. 2.5 shows calibration curves for different grid to measurement 

electrode distances (note that in the plot, Vs = ΔVgap, they just use a different nomenclature)  

[85]. As it was stated, these distances are typically in the few millimeters range. It is visible 

that shorter distances give higher current densities, according to the Child’s law, being the 

current approximately inversely proportional to d2 [85]. Similar results are obtained for 

positive polarity.      

 

  

Fig. 2.6 displays calibration curves for different discharge temperatures [85]. The 

increase of the air gap temperature tends to decrease the ionic mobility. Similar results are 

obtained for positive polarity.  

 

 

Figure 2.5 Calibration curves 

obtained for different distances 

between the grid and the  

measurement electrode, for a 

negative discharge polarity. In this 

plot, Vs = ΔVgap. The point to sample 

distance is fixed at 6 cm [85].  
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Figure 2.6 Calibration curves 

obtained for different discharge 

temperatures for a negative polarity 

(as in the case of fig. 2.5, Vs = ΔVgap). 

The corona point to grid and grid to 

sample distances are fixed at 6 cm 

and 3 mm, respectively [85].  

 

 

 Another important characteristic of a corona triode is the radial current-density 

distribution uniformity that reaches the sample, which, as mentioned, is one of the great 

advantages of the corona triode in relation to the conventional two electrode systems. This 

uniformity mainly depends on the point to samples distance, as demonstrated in the J.A. 

Giacometti report regarding this particular subject [79]. In the referred report, the corona 

system schematized in fig. 2.7 is presented. In the first phase, measurements were 

performed without the metallic grid, i.e., the configuration in the left scheme of fig. 2.7 was 

used. This allows to perform a study of the radial J(R) distribution for different D values, 

without the grid influence. In a second phase, the metallic grid was introduced, so that its 

influence on the current distribution can be understood. The system includes a moveable 

circular probe, identified as JP(R), which allows to perform the radial distribution 

measurements. As fig. 2.7 shows, the system includes an inner PVC cylinder, which is 

actually a quite uncommon feature. Most of the reported systems do not include this inner 

PVC cylinder. Or, in other words, the experimental evidence shows that an inner dielectric 

cylinder is not required to achieve very good charging current distribution uniformity 

profiles.   
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Figure 2.7 A corona triode system scheme. In this particular system, a moveable circular probe, 

identified as Jp(R), was designed in order to obtain radial current density distributions of the 

current reaching the sample. The point/sample (D) and grid/sample (dg) distances can be changed. 

The distances are in millimeters [79].  

 

Fig. 2.8 shows the results of the J(R) versus D study, without the grid electrode. An 

important result of this study is that for D values equal or higher than the diameter of the 

cylinder (50 mm, see fig. 2.7) the current density distribution becomes independent of D, in 

such a way that, for different corona discharge potentials, it is possible to normalize the 

experimental curves to one characteristic shape, as fig. 2.9 demonstrates. This result 

continues to be valid if instead of the PVC cylinder we had a metallic cylinder. Thus, the 

results demonstrate that distances D equal to or higher than the cylinder diameter are 

preferred for the corona charging [79]. However, if the sample dimensions are small, 

distances smaller than the cylinder diameter can be perfectly used without having 

significant differences in the radial distribution of the current reaching the sample, as fig. 

2.8 shows. 
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Figure 2.8 The radial distribution of the current density J(R) reaching the sample for different 

distances D. The experimental values are normalized by J(0), the current density for R = 0, where 

the current density is maximum [79]. 

 

 

Figure 2.9 Normalization of 

the experimental curves to a 

characteristic shape, for 

different corona currents Ic 

(which is the same as saying 

for different discharge 

potentials) [79].  
 

 

 The samples charged with the corona triode present a very good uniformity of the 

surface potential, due in great part to the presence of the metallic grid electrode. Fig. 2.10 

shows an example of a 20 m thick polymeric sample charged up to a surface potential of 

270 V, with a constant current density J0 = 1 nA/cm2 [79]. It is visible that the surface potential 

is almost uniform up to a distance of 2 cm, meaning that a 4 cm diameter region can be 

charged with very good uniformity. Since the cylinder has a diameter of 5 cm, it is normal 

for the uniformity to decrease near the edges of the cylinder.   
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Figure 2.10 The surface potential radial 

distribution Vs(R) for a sample charged 

with a constant current density J0 = 1 

nA/cm2. The sample is a 20 m thick 

polymer, polyethylene terephthalate 

(PET) [79]. 

 

Another important factor is the atmosphere relative humidity, which should be a 

variable to be considered in the determination of calibration curves.  Nonetheless, if one 

finds a way to get a reproducible atmosphere the humidity can be ignored in the calibration 

curves since it would be similar for all the experiments. As it will be shown, in the system 

developed in this work, we achieve that by having placed a container with silica gel in an 

adapted furnace where the corona triode is inserted, yielding a low-humidity reproducible 

atmosphere. 

Summing up, in a corona triode charging experiment the user chooses a constant 

charging current density J0 (or current I0) to charge the sample. Through the calibration 

curves, the user knows the constant value of ΔVgap, for the defined charging current I0 and 

for the particular experimental conditions. Therefore, the user can apply equation 14 to 

directly calculate and follow the potential buildup of the sample. The feedback circuit to 

maintain the charging current approximately constant at the defined value I0 has to be 

programmed.  

What are the advantages of the corona charging regarding conventional contact 

polarization techniques? Several can be mentioned: it does not require the deposition of an 

electrode on the sample surface exposed to the corona charges, it allows to polarize/charge 

samples up to higher surface potentials, even if localized dielectric breakdowns occur 

(because of the absence of two electrodes), it is a well-suited technique for large scale film 

charging/poling, it is possible to charge/pole samples with complex, non-planar geometries 
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(even materials with porosity) and it allows to control the polarity of the discharge and thus 

the sign of the injected charges in the sample [81, 87]. The avoidance of the deposition of an 

electrode in the sample surface exposed to the corona charges is a very important advantage 

regarding the potential application of this technique on the charging of bioactive coatings 

in orthopaedic implants. The strict regulations required to be complied for the introduction 

of a new implant in the medical market, as defined by the ISO and ASTM standards that 

regulate this market, could cause serious complications for the acceptance of electrically 

polarized materials where metallic electrodes had been previously deposited, even with a 

posterior electrode removal step, polishing for example. In contact polarization methods, 

Hap has to be heated up to considerable temperatures, typically in the 250 - 500 ºC range, 

as described in the state-of-art, chapter 1. Some diffusion of metallic atoms or ions from the 

electrode to the sample has to be regarded as a very likely possibility, and even if such 

diffusion does not occur into the bulk of the sample, a polishing step could not be enough 

to remove the contaminants, which could also interfere with the bioactivity and on the in 

vivo cellular behavior. Such an electrically polarized Hap coated implant would certainly 

face a high degree of resistance to be approved for marketing, contrarily to the corona 

charged Hap coated implant. Moreover, to conventionally polarize a Hap coated 

orthopaedic implant would be a daunting task, due to the simple fact that they are not flat 

surfaces, they have a considerable surface roughness in the few or dozen of micrometers 

range. Hence, the corona triode technique contains the requirements that confer it a strong 

potentiality to be applied in the orthopaedics and dental implantology fields. 

2.1.2 Development of a corona triode 

A corona triode system was developed “from scratch” in this work. The main 

requirements which we defined for our experimental system were to be able to polarize 

materials with a planar geometry (coatings, bulk samples with planar parallel faces - pellets, 

etc.), to allow the reversal of the corona discharge polarity, to be able to follow the surface 

potential buildup of the samples and to be able to change the discharge temperature. 

Furthermore, the system must be contained in a reproducible atmosphere, in terms of 

humidity, so that the discharges occur approximately in the same conditions Fig. 2.11, 
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shows 3D concepts of the developed corona triode. The right image displays a top view of 

the triode. It contains a central teflon lid, represented in blue, where the point electrode is 

inserted. The red, yellow, green and purple elements of the structure are made with 

stainless steel, including the three cylindrical support rods. The cylindrical body of the 

system, in yellow, has outer and inner diameters of 81 mm and 85 mm, respectively, with a 

4 mm thick wall, and a height of 140 mm.  

 

 

Figure 2.11 3D representations of the developed corona triode. In the right image, a top view of 

the corona triode. The metallic grid electrode is visible in this view. 

The green component in fig. 2.11 is the metallic grid support plate, as highlighted in 

fig. 2.12. The dimensions are in mm. The metallic grid is placed and stretched in the support 

plate with the help of a metallic ring, which is not represented in fig. 2.12, but it can be seen 

in fig. 2.14.   

 

 

Figure 2.12 The metallic grid support plate, with the dimensions specified in mm. 
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The purple component in fig. 2.11 contains the teflon support plate for the 

measurement electrode and the sample (note that the purple structure in fig. 2.11 is metallic, 

which contains the sample holder in teflon, fig. 2.14 shows both components). Fig. 2.13 

depicts this component together with two different perspectives, with the dimensions in 

mm. This teflon sample holder contains a central opening, 10 mm diameter, where the 

measurement copper electrode is introduced. The concentric hollow ring-shaped slit, with 

inner and outer diameters of 22 and 26 mm, is where the copper guard ring is placed, to 

prevent eventual surface currents from reaching the measurement electrode. In fig. 2.14 the 

teflon support plate can be seen, containing both the copper measurement electrode and 

the concentric guard ring. The sample is placed on the top of the measurement electrode in 

contact with the guard ring. Although not represented in fig. 2.13, there is a small hole that 

allows the connection of the guard ring to the ground. This hole is actually observable in 

fig. 2.14, in the metallic support plate (the purple component in fig. 2.11) where the teflon 

support plate is placed.  

 

 

 

 

Figure 2.13 The measurement electrode and 

sample teflon support plate. Two different 

perspectives are presented, with the 

dimensions specified in mm. 
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Fig. 2.14 provides an overview of the corona triode individual components and of 

the assembled system. The metallic ring stretches the grid so that it is parallel relative to the 

measurement electrode surface. The grid is made of stainless steel and it has 40 mesh per 

inch (as defined by the supplier), with a wire diameter of 0.2 mm. One of the requisites of 

the grid is to have a considerable higher surface area than the sample, which is achieved by 

the mesh structure and the thin-diameter wire. The distance between the grid and the 

measurement electrode, without sample, is 5 mm. Since our Ti substrates have a thickness 

of 1 mm, the grid/sample distance is 4 mm (the coating thicknesses are in the micrometric 

range, therefore negligible compared to the Ti substrates thickness). 

  

  

Figure 2.14 Photographs of the developed corona triode. In the left, the disassembled components 

can be observed. In the right, the assembled system. 

 

The central teflon lid (the blue component in fig. 2.11), is actually a two-piece 

structure, allowing to introduce the discharge point electrode and close the lid, as fig. 2.15 

depicts. The point electrode is a ceriated tungsten electrode (containing 2 wt% of cerium), 

15 cm in length and 3.2 mm diameter (except on the tip, obviously). Ceriated tungsten 

electrodes are generally recommended for DC applications and offer higher chemical 
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stability and longevity compared to pure tungsten electrodes. Thoriated tungsten 

electrodes are also very popular, however, thorium is a radioactive element, and some 

precautions have to be taken by the user. Therefore, we opted for ceriated tungsten. The 

distance between the point and sample can be easily changed, by just controlling how deep 

the electrode is inserted in the teflon lid as the right photograph of fig. 2.15 shows. When 

the total electrode length is inserted in the lid, the distance between the point and the 

measurement electrode is 7 cm. Thus, the distance between point/sample is approximately 

7 cm, disregarding the sample 1 mm thickness. 

 

 

 

 

 

Figure 2.15 The central teflon lid is a two-piece structure that allows to introduce the point 

electrode and to close the lid.  

 

On fig. 2.16 the metallic support plate (the purple component in fig. 2.11) for the 

teflon sample support plate, containing both the measurement electrode and the guard ring 

can be seen, in top and down views. The wire that is used to connect the guard ring to the 

ground is visible. In the down view, the screw-shaped base of the measurement electrode 

allows to make electrical connections, in this case, to the picoammeter, responsible for the 

measurement of the charging current, and to the grid voltage source.  
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Figure 2.16 Photographs showing top and down perspectives of the metallic support plate 

containing the teflon support plate for the measurement electrode and the sample. 

 

The electrical equipment used in the corona triode system is shown in fig. 2.17. In 

(A), the Keithley 6485 picoammeter can be seen, responsible, as it was aforementioned, for 

the measurement of the charging current flowing through the sample. It is able to measure 

currents ranging from 20 fA to 20 mA. In (B), the Stanford Research Systems, model PS325 

voltage supply is presented. It can apply DC voltages up to 2.5 kV, with a 10.5 mA current 

capacity and it is able to reverse the output polarity, allowing to control positive and 

negative corona discharges. This power supply is connected to the metallic grid, therefore 

being responsible for the grid voltage control. It is fundamental that both the picoammeter 

and the grid voltage source are able to be programmable, and in both cases, they can be 

connected to a computer through the GPIB protocol, for the feedback circuit software 

development. In (C), a Brandenburg 828-20 model, from the gamma series, high voltage 

supply is shown. This high voltage supply is able to apply positive DC voltages up to 30 

kV, with a 3 mA current capacity. Finally, in (D), a Brandenburg model 807R, from the 

Alpha series, is shown. The 807R model is able to apply both a positive or negative voltage, 

up to 30 kV, with a 1 mA current capacity. The Brandenburg high voltage sources are used 

since the seventies, particularly in the corona triode literature that is cited in the present 

topic.  
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Figure 2.17 The equipment used with the corona triode system. (A) Keithley 6485 picoammeter; 

(B) Stanford Research Systems, model PS325; (C) Brandenburg model 828-20, from the Gamma 

series and (D) Brandenburg model 807R, from the Alpha series. 

 

 Fig. 2.18 presents an overview of the entire experimental system. We have adapted 

a furnace so that we can introduce inside the corona triode through the top. The maximum 

temperature that the furnace reaches is 300 ºC, but with our system, the maximum 

temperature we can reach is 200 ºC, because of the teflon components we have in our corona 

triode. Inside the furnace we use thermal resistant silicone electrical cables. Additionally, 

we have introduced a silica-gel container inside the furnace. We did some tests and we 

concluded that the silica-gel container allows to obtain a low-humidity, reproducible 

atmosphere so that we do not have to consider it for the calibration curves since all the 

discharges are performed in essentially the same relative humidity conditions. 

Measurements performed with a Fluke 971 Temperature and Humidity Meter show that 

(A) (B) 

(C) (D) 
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the relative humidity values of the system at 200 ºC (the defined temperature to charge our 

samples) are below 10%. 

 

 

Figure 2.18 An overview of the experimental system. A furnace was adapted so that the corona 

triode can be introduced inside. Thermal resistant silicone cables are used inside the furnace. A 

silica-gel container is also placed inside the furnace, in order to obtain a low-humidity, 

reproducible atmosphere. 

 

The picoammeter and the 2.5 kV voltage supply are controlled by a feedback circuit 

software developed for this purpose. As mentioned, both equipments are connected to a 

computer (visible on fig. 2.18) through the GPIB protocol. This feedback circuit tries to 

maintain the charging current flowing through the sample at a constant user-defined value 

by continuously updating the grid voltage. Logically, the user has to select a reasonable 

charging current value, it is important to have in mind the magnitude of currents which we 

are dealing with. When we discussed fig. 2.1, it was mentioned that typical current 
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magnitudes in the drift region are in the few A range, for discharge potentials in the 10 - 

15 kV range. When the metallic grid is introduced between the point and the plane, typical 

current magnitudes in the grid/sample air gap will be in the few nA up to dozens of nA, for 

the same discharge potential range, depending, obviously, on the grid potential. This gap 

current can also be increased or decreased according to the grid characteristics, most 

importantly the wire diameter and mesh spacing, which define the grid ionic transparency. 

The grid characteristics that we have selected for our corona triode are based on the 

literature. One very recent trend in the potential applications of the corona triode is related 

to thin dielectric films [88]. Classically, the corona triode has been applied in micrometric 

films, polymers primarily. Thin films normally have considerably higher capacitances 

compared to micrometric films, which means that higher current magnitudes in the 

grid/sample gap are required, otherwise the charging process may take a non-practical long 

time, larger currents are required compared to micrometric films. For such purpose, 

metallic grids with higher ionic transparencies are being researched, together with other 

approaches such as creating an electrostatic lens (by applying a potential to the cylindrical 

metallic structure, for example) to further concentrate the ionic charge density and increase 

the current magnitude [88]. Returning to the discussion about the feedback circuit, the user 

must, therefore, define a reasonable constant charging current value, commonly in the 

range of a few nA. Fig. 2.19 shows a screenshot of the user interface panel of the developed 

feedback circuit program. The control parameters, which must be defined by the user, are 

highlighted in the panel, including a brief explanation of these parameters in the text box. 

“I0” is the charging current, as above mentioned. “Vcte Control” is a parameter that 

controls the grid voltage adjustments. A small value (1 or 2) is recommended to allow a fine 

adjustment of the grid voltage and a smaller error interval around “I0”. Finally, the 

“Sampling” parameter controls how fast the system responds, in other words, the time 

interval at which it reads the actual charging current value and adjusts the grid voltage. 

Usually, we define 1 or 1.5 seconds for this parameter. Two charts, “Current vs Time” and 

“Voltage vs Time” provide real-time information about the charging current value and the 

voltage applied to the grid. Note that, according to what we have discussed, the grid 

voltage is approximately equal to the sample surface potential minus a constant gap 
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potential drop, therefore the “Voltage vs Time” chart allows to follow the surface potential 

buildup in real-time, during the charging experiment. The user interface panel also includes 

a display “Current” which shows the charging current value and is continuously updated 

according to the defined “Sampling” value. In the end of the experiment, when the sample 

reaches the saturation surface potential, the user presses the “Save Data” button and a text 

file appears, containing three columns with the experimental data: the first column contains 

the time in seconds (the charging time, corresponding to the “Sampling” parameter), the 

second contains the correspondent charging current values and the third contains the 

correspondent grid voltage values. The user may subsequently save the text file wherever 

he wants. Additionally, when the “Save Data” button is pressed, the grid voltage is kept 

fixed at the surface saturation potential value, so that when the sample is cooled down to 

RT, both the corona discharge and the grid voltages are fixed. This ensures that the stored 

charged is “frozen” during the cooling step, which should be as fast as possible, as 

discussed in section 2.2. To increase the cooling rate, we use a large fan: we open the furnace 

door, as it is visible in fig. 2.18, and we place the fan in front of the furnace, directed to the 

corona triode. In about 25 minutes, the temperature in the sample region will drop from 

200 ºC down to about RT. Most of the time to reach RT is spent in the low-temperature 

range, the cooling rate is much faster in the high-temperature range, as expected. Similarly, 

the temperature versus time profile of a furnace that is cooling based only on its thermal 

inertia will be an exponential decay where the cooling rate is faster in the high-temperature 

range and much lower in the low-temperature range. If we did not use the fan, the time 

required to reach RT would be around 4 hours. 
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Figure 2.19 A screenshot showing the user interface panel of the developed feedback circuit 

software. The control parameters “I0”,” Vcte Control” and “Sampling” must be defined by the 

user. Two charts, “Current vs Time” and “Voltage vs Time”, provide real-time information about 

the charging current and the voltage applied to the grid electrode. The former essentially allows 

following the sample surface potential buildup in real-time.  

 

Besides the user interface panel, there is the block diagram where all the code is built 

and written. Due to intellectual property reasons and to the considerable effort that its 

development took, we will not show the code in this thesis. But, in a general way, it can be 

said that, among other features, the code contains three main cycles which correspond to 

three different conditions: if the charging current is lower than the defined constant value, 

if it is higher or if it is equal (this one is very unlikely to occur). Each cycle has a particular 

control equation so that, for example, if the charging current is lower than the defined 

constant value, the corresponding particular cycle is “activated” and the voltage applied to 

grid is increased according to the equation, which takes into account the “I0” and “Vcte 

Control” parameters. Another advantageous feature is undoubtedly the possibility to easily 

export and save the relevant experimental data. 
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2.1.3 Calibration curves of the system 

In addition to the feedback circuit, another software was developed in order to 

perform the “Current vs Grid Voltage” calibration curves, as and explained before. The user 

interface panel of such software is displayed in fig. 2.20. The control parameters are also 

highlighted, just as in the feedback program. “Voltage Step” is, as the name indicates, the 

voltage step applied to the grid during the calibration, “Sampling” in the waiting time for 

the current measurement (the voltage is applied to the grid and after the “Sampling” time 

the current is measured) and “Vmax Grid” is the maximum voltage to be applied in the 

grid. When the maximum voltage is reached and the final current value is measured, the 

voltage automatically drops to the minimum value that the source is able to apply and a 

text file containing two columns with the relevant experiment data, time, grid voltage and 

current, appears and may be saved by the user. The user interface panel also includes a 

“Current vs Grid Voltage” chart that shows the real-time evolution of the calibration plot. 

