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AbstAbstAbstAbstAbstractractractractract     

The impacts of wildŬres on the hydrological and erosive response of forest ecosystems have been 

extensively studied worldwide. Nevertheless, f studies have measured post-Ŭre runoũ and erosion ew 

over large ǋme scales in Mediterranean-climate type environments and even fewer studies considered 

the eũects of pre-Ŭre land management pracǋces post-Ŭre hydrological and erosive processes. In a on 

previous study in the Colmeal study area Vieira et al. (2016) revealed that post-Ŭre runoũ and erosion , 

may not follow the classic window of disturbance model, since the peak of post-Ŭre response occurred in 

the second and third years aƊer Ŭre. This previous study also showed that pre-Ŭre land management can 

substanǋally inƅuence the post-Ŭre response, since annual runoũ and erosion were lower in pre-Ŭre 

unplowed than plowed sites In this follow-up work, a mulǋple regression model (MRM) analysis was . 

p formed to understand how several key factors inƅuence the hydrological and erosive response of a er

burned Mediterranean forest, taking into account the wildŬre; pre-Ŭre land management pracǋces 

(unplowed, downslope plowed, and contour plowed) and soil moisture condiǋons. 

Based on the results of the present study, post-Ŭre runoũ was largely explained by rainfall amounts and 

soil water repellency (SWR)-related variables, whereas erosion processes were beǕer explained by 

rainfall intensity and ground cover variables Fewer factors were found to control the hydrological . 

response of plowed sites when compared to the unplowed site. Aside from rainfall intensity, which was 

the major factor controlling sediment losses, bare soil cover also seems to have been important for 

erosion processes at the unplowed site, whereas at the plowed sites stone cover was the second most 

relevant factor Rainfall-related variables (rainfall and maximum -min rainfall intensity were more . 30 ) 

important for explaining runoũ and erosion under condiǋons than under wet condiǋons. e results dry Th

of the MRM analysis are an important contribuǋon to understand the dynamics of burned forest areas 

and should be considered when adapǋng hydrological and erosion models to post-Ŭre environments. 
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1. I1. I1. I1. I1. Introduntroduntroduntroduntroducǋoncǋoncǋoncǋoncǋon     

Forest Ŭres have been the direct and indirect cause of hydrological and geomorphological changes in 

forest ecosystems worldwide (Shakesby and Doerr, 2006; Shakesby, 2011 Moody et al., 2013). The ; 

magnitude of these changes varies, however, according to the environmental background of the aũected 

area (Vieira et al., 2016; WiǕenberg and Inbar, 2009), the burn severity of the wildŬre (Keeley, 2009; 

MacDonald and Larsen, 2009 Vieira et al., 2015), post-Ŭre rainfall dynamics (Moody et al., 2013; ; 

Wagenbrener and Robichaud, 2014), and post-Ŭre management pracǋces like logging (Fernández et al., 

2007; Malvar et al., 2017), plowing (Shakesby et al., 2002 Marǋns et al., 2013; Keizer et al., 2015), or ; 

mulching (Prats et al., 2012; 2016a b; Keizer et al., 2018). , 

In general, an increase in the hydrological and erosive response of forest areas is observed aƊer Ŭre as a 

consequence of a reducǋon in rainfall intercepǋon and runoũ inŬltraǋon, together with an increase in soil 

erodibility (Moody et al., 2013; Shakesby and Doerr, 2006; Shakesby, 2011). Intercepǋon decreases has a 

direct consequence of vegetaǋon consumpǋon, while soil surface heaǋng can change the chemical and 

physical properǋes of soils, such as soil water repellency (Doerr et al., 2003; Keizer et al., 2008; Finley and 

Glenn, 2010) and aggregate stability (Varela et al., 2010; Mataix-Solera et al., 2011), which are oƊen 

associated changes in inŬltraǋon and soil erosion paǕerns in burned areas (Shakesby and Doerr, 2006; to 

Shakesby, 2011; Moody et al., 2013). 

According to the window of disturbance model (Prosser and Williams, 1998), this enhanced hydrological 

and erosive response tends to occur immediately aƊer the wildŬre, triggered by the first rainfall storms. 

AƊerwards, this response should decrease background levels as soon as the vegetaǋon cover is re-to 

established (Shakesby and Doerr, 2006; Wagenbrener and Robichaud, 2014). Several studies, however, 

have presented variaǋons scheme. For instance, Mayor et al. (2007) and Vieira et al. (2016) did not to this 

observe this increase in post-Ŭre runoũ and erosion during the Ŭrst year aƊer Ŭre, but rather in the 

second and third year aƊer the wildŬre, aǕribuǋng these results to the reduced rainfall amounts of the 
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Ŭrst year and to inter-annual rainfall paǕerns. As for ecosystem recovery, several researchers observed a 

full recovery by the end of the second year (e.g., Fernández and Vega, 2014), while others (e.g., 

WiǕenberg and Inbar, 2009 Vieira et al., 2016) could not observe a full recovery even four years aƊer the ; 

Ŭre. 

Many researchers assert that long-term studies are fundamental to understand soil erosion the global at 

scale (García-Ruiz et al., 2015). However, most of the research studies on burned areas focus on the 

short- or medium-term impacts of Ŭre rather than on long-term impacts (Shakesby, 2011). There are 

three reasons for this situaǋon: (i) there is a noǋon that wildŬre impacts are transient and last less than 

seven years (Moody et al., 2013); (ii) Ŭeld data collecǋon is extremely ǋme- and resource-consuming; and 

(iii) funding limitaǋons. The exisǋng long-term studies typically have a low monitoring frequency, i.e., 

annual or even longer ǋme-scales (e.g., Moody, 2017; Francos et al., 2018), whereas the most common 

studies have an intensive monitoring frequency but only during the Ŭrst to three years aƊer fire (e.g., two 

Fernández et al., 2011; Malvar et al., 2017). 

The present work is a follow up from Vieira et al. (2016), which aimed to understand the eũects of 

wildŬres on the annual runoũ and sediment losses three burned eucalypt areas with diũerent of a 

background disturbances. By comparing the annual runoũ and erosion Ŭgures with two diũerent window 

of disturbance models, Prosser and Williams (1998) and WiǕenberg and Inbar (2009) were able to 

conclude that pre-Ŭre background disturbances had an eũect on the post-Ŭre hydrological and erosive 

response Vieira et al. (2016), however, failed to explain which variables were controlling post-Ŭre . 

hydrological and erosive response because the processes were analyz annual ǋme scale. The ed at an 

present study aims to fill this gap by analyzing the post-Ŭre response the same study sites but a of at 

monthly ǋme scale. To this end mulǋple regression model will be used to test the role of several key a 

factors (rainfall amount and intensity, soil water repellency, soil moisture and ground cover) on the 

hydrological and erosive response of Ŭre-aũected hillslopes. More speciŬcally, th analysis will focus on is 

the inƅuence environmental variables on post-Ŭre hydrological processes at micro-plot scale, taking of 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

into account: (1) the wildŬre; (2) pre-Ŭre land management pracǋces (unplowed, downslope plowed, and 

contour plowed) and (3) wet and dry periods. Although micro-plots may not be representaǋve post-Ŭre of 

processes at the Ŭeld scale (Prats et al., 2016b; Vieira et al., 2016, 2018), the present study is sǋll an 

important contribuǋon for a beǕer understanding of the variables controlling the recovery of fire-

aũected forest ecosystems. 
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2. M2. M2. M2. M2. Materateraterateraterials anials anials anials anials and md md md md methodethodethodethodethods s s s s 

The present study was conducted in a recently burned area near the Colmeal village, Góis municipality, 

Central Portugal , Fig. 1). Before the wildŬre, the area was covered by pine and 

eucalypt plantaǋons used commercial . On 28 August 2008, a moderate sever Ŭre (according to ly ity 

Hungerford (1996) and DeBano et al. (1998)) burned a total of 68 ha of forest land, including a small 

catchment 11 ha where the experimental design of this study was installed (Fig. 1 . We selected three of )

eucalypt hillslopes within this catchment due to their disǋncǋve pre-Ŭre land management background 

(Fig. 1) i.e., no plowing (U), downslope plowing (DP) and contour plowing (CP). , 

The selected study sites are located over pre-Ordovician schists and greywackes (Ferreira, 1978; 

Pimentel, 1994). Soils are typically shallow, being generally georeferenced as Humic Cambisols (Cardoso 

et al., 1971, 1973). -situ soil proŬles, however revealed that soils vary from Humic Cambisols to Haplic In , 

Umbrisols at the DP and CP sites, and from Haplic Umbrisols to Umbric Regosols at the unplowed (U) site 

(Table 1). The topsoil all study sites has a coarse texture (sandy loam) with more than 70% of sand and at 

a high stone content (40-46%). 

The climate of the catchment is described as humid meso-thermal (Köppen, Csb), with long warm, dry 

summers. Average annual temperature at the closest (10 km) climate staǋon (Góis; SNIRH, 2016 is 12) oC 

and the average annual rainfall is 1133 mm óis; SNIRH, 2016(G ). 

Antecedent conditions related to environmental and human disturbances are important in the study area. 

Prior to the 2008 wildŬre, a fire is known to have ravaged the enǋre area in 1990. Following this Ŭre, 

several plowing operaǋons were carried at the three study sites The CP site was plowed again someǋme . 

between 1996 and 2002 as a preparaǋon for a new eucalypt plantaǋon (Vieira et al., 2016). , 
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Several runoũ plots were installed in the Ŭeld before the occurrence of any rainfall event that could lead 

to an important post-Ŭre response (25 September 2008). each study site, four bounded micro-plots At 

(0.25 to 0.50 m2) were randomly installed at the base of each slope, as described by Vieira et al. (2016). 

This Ŭeld installaǋon within the limitaǋons of a plot-based set-up (e.g., Boix-Fayos et al., 2006). The is 

outlets of each micro-plot were connected to 30 or 70 L runoũ tanks. From 25 September 2008 unǋl 1 

October 2012 (i.e., four years), runoũ was measured in each tank one-week intervals during the Ŭrst at 

and second monitoring years while in the third and fourth year, the monitoring frequency decreased, , 

respecǋvely, to -week and monthly intervals. Sediment concentraǋons were determined from several two

1.5 L runoũ samples taken every ǋme the runoff tanks exceeded 250 mL. This Ŭeld installaǋon is within 

the limitaǋons of a plot-based set-up (e.g. Boix-Fayos et al., 2006). Addiǋonally, every Ŭeld trip included 

the measurement of total rainfall accumulated in five storage gauges thereby validating in each read out , 

the automaǋc records of four nearby ǋpping-bucket rainfall gauges (Pronamic Professional Rain Gauge 

with 0.2 mm resoluǋon connected to an ONSET Hobo Event Logger Automaǋc). 

Soil moisture sensors (DECAGON EC-5) were installed at two locaǋons within the burned catchment. Four 

sensors were located at the boǕom of the catchment near the U site, and other four sensors were , 

located mid-elevaǋon locaǋon, closest to the DP and CP sites. Each DECAGON ECH20 data logger at a 

recorded soil moisture a 5-15 min interval, depth of 3-5 cm. at at a 

Ground cover (GC, %) and soil water repellency (SWR) measurements were performed in the field every 

month. Ground cover was described with a square grid (50 x 50 cm; 10 cm grid spacing) laid over the 

plots by registering the cover category (i.e., stones, bare soil, ash/charred material, liǕer and vegetaǋon) 

at each grid intersecǋon. The SWR measurements were made along a Ŭve-point transect from the boǕom 

to the top of a slope located at the edge of the catchment, at two soil depths (soil surface and 5 cm 

depth), using the in 
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agreement to prior SWR studies in the region (e.g., Keizer et al., 2005a,b, 2008). The MED test consisted 

of the applicaǋon of three droplets of increasing ethanol concentraǋons to the soil (0, 1, 3, 5, 8.5, 13, 18, 

24, and 36%) unǋl inŬltraǋon of the majority of the drops of the same concentraǋon within Ŭve seconds. 

The SWR results were given as relaǋve frequency for each SWR class, where class 0 corresponded to very 

weǕable soils, and class 9 to extremely repellent soils (Santos et al., 2016). 

 

Runoũ samples (1663 in total) were analyzed for sediment concentraǋons in the laboratory. Sediment 

concentraǋons were determined Ŭltraǋon of the enǋre sample volume (250 to 1500 mL) a 12-by with 15 

µm VWR Ŭlter paper (330 mm diameter), which was then dried at 105°C for 24 to 48 h (APHA, 1998). 

Topsoil samples from each site were air dried and sieved manually (2 mm sie ) Soil texture was ve . 

determined mechanical analysis, as deŬned by Guiǋán and Carballas (1976), while for bulk density the by 

methodology described by Porta et al. (2003) was used. 

 

A single rainfall data set was used for the enǋre study area since few diũerences in rainfall amounts were 

found between rainfall gauges, as would be expected due to the small size of the studied catchment (11 

ha) and small elevaǋon range (100 m). Monthly rainfall erosivity (R, MJ mm ha -1 yr-1) was calculated using 

the Universal Soil Loss Equaǋon (Wischmeier and Smith, 1978) and the rainfall kineǋc energy equaǋon of 

Couǋnho and Tomás (1995). Before any erosivity calculaǋon, rainfall events more than six hours with 

without rain were separated, and for each rainfall event, total rainfall (mm), maximum -min rainfall 30

intensity (I30max; mm h-1) and rainfall kineǋc energy per millimetre of rainfall (E, MJ ha-1 mm-1) were 

calculated to determine rainfall erosivity. All these parameters were converted to monthly values by 
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summing the monthly rainfall (mm), monthly maximum rainfall intensity (I30max), and monthly rainfall 

erosivity (R; Renard et al., 1997). 