 

Figure 2.20 A screenshot showing the user interface panel of the developed calibration software. 

The control parameters “Voltage Step”, “Sampling” and “Vmax Grid” must be defined by the 

user.  
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It was decided to perform the corona charging of the samples at 200 ºC, the 

maximum service temperature of our experimental system. Moreover, the samples were 

subjected to a discharge of negative polarity, taking into account the almost general 

consensus in the literature and particularly the information presented in topic 1.1.9. The 

calibration curves of the system, obtained at 200 ºC and for a negative discharge, are shown 

in fig. 2.21. Four individual calibrations were performed, as the plots in the top show. Each 

curve is a polynomial fit of the data points. The calibration average curve is shown in the 

middle plot. The plot in the bottom is just the middle plot multiplied by the area of the 

electrode, and the reason for the inclusion of this plot will be explained later in chapter 3.  

The defined control parameters, according to fig. 2.20, are a voltage step of 5 V, a sampling 

time of 5 s and a maximum grid voltage of - 1000 V. The corona discharge potential was set 

at - 15 kV, and the point/measurement electrode and the grid/measurement electrode 

distances are 7 cm and 5 mm, respectively. These values, discharge potential and electrode 

distances, are well within the common range of values reported in the literature, as 

discussed before. It is interesting to note that the information which is required from the 

calibration curve in fig. 2.21 is essentially just a single point. To charge our samples we have 

to choose a constant charging current value: through the calibration curve, we know the 

approximately constant gap potential drop for that particular current. Hence, when we 

charge a sample with that particular current value, we are able to follow the surface 

potential buildup of the sample directly through the grid voltage: the sample surface 

potential is the grid voltage minus the constant gap potential drop. Moreover, as fig. 2.21 

shows, low charging current values imply lower gap potential drops. If the particular 

sample being charged with a low current value reaches a high surface potential saturation 

value, some authors even disregard the gap potential drop and directly assume the grid 

voltage to be approximately the surface potential of the sample. Either way, the sample 

surface potential buildup can be followed through the grid potential. 
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Figure 2.21 Calibration curves obtained for a 

negative discharge at 200 ºC. Above: four 

calibrations were performed, labeled as Cal1, 

(…), Cal4.  In the middle: the calibration 

average curve obtained from the four 

individual calibrations. Below: the current 

density plot multiplied by the surface area of 

the measurement electrode. The control 

parameters values (see fig. 2.20) are a voltage 

step of 5 V, a sampling time of 5 s and the 

maximum grid voltage is - 1000 V. The corona 

discharge potential was set at - 15 kV. The 

point/measurement electrode and 

grid/measurement electrode distances are fixed 

at 7 cm and 5 mm, respectively. 

 

 

2.2 Thermally stimulated depolarization currents (TSDC) 

Temperature is a key physical variable that influences the physical properties of a 

given system. The electric and dielectric properties of a given material are a function of it. 

For this reason, when studying such properties, researchers usually perform measurements 

by varying the system temperature and the frequency of the applied field. In a thermally 

stimulated process, a certain physical property is being measured while the sample under 

analysis is subjected to a controlled heating scheme. Depending on the property being 
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measured, different thermally stimulated experimental techniques can be identifiable: 

thermoluminescence, thermally stimulated electron emission, thermal desorption, 

differential thermal analysis, thermogravimetry, thermally stimulated depolarization and 

polarization currents, etc. [89].  

The measurement of TSDC allows to access useful information regarding the electric 

and dielectric properties of solid samples as a function of the temperature, notably 

processes related to dipolar polarization/depolarization and spatial charge detrapping. The 

technique was introduced by Bucci and collaborators, in 1964, as an effective tool for 

studying ionic electrical conductivity and other ionic mobility related processes [90]. 

Curiously, the technique was introduced under the designation “Ionic 

Thermoconductivity”, because at the dawn of its creation it was applied mainly on the 

analysis of ionic related processes. Later, due to its broader scope, the TSDC designation 

was adopted, including materials where both ionic and electronic charges contribute to the 

depolarization currents [91].   

 TSDC measurements are usually performed on electrically polarized samples. To 

electrically polarize the sample, it is usually taken to a temperature high enough so that the 

relaxation time of the material polarizable components is small enough. Under such 

conditions, when a suitable dc electric field is applied, the polarization should reach its 

saturation condition in a short time period. Consider fig. 2.22, which outlines the 

experimental procedure for a TSDC experiment [34, 92, 93]. The main steps, illustrated in 

fig. 2.22, are the following: 

1. The sample is heated up to a temperature Tp, the polarization temperature. Then a 

suitable dc electric field Ep, the polarization field, is applied between the electrodes 

in contact with the sample for a given time tp, the polarization time. At such 

temperature Tp, the saturation polarization should be reached in a relatively short 

time period.  

2. The sample is cooled down to a temperature T0, preferably under a fast cooling rate, 

keeping the field Ep applied. At such temperature, T0, the polarization (or part of 

the polarization) becomes “frozen”, since the thermal energy is not high enough to 
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promote the return of the charge carriers to the equilibrium positions, even if Ep is 

removed. In fig. 2.22, T0 is represented as RT, but of course, it could a much lower 

temperature. For instance, many polymers and materials that depolarize fast at RT, 

the temperature T0 has to be considerably lower.  

3. Ep is removed and the sample is short-circuited (the SC step in fig. 2.22) during a 

few minutes, in order to remove possible weakly bounded charges. 

4. After the SC step, the sample is connected to a sensitive electrometer or 

picoammeter. 

5. The sample is heated under a constant heating rate (common rates are between 1-

10 ºC/min) and the short circuit depolarization current is continuously measured 

as a function of the temperature (or time, one quantity can be easily converted in 

the other, because the heating rate is constant).  

Fig. 2.22 also depicts the behavior of the charge current Ic and of the discharge (or 

depolarization) current Id. The charge current increases while Ep is being applied until it 

saturates. The depolarization processes can be detected as current peaks in an Id (or Id 

density) versus temperature/time plot: each depolarization process becomes detectable 

when its relaxation time is low enough, generating a depolarization current which increases 

with temperature, reaches a maximum, and finally falls to zero when the equilibrium 

distribution is attained.  

 

 

 

Figure 2.22 Scheme of a typical TSDC 

experiment, outlining the sample 

temperature, the applied electric field, the 

charge current Ic and the depolarization 

current Id [34, 92, 93]. 
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However, the situation presented in fig. 2.22, where the depolarization processes 

yield temperature resolved, well-defined peaks, may not always happen. Sometimes, many 

depolarization processes will appear as shoulders and may overlap with other 

depolarization processes or thermally activated intrinsic conductivity of the material. The 

thermal cleaning technique can be used to separate the depolarization peaks. Assume that 

two processes have peak temperatures T1 and T2, where T1 < T2. The low-temperature peak 

can be cleaned by raising the temperature to an intermediate temperature between T1 and 

T2, and subsequently cooling the sample. This procedure should erase (or at least almost 

totally) the low-temperature peak. To clean the T2 peak, the sample should be polarized at 

a temperature Tp, T1 < Tp < T2, for a time period which fulfills the condition t ≈ 1(Tp) << 2(Tp), 

i.e., at Tp, the polarization during a time t saturates the low-temperature process while the 

high-temperature process should appear very weak (if it appears) [91]. However, despite 

the existence of the thermal cleaning technique, which is commonly done to analyze TSDC 

spectra is to perform deconvolutions, which allows separating and analyzing each 

individual peak separately. Peaks appearing as shoulders can also be detected when the 

depolarization is overlapping with background thermally activated conductivity, which in 

the case of ionic conductivity, presents an exponential dependency with the temperature. 

In our publication, for example, such overlapping with background thermally activated 

ionic conductivity is visible [34]. 

 Different physical mechanisms may contribute to the measured depolarization 

current, of which we can highlight [91]:  

1. Orientation and alignment of permanent electric dipoles within the material – 

dipolar polarization. This applies to polar materials, which contain permanent 

electric dipoles within their structure.  

2. Displacement of the electronic cloud within atoms or ions (induced electronic 

polarization) and small displacement of ions within the molecules (induced dipolar 

polarization).  

3. Ionic space charge polarization. Ions or ionic vacancies can accumulate in 

heterogeneities, such as grain boundaries in polycrystalline materials, the interface 
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between the sample and the electrodes and amorphous/crystalline interfaces in 

glass-ceramic materials and semi-crystalline polymers.  

4. Injection of electrons and/or holes from the electrodes into the sample. 

5. Migration of ionic charge carriers can leave defects in the structure that form 

electric dipoles.  

Each particular mechanism has distinct characteristic response timescales: while 

process 2 is the fastest and responds almost instantaneously to the applied field, due to the 

low inertia of the electrons, the other ionic mechanisms will require more time to reach the 

saturation condition. Such time is given by the characteristic relaxation time (T), which is 

a function of the temperature. Recalling topic 1.1.8, the polarization mechanisms of Hap are 

a practical example of the mechanisms 3 and 5, with a dominance of the space charge 

trapping mechanism in Hap.  

 The physical-mathematical formalisms behind TSDC will now be discussed. The 

following model can be also applied to space charge detrapping mechanisms, although 

usually the derivation of the model is traditionally shown assuming a dipolar process.  

Consider the depolarization of dipoles with a single relaxation time, i.e., a dielectric 

material with one type of non-interacting dipoles in a reasonable diluted concentration [91]. 

This is an approximation of real physical systems, although this model is probably the most 

popular when analyzing and treating TSDC spectra. In these conditions, the depolarization 

kinetics is of the first order, i.e., it can be described by the following rate equation [91, 94]:    

−
𝑑𝑃(𝑡)

𝑑𝑡
=
𝑃(𝑡)

𝜏(𝑇)
 (15) 

where (T) is the characteristic relaxation time, a function of the temperature. Integration 

of equation 15 yields equation 16: 

𝑃(𝑡) = 𝑃0𝑒𝑥𝑝 [−∫
𝑑𝑡

𝜏(𝑇)

𝑡

𝑡0

] (16) 

 where t0 is the beginning time of the TSDC measurement and P0 is the saturation 

polarization (or equilibrium polarization, more rigorously, because the total possible 

polarization of the sample may not be saturated when beginning the measurement, 
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depending on the polarization process parameters, Tp and Ep), i.e., the polarization before 

the start of the measurement. P0 is expressed as:  

𝑃0 = 𝑁𝑝√𝑐𝑜𝑠𝜃 (17) 

where N is the dipole density, p is the individual dipole moment and is the angle between 

the dipoles and the electric field. Considering the approximation of non-interacting rotating 

dipoles, their spatial orientation can be expressed by:  

√𝑐𝑜𝑠𝜃 =
𝑝𝐸𝑝

3𝑘𝐵𝑇𝑝
 (18) 

where kB is the is the Boltzmann constant, Ep the polarization field (applied field) and Tp the 

polarization temperature. The combination of equations 17 and 18 yields the Langevin-

Debye equation [33, 91, 94]:  

𝑃0 =
𝑁𝑝2𝐸𝑝
3𝑘𝐵𝑇𝑝

 (19) 

 According to equation 19, the dipolar polarization is proportional to the field Ep.  

The depolarization current [or current density J(T)] being measured in a TSDC 

experiment “follows” the return of the aligned dipoles or trapped space charge to the 

equilibrium states, being expressed as a time variation of the polarization [33, 91, 94, 95]: 

𝐽(𝑇) = −
𝑑𝑃(𝑡)

𝑑𝑡
=
𝑃(𝑡)

𝜏(𝑇)
 (20) 

The combination of equations 16 and 20 yields equation 21: 

𝐽(𝑇) =  −
𝑃0
𝜏(𝑇)

𝑒𝑥𝑝 [−∫
𝑑𝑡

𝜏(𝑇)

𝑡

𝑡0

] (21) 

One of the advantages of using a linear heating rate is that it is possible to easily 

convert time in temperature. The relationship between both physical quantities is: 

𝛽 =
𝑑𝑇

𝑑𝑡
 (22) 

where β is the heating rate. The integration limits in equation 20 can be expressed in 

function of the temperature: 
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𝐽(𝑇) = −
𝑃0
𝜏(𝑇)

𝑒𝑥𝑝 [−
1

𝛽
∫

𝑑𝑇

𝜏(𝑇)

𝑇

𝑇0

] (23) 

 In many physical systems, particularly in ionic solids, the temperature dependence 

of the relaxation time is described by an Arrhenius dependence [91, 94, 95]: 

𝜏(𝑇) = 𝜏0𝑒𝑥𝑝 (
𝐸𝑎
𝑘𝐵𝑇

) (24) 

where 0 is a pre-exponential factor, which can be interpreted as the relaxation time when 

the temperature tends to infinite, and Ea is the activation energy for the depolarization 

mechanism. Deviations from the Arrhenius law are reported mostly for organic materials, 

such as organic polymers. In those cases, the temperature dependence of the relaxation time 

may follow other laws, such as Eyring type equations or the WLF equation. We will focus 

on Arrhenius dependency. According to equation 24, equation 23 can be rewritten as [91, 

94, 95]: 

𝐽(𝑇) =
𝑃0
𝜏0
𝑒𝑥𝑝 [−

𝐸𝑎
𝑘𝐵𝑇

] 𝑒𝑥𝑝 [−
1

𝛽𝜏0
∫ 𝑒𝑥𝑝 (−

𝐸𝑎
𝑘𝐵𝑇′

) 𝑑𝑇′
𝑇

𝑇0

] (25) 

Equation 25 is often used as a theoretical model for fitting TSDC spectra, and it 

describes the temperature dependence of the depolarization current. If necessary, and 

sometimes it is, the fitting includes an exponential term to fit the background thermally 

activated intrinsic (of the material) ionic conductivity, and therefore subtract it from the rest 

of the fitting, as reported by Horiuchi et al., for instance [33]. In equation 25, the first 

exponential term dominates the behavior for lower temperatures, describing the rise of the 

depolarization current as the charge starts to return to the equilibrium positions. The 

second exponential dominates for higher temperatures, gradually slowing down the 

current rise, especially for high activation energies [94].  

Substituting the Langevin-Debye equation (equation 19) into equation 25 we get [91, 

94, 95]: 

𝐽(𝑇) =
𝑁𝑝2𝐸𝑝
3𝑘𝐵𝑇𝑝𝜏0

𝑒𝑥𝑝 [−
𝐸𝑎
𝑘𝐵𝑇

] 𝑒𝑥𝑝 [−
1

𝛽𝜏0
∫ exp (−

𝐸𝑎
𝑘𝐵𝑇´

)𝑑𝑇′
𝑇

𝑇0

] (26) 

Equation 26 is known as the Bucci-Fieschi theory. 
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 The depolarization current reaches its maximum at the peak temperature Tpeak, and 

it can be obtained by differentiating equation 26 in order to find the maximum [91, 94]: 

𝑇𝑝𝑒𝑎𝑘 = √[
𝛽𝐸𝑎𝜏0
𝑘𝐵

𝑒𝑥𝑝(
𝐸𝑎

𝑘𝐵𝑇𝑝𝑒𝑎𝑘
)] (27) 

 According to equation 27, it can be seen that Tpeak is independent of both Ep and Tp, 

being a function of the heating rate , 0 and Ea. When  is increased, the stored charge has 

to be released in a shorter time, and the dielectric material responds slowly. Therefore, the 

peak shifts to higher temperatures and increases its amplitude ( also influences the peak 

amplitude). Fig. 2.23 displays the effect of the variation of on the TSDC spectra measured 

in AgCl: 700 ppm Ni crystalline samples [94]. As can be seen in fig. 2.23, a significant effect 

on the peak displacement and intensity will only be observed for extensive variations of 

. 

 

Figure 2.23 The effect of the variation of 

the heating rate on the TSDC spectra 

measured in AgCl: 700 ppm Ni [94]. 

 

 

The area of a TSDC spectrum, current density versus temperature, yields the total 

stored charge density of the sample, according to equation 28: 

𝑄𝑝 =
1

𝛽
∫ 𝐽(𝑇)𝑑𝑇 = 𝑃0

∞

𝑇0

 (28) 

For a peak due to ionic dipolar depolarization, the area of the peak can be used to 

estimate the dipole density N [91]: 

∫ 𝐽(𝑇)𝑑𝑇 =
𝑁𝑝2𝐸𝑝

3𝑘𝐵𝑇𝑝

∞

T0

 (29) 
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For a peak due to space charge detrapping, another equation can be applied, 

assuming that all the trapped charges have approximately the same mobility. In this 

approximation, the equation becomes: 

∫ J(T)dT
∞

T0

= 2𝑞𝐿𝑣𝑁𝑡𝑝𝑒𝑥𝑝 (−
𝐸𝑎
𝑘𝐵𝑇

) 𝑠𝑖𝑛ℎ(
𝑞𝐿𝐸𝑝
2𝑘𝐵𝑇𝑝

) = 𝑃𝑆𝐶𝑠𝑖𝑛ℎ (
𝑞𝐿𝐸𝑝
2𝑘𝐵𝑇𝑝

) (30) 

where q is the ionic charge, L is the ionic jump length, v is the jump frequency, N is the 

density of the trapped charge, tp is the polarization time (the time during which Ep is 

applied, at the polarization temperature Tp) and Ea is the activation energy for detrapping 

the charge carriers (the energy required to activate a jump). Considering equations 29 and 

30, it is visible that the dipolar and space charge depolarizations have distinct dependencies 

on the field Ep. While in equation 29 it is linear, in equation 30 the relation is hyperbolic. 

This fact is often used to distinguish or determine the physical mechanism behind a given 

depolarization peak, by analyzing the dependence between the polarization and the 

applied field Ep.  

The application of equation 25 to adjust the experimental data can be a difficult task, 

the primary problem is that the integration leads to a convergent infinite series, and so 

approximations have to be considered [96]. According to R. Chen, for the case 𝑇 = 𝑇0 + 𝛽, 

where β is the linear heating rate, the integral can be written as [89]: 

∫ 𝑒𝑥𝑝 (−
𝐸𝑎
𝑘𝐵𝑇´

) 𝑑𝑇´
𝑇

𝑇0

= 𝐹(𝑇, 𝐸𝑎) − 𝐹(𝑇0, 𝐸𝑎) (31) 

where 𝐹(𝑇, 𝐸𝑎) = ∫ 𝑒𝑥𝑝 (−
𝐸𝑎

𝑘𝐵𝑇´
)𝑑𝑇′

𝑇

0
. Since 𝐹(𝑇, 𝐸𝑎) is a function that rises sharply with the 

increase of the temperature, 𝐹(𝑇0, 𝐸𝑎) can be disregarded. One possible way to calculate 

𝐹(𝑇, 𝐸𝑎) is through an asymptotic expansion of the integral. 𝐹(𝑇, 𝐸𝑎) can be written as: 

𝐹(𝑇, 𝐸𝑎) = 𝑇𝑒𝑥𝑝 (−
𝐸𝑎
𝑘𝐵𝑇

)∑ (
𝑘𝐵𝑇

𝐸𝑎
)
𝑛

(−1)𝑛−1(𝑛!)