The average (SM, %) and minimum (SMmin, %) monthly soil moisture values were calculated, the later to 

be used as an indicator of SWR. Each month was classiŬed as wet or dry based on its average soil 

moisture values According to this classiŬcaǋon, a wet and dry month corresponded, respecǋvely, to the . 

months in which soil moisture increased (SMi-1 > SMi) or decreased (SMi-1 < SMi) relaǋvely to the previous 

month. This classiŬcaǋon is based the works of Grayson et al. (1997) and Latron et al. (2009). on 

According to Latron et al. (2009), a wet period occurs when precipitaǋon is greater that 

evapotranspiraǋon and dry period when precipitaǋon is lower than evapotranspiration. In terms of the a 

monthly water balance, this leads to an increase (wet) and a decrease (dry) in water storage, reƅected in 

the soil moisture content. 

The SWR frequency (SWR, %) for each class (0 to 9) calculated based on the percentage of was 

occurrence a given class in all the monthly measurements. These frequencies were then summed for of 

the weǕable (SWR weǕable, class 0 to 3) and repellent (SWRrepellent, class 6 to classes. 9) 

Average values of runoũ and erosion were used since replicate plots (of both sizes) each study site at 

present similar values. Thus, monthly runoũ per site corresponded to the average total runoũ amounts ed 

of the four replicate plots for a given month. Soil erosion was calculated based on the sediment 

concentraǋons of each runoũ sample, scaled up considering the relaǋve sample volume and the total 

runoũ volume collected in each tank. Monthly erosion rates (Mg ha -1) corresponded to the average total 

soil losses of the four replicate plots for each month. 

 

All staǋsǋcal analyses were carried out using the SAS 9.4 soƊware package (SAS Insǋtute, Inc., 2012). 

Forward stepwise regression analysis (MRM) was used to determine the inƅuence of monthly rainfall 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

amount (Rain, mm); maximum -min rainfall intensity (I3030  max, mm h-1), rainfall erosivity (R, MJ ha-1 mm-

1); minimum soil moisture (SMmin, %), soil weǕable condiǋons frequency (SWRweǕable, %) and ground cover 

variables (bare soil, ash, stones, and liǕer + veg.; %) on monthly runoũ and erosion measurements. These 

variables were selected sequenǋally in a forward selecǋon procedure, in order of decreasing signiŬcance 

by using a minimum p-value of 0.05. These explanatory variables were chosen aƊer tesǋng for collinearity 

and removing those with condiǋon index higher than 10 (Belsley et al., 1980). To achieve the normality a 

of model residuals, periods with no runoũ were removed from the data set. 

Square and fourth root transformaǋons were used, respecǋvely, for runoũ and erosion dependent 

variables meet the normality assumpǋons To check the eũect of land management and soil moisture . 

seasonality, the regression analysis was conducted individually for these factors The management eũect . 

was tested by spliǗng the data set according to the study site (U, DP and CP), while the eũect of soil 

moisture seasonality was evaluated by spliǗng the data between wet and dry periods. 
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3. Re3. Re3. Re3. Re3. Resultssultssultssultssults     

In the studied sites, stone cover w the prevailing ground cover category throughout the four years of all as 

monitoring (Fig. 2b From the ground cover categories deŬned in this study, only ash and vegetaǋon ). 

cover revealed clear temporal paǕerns. The ash cover decreased markedly between autumn and summer 

of the Ŭrst year of study at all sites, it was already rather low shortly aƊer the Ŭre (10-20%, Fig. 2dbut ). 

Post-Ŭre vegetaǋon recovery was extremely limited at the U and CP sites remaining below 10% for most , 

of the monitoring period. At the DP site, by contrast, the vegetaǋon cover increased substanǋally (from 

10 to 30%) between October 2010 and October 2011 remaining almost constant for the rest of the , 

monitoring period (Fig. 2 . Plowed sites present a lower liǕer cover (19% at DP plots and 14% at CP plots; c)

Fig. 2a) in comparison to the unplowed plots (33%; Fig. 2a For all the study sites, the liǕer layer ). 

remained pracǋcally constant throughout the enǋre period of study (Fig. 2a). Bare soil cover showed high 

variability during the Ŭrst years aƊer Ŭre the study sites. The contour plowed site had a two at all 

consistently higher bare soil surface than the other two sites which presented similar values during the , 

enǋre study period (Fig. 2 . d)

 

The Ŭrst year aƊer fire was a regular rainfall year (1095 mm) with 4% less rain than the long-term (1917-

1997) annual average at the nearest climate staǋon (Góis, 1133 mm; SNIRH, 2016). Years 2 and 3 were 

wet years (1295 and 1534 , respecǋvely), with 13 to 15% more rain than the annual average, and year mm

4 was markedly dry year (833 mm), with 34% less rainfall (Fig. 3)a . 
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In terms of seasonal paǕerns, rainfall amounts in year 1 were lower than the long-term average for most 

of autumn and occasionally during spring (October and November, March and May, Fig. 3). In years 2 and 

3, the rainfall amounts during the autumn and winter seasons (November, December, and January) were 

substanǋally higher than the long term-mean (26 to 46% more, Fig. 3). The fourth year presented a very 

dry period from December to March (only 89 mm of rain in total), corresponding to less rainfall than 86% 

the average for that same period. During year 4, substanǋally higher rainfall (60%, Fig. 3 was observed ) 

during spring (April and May) in comparison to the long-term average for that locaǋon. 

 

In general, the average soil moisture varied according to rainfall paǕerns, with the highest annual values 

( - %) recorded in winter and the lowest values (7- %) in summer (Fig. 4). The fourth year, however, 19 32 10

was an excepǋon since the annual maximum record was observed during spring (21%, Fig. 4) During the . 

Ŭrst post-Ŭre year, soil moisture was slightly low -19%), than in the second (10 -25 %), 3er (8 rd -32 %)(8 , 

and fourth years (10-21%). 

Repellent condiǋons (SWR6-9) were more frequent during the Ŭrst year of monitoring than in the 

remaining years (Fig. 4). With the excepǋon of January and February the first post-Ŭre year was , 

dominated repellent condiǋons (on average 53%). AƊerwards there was a shiƊ into weǕable by , 

condiǋons around the January 2010 (second year of monitoring), followed by a reestablishment of 

repellency in the third (33%) and fourth years (35%, Fig. 4). 

 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

In the Ŭrst year aƊer the wildŬre, the runoũ coeŶcients varied between 8 and 17% (Fig. 5) During this . 

period, the contour-plowed site (CP) was more producǋve in terms of runoũ (191 mm) than the 

unplowed ( % less) and downslope plowed site (DP % less Runoũ generaǋon increased in the U 53 31 ). 

second and third year all the study sites. As in the first year aƊer Ŭre, t CP site presented a higher at he 

runoũ response (550 and 671 mm) than the unplowed and the downslope plowed sites in the second (U 

55%; DP 55%) and third year aƊer fire (U 54%; DP . In the fourth year, the relaǋve diũerence 39%)

between sites was sǋll observed (CP>DP>U) and despite this being dry year, runoũ amounts were a 

approximately three ǋmes higher (U - 218mm, DP 459 mm, CP - 503 mm) than in the Ŭrst year (U 90 

mm, DP 131 mm, CP - 191 mm) all the study sites (Fig. 5). at 

In terms of monthly paǕerns, wet periods were responsible for most of runoũ generaǋon (77% runoũ), 

however several dry periods (February and October 2011, September 2012) runoũ amounts were sǋll in 

substanǋal (Fig. 5) In all the monitoring years, runoũ coeũicients were on average higher in autumn . 

(September to November; - 27%, DP - 37%, CP - %) than winter (December to February; - 9%, DP U 50 in U 

- 15%, CP - 30%), despite rainfall amounts being higher in winter than in autumn (Ŭrst year: + 145 mm, 

second year: + 126 mm and third year: + 41 mm). In the fourth year, the hydrological response was 

substanǋally diũerent from the previous years, since it recorded the highest runoũ coeŶcients During . 

this year, most of runoũ was generat in autumn (U - 40%, DP - 71%, CP 69%) and spring (U - 26%, DP ed 

- 54%, CP 56%). 
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During the Ŭrst year aƊer the wildŬre, few diũerences sediment losses were found among the three in 

study sites (Fig. 6) During this year, sediment losses the CP site (0.55 Mg ha. at -1 yr-1) were slightly higher 

than the DP (0.45 Mg haat -1 yr -1) and site (0.25 Mg haU -1 yr-1). Soil erosion increased in the second year 

at the (+ 36%) and CP (+ 149%) sites. In the third year, an increase in sediment losses was observed at U 

the U (+ %) and DP (+ %) sites as a result of the rainfall increase, while at CP site the sediment losses 61 85

were slightly decreased (- 4%). Conversely, in the fourth year, a decrease in erosion was observed at all 

sites (- 74% at U, - 54% at DP, and -46% at CP) due to 46% less rainfall. 

Monthly erosion paǕerns revealed that wet periods generated 76% of the erosion in the enǋre study 

period. During these periods, peaks in sediment losses were more noǋceable at the plowed sites than at 

the unplowed site (Fig. 6) When comparing the two plowed sites, the CP site presented a higher erosive . 

response than the site (Fig. 6). DP 

The greatest monthly sediment losses were veriŬed in four occasions the CP site, (i) October 2009 at 

(0.41 Mg ha-1); ( ) October 2010 (0.47 Mg haii -1) (iii) May 2011 (0. Mg ha; 30 -1) and (iv) November 2012 ; 

( Mg ha0.40 -1). The unplowed (U) site also presented its maximum sediment losses during one of those 

periods (May 2011, 0. Mg ha13 -1), while at the DP site the greatest sediment losses were only observed 

by November 2011 (0.26 Mg ha-1). 

 

The mulǋple regression model revealed that independent variables explained 57% of the variability in 

monthly runoũ data (Table 2). Rainfall amount was the most important factor explaining 34% of runoũ 

variability. Soil water repellency explained around %, as shown by the combination of SWR13 weǕable  and 
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the negaǋve parameter esǋmate of soil moisture SMmin. The ash cover variable (Ash) seem to indicate a 

water retenǋon capacity by its negaǋve parameter esǋmate and explaining 7% of the variaǋon. 

T erosion model only explained 44% of the variability of monthly erosion data. Rainfall intensity (I30 he 

max) accounted for 18% of data variability, followed by bare soil cover with . The relaǋonship between 13%

runoũ generaǋon and erosion was reƅected by the presence of runoũ-related variables like soil water 

repellency and soil moisture in the erosion model (Table 2). 

 

The site-speciŬc models (unplowed vs. downslope plowed and contour plowed) show a reducǋon of ed 

factors explaining runoũ generaǋon from unplowed to plowed sites (Table 3) In addiǋon the correlaǋons . , 

were lower for the unplowed than the plowed sites. Rainfall, ash cover and soil water repellency were 

common to sites, explaining 42% of runoff variability the unplowed site and about 60% the all at at 

plowed sites (Table 3 Rainfall amount was the most important explanatory variable, being more relevant ). 

to the plowed than the plowed site (Fig. 7a). un

In the erosion model, % of the variability was explained by I3046 max and ground cover-related variables in 

the unplowed sites, and around 30% in the plowed sites (Table 2). The correlaǋon between I30max and 

sediment losses was similar among plowed and unplowed sites (Fig. 7b Table 3) Cover-related variables ; . 

explained about % of sediment losses at the unplowed site (bare soil and ash), while at the downslope 23

plowed site stone cover was one of the major controlling factors (11% At the contour plowed site, stone ). 

as well as ash cover seem to have been determinant for sediment losses (8%). 

 

Individual regression analyses for wet (SM i-1< SM i) and dry (SM i-1> SM i) months detected diũerences in 

runoũ and erosion controlling factors for each of these condiǋons. In the wet period, rainfall explained 
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20% of runoũ variability whereas in the dry period it accounted for % ( . 7 Table 3 The variables , 44 Fig c, ). 

associated to inŬltraǋon (SM min, SWR weǕable) explained the runoũ paǕerns under dry (15%) slightly beǕer 

than wet condiǋons ( %). Similar results were found for erosion, since I3013 max explained 13% of sediment 

loss variability during wet periods and 36% during the dry periods (Fig. 7d, Table 3). In the erosion model, 

bare soil is of greater importance compared to the runoũ model, whereas inŬltraǋon decreases its 

relevance. 
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4. D4. D4. D4. D4. Discussiscussiscussiscussiscussion ion ion ion ion 

The hydrological and erosive response in the Colmeal study area during the four years aƊer the wildŬre 

showed few signs of recovery, as reported by Vieira et al. (2016). ese results diũer from other studies Th

with the same duraǋon (Lavabre and Marǋn, 1997; Butorac et al., 2009; WiǕenberg and Inbar, 2009; 

Noske et al., 2016 since in previous studies sediment losses returned to background levels three ) two to 

years aƊer the Ŭre According to the window of disturbance model (Prosser and Williams, 1998), this . 

decrease in sediment losses to background levels can be aǕributed to vegetaǋon recovery d an an

increase of the liǕer layer and the occurrence of a surface stone cover. In the present study, however, 

vegetation recovery was very limited (maximum 30%), the liǕer cover was constant and the stone cover = 

was very high ( -60 80%) during the enǋre monitoring period, which might explain the deviaǋon from the 

standard wind of disturbance model. Vieira et al. (2016) jusǋŬed the Colmeal extended recovery ow 

period with the occurrence of past disturbances (wildŬre and plowing) that led to highly degraded soils. 