𝑁

𝑛=1

 (32) 

For the case when N = 1, the following approximation of equation 32 can be written: 

𝐽(𝑇) ≅
𝑃0
𝜏0
𝑒𝑥𝑝 (−

𝐸𝑎
𝑘𝐵𝑇

) 𝑒𝑥𝑝 [−
1

𝛽𝜏0

𝑘𝐵𝑇
2

𝐸𝑎
𝑒𝑥𝑝 (−

𝐸𝑎
𝑘𝐵𝑇

)] (33) 
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Similar expressions are found when the relaxation time (T) follows other laws: for 

example, if (T) obeys the Eyring theory, T2 must be replaced by T3  [94]. Some authors prefer 

to present equation 33 in the following form: 

𝐽(𝑇) = 𝐴𝑒𝑥𝑝 (−
𝐸𝑎
𝑘𝐵𝑇

)𝑒𝑥𝑝 [−𝐵
𝑘𝐵𝑇

2

𝐸𝑎
𝑒𝑥𝑝 (−

𝐸𝑎
𝑘𝐵𝑇

)] (34) 

where A, B and Ea are adjusting parameters (Ea is the activation energy).  Ea and A can be 

determined by the initial rise method, first introduced by Garlick and Gibson [97]. This 

method is based on the fact that for temperatures lower than the peak temperature (T < 

Tpeak), the integral in equation 25 is negligible, and the equation is simplified as: 

𝐽(𝑇) = 𝐴𝑒𝑥𝑝 (−
𝐸𝑎
𝑘𝐵𝑇

) (35) 

Thus, Ea and A can be estimated through a linearization related to equation 35: 

𝑙𝑛(𝐽(𝑇)) = ln(𝐴) −
𝐸𝑎
𝑘𝐵𝑇

 (36) 

The B parameter can be calculated based on the peak temperature Tpeak and in Ea, 

according to equation 37 [94]: 

𝑇𝑝𝑒𝑎𝑘 = √[
𝐸𝑎
𝑘𝐵𝐵

𝑒𝑥𝑝(
𝐸𝑎

𝑘𝐵𝑇𝑝𝑒𝑎𝑘
)] (37) 

By knowing B, one can determine 0 and then  therelaxation time associated with 

a particular depolarization peak.  

As a small note, in the initial rise method, only temperatures in the initial part of the 

depolarization peak can be used. Furthermore, the current values used in this method for 

the Ea calculation should be less than 10% of the peak current value [98]. 

 

2.3 CoBlast 

The CoBlast system used to produce the samples studied in this thesis is at the 

facilities of the Portuguese company Ceramed, S.A., which develops its activity in the 

biomaterials area, particularly, it is specialized in coatings for medical devices. Its services 
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include PS Hap and Ti coatings and PVD (physical vapor deposition) coatings. Ceramed 

had some collaborations with ENBIO, and through those collaborations, ENBIO provided 

a CoBlast equipment to the Portuguese company. Following the “chain of collaborations”, 

some elements of our research group at the University of Aveiro, “Physics of Advanced 

Materials and Devices” (PAMD – belongs to the associate laboratory i3N) have 

collaborations with Ceramed, which made it possible to use the CoBlast process in this 

thesis.  

Fig. 2.24 shows the CoBlast equipment in the Ceramed facilities and the inside view 

of the processing chamber, with a single nozzle configuration. The system supports up to 

four axes of movement: the usual x, y and z axes and a rotation axis w. The equipment is 

connected to a proper powder extraction system, to prevent the release of powder to the 

environment. It is also connected to a compressed air supply necessary for various 

operations, such as several purge operations, electronics chamber purge, etc. Since the 

equipment requires clean and dry air, it contains an air drier membrane that provides 

supplementary moisture and oil removal (the compressed air supply system in Ceramed 

has already a drying system, therefore the membrane in the equipment indeed provides a 

supplementary action).     

 

 

Figure 2.24 (A) The CoBlast equipment in Ceramed. (B) Inside view of the deposition chamber, 

with a single nozzle configuration. 
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This system provides different part tooling which allows coating pieces with 

different geometries. Fig. 2.25 displays such part tooling. A platform and two mandril 

tooling are available. The mandril tooling allows coating cylindrical shaped pieces, like 

dental implants, while the platform is suitable for flat pieces.  

 

 

Figure 2.25 Different part tooling available to coat pieces with different geometries. A platform 

(which is also visible in fig. 2.24) and two mandril tooling are available. 

 

The processing chamber contains a base spindle with an O-ring where the part 

tooling connects and becomes attached through vacuum pulling. All the tooling have 

similar bases that connect to the chamber base spindle, having also seven setscrews that 

allow the software to recognize the part tooling being connected. In fig. 2.24 it is possible to 

see the platform attached to the base spindle.  

The equipment contains also a user interface, as depicted in fig. 2.26, which allows 

the user to select the coating program, to activate the vacuum in order to attach the part 

tooling, etc. In case of any coding error or if the part tooling is not detected, for example, a 

yellow warning is displayed by the interface listing the detected problems. It also shows 

the time required to complete the selected program. 
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Figure 2.26 The CoBlast system user interface. This interface allows the user to select the coating 

program, to load the part tooling, to display error messages, etc.  

 

The coating programs are developed in industry standard G- and M-codes. These 

codes are widely used computer numerical control language and allow controlling the 

movement of machine tools over a coordinate system. G-codes control those movements 

and M-codes control other several items, such as blasting control, calling subroutines, etc. 

A quick programming reference for G- and M-codes are included in table 2.1.  

 

Table 2.1 A quick programming reference for G- and M-codes. 

 

The metallic substrates coated in this work are Ti grade II squares, with 25 mm of 

side length and 1 mm of thickness. Thus, the platform part tooling was used. An example 

of a G-code developed to coat the Ti substrates is provided below, with some comments 

G00 Fast move R Arc radius (use with G02 or G03)

G01 Vector move S Set rotational speed

G02 Clockwise arc, circle or helix F Set feedrate 

G03 Counter clockwise arc, circle or helix X X-axis value

G04 Hold position Y Y-axis value 

G10 Define position Z Z-axis value 

G28 Home axes W w-axis value

G90 Use absolute coordinates P Parameter value (used with G02, G03, G04 and M98)

G91 Use relative coordinates I Circle center axis 1 (used with G02 or G03)

M03 Start rotational axis clockwise J Circle center axis 2 (used with G02 or G03)

M04 Start rotational axis counter clockwise T Time parameter (used with M08)

M05 Stop rotational axis N Line number

M30 End program () Comment

M98 Call subroutine ^ Scaling (used with G00, G01, G02 and G03)
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about the function of the particular code line. The structure and rules concerning the 

development of the codes can be consulted in the manual of the CoBlast equipment.  

[Filename] 
name=Fase2_PrezasVF 
 
[Requirements] 
PartTooling=COUPON_TRAY (this is the platform part tooling) 
 
[Parameters] 
units=mm 
 
[ProgramData] 
N10 G91 (use relative coordinates – relative to the default position of the nozzle, visible in fig. 
2.25) 
N20 G00 y60   
N30 G01 x100 z26 F33 (lines N20 and N30 move the nozzle to desired starting position before starting 
the deposition) 
N40 G04 P10 (wait 10 seconds) 
 
N50 G01 x-100 F13 
N60 G01 y-2.5 F13 
N70 G01 x100 F13 
N80 G01 y-2.5 F13 
N90 G01 x-100 F13 
N100 G01 y-2.5 F13 
N110 G01 x100 F13 
N120 G01 y-2.5 F13 
N130 G01 x-100 F13 
N140 G01 y-2.5 F13 
N150 G01 x100 F13 
N160 G01 y-2.5 F13 
N170 G01 x-100 F13 
N180 G01 y-2.5 F13 
N190 G01 x100 F13 
N200 G01 y-2.5 F13 
N210 G01 x-100 F13 
N220 G01 y-2.5 F13 
N230 G01 x100 F13 
 
N240 G04 P1 (wait 1 second) 
N250 G28 (move the nozzle to the default position) 
N260 M30 (end program) 

 

 This particular code was made to coat 4 Ti substrates, fixed in the platform one after 

the other so that a compact row is obtained. In line N40, it is defined a 10 s pause before 

starting the deposition. In this pause, we start the powder (fig. 2.27) and we set the blast 

pressure to the desired value. The code section comprising lines N50 up to N230 correspond 

to the deposition/blasting period: the nozzle performs 10 sweeps along the length of the 

substrate, with a federate of 13 mm/s, each sweep being separated 2.5 mm from each other 

(this is what we will call later the “offset” variable). In line N30, when we define “z26”, it 

means that for this particular case the deposition vertical distance between the nozzle and 
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the substrates is 20 mm (this is one the process variables that we studied, as it will be 

discussed).  

 Another important factor to be considered is the powder feeding system. Since a 

mixture of abrasive and dopant powders are used, it is important to mix the powder 

properly, so that, when using different abrasive/dopant weight ratios, such ratio remains 

approximately homogeneous through all the powder mixture. Fig. 2.27 shows the powder 

feeder Single-10C system, from Sulzer Metco, with 1100 cm3 of capacity. In (B) a detailed 

scheme of the powder feeder is shown, indicating the different components. The powder 

feeder contains a rotating disk with a powder groove, a spreader and a suction unit. In each 

complete rotation of the disk, all the powder contained in the groove is ejected to the 

processing chamber through the suction unit. The powder groove volume is 5.78 cm3, 

therefore, this volume of powder will be ejected per rotation. Thus, knowing the density of 

the bulk powder, the mass flow rate can be calculated using equation 38:  

𝑚̇ =  𝑉𝑔𝑟𝑜𝑜𝑣𝑒 × 𝜌𝑏𝑢𝑙𝑘 × 𝑟𝑝𝑚 (38) 

Since the time of each coating program is known, it is possible to have fairly good control 

of the mass of powder spent by each program. 

 

 

Figure 2.27 (A) The Single-10C powder feeder system from Sulzer Metco, with 1100 cm3 of 

capacity. (B) Detailed scheme of the powder feeder, identifying the different components. 
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Before placing the powder in the powder feeder, the dopant and abrasive have to be already 

properly mixed. For such purpose, a V-blender is used. There are three popular 

shapes/geometries of tumble blenders: the double cone, the slant cone and the V-blender, 

also known as the twin shell blender. These types of blenders rely on gravity to cause the 

powder to cascade within the rotating container, and they are known by their high 

efficiency and short blending times [99]. The V-blender is made of two hollow cylindrical 

shells joined at an angle between 75 and 90º. As the blender tumbles, the powder mixture 

is continuously splitting and recombining. This is a case of blending promoted by diffusion, 

characterized by small scale random motion of the solid particles. The blender movements 

enhance the mobility of the individual solid particles, promoting the diffusive blending. V-

blender is among the most popular choices when precise blending formulations are 

required and when some of the mixture elements have low weight percentages of the total 

mixture. Typical blending times are in the range of 5-15 minutes. The blending efficiency 

depends also on the volume of material inserted in the blender: the ideal fill-up volume is 

in the range of 50 to 60 % of the blender volume. For higher percentages, the time required 

for proper blending may be doubled. The rotation speed is another important factor in 

determining the blending efficiency. Low speeds yield low shear forces, while higher 

speeds may cause significant dusting, through the segregation of fine powders: for higher 

speeds the fines become airborne and then when the rotation stops they settle on the top of 

the power bed. There is a critical speed when this process starts to happen, and V-blenders 

are usually operated at 50 to 80% of the critical speed. Rotation rates in the 8-24 rpm range 

are reported to exert little influence on the mixing mechanism, i.e., the diffusion mechanism 

applies, and in this range, the mixing time is inversely proportional to the rotation rate [99]. 

Hence, rotation rates near 24 rpm lead to faster blending times. The blender used in this 

work is a prototype made of polytetrafluoroethylene (PTFE) machined according to the 

dimensions described in Brone et al., as shown in fig. 2.28 [99]. The blender, with an inner 

volume of 1 liter, is connected to a three-phase motor which creates a rotational rate of 20 

rpm.   
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Figure 2.28 (A) A planning scheme of the V-blender according to Brone et al. Photograph of the 

V-blender in the Ceramed facilities. 

 

Concerning the CoBlast samples, they were produced at the Ceramed facilities, and 

different sets of samples were obtained. The rationale behind the first set of samples was to 

explore a broad set of CoBlast process parameters. The studied process parameters were 

the blast pressure, the blast distance and the weight ratio between dopant and abrasive. 

Table 2.2 shows the process parameters set for the first set of samples. Three samples were 

produced for each set of process parameters, so, 81 samples result from table 2.2. The 

samples were labeled in such a way that the process parameters are easily identifiable, for 

example Z20_P5_50/50 or Z30_P4_65/35 

 

Table 2.2 The CoBlast process parameters defined for the first set of samples. 

 

Composition (wt%)

50/50 Hap/Alumina 4 bar 5 bar 6 bar 4 bar 5 bar 6 bar 4 bar 5 bar 6 bar

65/35 Hap/Alumina 4 bar 5 bar 6 bar 4 bar 5 bar 6 bar 4 bar 5 bar 6 bar

35/65 Hap/Alumina 4 bar 5 bar 6 bar 4 bar 5 bar 6 bar 4 bar 5 bar 6 bar

Blast distance: Z = 10 mm Blast distance: Z = 20 mm Blast distance: Z = 30 mm
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Additionally, the blasting offset was also studied as a process parameter. The 

samples in table 2.2 were produced with a defined offset of 2.5 mm. In addition, offset 

values of 1.5, 3 and 3.5 mm were considered, as displayed in table 2.3. Thus, 9 more samples 

are included in table 2.3, making a total of 90 samples produced for the first set of samples. 

 

Table 2.3 The blasting offset, a process parameter also considered in the first set of samples.  

 

  

In the second set of samples, the process parameters were reduced/filtered 

according to the interpretation of the results of the structural and morphological analysis 

of the first set of samples. Thus, to discuss the second set of samples it is necessary to discuss 

the results of the analysis of the first set of samples. Since this is the “Experimental details” 

chapter, it is logical to discuss them in the subsequent chapter, the “Results and 

Discussion”.    

 

2.4 Tensile pull-off tests 

The mechanical performance of a bioceramic coating depends on the adhesion of 

the coating to the metallic substrate and on the intra-coating properties. The adhesion is 

thought to be determined to a higher extent by the mechanical interlocking between the 

coating and the substrate. Chemisorption and epitaxial/topotaxial processes are also 

considered to be important contributors to the coating adhesion. This “importance degree” 

of such processes is still under discussion in the literature, because they are not easily 

quantifiable. However, they are thought to be more important in high-temperature 

processes, for example, plasma-based processes where, thermally activated bonding 

mechanisms may be activated. The adhesion of the coatings is governed by three main 

mechanisms [4]: 

Composition (wt%)

50/50 Hap/Alumina Off: 1.5 mm Off: 3 mm Off: 3.5 mm

Blast distance: Z = 20 mm
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1. Mechanical interlocking: As discussed, the metallic substrate surface roughness has 

a very important role. In PS, the metallic substrate surface is grit blasted prior to 

Hap deposition, in order to purposely create a large surface roughness to promote 

a higher degree of mechanical interlocking. In some cases, the adhesion strength 

was found to be directly proportional to the roughness magnitude. In the case of 

high-temperature deposition processes, the totally or partially molten droplets 

impacting the surface must have sufficient plasticity, low viscosity and good 

wettability in order to adhere and cover the surface roughness. Otherwise, the 

substrate surface will only be partially covered and voids will occur at the 

surface/coating interface, hindering the mechanical adhesion. 

2. Physical adhesion: This mechanism is governed by diffusive bonding, where the 

diffusivity increases with increasing contact temperature according to Fick’s law. 

In principle, this kind of adhesion could be enhanced by substrate preheating 

treatments. Nonetheless, due to the small diffusion depth (caused by the fast 

solidification rate), this mechanism is generally assumed to play only a minor role 

as an adhesion mechanism.  

3. Chemical adhesion: as mentioned, they may play a relevant role, particularly for 

high-temperature processes. This adhesion mechanism may involve the formation 

of a metallurgical-like bond at the substrate-coating interface. However, despite the 

fact that the bond may be strong, normally it is not referred as a metallurgical or 

chemical bond. For example, a metallurgical bonding would require some alloying 

of the materials at the interface, which typically is not observed in PS coatings. The 

truth is that this kind of adhesion mechanism is still not well explained and clear in 

the literature.  

These mechanisms have influence over different length scales: they are classified as 

micro-bonding or macro-bonding according to their influence area. Micro-bonding is 

assigned to bonding that occurs along very small surface areas, the size of an individual 

particle of sprayed powder. Macro-bonding occurs along much larger areas, one or two 

orders of magnitude larger. Therefore, macro-bonding mechanisms relate to mechanical 

interlocking processes while micro-bonding relates to chemical adhesion mechanisms.  
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Tensile pull tests are usually recommended for qualification and test control of Hap 

coatings intended for commercialization. ASTM F1147 standard requires a static tensile 

strength higher than 15 MPa for PS Hap coatings. It should be noted that most of the 

standards are defined having in mind the PS coatings, however, these standards are also 

the basis to test different coating processes. To determine the static tensile strength of the 

coating the standard provides a methodology that is essentially a tensile pull-off test. In a 

tensile pull test, the bonding strength (or cohesive strength, depends on the failure mode) 

of the coating is determined by the maximum tensile load required to separate the two test 

fixtures with a cross-sectional area A: the strength is given by the force divided by the area. 

There are different failure modes on a tensile pull-off test, illustrated in fig. 2.29. If the 

failure occurs at the coating/substrate interface the failure is adhesive and the reported 

value provides the adhesive strength of the coating. The failure can also occur within the 

coating, and in this case, the reported value provides the cohesive strength of the coating. 

The failure can also occur within the adhesive, which marks a poor test unless the failure 

strength is higher than the value required for the qualification of the Hap coating. In such 

case, the test is valid, because in that case it is known for sure that the cohesive or adhesive 

strength of the coating is higher than the value required in the standard.  

 

 

 

 

Figure 2.29 The possible failure modes in a tensile pull-

off test. A failure within the adhesive is considered a poor 

test unless the failure strength is higher than the value (15 

MPa) required by the standard ASTM F1147.  
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The standards usually specify some requirements for the testing equipment. The 

ASTM F1147 deals with Hap coatings. The ASTM C633-13 standards deal particularly with 

the adhesion of thermal sprayed coatings. Fig. 2.30 depicts the ASTM C633-13 adhesion 

testing principle. A pull force is exerted on steel test cylinders with a diameter of 25 mm. 

The coating to be tested is sprayed on the surface of one the cylinders and glued to the other 

cylinder. The adhesive must have a cohesive strength higher than 15 MPa. In general, in an 

academic context, researchers are not particularly worried about the conditions established 

in the standard, for example, the diameter of the cylinders, etc. They will just use the 

equipment they have available to perform mechanical tests. However, when 

commercialization is intended, the standards have to be followed. For such purpose, 

specialized companies are usually the solution in order to certify the coatings according to 

the methodologies defined in the standards. 

 

 

Figure 2.30 The ASTM C633-13 adhesion 

testing principle. A pull force is exerted on 

steel test cylinders with a diameter of 25 

mm. The coating to be tested is sprayed in 

the surface of one of the cylinders and 

glued to the other cylinder [100].  

 

 

2.5 In vitro biological tests 

The in vitro biological tests on the coatings charged through our corona triode 

experimental system were carried out at the lab facilities of the CENIMAT (Center of 

Materials Research) research center, belonging to the i3N (Institute for Nanostructures, 

Nanomodelling and Nanofabrication) associate laboratory. In particular, they were 
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performed in collaboration with researchers of the Soft and Biofunctional Materials Group 

(SBMG).  

The in vitro biological tests comprised two components: immersion of the charged 

coatings in an SBF solution for different times and osteoblastic proliferation and metabolic 

activity tests. Thus, as discussed in topic 1.1.9, both components of the bioactivity level 

enhancement induced by the stored charge in the coatings are tested: the bioactivity 

enhancement in the physiological media related to the interaction of its ionic content with 

the charged coating, tested through the SBF solution, and the stimulation of the cellular 

activity, tested through the osteoblastic proliferation and metabolic activity tests. 

The main goal of the SBF tests was to study the variation, in function of the 

immersion time, of the concentration of the Ca2+ and P5+ ions, as well as the pH value. For 

the SBF solution preparation, 750 ml of high purity deionized water were introduced in a 1 

L capacity glass beaker. A magnetic stirrer was also introduced in the beaker and the system 

was placed in a hot plate/magnetic stirrer, at 37 ºC under a constant stir rate.  Subsequently, 

the following reagents were added in the following order: 7.996 g of NaCl, 0.350 g of 

NaHCO3, 0.224 g of KCl, 0.228 g of K2HPO4.3H2O, 40 ml of 1 M HCl, 0.0278 g of CaCl2, 0.071 

g of Na2SO4, 6.057 g of (CH2OH)3CNH2 and 0.305 g of MgCl2.6H2O. Afterward, the pH was 

measured and taken to 7.4, using 1 M HCl. Lastly, the volume of the solution was taken to 

1 L and the pH was verified again, in order maintain the 7.4 value. Each sample was 

immersed in glass containers with SBF solution for a maximum period of 3 days. The ratio 

between the sample surface area and volume of SBF solution was defined to be 0.0075 cm-

1. The glass containers remained inside an incubator at 37 ºC. The concentration of the Ca2+ 

and P5+ ions, and the pH value was obtained for different immersion times: 0, 1, 3, 6, 12, 24, 

48 and 72 hours. For each immersion time, 0.5 ml of solution was removed and ICP-AES 

(inductively coupled plasma atomic emission spectroscopy) measurements were 

performed.  

Concerning the osteoblastic proliferation and metabolic biological tests, to analyse 

the cell-surface interaction, human osteoblasts (SAOS-2 cell line, ATCC, American Type 

Collection, ref. HTB-85) were seeded on the charged and non-charged surfaces. Cell culture 
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medium was McCoy’s 5A (Sigma-Aldrich #M4892) supplemented with 2.2 g/L sodium 

bicarbonate (Sigma-Aldrich, #S5761), penicillin (100 g/ml) and streptomycin (100 µg/mL) 

(Invitrogen, #15140122) and 10% FBS (Fetal Bovine Serum, Invitrogen, #10270106). Cultures 

were maintained in a CO2 incubator (Sanyo MCO10AICUV). 

 Samples were sterilized with ethanol 70% for 10 min and left to dry. Samples were 

then placed in a 12-well tissue culture plate (Sarstedt, Germany) and pre-wetted with 

culture medium. Cells were seeded at a density of 3x104 cells per cm2. Cell controls were set 

by seeding cells at the same density directly over the surface of the tissue culture plate (TCP) 

wells.  

 Cell adhesion ratio was determined by evaluating cell population 24h after seeding 

and proliferation rates by evaluating cell population every other day. Cell viability was 

assayed using a resazurin (Alfa Aesar) solution (0.04 mg/mL in PBS) as cell viability 

indicator. Viable cells reduce resazurin (with an absorption peak at 600 nm) to resorufin 

(with an adsorption peak at 570 nm). For the assay, all media were replaced by a 1:1 mix of 

complete medium with the resazurin solution. This medium was also dispensed in wells 

without cells to be used as a reference. After 2h20m of incubation in the CO2 incubator, 

medium absorbance was measured at 570 nm with a reference wavelength of 600 nm 

(Biotex ELX 800UV microplate reader). The corrected absorbance (obtained by subtracting 

the absorbance measured at 600 nm from the one measured at 570 nm and subtracting the 

medium control) is proportional to cell viability. The combined standard uncertainty was 

calculated by propagation of uncertainties.  

In order to observe cell morphology, cells were stained after 5 days in culture. Cells 

were fixed with 3.7% paraformaldehyde, permeabilized with Triton X-100 (0.5% in PBS) 

and blocked (to avoid non-specific staining by the secondary antibody) with a 1% bovine 

serum albumin solution containing 0.2% Triton X-100. Cells were then immunostained with 

the primary antibody against vinculin, a focal adhesion protein (Anti-Vinculin antibody, 

Mouse monoclonal, clone hVIN-1, purified from hybridoma cell culture, Product Number 

V9264, Sigma-Aldrich) followed by the secondary antibody (Goat anti-Mouse IgG (H+L) 

Cross-Adsorbed Secondary Antibody, Alexa Fluor 488, Catalog #:A-11001, Molecular 
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Probes, Thermo Fisher Scientific). To observe the F-actin cytoskeleton, cells were stained 

with Acti-stain 555 Phalloidin (100 nM in PBS) (Cat. # PHDH1, Cytoskeleton, Inc.) and to 

observe nuclei with DAPI (4',6-Diamidino-2-Phenylindole, Dilactate, Cat # D3571, 

Invitrogen: 300 nM in PBS). All samples were mounted on glass coverslips with fresh PBS 

and imaged with an epi-fluorescence microscope Nikon Ti-S. 
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Chapter 3 Results and discussion  

3.1 CoBlast coatings 

3.1.1 Structural and morphological analysis 

The first set of samples, as described in tables 2.2 and 2.3, were subjected to 

structural and morphological analysis, with the aim of reducing and filter the process 

parameters for the second set of samples. In other words, the goal was to find out if some 

of the process parameters could be disregarded by considering the results of the structural 

and morphological analysis. In fact, some good arguments were found in favor of 

disregarding some of the CoBlast process parameters. XRD measurements were performed 

and the intensity ratio between the highest Hap peak and the highest Ti peak was 

considered. This ratio is a qualitative indicator of the amount of deposited Hap because the 

peak intensity is proportional to the weight fraction of the component [101]. Moreover, 

powder XRD is a bulk analysis technique, so the ratio is representative of the bulk and not 

just a particular point. The XRD diffractograms were obtained using a PANalytical 

Empyrean Powder X-ray Diffractometer. 

 Fig. 3.1 shows, in the left, the XRD diffractograms of the coatings produced with 

different pressures P = 4, 5 and 6 bar, for a fixed distance of 20 mm and a 50/50 wt% mixture. 

The diffractograms show the presence of crystalline Hap, Ti and also Alu. The detection of 

the Ti substrate is related to the low thickness of the coatings together with the fact, as 

aforementioned, that powder XRD is a bulk analysis technique. In agreement with the 

literature, a small peak assigned to Alu impregnation within the coatings is detected. 

Proceeding with the analysis of fig. 3.1, the XRD Hap/Ti intensity ratios for the samples 

whose process parameters are identified in the plots in the right are shown. Considering 

both plots in the right, the 50/50 Hap/Alu weight ratio mixture clearly yields a higher 

quantity of deposited Hap, compared to the other weight ratios. The 65/35 mixture, in spite 

of containing more Hap, yields coatings with a lower quantity of Hap, because the lower 

Alu weight content diminishes the abrasive power of the mixture, implying a lower surface 

area available for mechanical interlocking (see fig. 1.37). We already have a solid reason to 
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disregard the 65/35 mixture: Hap is simply being wasted. Considering an industrial 

production process, it certainly would make no sense to use a 65/35 Hap/Alu mixture 

knowing that a 50/50 mixture produces coatings with higher Hap contents: money and Hap 

are being wasted on the 65/35 mixture, also taking into account that Hap is more expensive 

than Alu. The 35/65 mixture, despite the fact of having higher abrasive power, does not lead 

to higher Hap contents on the coatings. 
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Figure 3.1 In the left: XRD diffractograms of the coatings produced with different pressures P = 4, 

5 and 6 bar, for a fixed distance of 20 mm and a 50/50 wt% mixture (O - Hap, * - Ti, + - Al). In the 

top right corner: the XRD Hap/Ti intensity ratio versus the mixture weight ratio, for the coatings 

produced with different distances Z (mm) and for a pressure P = 4 bar. In the bottom right corner: 

same representation for a pressure P = 5 bar. For P = 6 bar the results are similar.   

 

Fig. 3.2 shows more XRD diffractograms: in the left plot, it is clear that the higher 

distance Z = 30 mm causes a significant decrease in the quantity of deposited Hap. The same 

information can be withdrawn from the plot in the right. From the information presented 
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until now, we can find solid arguments to disregard the 65/35 mixture and the Z = 30 blast 

distance. The 35/65 mixture could be disregarded by considering fig. 3.1 results. 

Nonetheless, we will present more results supporting this conclusion.  
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Figure 3.2 In the left: the XRD Hap/Ti intensity ratio versus the blast pressure, for the samples 

produced with different distances Z and for a 50/50 weight ratio. In the right: the XRD Hap/Ti 

intensity ratio versus the distance Z, for the samples produced with different pressures P = 4, 5 

and 6 bar and for a 50/50 weight ratio. 

 

SEM micrographs and EDX mappings of the coatings were obtained, using a Vega 

3 TESCAN microscope. In the EDX mappings that will be presented, the analyzed areas are 

squares with about 230 m of side length. Fig. 3.3 displays EDX maps of the Z20P5 samples 

for different Hap/Alu ratios. The relevant chemical elements are identified in fig. 3.3. The 

50/50 sample clearly demonstrates a superior Hap coverage compared to the other samples, 

which lies in agreement with the XRD results presented in fig. 3.1. Like XRD, EDX is a bulk 

analysis technique, thus it is no surprise that it is able to detect the metallic Ti substrate 

since the CoBlast films have thicknesses in the range of few micrometers, as discussed in 

section 1.3. 
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Figure 3.3 EDX maps of the Z20P5 samples, for 

different Hap/Alu weight ratios, identified in 

each particular micrograph. 

The Ti distribution is shown in fig. 3.4. Again, it is clear that there is a better Hap 

coverage in the 50/50 mixture because the Ti signal is stronger in the 35/65 and 65/35 

samples, indicating a higher average film thickness in the 50/50 samples.  

  

 

Figure 3.4 EDX maps showing the Ti 

distribution in the Z20P5 samples, for different 

Hap/Alu weight ratios, identified in each 

particular micrograph.  
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Fig. 3.5 provides a “qualitative picture” regarding the Alu impregnation within the 

coatings. As expected, Alu impregnation is greater on the 35/65 mixture, contrarily to the 

other mixtures. Alumina, as it was discussed, is a bioinert material commonly used as a 

blast medium in the pre-treatment of medical implants prior to the coating deposition. In 

APS, for instance, some Alu particles have been shown to be embedded in Ti surface even 

after ultrasonic cleaning, acid passivation and sterilization. Although it is bioinert, it has 

been reported that the release of Alu particles into the surrounding physiological tissue can 

potentially interfere with the integration and fixation of the implant, by promoting third-

body wear, unwanted tissue reactions and loosening in metal-on-metal total hip 

replacements [102]. Therefore, the 35/65 mixture compared to the 50/50, yields lower 

amounts of deposited Hap and a higher amount of impregnated Alu.   

  

 

 

Figure 3.5 EDX maps showing the Alu 

distribution in the Z20P5 samples, for different 

Hap/Alu ratios, identified in each particular 

micrograph. 

 

For the reasons mentioned above, we have disregarded the 35/65 and 65/35 mixtures 

for the production of the second set of samples. However, before starting with the 

discussion of the second set of samples, optical profilometry measurements were 

35/65 50/50 

65/35 
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performed on the first set samples, in order to determine the arithmetic average surface 

roughness (Sa) of the samples. While the arithmetic average roughness (Ra) provides the 

roughness over a given evaluation length, Sa provides the same information over a given 

surface area, therefore rending a more representative analysis of the coating. These 

measurements were performed using a Sensorfar S Neox 3D optical profiler. 

It is generally assumed in the literature that the surface roughness affects the 

osteoclastic and osteoblastic attachment, proliferation and differentiation. However, on the 

other hand, there are contradictory reports stating that the cellular attachment, proliferation 

and differentiation processes are not dependent on the roughness on a relatively large range 

of values, going from submicron up to micron surface roughness. On one side, there are 

reports showing that a variety of bone marrow cells are able to orient themselves in the 

grooves or edges of the biomaterial surface and that osteoclastic and osteoblastic 

attachment, proliferation and differentiation are significantly enhanced by rough surfaces 

with irregular morphology [103, 104]. Although it is not clearly defined, rough surfaces can 

be defined as those with roughness values in the range of a few micrometers, while 

submicron and close to the unit values can be considered as smoother surfaces, although 

some probably would label a one-micrometer rough surface as a “moderately rough” 

surface. On the other side, there are reports stating that the cellular processes are 

statistically independent of the surface roughness on a relatively large range of values. On 

a particular report, it is concluded that the cellular processes are independent of the surface 

roughness of a Hap coating, within values ranging from 0.13 up to 3.36 m [105]. On 

another report, it was concluded that three different roughness values (0.73, 2.86 and 4.68 

m) had no significant differences in the cell morphology and on the osteoblastic ALP 

expression [106]. However, early stronger fixation rates and long term mechanical 

stabilization will be enhanced on rough surfaces, because, as the case of CoBlast, where the 

abrasive powder is responsible for providing surface area for mechanical interlocking 

between the Hap and the Ti substrate, the roughness of the Hap coating also provides 

surface area for mechanical interlocking between the Hap coating and the growing biologic 

bone. For this reason, surface roughness values in the 2-5 m range are preferred over lower 

roughness values [107].  
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Fig. 3.6 displays the arithmetic surface roughness (Sa) values of samples with 

different Hap/Alu weight ratios as a function of the blast pressure. One particular aspect of 

the CoBlast, as it is reported elsewhere, is that the surface roughness of the underlying Ti 

substrate is approximately the same as the Hap coating surface: the induced roughness on 

the Ti substrate is “transferred” to the coating [72]. Observing fig. 3.6, one immediate 

conclusion that can be drawn is that, as expected, the 65/35 samples have lower Sa values, 

because they have lower abrasive power.  The 35/65 samples tend to have higher Sa values 

for the 5 and 6 bar ejection pressures (except in the Z10_P5_50/50 sample). For the blast 

pressure 4 bar this trend is not discernible between the 35/65 and 50/50 samples. Excluding 

the Z20_P6_35/65 and Z30_P6_35/65 samples, the Sa values for all the samples are below 3 

m. However, considering fig. 3.6, it is clear that Sa values for samples with the 65/35 weight 

ratio are lower compared to the 35/65 and 50/50 samples. Each data point is the average of 

at least three surface roughness values obtained at different locations within the same 

sample. The error associated with each point is always below 10% and in most cases is 

around 5%.  

  

 

Figure 3.6 Arithmetic average surface 

roughness (Sa) of the samples with different 

Hap/Alu weight ratios as a function of the blast 

pressure.  
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Fig. 3.7 shows one example of a topographical map that can be obtained through 

the optical profilometry measurements, in this particular case for a Z20_P5_50/50 sample. 

The S Neox SensoSCAN software was used to obtain such 3D topographical maps. The Sa 

value obtained in each measurement is calculated over a large surface area as indicated in 

fig. 3.7 (~ 351 x 264 m), therefore providing a representative value of all the coating. 

  

Figure 3.7 A 3D surface topographical map of a Z20_P5_50/50 sample. 

 

After the first set of samples, the process parameters were reduced/filtered to 

Z10_50/50 (4, 5 and 6 bar) and Z20_50/50 (4, 5 and 6 bar). Thus, the second set of samples 

with these process parameters were produced for the realization of pull-off adhesion tests 

and also to start with the corona discharge experiments.  

 

3.1.2 Mechanical pull-off tests 

In this topic, the mechanical pull-off adhesion experiments are introduced, which 

were characterized by some technical difficulties. These tests, which allow to determine the 

static tensile strength of the coatings, were performed resorting to the functionalities of a 

Shimadzu mechanical testing machine. Fig. 3.8 shows part of the methodology behind the 

pull-off adhesion tests. Test pins made of aluminum, with a diameter of 14 mm, are attached 

to the Hap coating. Before the test, the surface of the pin that is going to be attached to the 

coating is subjected to a roughening treatment (using a polishing machine and sandpapers) 

in order to create a superficial roughness and therefore to increase the surface area available 
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for the bonding between the pin and the coating, as shown fig. 3.8 A). Then the pin is 

attached to the surface of the coating through an adhesive, fig. 3.8 B), complying with the 

adhesive full cure time as indicated by the suppliers. Finally, fig. 3.8 C) shows how the pull-

off test is carried out: a special “claw” applies a tensile force, increasing at a constant rate, 

until the pin is detached from the coating, and the maximum applied tensile force is 

recorded.  

 
 

Figure 3.8 A) The aluminum test pins, with a diameter of 14 mm. A roughening treatment was 

applied in the pin surfaces, in order to increase the surface available for bonding with the coating. 

B) A test pin attached to a sample, after complying with the adhesive full cure time as indicated 

by the supplier. C) During the pull-off test, a special “claw” applies a tension, increasing at a 

constant rate, until the pin is detached from the coating.  

 

We considered the ASTM F1147 standard, which defines that for Hap coatings on 

metallic substrates, a minimum value of 15 MPa is required for the static tensile strength. 

Accordingly, all the adhesives which were tested for attaching the pin to the coating had a 

cohesive tensile strength considerably higher than 15 MPa, as informed in the technical 

sheet of the products. Specific items to handle the adhesives were also purchased, including 

static mixing nozzles (all the used adhesives had two components) and dispensing guns. 

A) C) 

B) 
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The first tests were performed using the IRS 2111 All-purpose Epoxy Adhesive, which 

“typically” has a cohesive tensile strength of 44 MPa, as stated in the technical sheet. When 

we performed the pull-off tests, all the failures occurred within the adhesive and in the 2 - 

3 MPa range. These tests are negative, they would only be valid if the failure tension was 

higher than 15 MPa, as required by the ASTM F1147 standard. In fig. 3.9 we present the 

results of one of the tests performed on a Z20_P5_50/50 sample. The tension versus strain 

plots shows the failure occurred at about 2.6 MPa, therefore comprising a negative test. 

 

 

Figure 3.9 Pull-off test performed on 

a Z20_P5_50/50 sample, using the 

IRS All-purpose Epoxy Adhesive. 

The failure occurred within the 

adhesive, at about 2.6 MPa.  

We thought that for some reason this IRS 2111 adhesive could not be effective for 

Hap coatings (some kind of reaction could be occurring at the interface, for instance), so, 

we purchased two new adhesives: the PX628HP, supplied by ROBNORADHESIVES, and 

the LOCITE® EA 9497TM. As indicated in the technical sheets, the first has “typically” a 

cohesive tensile strength of 60 MPa and the second 52.6 MPa. However, during the pull-off 

tests, all the failures were again within the adhesive and all were below 10 MPa, thus invalid 

tests. We contacted the corresponding authors of the references [66], [72] and [108] because 

they report positive adhesion tests for Hap coatings. The contact reason was to access what 

kind of adhesive they used in their reports. We got a single reply from the authors of 

reference [72], stating that their tests were performed by a company certified and 

specialized in this type of adhesion tests, QUAD GROUP Inc. We also learned that Ceramed 

certifies the adhesion of their coatings through the services of the CRITT Mechanical 

Engineering & Composite Materials, a specialized institute in France. The fact is that one of 
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the main difficulties related to the use of this kind of adhesives is that the cohesive tensile 

strength values specified by the suppliers are “ideal” and almost impossibly replicable in a 

laboratory academic context. This is why companies and even academic researchers tend 

to resort to outside specialized companies and institutes to evaluate the adhesion of their 

coatings and to certify them according to the ASTM F1147 standard, if commercialization 

is intended. With regard to this work, we did not proceed with the pull-off tests, which 

would imply to buy further adhesives. CoBlast is already established in the literature 

regarding the superior adhesion strength of the coatings and therefore it was decided to 

not spend more resources on these mechanical tests.  

 

 3.1.3 Corona charging experiments 

In these experiments, there were some issues that were not initially foreseen. The 

reason is straightforward: it is not possible to control the charging current on the CoBlast 

coatings. The cause for this can be understood by observing fig. 1.37, for example. Due to 

the nature of the CoBlast process, there are significant regions of the Ti substrate which are 

not covered with Hap. Consequently, if we have regions of Ti substrate directly exposed to 

the corona discharge, then, there is no possibility of controlling the charging current, since 

the sample is conductive. We tried some approaches to find out if we could obtain a sample 

where the Ti surface would be completely covered, however, we did not manage to achieve 

that goal. One of the approaches, to make additional depositions on an already coated 

sample, is unfruitful. As referred before, due to the abrasive nature of the CoBlast process, 

to make additional depositions is essentially to remove the Hap coating which was already 

deposited and to produce a new one, thus the problem is not solved. We also tried different 

Hap/Alu weight ratios, without success, the same problem would persist. However, in 

chapter 4 section 4.2, the future work suggestions, we suggest an approach that could be 

tested for the CoBlast coatings. 
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3.2 PS coatings 

3.2.1 Structural/morphological analysis 

The PS coatings were provided by Ceramed, which is specialized in producing Hap 

coatings on orthopaedic implants, such as total knee replacements or THR. The coatings 

were produced in the same kind of metallic substrates used to produce the CoBlast coatings: 

Ti grade II square substrates, with 25 mm of side length and 1 mm of thickness. The average 

thickness of the PS coatings is around 70 m (this is information was provided to us by 

Ceramed). We remember that PS Hap commercial coatings have typically thicknesses in 

the 50-100 m range. Fig. 3.10 contains a photograph showing the aspect of the PS coatings  

 

 

 

Figure 3.10 Photograph showing the aspect of 

the PS coatings provided to us by Ceramed. 

The coatings have an average thickness of 70 

m. 