A delay of the post-Ŭre response has also been reported by Mayor et al. (2007) a small Mediterranean in 

catchment in the Alicante province (Spain) in the present study, the authors observed an increase in . As se 

runoũ and erosion during the second and the third year aƊer Ŭre, arguing that rainfall amounts were not 

suŶcient to produce a hydrological response during the Ŭrst year aƊer Ŭre (Mayor et al., 2007). Shakesby 

(2011) also found that a rainfall threshold must be overcome to trigger an enhanced hydrological and 

erosive response, this process being independent from whether runoũ generation is driven by inŬltraǋon-

excess (Hortonian) overland ƅow by saturaǋon overland ƅow, or a combinaǋon of both Similarly to , . 

Mayor et al. (2007), t discrete response that was observed in Colmeal during the Ŭrst year can be he 

explained by the low rainfall amounts observed in autumn 2008 especially during November (11 mm), . 

During autumn the soil is likely to generate more runoũ and erosion caused by the re-establishment of , 

SWR aƊer the dry summer months, in this case Ŭre-induced SWR (Fig. 4), and by the typically s 
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intense rainfall ( s 5 and 6) The hydrological response in this season is generally characterized by Fig . . 

elevated runoũ coeŶcients (27-50%), which concern a substanǋal porǋon of the annual runoũ (34-56 ed 

%) and erosion (42-74 %) the second third, and fourth years. But instead, due to the absence of of , 

rainfall, this parǋcular season contributed with less than 20% the annual runoũ and erosion amounts. to 

According to the MRM analysis, the runoũ response in Colmeal can be explained by the rainfall and SWR 

paǕerns, similarly to what was found by Prats et al. (2012) and Malvar et al. (2016) burned eucalypt in 

sites (unplowed and pre-Ŭre plowed) This analysis also suggests that the ash cover behaved as a runoũ . 

sink, as hypothesised by several authors (Cerdà, 1998; Marǋn and Moody, 2001; Gimeno-García et al., 

2007; Bodí et al., 2012, 2014) because presents an inverse relaǋonship with runoũ However, this , it . 

might not be true because the runoũ model relates the low runoũ response in the Ŭrst year to the 

presence of ash and the increase in runoũ in the second and third years with the absence of ash. Several 

reasons can be pointed out to jusǋfy why the ash cover cannot be sink for runoũ (i) the ash cover was a : 

extremely limited (around 10% the Ŭrst winter) (ii) the ash dispersed; and (iii) the ash layer was in ; was 

too thin (<1 mm) to be able to act as a sink. Regarding the erosive response, rainfall intensity (I15max, 

I30max) explained most of sediment losses, as reported by Prats et al. (2012) and Malvar et al. (2016). In 

the study of Prats et al. (2012), however, the protecǋve liǕer cover was found to be more relevant for 

sediment losses than bare soil as found in the Colmeal study sites A potenǋal explanation for these . 

Ŭndings might be the limited variaǋon in vegetaǋon, liǕer and stone cover that was observed in Colmeal 

during the enǋre monitoring period. 

 

P -Ŭre land management pracǋces seem to inƅuence post-Ŭre runoũ and erosion paǕerns, since runoũ re

and erosion models diũered between unplowed and plowed sites (Table 3 Plowing is known to promote ). 

inŬltraǋon through the increase of surface roughness that limits runoũ generaǋon (Morgan, 2005) The . 
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MRM results, however, contradict this noǋon since a beǕer relaǋonship was found between runoũ and 

rainfall for the plowed than the unplowed site (Table 3) These results might be explained the higher . by 

liǕer cover in the unplowed plots (U=33% vs. DP=19% and CP=14%; Fig. 2a), which greatly contributed to 

rainfall intercepǋon, thereby reducing runoũ generation Because of the constant percentage of liǕer . 

cover during the study period, however, the MRM was unable to associate the liǕer cover a runoũ to 

reducǋon, unlike what was found by other authors (Prats et al., 2012, 2016a). 

The variable that most inƅuenced soil erosion rainfall intensity (I30was max), showing a similar inƅuence at 

the unplowed (23%) and plowed sites (DP=19%, CP=20%). The main diũerence between the unplowed 

and plowed erosion models was the inƅuence of bare soil, which only appeared at the unplowed site 

(19%), possibility because it was much higher than in plowed sites (Fig. 2 the laǕer sites, stone cover e). At 

was a major factor (DP=11%, CP=4%) suggesǋng that it acts as a protecǋve soil cover, as highlighted by , 

several authors (Morgan and Duzant, 2008; Shakesby, 2011). Its presence, however, can also mean that 

the Ŭne sediments were already eroded as a result of past disturbances (Shakesby, 2011; Nyman et al., 

2013). 

Vegetaǋon cover (Fig. 2c), which w expected to be important in explaining soil erosion paǕerns as 

(Benavides-Solorio and MacDonald, 2001, 2005; Fernández et al., 2008; Larsen et al., 2009; Prats et al., 

2016a), d not improve model results likely due to the lack of variability over ǋme. id 

 

The dynamics temperature and rainfall paǕerns in Mediterranean areas can strongly aũect of 

evapotranspiraǋon processes causing the succession of wet and dry soil moisture condiǋons throughout , 

the year (Latron et al., 2009). These shiƊs in soil moisture can induce shiƊs in SWR (repellent/weǕable) if 

certain site-speciŬc soil moisture thresholds are achieved (Malvar et al, 20 According to previous 16). 

studies, the processes inducing runoũ generaǋon diũer between wet and dry periods. Under weǕable 
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condiǋons, runoũ is produced by saturaǋon overland ƅow, whereas in repellent condiǋons, Hortonian 

overland ƅow is the dominant process (Ferreira et al., 2000, 2008 Leighton-Boyce et al., 2005; Morgan, ; 

2005). In the Colmeal study area, the low soil moisture values and the occurrence of SWR in the fourth 

year aƊer Ŭre were most likely responsible for the high runoũ coeŶcients observed in this period (Vieira 

et al., 2016), indicaǋng that runoũ was mainly generated Hortonian overland ƅow. by 

The results this study suggest that a separaǋon between wet and dry periods based on soil moisture of 

condiǋons could help explain runoũ variability in burned areas. However, the deŬniǋon of wet and dry 

condiǋons is not straighǊorward. For instance, some researche have based their classiŬcaǋon on the rs 

rainfall amounts that precede each event (González-Pelayo et al., 2010; MarǍnez-Murillo et al., 2016), 

whereas others consider the total rainfall amounts for a given period (Gabarrón-Galeote, et al., 2013; 

Santos et al., 2016). In this parǋcular case, none of the approach was followed because some months ed 

had several rainfall events and the sum of monthly rainfall amounts was not always representaǋve of 

individual processes such as saturaǋon or reduced inŬltraǋon. 

The runoũ model for dry condiǋons resulted in stronger correlaǋons with rainfall amounts ( %) and soil 44

moisture ( %), than that for wet condiǋons (20% and 10%, respecǋvely, for rainfall and soil moisture; 13

Table 3) which is consistent with a process of Hortonian overland ƅow (Ferreira et al., 2000; 2008; Calvo-, 

Cases et al., 2003; Mayor et al., 2007). In the case of the erosion model, results provided evidence that 

rainfall intensity is more important under dry (36%) than under wet condiǋons (13%). Based on these 

results, appears that the two models are less able to explain data variability for wet (45% and 33%) than it 

for dry condiǋons ( % and 53% possibly due to the lack of a relaǋonship with inŬltraǋon-related 70 ), 

variables. 

The fact that antecedent minimum soil moisture was negaǋvely related to runoũ in saturated soils 

suggests that the methodology used to deŬne wet and dry periods might need some improvement, 

because other authors (Ferreira et al., 2000) have found posiǋve relaǋonship between soil moisture and a 

runoũ when this is generated by saturaǋon and a negaǋve relaǋonship the case of Hortonian overland in 
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ƅow. Nonetheless only analysis at an event ǋme-scale would allow clearly disǋnguish between the , an to 

two processes. 
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5. C5. C5. C5. C5. Concluoncluoncluoncluonclusionssionssionssionssions     

The main conclusions that can be drawn from this analysis of the key factors controlling the post-Ŭre 

hydrological and erosive response at micro-plot scale in a recently burned Mediterranean forest are: 

(1) Post-Ŭre runoũ generaǋon is largely explained by rainfall amounts and SWR-related variables, 

while erosion processes are beǕer explained by rainfall intensity and ground cover variables. 

(2) -Ŭre land management impacts are sǋll visible in the post-Ŭre period, since diũerences in the Pre

relaǋonship between runoũ and rainfall were found between plowed and plowed sites. un

Regarding the erosi response, bare soil cover was a major factor controlling soil erosion at the ve 

unplowed site whereas at the plowed sites stone cover was more relevant. , 

(3) The staǋsǋcal model considering wet and dry periods provided evidence that runoũ can occur 

either by saturaǋon or Hortonian overland ƅow. According to this model, runoũ and erosion were 

beǕer explained by rainfall-related variables under dry than under wet condiǋons. 

(4) The MRM analysis improved the understanding on the key variables inƅuencing the hydrologic 

and erosive response of a burned Mediterranean forest The results of this analysis should be . 

considered when adapǋng hydrological and erosion models to post-Ŭre environments, especially 

those past disturbances and soil moisture shiƊs. with 
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TabTabTabTabTables les les les les 

Table 1Table 1Table 1Table 1Table 1     -----     GenerGenerGenerGenerGeneralalalalal     charactcharactcharactcharactcharacterisǋcs oferisǋcs oferisǋcs oferisǋcs oferisǋcs of     the study sites.the study sites.the study sites.the study sites.the study sites.     U U U U U unplunplunplunplunplowed site, DPowed site, DPowed site, DPowed site, DPowed site, DP     downslodownslodownslodownslodownslopepepepepe     plowplowplowplowplowededededed     site, andsite, andsite, andsite, andsite, and     CPCPCPCPCP     contour contour contour contour contour 

ploweploweploweploweplowed site.d site.d site.d site.d site.     

 U DP CP 

Forest type Eucalypt Eucalypt Eucalypt 

Pre-ŧre soil operaǌons Unplowed Downslope plowing Contour plowing 

Plot angle (°) 27 (5.5) 30 (4.5) 24 (6.6) 

Downslope random 
ro ss ughne 1.12 (0.03) 1.53 (1.07) 2.00 (0.77) 

 O horizon 0 - 4 0 - 3 0 - 3 

Soil depth 
(cm) 

A horizon 
A1 - 0-10 

A2 -22* 10
A1 - 0-14 

A2 -56* 14
A1 - 0-15 

A2 -29* 15

B horizon - - 29 - 36 

C horizon 22 56 - 36 - 60 

R horizon - - 60 - 

oil type classiŧcaǌon (WRB, S
2006) 

Haplic umbrisol & 
Umbric regosol 

Humic cambisol & 
Haplic umbrisol 

Humic cambisol & 
Haplic umbrisol 

Soil texture class Sandy Loam 

Bulk density (g/cm3) 0.83 (0.10) 1.05 (0.16) 0.85 (0.24) 

Stone content (%) 42 (6) 40 (11) 46 (12) 

(*)- Presence of ash in the proŧle. 
Standard deviaǌon in parentheses. 
Values in bold are the limit of the proŧle depth. 
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Table 2Table 2Table 2Table 2Table 2     -----     MultMultMultMultMultipleipleipleipleiple     regressioregressioregressioregressioregressionnnnn     modelmodelmodelmodelmodel     (MRM(MRM(MRM(MRM(MRM)))))     forforforforfor     monthlmonthlmonthlmonthlmonthlyyyyy     runoũ (square root)runoũ (square root)runoũ (square root)runoũ (square root)runoũ (square root)     andandandandand     sedimsedimsedimsedimsedimententententent     losseslosseslosseslosseslosses     (fourt(fourt(fourt(fourt(fourthhhhh     root) forroot) forroot) forroot) forroot) for     all all all all all 

the stthe stthe stthe stthe study situdy situdy situdy situdy sites combies combies combies combies combined (Gned (Gned (Gned (Gned (General meneral meneral meneral meneral model)odel)odel)odel)odel)     (n=(n=(n=(n=(n=442) 442) 442) 442) 442) 

     
 

RunofRunofRunofRunofRunoff (mmf (mmf (mmf (mmf (mm)))))(-(-(-(-(- )))))     SediSediSediSediSediment Lment Lment Lment Lment Losses (osses (osses (osses (osses (g.mg.mg.mg.mg.m22222)))))(-(-(-(-(- )))))     

Summary of Forward Selecǋon Summary of Forward Selecǋon 

 
VariaVariaVariaVariaVariable ble ble ble ble 

ParǋParǋParǋParǋParǋaaaaa
l l l l l 

ModModModModModeeeee
l l l l l 

ParaParaParaParaParammmmm
eteretereteretereter     

C(p)C(p)C(p)C(p)C(p)     
F F F F F 

ValuValuValuValuValu
e e e e e 

Pr Pr Pr Pr Pr > > > > > 
F F F F F      

VariaVariaVariaVariaVariable ble ble ble ble 
ParǋParǋParǋParǋParǋaaaaa

l l l l l 
ModModModModModeeeee

l l l l l 
ParaParaParaParaParammmmm

eteretereteretereter     
C(p)C(p)C(p)C(p)C(p)     