 

 

XRD measurements were performed in order to identify the phases present within 

the coatings. Fig. 3.11 displays the XRD diffractogram of a PS coating. The results are in 

agreement with the literature of PS Hap coatings, which was also presented and discussed 

in chapter 1. Hap and -TCP crystalline phases are detected, including the typical 

amorphous halo, ascribed to ACP (see table 1.3 to recall the existing calcium 

orthophosphates). Sometimes it can be found in the literature the designation “amorphous 

hydroxyapatite” associated with the amorphous halo (fig. 1.43, for instance), but the correct 

designation is amorphous calcium phosphate, ACP. The high temperatures experienced by 

the powder particles during the PS deposition can promote their partial melting and the 
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subsequent high cooling rates cause the presence of a glassy phase within the coatings. It is 

also worth mentioning that the Hap coatings produced by Ceramed are in compliance with 

the international standards regulating such coatings (intended for commercialization), 

particularly with ISO 13779-2. This particular ISO, as we also referred in topic 1.2.3, 

stipulates some properties of the coatings, such as the Hap crystallinity ratio must be at 

least 45 %, the weight percentage of Hap must be at least 50 %, the weight percentage of 

secondary crystalline phases cannot be higher than 5 % (for each phase), it stipulates the 

limit (in ppm) or heavy metals, etc. We recall, for those more interested in these matters, 

that McCabe et al. indicate in their review article typical values that commercial PS Hap 

coatings present regarding the properties defined in ISO 13779-2 and also in other 

standards (such as ASTM F1147). 

 

 

 

Figure 3.11 XRD diffractogram of a PS 

coating. Hap and -TCP crystalline 

phases are detected, including the 

habitual amorphous halo observed in PS 

coatings; (O - Hap, X - -TCP). 

 

We also performed optical profilometry measurements on the PS samples, in order 

to determine the Sa of the samples. A 3D surface topographical map of a PS Hap coating is 

displayed in fig. 3.12. As expected, the Sa values of the PS coatings are considerably higher 

than the CoBlast coatings. Some coatings were analyzed and the Sa values are around 11 

m.  
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Figure 3.12 A 3D surface 

topographical map of a PS 

Hap coating. 

 

 

3.2.2 Corona charging experiments 

In contrast with the CoBlast coatings, the PS coatings can be successfully charged 

through the corona triode technique. The fact that the entire Ti metallic substrate is covered 

with a thick Hap coating is the reason why it is possible to charge them, there are no 

significant Ti regions directly exposed to the discharge, as it is the case of the CoBlast 

coatings. 

 Two charging methods were used in the PS samples: the constant current method 

and a simpler method which we designate as the “classic” method. In the “classic” method, 

the grid and the point potentials are fixed during the experiment, without charging current 

control. According to the theory presented in section 2.1, the potential of the grid limits the 

maximum potential that the surface of the coating can reach. We performed experiments 

with fixed grid potentials of - 0.4, - 2  and - 2.5 kV, which means that, in theory, the 

maximum surface potential that the samples could reach would be -0.4 - 2 and - 2.5 kV, 

respectively. Despite the fact of being a simpler method, it may be as effective as the 

constant current method, precisely because it is simpler and could be easier to implement 

at an industrial level. During the course of this topic, the differences between both methods 

and what each one can offer will be discussed.  

We recall that TSDC is the experimental technique that was used to measure stored 

charge density in the samples. Further, this technique is also able to provide an estimate of 

the stored charge stability, for example, the time required for total discharge at RT. These 
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are the physical quantities that are relevant to ascertain in the context of this work and the 

medical application of the samples: stored charge density and its temporal stability. If we 

would charge a PS Hap coating, but the discharge time would be a few hours or less, then 

it would not be practical to charge them since the stored charge would not produce its effect 

in vivo. Similarly, if the stored charge density magnitude would be too low, in the 10-7 C/cm2 

magnitude or below, then it probably would not produce any significant enhancement of 

the bioactivity level. We recall that since most of the reported stored charge densities are in 

the 10-6 C/cm2 range, it is generally assumed that stored charge densities in that magnitude 

are required to produce a significant bioactivity enhancement [45]. 

When we started the first charging experiments on the PS coatings, an issue was 

detected when we were going to perform the TSDC measurements. In these measurements, 

we need to apply an electrode in the surface of the coating, so that we can measure the 

depolarization current in function of the temperature. Accordingly, we painted the surface 

of the charged samples with a special high-temperature silver conductive paste (PELCO® 

High-performance Silver Paste), with a maximum service temperature of 927 ºC. After 

letting the silver paste cure at RT, the electrical resistance of all the samples, measured with 

a conventional multimeter, dropped sharply from resistances in the order of 10 Mdown 

to the point of the coating practically being in short-circuit with the Ti substrate. The 

conclusion is that already at RT, there is significant diffusion of silver into the coating, and 

it is our opinion that such diffusion should occur along the cracks that these coatings may 

contain. In figs. 1.41, 1.43 and 1.46, such cracks can be observed. The PS coatings are 

commonly relatively dense (for example, Hap coatings with relative densities near 90% of 

the theoretical are reported [109]), however, these cracks may act as regions through which 

the silver diffusion can take place. Anyhow, as we will show, these coatings can be charged 

up to high surface potentials, meaning that the possible existence of the cracks does not 

cause any hindrance to a successful charging of these coatings through the corona triode. 

One of the main advantages of a constant current method is allowing to be sure that 

we are effectively charging our coatings despite the fact that we are not able to perform the 

TSDC measurements on them. It does not provide information about the temporal stability 



158 

 

of the stored charge, but it allows to affirm without doubt that the coatings can be charged. 

Fig. 3.13 shows surface potential buildup curves for two PS Hap coatings charged with a 

constant current of approximately - 1 nA, at 200 ºC and for a fixed discharge potential of - 

15 kV. As we mentioned before when discussing the calibration curves, we decided to set 

the potential discharge as - 15 kV for all the samples. In addition, the point/sample and 

grid/sample distances are fixed at 7 cm and 4 mm, respectively, for all the samples. The 

dimensions of the samples are 10x10x1 mm (we cut the original 25x25x1 mm samples into 

smaller pieces). We show the data exactly as we get it through the feedback software, it is 

not smoothed or manipulated. All the samples display surface potential buildup curves 

with the same characteristic shape shown in fig. 3.13. They start with approximately linear 

behaviour and subsequently a sublinear behaviour is observed, where the surface potential 

increases at a slower rate up to the saturation value. Note in fig. 3.13 how the surface 

potentials start with a high value in the initial time of the experiment. If we started the 

charging experiments with very low grid potentials, the charging currents would be 

extremely low (far below - 1 nA) and experiments would take a lot of time. Thus, what we 

do is to start with a high grid potential value so that the charging through the sample is 

near the desired value of - 1 nA. Then we start the feedback program which controls the 

grid potential in order to try to maintain the charging current around - 1 nA. The rationale 

behind the feedback circuit is to perform a “fine-tuning” of the grid potential at a rate 

defined by the “Sampling” parameter, not to sharply increase the grid potential until the 

desired charging current of - 1 nA is reached and then to perform the “fine-tuning”. In 

future work, the control software will be expanded in order to include a new initial first 

stage, prior to the “fine-tuning” stage, responsible for rapidly increase the grid potential up 

to the value which leads to desired charging current. Currently, this initial stage is 

performed manually.  

Another question that needs to be clarified is charging current value (- 1 nA in the 

case of fig. 3.13). Some authors usually present a charging current density value, where 

density refers to the area of the sample exposed to the discharge. Others present a current 

value (not a current density), as we do, and that current value refers to the total current in 

the measurement electrode area. In this way, the determination of the gap potential drop 
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through the calibrations curves is direct, since the calibrations are performed only with the 

measurement electrode. Thus, for a charging current of - 1 nA, the calibration curve 

displayed in the bottom plot of fig. 2.22 gives us the correspondent gap potential drop, 

which is around - 93 V. But we can also indicate easily what is the current density in the 

samples correspondent to - 1 nA in the measurement electrode, which in our system has an 

area of approximately 0.71 cm2. Accordingly, the charging current density in the samples is 

- 1.4 nA/cm2, which is around the same values that classically have been used to charge 

polymer foils. It should be noted that, actually, the charging current density is independent 

of the sample size and is equal to the charge density in the measurement electrode, as long 

as the sample area is larger than the area of the electrode. Indeed, when using the constant 

current method, the samples have to cover all the electrode, i.e., we cannot have the 

electrode directly exposed to the discharge, otherwise the current flowing through the 

sample cannot be controlled. 

One fact that we observed in the many samples that were charged is the following: 

in some aspects, they present different behaviors. While the surface potential buildup curve 

shape is similar, different samples may reach different saturation surface potentials and 

may take distinct times to reach such potentials. The saturation potential is related to the 

amount of electric charge that the particular sample can store since electrons are being 

trapped. Given the “violent” nature of the PS process, although macroscopic properties of 

the coatings may be fairly reproducible (thickness, average surface roughness, adhesion 

strength, ISO requirements are fulfilled, etc.), more specific properties such as surface area 

and density of traps maybe not reproducible, explaining why the samples present different 

behaviors. Nonetheless, the saturation potential in almost all of the samples which we 

charged (most of them for the in vitro biological tests) falls within the - 1400-1800 V range. 

Considering the average thickness of samples (70 m), the electric field across the samples 

is in the ~ 200 - 257 kV/cm range, surprisingly high values, especially considering that 

conventional contact polarization of Hap employs electric fields magnitudes in the 1 - 5 

kV/cm range, however, at higher temperatures (250 - 500 ºC). As we referred, one of the 

advantages of the corona triode charging is precisely allowing to charge dielectric materials 

up to higher surface potentials, because the absence of two electrodes guarantees that even 
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localized dielectric breakdown events do not disturb the charging experiment, while a two-

electrode measurement configuration would become short-circuited.  

During the charging, the total current density across the dielectric sample can have 

two contributions, the conduction and the displacement currents, according to equation 39 

[84, 85]: 

𝐽0 = 𝐽𝑐(𝑥, 𝑡) +
𝜕𝐷(𝑥, 𝑡)

𝜕𝑡
  (39) 

where the first term is the conduction current density and the second term is the 

displacement current density. Recall that, as referred in section 2.1, for simplicity purposes, 

the physical quantities are assumed to be independent of the lateral position coordinate, 

depending only on the vertical coordinate x perpendicular to the sample. This is a general 

approach in the literature concerning the corona discharge. The electric displacement is 

given by equation 40: 

𝐷(𝑥, 𝑡) = 𝜀0𝐸(𝑥, 𝑡) + 𝑃(𝑥, 𝑡) (40) 

 In the Hap case, as we will explain later, the dipolar polarization component can be 

disregarded compared to the contribution of the trapped spatial charge. For materials 

where the polarization term P(x,t) is not much significant, equation 40 is generally rewritten 

as including the polarization term in the first term, according to equation 41 [84, 85]: 

𝐷(𝑥, 𝑡) = 𝜀0𝜀𝑟𝐸(𝑥, 𝑡)   [𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝑡ℎ𝑎𝑡 𝑖𝑛 𝑎 𝑙𝑖𝑛𝑒𝑎𝑟 𝑚𝑒𝑑𝑖𝑢𝑚 𝑃(𝑥, 𝑡) ≅ 𝜒𝜀𝑜𝐸(𝑥, 𝑡)] (41) 

where r is the dielectric constant of the sample and is the dielectric susceptibility. 

Upgrading equation 39 according to equation 41 yields: 

𝐽0 = 𝐽𝑐(𝑥, 𝑡) + 𝜀𝑜𝜀𝑟
𝜕𝐸(𝑥, 𝑡)

𝜕𝑡
 (42) 

For an insulating material the conduction current component can be disregarded, 

thus equation 42 can be written as: 

𝐽0 = 𝜀0𝜀𝑟
𝜕𝐸(𝑥, 𝑡)

𝜕𝑡 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟 𝑠𝑎𝑚𝑝𝑙𝑒 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠
⇔                           

𝐼0
𝐶
=
𝑑𝑉(𝑡)

𝑑𝑡
;𝑤ℎ𝑒𝑟𝑒 𝐶 = 𝜀0𝜀𝑟

𝐴

𝐿
 (43) 
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where C is the sample capacitance, A is the area and L the thickness of the sample. As will 

be discussed, the conduction current term in equation 42 can in fact be disregarded in the 

initial time of a corona triode charging experiment. Analyzing equation 43, if the potential 

buildup of the sample is linear, it is a strong indication that current through the sample is 

dominated by the capacitive component and that the charge being deposited on the sample 

is essentially at a surface level, otherwise the potential would not increase linearly with the 

time [85]. In a material like Teflon, for example, a high insulator nonpolar polymer, the 

surface potential buildup is linear practically all the charging time. According to equation 

43, it is possible to calculate the sample capacitance through the slope of the potential 

buildup curve. Moreover, samples with lower thicknesses will have lower slopes because 

they have a higher capacitance, thus they require more time to be charged. For instance, 

Giacometti and Campos calculated the capacitance of Teflon foils with different thicknesses 

through the constant charging current method, and the obtained values agreed within 3% 

with the values obtained using a capacitance bridge [85]. Observing the typical potential 

buildup profiles of our samples in fig. 3.13, they tend to show an initial linear behavior that 

can be associated with a capacitive dominance on the charging current, suggesting that the 

charge is being stored at a more superficial level. The sublinear behavior indicates that the 

conduction term (charge leakage) starts to be relevant, although the surface potential 

continues to increase more slowly. This sublinear behavior is also associated to charge 

injection and trapping at a bulk level in the sample, which is also desirable when 

considering in vivo applications. As discussed before, when inside the body, part of the 

bioactive coating is replaced by new biologic bone, and this replacement takes place not 

only at a superficial level, thus the existence of stored charges at a bulk level is a very 

positive factor. Taking into account that we are working with polycrystalline Hap coatings 

subjected to a “violent” thermal deposition process, high levels of bulk charge trapping are 

to be expected. When the saturation potential is reached, the current through the sample is 

only determined by the charge leakage through the sample, i.e., it is purely a conduction 

current. Regarding the polarization term, the second term of equation 40, it can be relevant 

in samples with a strong polar character, for example, the well-known -PVDF ferroelectric 

and piezoelectric polymer. Giacometti and Campos have shown in their brilliant work that 
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the potential buildup of these polymers display an initial linear stage, then a plateau where 

the potential increases very slowly, and then, after the plateau, the potentials increases 

quickly to the saturation value. The plateau corresponds to the development of the 

ferroelectric dipolar polarization in the sample: the development of the dipolar polarization 

compensates the charge that is being transferred by the corona ions and thus the potential 

buildup shows a plateau. When the ferroelectric polarization reaches its saturation, the 

potential increases up to the saturation point. It is even possible to estimate the remanent 

(or permanent) ferroelectric polarization: the constant charging current density multiplied 

by the time duration of the plateau provides an estimate of the remanent polarization [85, 

87]. This estimation is valid assuming that the conduction current through the sample is 

negligible during the plateau stage, which is true in low humidity atmospheres [85, 87]. 

This demonstrates the importance of low humidity atmospheres when performing these 

experiments, a factor which was considered in the development of our experimental 

system. 

 In Hap, we know that polar effects are usually weak, especially in polycrystalline 

materials with grains in the micrometric range. As it was discussed in topic 1.1.8, two 

depolarization mechanisms are described in the literature regarding TSDC measurements 

of Hap: the defect pair and the space charge mechanisms. Further, if the polarization is 

performed with high enough process thermoelectric parameters (temperature and electric 

field) the defect pair dipolar mechanism is negligible compared to the space charge process. 

We recall that in previous work we found that, for process parameters that tend to saturate 

the stored charge density, the defect pair dipolar mechanism had a contribution of only 

about 3.6% to the total stored charge, while the space charge accounted for 96.4%, 

approximately. Thus, it is no surprise that no detection of any plateau related to the 

development of a dipolar charge in our samples, since its contribution to the stored charge 

density is very small. The idea of using the corona triode to charge Hap coatings was in 

part fueled from our previous work, where we learned that Hap is able to store a 

significantly large space charge density.  
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Figure 3.13 The surface potential buildup curves for two PS Hap coatings charged with a constant 

current of - 1 nA.  

 

The charging current versus time data correspondent to the sample in the left plot 

of fig. 3.13 is presented in fig. 3.14. The right plot shows a magnification of the 200-300 s 

time interval. The majority of the experimental points, i.e., charging current values, are 

concentrated around the defined value of - 1 nA. The magnification plot makes this picture 

clear, showing a strong concentration of current values around - 1 nA, most of them 

fluctuating between - 0.9 and - 1.1 nA, constituting excellent current controllability.  Fig. 

3.14 also makes clear that there are events where the current increases more pronouncedly, 

notably those few where the current reaches the 10-8 A order of magnitude. These rarer 

events where the current increases significantly can be assigned to localized electric 

discharges through the sample. Additionally, they tend to occur for higher times, 

suggesting the charge accumulation may promote localized discharge events. These regions 

where the discharges occur may be charged again while the sample is exposed to the 

discharge. Nonetheless, by any means, they compromise the experiment and the potential 

buildup, as fig. 3.13 demonstrates, their influence is only manifested as some oscillations 

on the potential buildup curve. Considering our samples and the application they are 

intended for, the occurrence of these events and surface potential oscillations are not a 

problem, as long as the surface potential saturates and a large and stable stored charge 
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density is produced. Nonetheless, an approach to reduce or even eliminate the occurrence 

of the discharge events is to charge these coatings with lower current values, keeping in 

mind that the samples would take more time to reach the surface saturation potential. 

The charging current versus time data distribution in fig. 3.14 is presented as 

providing an example of the data distribution for a PS Hap coating charged in our corona 

triode. Some samples may present similar data distribution while others may present more 

or less dispersion, i.e., more events where the current increases significantly. 

 

  

Figure 3.14 The charging current versus time data correspondent to the sample in the left plot in 

fig. 3.13. The right plot shows a magnification of the 200-300 s interval. 

 

Another factor responsible for some of the fluctuations in the potential buildup 

curves, like those observable in the right plot of fig. 3.13, notably when the saturation 

potential is being reached, is our picoammeter. In the - 2-3 nA range of currents, the 

picoammeter changes its range. This change of range, which obviously occurs in events 

where the charging current increases, causes some “noise” or oscillations in the potential 

buildup. For instance, in the right plot of fig. 3.13, near the end, some small discontinuities 

in the curve are visible, caused by the change of range in the picoammeter. Some of these 

discontinuities can also occur for lower charging times, depending on the data dispersion 

presented by each individual sample. However, in a “macro” analysis, the potential 

buildup curves are still relatively smooth and clean, clearly allowing the visualization of a 
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characteristic shape for all the samples. For the referred reasons, we avoided charging 

currents in the - 1.5-3 nA range. It is not a significant loss, however, since that for materials 

where space charge is being injected, it is important to use low charging current values in 

order to promote charge trapping at a surface level [85, 110]. Higher charging currents may 

give primacy to bulk injection and/or increase of the conduction current contribution and 

therefore increase the charge leakage through the sample. Furthermore, they can also cause 

much more oscillations in the potential buildup and instability in the charging current. Fig. 

3.15 makes clear these issues, strikingly regarding the charging current instability. Notice 

how the potential buildup is much more unstable and “noisy” compared to the samples 

charged with - 1 nA, and how this instability is observed in most of the experiment time. 

The charging current values are also much more dispersed, and the events where the 

current is significantly higher tend to occur along all the experiment time, in contrast to fig. 

3.14. The fluctuation of values around - 3.5 nA, where most of points are, is much higher 

compared to fig. 3.14. Despite the charging current being approximately 3.5 times higher 

than the one of the samples in fig. 3.13, the time required for the potential to reach the 

saturation region is comparable to the sample of the left plot in fig. 3.13. This can mean two 

things: the first is that that the conduction current contribution through the sample is much 

higher in the - 3.5 nA case, otherwise, the sample should reach the saturation potential 

much faster, even considering that the samples present different behaviors, as we 

mentioned. The second is a favoring of charge trapping at a bulk level instead of a surface 

level, which can be allied to an increased conduction current through the sample. Moreover, 

of all the charged coatings, it was clearly the one which achieved the lowest surface 

saturation potential, another indicator of an increased conduction current through the 

sample and/or the possibility of the enhancement of charge trapping at a bulk level. Taking 

into account these reasons, we decided to adopt the - 1 nA charging current for all the 

samples, especially for those prepared for the in vitro biologic tests.  