F F F F F 
ValuValuValuValuValu

e e e e e 

Pr Pr Pr Pr Pr > > > > > 
F F F F F 

  
R-R-R-R-R-

SquaSquaSquaSquaSquarrrrr
e e e e e 

R-R-R-R-R-
SquaSquaSquaSquaSquarrrrr

e e e e e 

EsǋmEsǋmEsǋmEsǋmEsǋmaaaaa
te te te te te    

  
R-R-R-R-R-

SquaSquaSquaSquaSquarrrrr
e e e e e 

R-R-R-R-R-
SquaSquaSquaSquaSquarrrrr

e e e e e 

EsǋmEsǋmEsǋmEsǋmEsǋmaaaaa
te te te te te    

1 Rain (mm) 0.34 0.34 0.029 
266
.8 

226.
6 

<.00
01 

1 
I30 max 

(mm h
-1

) 
0.18 0.18 0.021 

183
.9 

98.9 
<.00
01 

2 
Sm min (% 

v/v) 
0.09 0.43 -0.121 

169
.9 

71.7 
<.00
01 

2 
Bare soil 

(%) 
0.13 0.32 0.059 

84.
8 

85.3 
<.00
01 

3 Ashes (%) 0.07 0.5 -2.235 
99.

4 
59.5 

<.00
01 

3 
SWR 

Wettable (%) 
0.03 0.34 -0.012 

65.
8 

18.4 
<.00
01 

4 
SWR 

Wettable (%) 
0.04 0.54 -0.071 

62.
4 

34.5 
<.00
01 

4 
Sm min (% 

v/v) 
0.03 0.37 -0.015 

37.
6 

18.4 
<.00
01 

5 
Bare soil 

(%) 
0.03 0.57 0.118 

31.
0 

31.6 
<.00
01 

5 Ash (%) 0.03 0.40 -0.012 
18.
3 

20.8 
<.00
01 

6 
 

6 Rain (mm) 0.02 0.41 0.002 
55.
3 

11.2 
0.00
09 

7 
 

7 
LiǕer+veg. 

(%) 
0.01 0.42 0.025 

14.
0 

6.2 
0.01
33 

8        8 Stones (%) 0.01 0.43 0.019 9.0 7.0 
0.00
83 

total 0.570.570.570.570.57     total 0.440.440.440.440.44     
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TableTableTableTableTable     33333     MulǋplMulǋplMulǋplMulǋplMulǋpleeeee     regrregrregrregrregressionessionessionessionession     modmodmodmodmodelselselselsels     (MRM(MRM(MRM(MRM(MRMs)s)s)s)s)     forforforforfor     montmontmontmontmonthlyhlyhlyhlyhly     runoũrunoũrunoũrunoũrunoũ     (square(square(square(square(square     root)root)root)root)root)     andandandandand     sedimentsedimentsedimentsedimentsediment     losseslosseslosseslosseslosses     (fourth(fourth(fourth(fourth(fourth     root)root)root)root)root)     for for for for for 

each study siteeach study siteeach study siteeach study siteeach study site     (Land manag(Land manag(Land manag(Land manag(Land management model): Unplowement model): Unplowement model): Unplowement model): Unplowement model): Unplowed (ed (ed (ed (ed ( ), Downslo), Downslo), Downslo), Downslo), Downslopepepepepe     plowed (plowed (plowed (plowed (plowed ( ), and), and), and), and), and     Contour plowContour plowContour plowContour plowContour plowededededed     (((((

).).).).).     

RunofRunofRunofRunofRunoff (mmf (mmf (mmf (mmf (mm)))))
(-(-(-(-(- )))))     SediSediSediSediSediment Lment Lment Lment Lment Losses (osses (osses (osses (osses (g.mg.mg.mg.mg.m

22222)))))
(-(-(-(-(- )))))     

Summary of Forward Selecǋon Summary of Forward Selecǋon 

 
VariaVariaVariaVariaVariable ble ble ble ble ParǋParǋParǋParǋParǋal al al al al 

ModModModModModeeeee
l l l l l 

ParaParaParaParaParammmmm
eteretereteretereter     

C(p)C(p)C(p)C(p)C(p)     
F F F F F 

ValuValuValuValuValu
e e e e e 

Pr Pr Pr Pr Pr > > > > > 
F F F F F      

VariaVariaVariaVariaVariable ble ble ble ble ParǋParǋParǋParǋParǋal al al al al 
ModModModModModeeeee

l l l l l 
ParaParaParaParaParammmmm
eteretereteretereter     

C(pC(pC(pC(pC(p
) ) ) ) ) 