166 

 

  

Figure 3.15 In the left: the surface potential buildup curve for a PS Hap coating charged with a 

constant current of approximately - 3.5 nA. In the right: the correspondent charging current versus 

time data. 

As referred, we are not able to perform TSDC measurements on the coatings. 

However, we adopted a complementary strategy: Hap pellets were prepared from the same 

commercial powder used in the PS process, were charged with the corona triode and then 

we performed the TSDC measurements. The objective is to find out if somehow if we can 

infer some information regarding the coatings through the pellets results. The pellets, with 

20 mm of diameter, were prepared using a hydraulic press. The mass of powder used was 

always 700 mg, leading to a thickness of about 1 mm when applying a tension of 9 tons for 

5 minutes. The pellets were subsequently sintered at 1150 ºC for 2 hours. One of the 

prepared pellets is shown in fig. 3.16. 

 

 

Figure 3.16 Photograph of one of the Hap pellets 

prepared from the same Hap commercial powder used 

in the PS process.  

 

As explained at the beginning of present topic, two charging methods were 

employed in the pellets: the constant charging current method, the same employed in the 
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coatings, and the “classic” method”. We will start by addressing the “classic” method 

results. In this simpler method, we do not need the feedback software, the discharge and 

grid potentials are fixed for a given time (including during the cooling of the sample), where 

the grid potential corresponds, theoretically, to the maximum value that the sample surface 

potential can reach. Contrarily to the constant charging current method, we do not know, 

at the end of the experiment, the surface potential that the sample reached. In fig. 3.17, the 

TSDC spectra of two pellets charged through the “classic” method are presented. The TSDC 

measurements were performed with a heating rate of 5 ºC/min and the depolarization 

current was measured using a Keithley 617 electrometer. The temperature was controlled 

by a Eurotherm 3508 controller.  

  In the left spectrum of fig. 3.17, the grid potential was fixed at - 2 kV, while in the 

right spectrum it was fixed at - 2.5 kV, which is the maximum value that the voltage supply 

can provide. A clear depolarization process is observable on both spectra, right before the 

intrinsic ionic conductivity of Hap starts to increase exponentially, around the 700-750 ºC 

temperature range. Compared to our previous work, where we polarized Hap and Hap-

based bioceramics through conventional contact polarization [34], one difference is that in 

this case the depolarization process, which we broadly identify as the detrapping of the 

injected space charge, is located before the intrinsic ionic conductivity of Hap starts to 

increase exponentially. In that work, the process assigned to space charge detrapping 

(accounting for about 96.4% of the total stored charge) was located at higher temperatures, 

overlapping with the intrinsic conductivity and detected as a “shoulder” in the spectra [34]. 

However, the situations are different and comparisons are not straightforward: the space 

charge caused by the conventional polarization is due to the migration of H+ protons along 

the c-axis which accumulate in the grain boundaries, while H+ vacancies accumulate in the 

opposite side (this is discussion is included in topic 1.1.8). While the mechanisms are 

understood for the conventional polarization, in this work we are doing something new 

and different, we are injecting electrons in the sample, which are trapped at surface and 

bulk levels. The explanation at a more fundamental level of the TSDC spectra of our 

samples taking into account the negative charge transferred by the corona ions to the 

sample and the mechanisms behind the conventional polarization is a future work subject.  
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Our intent in this work is to demonstrate for the first time that we can charge Hap 

bioceramics using the corona triode and to perform TSDC measurements in order to 

calculate the stored charge density and estimate its temporal stability, which are the most 

important parameters considering the medical and biological applications of our samples. 

Nonetheless, we broadly identify the depolarization peaks detected in our samples as 

resulting from a thermally activated space charge detrapping.  

The red straight lines in fig. 3.17 represent the fitting of the depolarization peaks, 

performed using the Origin software. For the fitting procedure, we implement a baseline 

correction, because a small contribution of the intrinsic exponential ionic conductivity has 

to be subtracted to the depolarization peaks, explaining why the cumulative fitting curve 

does not match exactly with the experimental data. Moreover, the criteria for all the fittings, 

including those in fig. 3.18, was to achieve an R2 value ≥ 0.99. In fig. 3.20 we include a more 

detailed example showing the fitting process. These fittings allow to perform more accurate 

calculations of the stored charge density and its stability. These parameters will be shown 

later in a global table including all the different samples. 

 

  

Figure 3.17 TSDC spectra of two pellets charged through the “classic” method. In the left: the grid 

potential was fixed at - 2 kV. In the right: the grid potential was fixed at - 2.5 kV. The red straight 

lines represent the fitting of the depolarization peak.  
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With respect to the constant charging current method, fig. 3.18 displays the TSDC 

spectra of samples charged with different current values: - 1, - 3 and - 3.5 nA, as indicated 

in each individual spectrum. The surface potential values saturated at approximately - 326, 

- 342 and - 294 V, respectively, as indicated in each particular spectrum. Moreover, the 

potential buildup curves have the same characteristic shape visible in fig. 3.13, which was 

already discussed. While the sample charged with - 1 nA presents a spectrum with one clear 

depolarization process, like the samples charged through the “classic” method, the samples 

charged with larger currents present two depolarization peaks. The peak centered at lower 

temperatures seems to be especially favoured for larger charging current values, comparing 

the - 3 and - 3.5 nA samples. In the pellets it becomes very hard to control charging currents 

above - 3.5 nA, probably due to their large thickness (1 mm) and electrical resistance. We 

recall that the corona triode has been traditionally used to charge/polarize polymers in 

film/foil form with thicknesses below 100 m [84, 87]. Nonetheless, the current in the pellets 

can be fairly controlled for lower current values, although the control is much better in the 

coatings, as it will be shown.  

It is interesting to note that the sample charged with the highest current presents 

the lowest saturation surface potential. Consider table 3.1, which presents the stored charge 

density and the discharge time at RT for the pellets charged through the “classic” and 

constant current methods. The sample charged with - 3.5 nA has the larger stored charged 

density although it reaches the lowest surface potential, meaning that the increase of the 

charging current promotes charge trapping at a bulk level and not at a surface level. This is 

in agreement with what we discussed for the PS Hap coatings charged with - 1 and - 3.5 

nA: likewise, the coatings charged with the highest current values tend to reach the lowest 

saturation potentials. For the pellet charged with - 3 nA this behaviour is not observed, 

suggesting that the charge trapping at a bulk might not be yet dominating for this particular 

charging current value. The explanation for the appearance of a second depolarization 

process at higher currents, which seems to increase with the charging current, is suggested 

as future work. In chapter 4, section 4.2, we provide some insights regarding the procedure 

to adopt in order to obtain more detailed information about the depolarization processes.  
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Observing table 3.1, the stored charge density values, calculated through equation 

28 (section 2.2)  for all the samples, are very encouraging even for the samples charged 

through the “classic” method, which present lower values than the constant current 

samples. The literature demonstrates that the significant increase of the bioactivity level of 

Hap is observed both in vitro and in vivo for stored charge densities in the 10-6 C/cm2 

magnitude. Our samples are well above, in the 10-5 and 10-4 C/cm2 magnitudes. The constant 

current method yields higher stored charge densities compared to the “classic” method. A 

possible explanation is that since the fixed grid the potential is very high in both cases (- 2 

and - 2.5 kV), the current in the air gap reaching the sample is very high and the charge 

leakage (conduction current component) through the sample is much larger, therefore 

yielding a lower stored charge density. The calibration curves in section 2.1 (and also 

included in fig. 3.22) show how the current is already near - 20 nA for a grid potential of - 

1 kV. In order to test this theory, we applied the “classic” method to a pellet, but with a 

smaller fixed grid voltage of - 400 V. Fig. 3.19 shows the results, which support our theory. 

The stored charged density increased compared to the samples where the grid potential 

was fixed at - 2 kV and - 2.5 kV, although it is still lower than the samples charged through 

the constant current method. However, with more extensive experiments, it is our opinion 

that one could find process parameters (grid potential and time) which could lead to stored 

charge densities similar to those presented by the constant current method. The idea of 

performing a two-step experiment could also be considered, i.e., to apply two different 

fixed grid potential values for a given time. 
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Figure 3.18 TSDC spectra of pellets charged 

with different charging currents: - 1, - 3 and - 

3.5 nA, as indicated in each individual 

spectrum. The surface potential values 

saturated at approximately - 326, - 342 and -294 

V, respectively. 

 

Table 3.1 The stored charge density and discharge time at RT for the pellets charged through the 

“classic” and constant current methods.   
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Figure 3.19 TSDC spectrum of a sample charged through the “classic” method, with a fixed grid 

potential of - 400 V. The stored charge density and an estimate of the discharge time at RT are 

presented in the table.  

 

The stored charge temporal stability values, presented in table 3.1, are also highly 

encouraging. The discharge time at a given temperature ((T)) can be estimated according 

to equation 44: 

𝜏(𝑇) =
1

𝛽𝐽(𝑇)
∫ 𝐽(𝑇)𝑑𝑇
∞

𝑇

 (44) 

where  is the heating rate. Equation 44 translates that an estimation of the discharge time 

at particular temperature T is given by the ratio between the charge stored by the sample 

and the short-circuit current measured at that temperature T. Table 3.1 shows an estimate 

for the discharge time at RT. The “classic” method yields lower discharge times because the 

stored charge density is lower compared to the constant current. Still, all the values are 

extremely interesting providing more than enough time for the stored charge to take its 

effect in vivo. 

Fig. 3.20 includes a more detailed example showing some steps of the fitting 

procedure using the Origin software. This example corresponds to a sample charged with 

– 3 nA, in fig. 3.18. The intrinsic ionic conductivity is fitted with an exponential function 

(𝑦 = 𝑦0 + Aexp (𝑅0𝑥)), as it is visible in the left spectrum of fig. 3.20. The R2 value of this 

particular fitting is 0.9996(…). This exponential is the baseline which we have to subtract to 
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the spectrum, yielding the subtracted spectrum shown in the right plot. At this point, we 

only have the contribution of the depolarization processes to the depolarization current, 

thus we can proceed with the fitting. The subtracted spectrum is fitted using the Asym2Sig 

(asymmetric double sigmoidal function: (𝑦 = 𝑦0 + 𝐴
1

1+𝑒
−
𝑥−𝑥𝑐+

𝑤1
2⁄

𝑤2

(1 −
1

1+𝑒
−
𝑥−𝑥𝑐−

𝑤1
2⁄

𝑤3

)) 

function, which allows to fit peaks that may be characterized by a certain degree of 

asymmetry. The condition for the fittings was to achieve an R2 value ≥ 0.99, which is fulfilled 

for all the samples. In the particular case of fig. 3.20, two depolarization peaks have to be 

considered, otherwise the fitting will not converge. In this particular fitting, the R2 value is 

0.998(…). The stored charge density and its stability are then calculated 

  

Figure 3.20 A more detailed example of the fitting procedure, adopted to all the samples, using 

the Origin software. This particular example corresponds to the sample charged with - 3 nA, in 

fig. 3.18. In the left, the TSDC spectrum is fitted with an exponential function, in order to get the 

baseline. In the right, the subtracted spectrum is fitted using Asym2Sig functions. 

 

As was aforementioned, the current control is much better in the coatings. Fig. 3.21 

corroborates this fact by comparing the current versus time data distribution of the coating 

charged with - 1 nA (in the right plot in fig. 3.14) with the data for the pellet charged with - 

1 nA. The data in fig. 3.21 shows how the current values are more concentrated around -1 

nA in the coating, fluctuating between - 0.9 and - 1.1 nA, while the pellet shows a larger 

dispersion amplitude around - 1 nA. The much larger thickness of the pellets (1 mm versus 

an average of 70 m for the coatings) implies that the probability of larger fluctuations in 
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the charging current is much higher in the pellets. Nonetheless, the current controllability 

is still reasonable in the pellet. However, for higher charging currents, as it was observed 

in the coatings, the current controllability also decreases for the pellets, as the current versus 

time data dispersion for the pellet charged with - 3.5 nA, also presented in fig. 3.21, 

suggests. Still concerning the data presented in fig. 3.21, the mean and standard deviation 

values of the data, in the particular time interval between 200-300 s, are presented in table 

3.2. For the coating, we did not include the two current points which clearly are out of the 

baseline (fig. 3.21), where most of the points are oscillating around - 0.9 and - 1.1 nA. The 

results in table 3.2 support our analysis of fig. 3.21. The charging current mean values for 

the coating and the pellet charged with - 1 nA are very close to the defined value, but the 

standard deviation of the data is higher for the pellet. The pellet charged with - 3.5 nA 

presents a mean value, in this time interval, above the defined value, and the largest 

standard deviation.  

One could argue that comparing the pellets results in table 3.1, that the ratio 

between the mean current and the standard deviation, also known as the coefficient of 

variation, is actually slightly lower for the - 3.5 nA pellet compared to the - 1 nA (0.19 vs 

0.23). Thus, one could affirm that current controllability is slightly better for - 3.5 nA, 

because in terms of magnitude, the deviations relative to the medium value are slightly 

lower in the - 3.5 nA pellet. That would not be a correct analysis (or a practical one). When 

we discuss current controllability, actually, we cannot think only on the current values, it 

is also important to take into account in the context of the experimental technique that 

depends on the current oscillations. Consequently, it is relevant to acknowledge that 

variations of the charging current are associated with variations of the grid potential, of the 

sample surface potential and of the gap potential drop. Consider in fig. 3.22 the current 

versus gap potential drop calibration curve of the system, replicated from fig. 2.21, in order 

to allow better visualization. As the calibration curve shows, current oscillations around - 

1 nA produce lower gap potential drop variations compared to oscillations around - 3.5 nA, 

because the former is in a region of the curve with a higher slope, compared to the - 1 nA 

region, which is a plateau-like region. Therefore, and observing fig. 3.21, current oscillations 

in the - 3-4.5 nA range produce higher gap potential drop and sample surface potential 
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oscillations compared to current oscillations in the - 0.75-1.25 nA range. Thus, the current 

controllability is better in the pellet charged with -1 nA. What matters is the magnitude of 

the variations of the charging current flowing through the sample and the way they affect 

the gap potential drop, which can be seen in the calibrations curves.  

 

  

 

Figure 3.21 A comparison of the charging 

current versus time data, for the particular time 

interval between 200 and 300 s, for a PS coating 

charged with - 1 nA and for the pellets charged 

with - 1 and - 3.5 nA. The plot on the left is the 

same magnification shown in fig. 3.14. 

 

The previous discussion, although not very important for our samples and their 

intended application, is important to be included in this work, especially for those who 

eventually might be interested in learning about the experimental particularities of the 

corona triode technique. Suppose that this technique would be applied in materials where 

surface potential oscillations should be minimized, for some particular reason. Based on 

our results and discussion, we can affirm that those materials would have to be charged 

with small charging current values, as small as possible, taking also into account the time 

required for the surface potential to saturate increases for lower charging currents. 
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However, despite the longer time, very smooth potential buildup curves would be 

obtainable.   

 

Table 3.2 The mean and standard deviation values of the data presented in fig. 3.21, in the 

particular time interval between 200-300 s. The values for the coating do not include the two 

current points clearly are out of the baseline of points (see fig. 3.21). 

 

 

 

 

 

Figure 3.22 The current versus gap 

potential drop calibration curve of the 

experimental system, replicated from fig. 

2.21. Current oscillations in the - 1 nA 

region produce less significant gap 

potential drop and, consequently, sample 

surface potential oscillations, compared 

to oscillations around - 3.5 nA. 

 

As a small note, it is important to recall that, despite the fact that the coatings and 

the pellets have different areas exposed to the discharge (coatings - 10x10 mm squares; 

pellets - 20 mm diameter), the charge density in the samples is the same. Both the coatings 

and the pellets have larger areas than the measurement electrode, implying that the charge 

current density is determined by the electrode. Thus, when we compare in fig. 3.21 the 
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current versus time data for a coating and a pellet charged with - 1 nA, we are comparing 

samples charged with the same current density of - 1.4 nA/cm2, making it a “fair” 

comparison.  

 Another difference between the pellets and the coatings concerns the occurrence of 

the localized discharge events through the sample. It was shown in figs. 3.14 and 3.15 that 

the coatings present these discharges, causing punctual significant increases in the 

measured charging current, especially for the coating charged with - 3.5 nA. These events 

are not detected in the pellets, as fig. 3.23 demonstrates. The current versus time data for 

the pellets charged with - 1 and - 3.5 nA, displayed in fig. 3.23, reveal the absence of 

significant discharge events. This does not mean that they do not happen, simply, the large 

thickness of the samples, combined with increased electrical resistance, may avoid that the 

increased current caused by these discharge events reach the measurement electrode. 

 

  

Figure 3.23 The current versus time data for the pellets charged with - 1 and - 3.5 nA, The plots 

reveal the absence of localized discharge events in the samples, in contrast with the coatings, 

notably the coating charged with - 3.5 nA (fig. 3.15). 

 

Remember that the charging experiments on the pellets were comprised as a 

complementary strategy to find out if we can infer some information regarding the 

coatings, because we cannot perform TSDC measurements on them. We can, in fact, infer 

one important fact regarding the coatings. While the surface saturation potential of the 
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pellets, as indicated in fig. 3.18, reached values below - 350 V, the coatings reached much 

higher potentials, as fig. 3.13 attests.  

3.2.3 Charge storage in the samples 

Consider fig. 3.24, depicting an illustration of a Hap sample and the stored charge, 

at surface and bulk levels, after a charging experiment. The back electrode, in the case of 

the coatings, is obviously the Ti substrate, while for the pellets it can be interpreted as the 

measurement electrode. Fig. 3.24 displays essentially what is known as a real charge 

electret, containing trapped charges both at surface and bulk levels. An electret can also 

contain dipolar charges, defined as a dipolar charge electret. For instance, -PVDF, a well-

known ferroelectric polymer, is a dipolar charge electric, sometimes referred more 

specifically as a ferroelectret. Oliver Heavyside was the first to introduce the term electret, 

in 1885, defining it as dielectric material that has a quasi-permanent electric charge or dipole 

polarization. For the reasons explained before, we can disregard the contribution of dipolar 

charge to the total stored charge in Hap, therefore we do not include dipoles in the 

illustration depicted in fig. 3.24. The trapped charges create an intense internal electric field 

in the sample and also create external electric fields. As a small aside, the contemporary 

research activity on electrets is relatively low. The number of publications raised from about 

100, in the seventies, up to around 300 in the last years (information from 2016 - [111]). It is 

also clearly a research field with more experimental practical knowledge than theoretical 

(we are not saying that the theoretical knowledge may not be practical!), explaining why 

many phenomena are not fully understood. For instance, how the crystallinity in a semi-

crystalline polymer affects the charge trapping and stability or better models to describe 

how the temperature and humidity affect the discharge time. Frequently used electret 

materials are mainly polymers, such as Teflon and PVDF, P(VDF-TrFE) copolymer and FEP 

(fluorinated ethylene propylene) and also inorganic materials, such as SiO2, Si3N4 and some 

SiO2-based glasses [111]. 
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Figure 3.24 Illustration of the Hap sample and the stored charge, at surface and bulk levels, after 

a charging experiment. The back electrode, in the case of the coatings, is the Ti substrate while for 

the pellets it can be interpreted as the measurement electrode.  

 Actually, the charge storage in the samples is not fully explained by fig. 3.24. While 

analysing the data, we have made some developments in the understanding of charge 

storage in the samples. Recalling table 3.1, we saw that the magnitude of the stored charge 

in the pellets is in the 10-4 C/cm2 range. Consider now fig. 3.25, which shows the surface 

potential buildup for a Hap pellet negatively charge with a current of - 3 nA (the same 

characteristic curve shape is observed for the other pellets charged with - 1 and - 3.5 nA. At 

the charging time of 2000 s (actually it is about 2150 s, because of an initial part we cannot 

follow due to the sample resistance) it is possible to see that the surface potential is in the 

saturation region, thus, according to the literature, it can be an indicator that charge storage 

in the sample is residual, as it has been described for polymers that present similar potential 

buildup curves, like Teflon [112]. However, it may not be the case in our samples. 

 

Figure 3.25 Surface potential buildup for a Hap 

pellet negatively charged with a constant 

current of - 3 nA. The same characteristic curve 

shape is observable for the other samples 

charged with - 1 and - 3.5 nA.   
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 The following question arises: in 2150 s, what was the charge density deposited by 

the corona charge in the sample? This charge density is given by equation 45: 

𝑄𝑐𝑜𝑟𝑜𝑛𝑎 ≅ 𝐽0𝑡𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 (45) 

where J0 = - 4.2 nA/cm2 (the charge density in the sample corresponding to I0 = - 3 nA/cm2, 

which is determined by the plane/measurement electrode). Applying equation 45 we get 

Qcorona ≈ 9 x 10-6 C/cm2. Observing Table 3.1 it is possible to see that this value, Qcorona, is 

significantly lower than the total stored charge measured in the TSDC. Thus, only the 

storage of the electrons transferred by the corona discharge cannot explain the total stored 

charge. However, there is a possible explanation for this result: we believe that in the 

potential saturation region the electrons transferred by the discharge are still being trapped 

in the bulk, not only those but also all the electrons that the sample continued to receive 

during the 30 min cooling step down to RT. Similarly to the conventional thermoelectrical 

polarization, in the corona charging, during the cooling step, the discharge and grid 

potential remain applied, to prevent any eventual discharge in the sample. Thus, the 

following question arises: why are the electrons still being trapped in the bulk, even during 

the cooling step? They are activating the space charge polarization mechanism in the Hap, 

which was explained topic 1.1.8 (see the discussion of figs. 1.12 and 1.13).  

The reason why we are measuring in higher stored charge densities in the TSDC is 

because the field set up by the electrons in the bulk is able to activate up to a certain degree 

the Hap space polarization mechanism. In a previous work, where we have undertaken 

conventional thermoelectrical contact polarization on Hap pellets, we have measured 

stored charge densities in the 10-4 C/cm2 magnitude for a temperature of 500 ºC and an 

applied field of 5 kV/cm [34]. Further, higher stored charge densities have been reported 

[refs]. The scheme in fig. 3.26 depicts the charge storage processes in our samples, updating 

fig. 3.24.  As the scheme in the left shows, the electrons coming from the corona discharge 

are trapped at the surface and then in the bulk of the sample. In parallel, the electric field 

produced by the electrons trapped in the bulk will be able to activate the space charge 

polarization mechanism of Hap. This polarization will not develop in all the sample 

thickness, but starting from a given depth within the sample where the electric field is high 
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enough to activate it. As mentioned, the contribution to activate the Hap space charge 

polarization comes not only from the electrons transferred during the charging time 

correspondent to fig. 3.25, but also from the electrons that the sample kept receiving during 

the 30 minute cooling step. Additionally, it is known the corona current in the air gap 

current between the grid and the sample increases for lower temperatures [ref]. Thus, we 

are able to justify the total stored charge densities calculated through the TSDC 

measurements. 

 

Figure 3.26 The contribution of the Hap space charge polarization in the samples. The electric field 

created by the electrons trapped in the bulk is able to activate the space charge polarization 

mechanism of Hap.  

3.2.4 Stored charge at a surface level 

Resorting to the electrostatic laws, the integral form of the Gauss’s law generalized 

for a dielectric material can be written according to equation 46: 

∮ 𝐷⃗⃗ . 𝑑 𝐴 = 𝑄𝑡 (46) 

where the left term is the displacement field flux and the right term can be interpreted as 

the total trapped space charge (Qt), at surface and bulk levels, by the dielectric material (or, 

more rigorously, the space charge enclosed by the Gaussian surface associated to the 

surface integral). The displacement field, also given in equation 41, can be rewritten in a 

more general vectorial form as: 

𝐷⃗⃗ = 𝜀𝑜𝜀𝑟𝐸⃗  (47) 

where r is the dielectric constant of the dielectric material. Again, when considering Hap, 

we disregard the polarization component contribution to the total stored charge density by 
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the material, when compared to the contribution of the trapped space charge, at surface and 

bulk levels. Thus, we can rewrite equation 46 as: 

∮𝐸⃗ . 𝑑𝐴 =
𝑄𝑡
𝜀0𝜀𝑟

 (48) 

 Equation 48 is considered to be a general form of Gauss’s law. Consider a Gaussian 

surface that encompasses the superficial trapped charges along the surface of the sample, 

with a superficial area A. We can write the electric field magnitude as: 

𝐸 =
𝑄𝑆
𝜀0𝜀𝑟𝐴

=
𝜎𝑆
𝜀0𝜀𝑟

 (49) 

where S is the superficial charge density. One may be in doubt about equation 49, for 

instance, considering that in the coatings, with considerable average surface roughness, the 

infinitesimal surface area elements are not in the same direction of the electrical field. 

However, note that Gauss’s law is valid for any closed Gaussian surface, with any irregular 

shape, so that one can choose any particular closed surface where all the infinitesimal 

surface area elements and electric field are in the same direction so that equation 49 is valid.  

 Considering the relationship E = VS/d, where VS is the surface potential and d is the 

thickness of the sample, we can rewrite equation 49 as: 

𝜎𝑆 =
𝜀0𝜀𝑟
𝑑
𝑉𝑆 (50) 

 According to equation 50, the surface charge density is proportional to the surface 

saturation potential and dielectric constant of the sample, being inversely proportional to 

the thickness. Thus, based on this information, we can infer the following fact: the 

superficial stored charge density in the coatings is much larger compared to the pellets 

(after we will make some estimations based on equation 50). The fact that the coatings are 

able to store such a larger superficial charge density can be explained, besides the thickness 

factor, in terms of superficial area and of the “violent” nature of the PS process. 

 The superficial area explanation can be understood by observing the illustration of 

fig. 3.27. Comparing the pellets and the coatings, for the same surface section dimensions, 

the increased surface area of the coatings allows them to store much larger amounts of 
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surface charge. The thermally “violent” nature of the PS deposition process (discussed on 

topic 1.2.3 and also section 1.3) is also another factor that can explain the increased surface 

charge density. The presence of a secondary phase (-TCP), although below 5 wt%, and 

also of ACP constitutes heterogeneities that may potentiate charge trapping. The extremely 

high temperatures that the Hap powder particles experience during deposition, with partial 

or total melting taking place and the fast cooling rates, may also be a factor potentiating the 

creation of defects within the material’s structure, and therefore trapping sites. 

 

  

Figure 3.27 Assuming that the surfaces in the illustrations have the same dimensions, the 

increased surface area of the coatings, represented in the right, compared to the flatter surface of 

the pellets, in the left, is one of the reasons explaining why the coatings are able to store such a 

large surface charge density.  

  

Based on equation 50, we can make some estimations for our samples. According to 

Gittings et al. we estimate the dielectric constant of our samples to be around ~ 25, at 200 ºC 

(remember that we charged the samples at 200 ºC) [37]. The pellets reached surface potential 

values between - 294 and - 342 V, while the coatings are in the - 1400-1800 V range. Let us 

assume a VS  (equation 50) value of 320 V for the pellets and 1600 V for the coatings. The 

thickness of the pellets is 1 mm while the average thickness of the coatings is 70 m. 

Applying equation 50, the following values for the surface charge density are obtained: ~ - 

7x10-9 C/cm2 for the pellets and ~ - 5x10-7 C/cm2 for the coatings. These estimates show us 

how the surface stored charge density is much larger in the coatings. Also, observing table 

3.1, the stored charge in the pellets at a surface level is only a very small fraction of the total 

stored charge, showing, as expected, very high levels of bulk trapping. Concerning the 

coatings, although we cannot perform TSDC measurements to calculate the total stored 

charge density, we expect a similar behaviour. However, due to the much smaller average 
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thickness of the coatings, allied to the factors which were discussed (surface area and PS 

process), the surface charge density is much higher in the coatings. Regarding the stored 

charge temporal stability in the coatings, we can suggest that a larger stored charge density 

can be associated with longer discharge times compared to the pellets, as equation 44 

shows. According to equation 44, even if the short-circuit current measured at a 

temperature T is higher in the coatings due to their smaller thickness (the electrical 

resistance diminishes for lower thicknesses), a much higher stored charge density can easily 

promote the increase the time of discharge. 

Table 3.3 shows the electronic work function required to remove an electron from 

the surface, determined through photoelectron emission spectroscopy, of different samples: 

sample 1 is a pellet charged through the “classic” method (grid: - 2.5 kV, 1 h at 200 ºC); 

sample 2 is a pellet charged with constant current (- 1 nA, 200 ºC); sample 3 is a coating 

charged with constant current (- 3.5 nA, 200 ºC); sample 4 is a coating charged with constant 

current (-1 nA, 200 ºC). These experiments were made in collaboration with Prof. Dr. Yuri 

Dekhtyar, director of the Biomedical Engineering and Nanotechnologies Institute of the 

Riga Technical Institute, in Latvia. We sent some charged samples and a very brief 

explanation of the technique goes as follows: the samples are irradiated with UV light, 

scanning several wavelengths, in a high vacuum chamber (10-5 Pa) and the UV light causes 

the ejection of electrons from the surface of the sample. Through the ejected electrons, with 

proper detection equipment and data analysis, they are able to determine the work function 

required to remove an electron from the surface. Note that this is a superficial analysis, 

because the UV light is only able to penetrate a few nanometers into the sample. The 

rationale behind these measurements is the following: comparing two surfaces, the one 

with the highest surface potential must have a higher work function, because more energy 

is required to remove an electron from such surface. As it can be seen, the results on table 

3.3 are in agreement with our corona triode charging experiments. We saw that the coatings 

reach much higher saturation surface potentials compared to the pellets and, as table 3.3 

shows, the pellets present significantly lower work functions. Additionally, we saw that the 

coatings charged with higher charging currents (- 3.5 nA) tend to reach lower surface 

potentials compared to coatings charged with lower currents (- 1 nA). Accordingly, sample 
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3 presents a lower work function compared to sample 4. Thus, the photoelectron emission 

spectroscopy results corroborate and strengthen our charging experiments.  

 

Table 3.3 The work function required to remove an electron from the surface of the samples. 

Sample 1 - pellet charged through the “classic” method (grid: - 2.5 kV, 1 h at 200 ºC); Sample 2 - 

pellet charged with constant current (- 1nA, 200 ºC); Sample 3 - coating charged with constant 

current (- 3.5 nA, 200 ºC); Sample 4 - coating charged with constant current (- 1 nA, 200 ºC). 

 

 

As a small aside, it was referred at the end of topic 1.1.9, and also mentioned in the 

present topic, that some reports state that stored charge density magnitudes at least in the 

10-6 C/cm2 magnitude are required to produce significant differences in the biological 

response both in vitro and in vivo. It is obvious that the 10-6 C/cm2 value is not a surface 

charge density. For instance, some reports where conventional polarization of bulk Hap 

samples is undertaken may lead to the wrong idea that the stored charge density calculated 

through TSDC measurements is at a surface level in the material [113], while in most of the 

charge is in the bulk of the material (grain boundaries, defects, etc.). 

 To finish the discussion contained in the present topic, we would like to make some 

comments regarding a hypothetic industrial application of the corona triode to charge Hap 

coatings in orthopaedic implants. Firstly, although we have demonstrated (directly on the 

pellets) that the charge is very stable, the rationale behind the preparation of an implant to 

be introduced in a patient should be to charge the coating in the implant shortly before its 

application in vivo. Therefore, the best possible service is being provided to the patient, even 

though the charged implants could have some “shelf life”, in an appropriate environment 

with controlled temperature and humidity. Secondly, it seems to us that the most appealing 

corona triode method to be introduced in the production cycle of an implant with a charged 

Sample 1 Sample 2 Sample 3 Sample 4

Work function (eV) 4.47 4.58 4.76 4.83

Standard deviation (eV) 0.04 0.03 0.04 0.04
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coating would be the “classic” method because it is easier to implement. It does not require 

a picoammeter, a feedback circuit controlling the grid potential and the charging current, 

all the connections to this equipment, etc. Additionally, as we have shown, it allows to 

obtain high stored densities, in the case of our pellets, already in the 10-5 C/cm2 order of 

magnitude. An industrial section dedicated to the corona triode charging of the implants, 

through the “classic” method, could be imagined as containing several point electrodes 

evenly separated from each other, a large metallic grid below all the point electrodes and 

below the grid some implant holding structures where the implants could be placed. 

Ideally, these implant holders should rotate the implants while they are being subjected to 

the discharge. Depending on the demand, several implants could be charged at the same 

time, if necessary. Regarding the evenly spaced point electrodes, multiple needle cylindrical 

electrode structures could do the job, as fig. 3.28 shows [114]. Several of these structures 

could be installed side by side, covering areas as large as necessary. 

 

  

Figure 3.28 In the left: a multiple needle electrode structure. In the right: a positive corona 

discharge produced on such structure connected to a positive DC high voltage supply [114]. 

 

As a finishing note, in this manuscript, particularly in the present topic, we refer to 

the charging experiments in our samples as “corona triode charging of the samples”. In the 

literature one can find the same expression “corona triode charging of the samples” or 

“corona triode polarization of the samples”, some authors make the distinction. We use the 

term charging to because we are promoting extrinsic charge storage at surface and bulk 

levels in the samples. For instance, if instead of Hap our samples were to be ferroelectric 

polymer foils, probably we would use the “corona triode polarization” expression, due to 

the activation of the dipolar ferroelectric properties. In the same way, a real charge electret 
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is distinguished from a dipolar charge electret. Concerning the conventional polarization 

of Hap and its mechanisms, discussed in topic 1.1.8, we always write “conventional 

polarization of…” or “polarization mechanisms of Hap” or even “defect pair dipole and 

space charge polarization mechanisms”. In the case of conventional contact polarization, 

the use of the word “polarization” is widespread. The use of “charging” in the corona triode 

may also useful to distinguish it from the conventional method: in the corona triode, we are 

injecting (“charging”) charges in the sample, while the same is usually not happening in 

the conventional method. Therefore, it sounds right to say “corona triode charging “, while 

“conventional contact charging” would not sound right.   

 

3.2.5 In vitro biological tests 

As mentioned, the in vitro biological tests were carried out at the lab facilities of the 

CENIMAT (Center of Materials Research) research center, in the New University of Lisbon, 

through a collaboration with researchers belonging to the Soft and Biofunctional Materials 

Group (SBMG). 

We sent 26 samples for tests, 13 control (not charged) and 13 charged. The corona 

triode charging experimental procedure was the same for all the coatings: they were 

charged at 200 ºC with a negative constant charging current of - 1 nA. Of the 13 charged 

samples, 7 were used in the SBF tests and 6 for the osteoblastic metabolic activity tests. All 

the samples have a square geometry with approximate dimensions of 10x10x1 mm.  

As a small aside, fig. 3.29 shows how a sample is placed on the top of the 

measurement electrode, in the teflon support plate, for the charging experiment. Kapton 

insulating tape is used to fix the sample in the measurement electrode because it is able to 

withstand a temperature of 200 ºC. It can be also noticed in fig. 3.29 that we are not using 

the copper guard ring and that, even if the guard ring was placed in the ring-shaped slit, 

the sample would not cover or even touch it. The reason for this is actually very simple, 

something that we have learned as our knowledge on the corona triode developed. The 

guard ring can only be used in samples in which the face that is not exposed to the corona 

discharge, i.e., in contact with the measurement electrode and with the guard ring, is not 
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metalized. For metalized surfaces, like our coatings on the Ti substrates, the charging 

current flowing through the sample will flow through the guard ring connected to the 

ground and not through the picoammeter, because the picoammeter has always a certain 

internal resistance. Even considering that this internal resistance is small, the current will 

always flow through the guard ring because the “ground resistance” is always lower. 

Therefore, if our samples were in contact with the guard ring, we would not be able to 

measure the current and use the constant charging current method. The guard ring is used 

for example when charging polymer foils to avoid that eventual superficial current 

interferes with the measurement. However, for experimental systems with low atmospheric 

relative humidity levels (like ours), these superficial currents are negligible. 

 

 

Figure 3.29 Photograph showing how a sample is 

placed on the top of the measurement electrode in 

the Teflon support plate. The sample is fixed on the 

measurement electrode using kapton insulating 

tape, able to withstand temperatures of 200 ºC. 

 

Before discussing the biological results, it is important to have in mind the following 

fact: the time gap between the charging of the coatings and the performance of the 

biological tests is about one month. According to our results analyzed in the previous topic, 

we do not expect one month to be significant in terms of the discharge of the stored charge 

in the samples. Nonetheless, it constitutes a good opportunity to test our samples and 

results.  

The first results, contained in fig. 3.30, show the osteoblastic cell proliferation in the 

charged and non-charged coatings, for increasing culture times. As discussed in topic 1.1.9, 

cellular proliferation is usually assessed by performing optical density measurements. The 
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results in fig. 3.30 corresponds to a ratio between the optical density of the charged and 

non-charged samples and the optical density of a cellular control population, as explained 

in section 2.5. The control population shows an expected behavior: a fast initial growth and 

later a slower growth rate, with the stabilization of the number of cells. It is also normal for 

the control population to increase faster than the samples in the first days. The control cells 

are seeded directly in the culture plate well, and the stabilization of their number, after an 

initial high growth rate, occurs because the surface area of the plate well becomes 

completely occupied with cells, therefore stabilizing its number. The samples results 

indicate that, for all the analyzed culture times, the osteoblastic proliferation is increased in 

the charged coatings, compared to the non-charged samples, becoming more evident for 

higher culture times (as it is the case of fig. 1.26). One month after charging, the stored 

charge is able to clearly promote the osteoblastic proliferation in the charged samples. 

 

Figure 3.30 Osteoblastic cell proliferation in the charged and non-charged coatings, for 

increasing culture times. These results were obtained through optical density measurements. 

Fig. 3.31 contains fluorescence images obtained after fixing and staining the 

osteoblasts after 5 days of culture in the coatings. The red fluorescence indicates the 

cytoskeleton of the osteoblasts, the blue fluorescence the osteoblasts nuclei and the green 

fluorescence the vinculin protein. Images (a), (b) and (c) - charged coating; (d), (e) and (f) - 

non-charged coating. The images correspond to an area of about 330 m x 424 m. The 
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fluorescence images in fig. 3.31 complement the resazurin proliferation information 

contained in fig. 3.30, by showing a clear and abundant osteoblastic proliferation in the 

charged and non-charged surfaces after 5 days of culture. The elongated morphology of the 

nuclei, the blue fluorescence in fig. 3.31, shows that the osteoblasts adhere and interact well 

with the coating surface. In surfaces where the osteoblasts do not adhere well, they would 

assume a round morphology, not elongated. The well-developed, projected and elongated 

cytoskeleton displayed in the red fluorescence images corroborate the strong osteoblastic 

adhesion and positive interaction with the surface. If the adhesion and interaction of the 

osteoblasts with the surface were poor, then, a well-developed, projected cytoskeleton 

would not be observable after 5 days of culture. Finally, the well-distributed green 

fluorescence translating the vinculin protein shows a strong bonding and adhesion between 

the osteoblasts and the surface of the coatings. The fluorescence microscope used in this 

work is not confocal, explaining why some out-of-focus spots are visible in fig. 3.31, taking 

into account the large surface roughness of the PS Hap coatings.  

It should be noted that a qualitative analysis of the results in fig. 3.31 should be 

avoided, i.e., for instance, to compare images a) and d) and conclude that the osteoblastic 

adhesion and surface interaction is better in a) compared to d). Or to compare images c) 

and f) and conclude that the vinculin distribution along the surface is better in the charged 

coating compared to the non-charged coating. In fact, the conditions to be able to perform 

a qualitative analysis like the one contained in topic 1.1.9 for fig. 1.27 are very hard to obtain, 

only in very strict conditions such analysis can be correctly and confidently performed. For 

example, to perform such a similar analysis in our samples, we would have to be sure that 

the regions in fig. 3.31 contain exactly the same cell density, which is very hard considering 

the micrometric surface roughness of our coatings and also the fact that we are not using a 

confocal fluorescence microscope. Thus, the information contained in fig. 3.31 is interpreted 

as a complementary information concerning the proliferation results in fig. 3.30. While fig. 

3.30 shows an enhanced osteoblastic proliferation in the charged coatings, fig 3.31 provides, 

after 5 days of culture a visual confirmation, of the osteoblastic proliferation and 

additionally that the osteoblasts have a positive interaction and strong adhesion with the 

surface of the coatings. 
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Figure 3.31 Fluorescence images obtained five days after culture. The red fluorescence indicates 

the cytoskeleton of the osteoblasts, the blue fluorescence the osteoblasts nuclei and the green 

fluorescence the vinculin protein. Images (a), (b) and (c) - charged PS Hap coating; (d), (e) and (f) 

- non-charged PS Hap coating. The images were obtained with the 40x objective, and correspond 

to an area of about 330 m x 424 m.   

Moving on to the SBF results, fig. 3.32 shows the variation of the Ca2+ and P5+ ionic 

concentrations for increasing immersion times (0, 1, 3, 6, 12, 24, 48 and 72 h) in the SBF 

solution, for the charged and non-charged samples. The results follow the same trend 

reported in the literature for  PS Hap coatings [115], i.e., an initial strong rise of the Ca2+ and 

P5+ ionic concentration and subsequently, their concentration starts to decrease.  

The initial strong increase is caused by the partial dissolution of Ca2+ and P5+ ions 

from the Hap coating. As discussed in the state of the art, the PS process leads to a reduction 

of the Hap crystallinity within the coatings, as well as to the presence of secondary phases 

such as -TCP and ACP. -TCP, having a lower Ca/P ratio compared to Hap, has lower 

stability in the physiological conditions, i.e., dissolves faster (table 1.3). ACP can have a 

wide range of Ca/P ratios, comprehended between 1.2 - 2.2, therefore it also possesses a 

higher dissolution rate (the crystallinity is another factor, as it will be discussed later in this 

topic). This is the reason why calcium orthophosphate compounds with Ca/P ratios lower 

a) b) c) 

d) e) f) 

a) 
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than 1.5 are not applied in orthopaedics: they are too unstable and dissolve too quickly 

inside the body, i.e., their degradation kinetics is faster than the rate of new biologic bone 

formation. Even -TCP, with a Ca/P ratio of 1.5, is very rarely applied alone, being instead 

applied in biphasic BCP Hap/-TCP formulations. The rationale of these BCP compounds 

is to achieve materials with different degradations rates: the higher the -TCP content, the 

higher the degradation rate. The bioactivity of a material with a higher dissolution rate is 

considered to be higher than a material with lower dissolution rate, as long as the higher 

dissolution rate does not compromise the biomaterial/new biologic bone interface stability. 

In summation, the SBF in vitro tests provide information regarding the two bioactivity 

factors: the dissolution rate and the interaction of the biomaterial with the ionic content of 

the human blood plasma. Considering again fig 3.32, there is a dominant factor, besides the 

Ca/P ratio, explaining the initial strong increase in the Ca2+ and P5+ ionic concentrations: the 

low crystallinity of the PS coatings. It is well-known in the calcium orthophosphates 

literature that the dissolution rate in the physiological conditions increases with the 

decrease of crystallinity of the material [116, 117]. The PS process produces coatings in 

which Hap has a considerable lower crystallinity compared to the initial Hap powder [53, 

118]. Interestingly, recalling the information about the PS Hap coatings included in the state 

of the art of this thesis, while PS coatings have worst mechanical properties, both within 

the coating (residual stress levels) and at the coating/metallic substrate interface, they 

actually have the positive factor of possessing higher bioactivity levels compared to 

coatings where Hap retains a high crystallinity level, since they have higher dissolution 

rates, without compromising the coating/new biologic bone interface. Moreover, another 

advantage of the PS coatings which was alluded in the previous topic is that the high 

amount of defects and heterogeneities produced by the PS process enhance the charge 

storage capacity of these coatings. The results in fig. 3.32 for a Hap coating in which the 

Hap retains a high crystallinity level or for a bulk Hap sample would be different. An initial 

strong increase in the Ca2+ and P5+ concentration would not be observable, due to the low 

dissolution rate of the referred materials, only the decrease in the Ca2+ and P5+ 

concentrations would be observable [119, 120].  
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The results in fig. 3.32 show that right after the initial strong increase of the Ca2+ and 

P5+ ions, just one hour after immersion, the concentration tends to stabilize. For higher 

immersion times, 48 and 72 h, there is a significant decrease in the Ca2+ and P5+ ionic 

concentration, suggesting that the development of a bone-like Hap layer is taking place at 

a significant rate, i.e., ions from the solution are being incorporated in the developing 

apatite layer. It should be note that the steps leading to the development of the bone-like 

apatite layer most likely already occurring for shorter immersion times, already a few hours 

after immersion [121]. However, a decrease in the Ca2+ and P5+ ionic concentration is not 

visible because it is “masked” by the initial strong ionic concentration increase. The 

stabilization trend of the Ca2+ and P5+ ionic concentration a few hours after immersion is 

most likely related to the fact that the coating surface is starting to be completely covered 

with a developing bone-like Hap layer, blocking the coating dissolution effect.   

Fig. 3.33 depicts a schematic illustration of the steps leading to the formation of a 

bone-like apatite layer on the Hap surface immersed in an SBF solution, as well as the 

importance of the electrostatic interactions [121]. It should be noted that the electrostatic 

interactions are assumed in the literature to be important even for non-charged Hap 

bioceramics. As fig. 3.33 depicts, when immersed in SBF, it is thought that Hap reveals a 

negative surface charge by exposing the hydroxyl and phosphate structural units, as 

depicted in the first illustration on the left [121]. This negative surface charge is able to 

selectively attract positive ions in the fluid, particularly Ca2+ ions since the electrostatic 

attraction is stronger compared to other ions such Na+ and K+. Consequently, a Ca-rich ACP 

layer is continuously being formed, already a few hours after immersion. On its turn, the 

development of this Ca-rich ACP layer develops a positive surface charge which attracts 

negative phosphate and HCO3
− ions in the solution, leading to the formation of Ca-poor 

ACP. Remember that the most common ionic substitution in the biologic Hap is the 

incorporation of carbonate ions, thus in SBF, which replicates the human blood plasma ionic 

content, the same behaviour is observed. Subsequently, and also accounting the fact that 

Hap is the thermodynamically favoured phase in the in vivo and SBF conditions, the Ca-

poor ACP layer will tend spontaneously to evolve to bone-like Hap, by incorporating 

calcium and phosphate ions mainly, together with other ions, notably carbonates [121]. This 
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last step of bone-like Hap development is reported to start as soon as between 9 - 12 hours 

after immersion in SBF [121]. Fig. 3.33 does not include dissolution of Ca2+ and P5+ ions from 

the coating into the SBF solution, which is true for highly crystalline near-stoichiometric 

Hap. However, as aforementioned, PS coatings are characterized by a partial ionic 

dissolution process, therefore the Ca2+ concentration decrease due the formation of Ca-rich 

ACP (fig. 3.31) and then the P5+ concentration decrease due to the formation of Ca-poor ACP 

are “masked” by dissolution of ions from the coating into the SBF solution. Moreover, while 

the processes in fig. 3.33 are taking place, some dissolution can still be occurring in some 

regions of the coating. Finally, in fig. 3.32, for the 48 and 72 h immersion times, the decrease 

in the Ca2+ and P5+ concentrations is observed, assigned to the development of the bone-like 

Hap layer. 

If the electrostatic interactions of non-charged Hap bioceramics are assumed to be 

important, then the influence of an additional large negative stored charge density becomes 

clear: such negative charge must further accelerate the processes depicted in fig. 3.33. 

Particularly, observing the results in fig. 3.32, for the highest immersion times, the decrease 

in the concentration of the Ca2+ and P5+ ions is more pronounced in the charged samples 

compared to the non-charged samples, strikingly concerning the P5+ concentration, 

indicating a more advanced stage of bone-like Hap development on the charged surfaces. 

The variation of the pH value shows an initial increase trend followed by a 

stabilization behaviour. This behaviour is typically observed in the literature for bioactive 

materials such Hap coatings (also in other forms, such as biocomposites) and bioactive 

glasses and glass-ceramics characterized by some degree of dissolution (frequently also 

designated as biodegradation) in the physiological conditions, consequently, also some 

degree of dissolution in SBF conditions [117, 122-124]. Such behaviour is commonly 

explained by the release of the alkaline earth ions Ca2+ and also of OH- ions from the Hap 

which increase the pH value. Also, some ionic exchange between ions released by the Hap 

with ions present in the SBF solution can contribute to the pH increase [117, 123, 124]. 



195 

 

  

 

Figure 3.32 The variation of the Ca2+ and P5+ 

ionic concentrations and of the pH value for 

increasing immersion times (0, 1, 3, 6, 12, 24, 

48 and 72 h) in the SBF solution, for the 

charged and non-charged samples. The first 

value at 0 hours is equal for both samples, 

corresponding to the initial concentrations 

and pH value in the SBF solution  

 

 

Figure 3.33 Schematic illustration of the steps leading to the formation of a bone-like apatite layer 

on the Hap surface immersed in a SBF solution. This illustration also shows the influence of the 

electrostatic interactions [121]. 

The SEM micrographs displayed in fig. 3.34 show the surface morphology of the 

charged coatings for different SBF immersion times: 1, 6, 48 and 72 h. After 1 h, it is visible 

that there are already structures precipitating on the surface of the coating. At 6 h, the 

typical cauliflower-like structures assigned to the precipitation and development of new 

biological Hap are clearly visible. These structures do not cover uniformly all the coating 
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surface, being more developed in some regions and less pronounced on other regions. This 

behaviour is typically observed in the literature. At 48 and 72 h, a radical modification of 

the initial surface morphology is evident, with the surface being completely covered with 

the newly forming apatite. These results show that the formation of the new Hap is taking 

place at a fast rate, attesting the high bioactivity level of the coatings. We can also make a 

correlation between these results with the SBF results on fig. 3.32. As it was discussed in 

the fig. 3.32 discussion, we said that the Ca2+ and P5+ concentrations decrease for the lower 

immersion times could be “masked” by the partial dissolution occurring in the coatings, 

while for the higher times of 48 and 72 h, the concentrations decrease could signify that all 

the coating surface would be already covered with the newly forming bone-like Hap. The 

micrographs in fig. 3.34 corroborate this line of thought, showing an incomplete surface 

coverage for lower times and complete surface coverage for 48 and 72 h. 

  

  

Figure 3.34 SEM micrographs revealing the surface morphology of the charged coatings for 

different immersion times: 1, 6, 48 and 72 h.  

 

 

1 h 6 h 

48 h 72 h 
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Chapter 4 Conclusion and future work 

4.1 Conclusion 

In this section, we shall make a reflection regarding the three main objectives of this 

work, contained in section 1.5.  

With respect to the first objective, we successfully managed to develop “from 

scratch” a functional corona triode experimental system. The developed system is able to 

produce a positive or negative discharge, thus, it allows the user to define the charge 

polarity to be injected in the sample, an important feature and advantage of our system. 

Besides the possibility of applying the simpler “classic” method, our system offers the 

possibility of applying the more complex constant charging current method, where the 

charging current through the sample can be controlled and the sample surface potential 

buildup can be followed in real-time during a charging experiment. Moreover, the 

temperature of the experimental system can be controlled up to 200 ºC and a low humidity, 

reproducible atmosphere is maintained in all the charging experiments, an important 

feature to be considered in the development of a corona triode system. 

The following process parameters of the CoBlast process were investigated: the 

weight ratio between abrasive and dopant, the blast distance and the blast pressure. It was 

shown that 50/50 weight ratios and distances lower than 30 mm are advantageous. 

Concerning the second objective, the PS Hap coatings can be successfully charged 

through the corona triode technique. The coatings produced by the CoBlast process are 

characterized by having regions where the Ti substrate is not covered with a Hap layer, 

making the sample conductive. Due to the abrasive nature of the CoBlast process, 

additional depositions on an already coated Ti substrate will not produce a coating 

completely covering the metallic surface, i.e., to make additional depositions is essentially 

to remove the Hap coating which was already there and to produce a new one. Therefore, 

the charging current cannot be controlled in the CoBlast coatings.  



198 

 

Concerning the PS coatings, the constant charging current method revealed to be of 

particular importance, i.e., despite the fact that we are not able to perform TSDC 

measurements on the coatings, in order to calculate the stored charge density and estimate 

the trapped charge temporal stability, this method allows us to conclude that the PS 

coatings can be charged up to very high surface potentials. This is the advantage of being 

able to follow in real-time the surface potential buildup through the metallic grid potential.  

The surface potential buildup curves for all the charged PS coatings present the 

same characteristic shape. A first linear stage suggests charge trapping is occurring 

essentially at a surface level. Subsequently, the sublinear behaviour, where surface 

potential buildup rate decreases, can indicate two things: that conduction current 

contribution started to be dominant compared to the linear stage capacitive current, or that 

charge trapping is occurring at a bulk level. Our results for the pellets show a high level of 

charge trapping at a bulk level. Finally, in a third stage, the surface potential tends to reach 

the saturation value. At this point, the current through the sample is essentially conductive. 

The charging current versus time data shows that the current controllability in the coatings 

is much better for lower charging current values. A coating charged with a current of - 1 

nA (current density of - 1.4 nA/cm2) displays the majority of the charging current values 

between - 0.9 and - 1.1 nA. A few events where the current increases significantly are 

detected, assigned to localized discharges in the sample. However, these events, which tend 

to occur for higher charging times (for lower charging currents) do not compromise by any 

means the experiment and the surface potential buildup, their influence is only manifested 

as some oscillations on the potential buildup curve. On the other hand, for higher charging 

currents, these events tend occur during all the charging time, being translated in higher 

surface potential fluctuations. Moreover, coatings charged with higher currents reach lower 

saturation surface potentials, suggesting that charging trapping at a bulk level is being 

favoured instead of trapping at a surface level, as it is reported in the literature [85].   

The pellets prepared in this work were produced using the same Hap powder used 

in the PS deposition process, in order to perform TSDC measurements on the pellets. The 

rationale was to adopt a complementary strategy in order to find out if we can infer some 
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information regarding the coatings through the pellets results, notably regarding the stored 

charge density and its temporal stability, the most important parameters taking into 

account the biological applications of the PS Hap coatings. 

The pellets presented a similar behaviour in terms of current controllability: lower 

charging currents yield better controllability, although such controllability is better on the 

coatings because the much larger thickness of the pellets increases the probability of current 

fluctuations.  

With respect to the total stored charge density in the pellets, it is in the order of 

magnitude of - 10-5 and - 10-4 C/cm2, for the “classic” and constant current methods, 

respectively. These are extremely interesting values, considering that they are well above 

the 10-6 magnitude, reported as the necessary magnitude to produce significant in vitro and 

in vivo bioactivity enhancements in Hap biomaterials [45]. It is our opinion that, by choosing 

appropriate process parameters values (grid potential and time), it would be possible to 

further increase the stored charge density values produced by the “classic” method, even 

the application of more than one grid potential could be considered. The stored charge 

temporal stability (time for complete discharge at RT) estimates are also very encouraging, 

with values ≥ 6 months for the “classic” method and ≥ 13 months for the constant charging 

current method, providing much time for the stored charge to take its effect in vivo.  

 A striking difference between the pellets and the coatings concerns the surface 

saturation potential, being much higher in the coatings. Making the bridge between the 

pellets results and the coatings, we demonstrated how the increased surface potential in the 

coatings, together with their lower thickness, means that the surface stored charge density 

in the coatings is much higher than the pellets. Accordingly, we estimated surface charge 

density values in the - 10-9 and - 10-7 C/cm2 magnitudes for the pellets and the coatings, 

respectively. A very high level of bulk charge injection also occurs in both types of samples. 

Due to the large stored charge densities in the coatings, a high temporal stability is to be 

expected. 

 We have shown in this work that with the corona triode charging method we can 

achieve very high stored charge densities, in the 10-4 C/cm2 order of magnitude, which is 
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hardly achieved through conventional polarization, and rarely reported in the literature. 

Furthermore, while we achieved such charge densities at 200 ºC, though conventional 

polarization much higher temperatures are required. As suggested in the following section 

4.2, a very interesting future work will be to investigate if similar results can be obtained at 

lower temperatures. This advantage of the corona triode technique is also attested, for 

instance, for polymeric materials such as -PVDF: while it was originally thought that 

temperatures up to 150 ºC were required for a successful polarization of -PVDF, the first 

applications of the corona triode in this polymer demonstrated that a large and stable 

polarization can be achieved at RT [81].  

Concerning the in vitro biological test results, the osteoblastic proliferation is 

enhanced in the charged coatings compared to the non-charged coatings. Since these tests 

were carried out about one month after the coatings were charged and demonstrate the 

bioactivity enhancement caused by the stored charge, they also clearly attest the stability of 

such stored charge, both for the cellular and SBF tests. The fluorescence images complement 

the proliferation results and show a well-developed, projected osteoblastic cytoskeleton 

and a well-distributed vinculin, clear indicators of a positive interaction and strong 

adhesion between the osteoblasts and the coatings. 

The behaviour of the coatings in the SBF solution shows a strong initial release of 

Ca2+ and P5+ ions, caused by partial dissolution of the Hap coating, which is expected taking 

into account the properties of the Hap coatings produced by the PS process. The process of 

development of a bone-like Hap apatite layer on the surface of the coatings, reported to 

start a few hours after immersion in SBF, is accompanied by a decrease of the Ca2+ and P5+ 

ionic concentration in the SBF solution. However, such ionic decrease is “masked” during 

the first immersion day due to the coating dissolution. For the immersion times of 48 and 

72 h, the Ca2+ and P5+ concentrations decrease, meaning that the coating dissolution stopped 

to be significant, most likely due to the fact that all or almost all of the coating surface is 

already covered with an apatite layer developing into bone-like Hap, blocking the coating 

dissolution. The decrease of the Ca2+ and P5+ ionic concentrations occurs most strikingly in 

the charged coatings, indicating a more advanced stage of bone-like Hap development on 
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the charged surfaces. The SEM micrographs revealing the surface morphology of the 

coatings for different SBF immersion times can be correlated with the variation of the Ca2+ 

and P5+ concentrations. Particularly, for the higher immersion times of 48 and 72 h, it is 

evident all the initial surface is already fully covered with a newly forming biologic Hap 

layer, being in agreement with the Ca2+ and P5+ concentration decrease observed for 48 and 

72 h. 

One month after being charged through the developed corona triode experimental 

system, the in vitro biological tests show how the stable stored negative charge density is 

able to enhance the bioactivity of the charged Hap PS coatings compared to the non-charged 

coatings. Thus, for the first time, a stable and large charge density was achieved on PS Hap 

coatings intended for orthopaedic applications through a non-invasive electrode-free 

charging technique. These charged coatings, with enhanced bioactive properties, would not 

face any problem concerning the international standards regulating the market and would 

comprise a differentiated, advantageous orthopaedic solution proving a better service and 

care to a continuously increasing number of patients.  

 

4.2 Future work suggestions 

We propose several future work topics, which are listed below: 

1. Expand the corona feedback software in order to include the first stage, prior to the 

“fine-tuning” stage, responsible to, as fast as possible, increase the grid potential up 

to the value which leads to the constant charging current defined by the user (this 

is related to the resistance of the sample, for example, if it is significantly lower than 

the air gap resistance, then it would be very fast to reach the desired current) . 

2. Explain at a more fundamental level the mechanisms behind the TSDC spectra of 

the samples, taking into account the differences between the corona triode charging 

and the conventional polarization technique. In other words, considering the 

depolarization peaks observed in the samples, explain the mechanisms behind them 

taking into account the negative charge trapped by the samples, at bulk and surface 



202 

 

levels, and the mechanisms reported in the literature behind the conventional 

polarization. In order to explain the appearance of a second depolarization peak for 

higher charging currents, one possible procedure to adopt is to perform a 

considerable number of charging experiments with high charging current values, 

estimate the electric field across the sample through the surface saturation potential, 

and then try to find the dependency of the peak current of each depolarization peak 

with the electric field. As discussed in topic 1.1.8, according to the dependency, a 

particular depolarization peak can be assigned to space charge detrapping or, for 

instance, to a dipolar reorientation mechanism. 

3. Perform the corona triode charging experiments at different temperatures and 

compare the results with those obtained in this work for 200 ºC. If necessary, 

biological tests might also be carried out to compare the results. The idea behind 

this suggestion is to investigate if similar results can be obtained for lower discharge 

temperatures.  

4. Despite the fact that it is not possible to control the charging current on the CoBlast 

coatings, one possible approach that could be researched would be to perform 

charging experiments using the “classic” method and subsequently perform 

biological tests to access if some enhancement of the bioactivity level would be 

observed. The rationale is that, although there are many regions where the Ti 

metallic substrate is directly exposed to the discharge, maybe the regions covered 

with Hap are able to store charge. The magnitude and stability of such stored charge 

would also be questions to be taken into account. 

5. Undertake more biological tests on charged and non-charged coatings in order to 

further improve the statistics of the results. Moreover, the possibility of performing 

in vivo tests should be considered.  
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