F F F F F 
ValuValuValuValuValu

e e e e e 

Pr Pr Pr Pr Pr > > > > > 
F F F F F 

  
R-R-R-R-R-

SquaSquaSquaSquaSquarrrrr
e e e e e 

R-R-R-R-R-
SquaSquaSquaSquaSquarrrrr

e e e e e 

EsǋmEsǋmEsǋmEsǋmEsǋmaaaaa
te te te te te    

  
R-R-R-R-R-

SquaSquaSquaSquaSquarrrrr
e e e e e 

R-R-R-R-R-
SquaSquaSquaSquaSquarrrrr

e e e e e 

EsǋmEsǋmEsǋmEsǋmEsǋmaaaaa
te te te te te    

1 Rain (mm) 0.24 0.24 0.019 
122
.0 

51.2 
<.00
01 

1 
I30 max 

(mm h-1) 
0.23 0.23 0.022 

95
.4 

47.2 
<.00
01 

2 
Bare soil 

(%) 
0.12 0.36 0.277 

78.
2 

31.0 
<.00
01 

2 
Bare soil 

(%) 
0.19 0.42 0.075 

35
.6 

51.2 
<.00
01 

3 
SWR 

Wettable (%) 
0.1 0.46 -0.085 

42.
3 

30.4 
<.00
01 

3 Ash (%) 0.04 0.46 -0.046 
24
.2 

11.9 
0.00
07 

4 Ash (%) 0.07 0.53 -0.206 
19.
0 

23.2 
<.00
01 

4 
SWR 

Wettable (%) 
0.03 0.49 -0.012 

15
.4 

10.2 
0.00
17 

5 
Sm min (% 

v/v) 
0.03 0.56 -0.089 9.9 10.9 

0.00
12 

5 Rain (mm) 0.02 0.51 0.002 
10
.1 

7.1 
0.00
87 

6 
I30 max 

(mm h-1) 
0.01 0.57 0.037 7.0 4.9 

0.02
84 

6 
Sm min (% 

v/v) 
0.01 0.52 -0.019 

8.
1 

4.0 
0.04
77 

total 0.570.570.570.570.57     total 0.520.520.520.520.52     

1 Rain (mm) 0.43 0.43 0.027 
40.
9 

90.6 
<.00
01 

1 
I30 max 

(mm h-1) 
0.19 0.19 0.02 

29
.7 

27.3 
<.00
01 

2 
SWR 

Wettable (%) 
0.09 0.52 -0.089 

16.
7 

23.5 
<.00
01 

2 Stones (%) 0.11 0.31 -0.011 
12
.3 

18.0 
<.00
01 

3 Ash (%) 0.06 0.58 -0.425 1.3 17.8 
<.00
01 

3 Rain (mm) 0.04 0.34 0.002 
8.
0 

6.1 
0.01
47 

        4 
SWR 

Wettable (%) 
0.03 0.37 -0.013 

4.
3 

5.7 
0.01
85 

total 0.580.580.580.580.58     total 0.370.370.370.370.37     

1 Rain (mm) 0.49 0.49 0.03 
61.
1 

150.
9 

<.00
01 

1 
I30  max 

(mm h
-1

) 
0.20 0.20 0.022 

35
.6 

38.3 
<.00
01 

2 Ash (%) 0.12 0.61 -0.225 
12.
2 

48.1 
<.00
01 

2 Stones (%) 0.04 0.24 -0.02 
26
.9 

9.2 
0.00
28 

3 
SWR 

Wettable (%) 
0.02 0.63 -0.051 4.4 9.7 

0.00
22 

3 Ash (%) 0.04 0.28 0.002 
14
.4 

7.9 
0.00
55 

 
4 Rain (mm) 0.03 0.31 -0.028 

20
.8 

7.4 
0.00
74 

        5 
SWR 

Wettable (%) 
0.03 0.34 -0.013 

9.
2 

7.0 
0.00

9 

total 0.630.630.630.630.63     total 0.340.340.340.340.34     
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TableTableTableTableTable     44444     MulǋplMulǋplMulǋplMulǋplMulǋpleeeee     regressioregressioregressioregressioregressionnnnn     modelsmodelsmodelsmodelsmodels     (MRMs)(MRMs)(MRMs)(MRMs)(MRMs)     forforforforfor     momomomomonthlynthlynthlynthlynthly     runoũrunoũrunoũrunoũrunoũ     (squ(squ(squ(squ(squareareareareare     root)root)root)root)root)     andandandandand     sedimsedimsedimsedimsedimententententent     losseslosseslosseslosseslosses     (fourth root)(fourth root)(fourth root)(fourth root)(fourth root)     for for for for for 

wetwetwetwetwet     ((((( andandandandand     drydrydrydrydry     periodsperiodsperiodsperiodsperiods     ((((( ).).).).).     TheTheTheTheThe     wetwetwetwetwet     ororororor     drydrydrydrydry     condiǋoncondiǋoncondiǋoncondiǋoncondiǋon     waswaswaswaswas     stablishestablishestablishestablishestablisheddddd     accordinaccordinaccordinaccordinaccordinggggg     tototototo     thethethethethe     increaseincreaseincreaseincreaseincrease     (wet)(wet)(wet)(wet)(wet)     or or or or or )))))     

decreadecreadecreadecreadecrease (dryse (dryse (dryse (dryse (dry) in th) in th) in th) in th) in the meane meane meane meane mean     momomomomonthly soilnthly soilnthly soilnthly soilnthly soil     moistmoistmoistmoistmoisture valure valure valure valure value withue withue withue withue with     respectrespectrespectrespectrespect     to thto thto thto thto the previoue previoue previoue previoue previous monts monts monts monts month.h.h.h.h.     

RunofRunofRunofRunofRunoff (mmf (mmf (mmf (mmf (mm)))))
(-(-(-(-(- )))))     SediSediSediSediSediment Lment Lment Lment Lment Losses (osses (osses (osses (osses (g.mg.mg.mg.mg.m

22222)))))
(-(-(-(-(- )))))     

Summary of Forward Selecǋon Summary of Forward Selecǋon 

 
VariaVariaVariaVariaVariable ble ble ble ble 

ParǋParǋParǋParǋParǋaaaaa
l l l l l 

ModModModModModeeeee
l l l l l 

ParaParaParaParaParammmmm
eteretereteretereter     

C(p)C(p)C(p)C(p)C(p)     
F F F F F 

ValuValuValuValuValu
e e e e e 

Pr Pr Pr Pr Pr > > > > > 
F F F F F      

VariaVariaVariaVariaVariable ble ble ble ble 
ParǋParǋParǋParǋParǋaaaaa

l l l l l 
ModModModModModeeeee

l l l l l 
ParaParaParaParaParammmmm

eteretereteretereter     
C(pC(pC(pC(pC(p

) ) ) ) ) 

F F F F F 
ValuValuValuValuValu

e e e e e 

Pr Pr Pr Pr Pr > > > > > 
F F F F F 

  
R-R-R-R-R-

SquaSquaSquaSquaSquarrrrr
e e e e e 

R-R-R-R-R-
SquaSquaSquaSquaSquarrrrr

e e e e e 

EsǋmEsǋmEsǋmEsǋmEsǋmaaaaa
te te te te te    

  
R-R-R-R-R-

SquaSquaSquaSquaSquarrrrr
e e e e e 

R-R-R-R-R-
SquaSquaSquaSquaSquarrrrr

e e e e e 

EsǋmEsǋmEsǋmEsǋmEsǋmaaaaa
te te te te te    

1 Rain (mm) 0.20 0.20 0.025 
141
.1 

64.7 
<.00
01 

1 
Bare soil 

(%) 
0.13 0.13 0.013 

81
.5 

38.9 
<.00
01 

2 
Sm min (% 

v/v) 
0.10 0.31 

-
0.132 

91.
8 

38.0 
<.00
01 

2 
I30  max (mm 

h-1) 
0.09 0.22 0.042 

50
.6 

27.8 
<.00
01 

3 Ash (%) 0.08 0.39 
-

0.232 
54.

0 
33.3 

<.00
01 

3 
Sm min (% 

v/v) 
0.04 0.25 

-
0.025 

27
.6 

12.8 
0.00
04 

4 
SWR 

Wettable (%) 
0.03 0.42 

-
0.067 

38.
9 

15.1 
0.00
01 

4 Ash (%) 0.03 0.29 
-

0.035 
39
.6 

11.4 
0.00
09 

5 
Bare soil 

(%) 
0.03 0.45 0.111 

26.
7 

13.2 
0.00
03 

5 Rain (mm) 0.02 0.31 0.002 
21
.6 

7.5 
0.00
65 

6        6 
SWR WeǕable  

(%) 
0.02 0.33 

-
0.011 

15
.5 

7.8 
0.00
56 

0.450.450.450.450.45     0.330.330.330.330.33     

1 Rain (mm) 0.44 0.44 0.041 
158
.6 

141.
8 

<.00
01 

1 
I30 max 

(mm h-1) 
0.36 0.36 0.005 

63
.3 

100.
3 

<.00
01 

2 
Sm min (% 

v/v) 
0.13 0.57 

-
0.121 

81.
7 

55.0 
<.00
01 

2 
Bare soil 

(%) 
0.07 0.43 0.023 

38
.4 

22.5 
<.00
01 

3 Ash (%) 0.07 0.64 
-

0.241 
43.

0 
33.5 

<.00
01 

3 
Sm min (% 

v/v) 
0.04 0.46 0.008 

13
.3 

13.5 
0.00
03 

4 
Bare soil 

(%) 
0.04 0.67 0.117 

11.
1 

22.2 
<.00
01 

4 Ash (%) 0.03 0.49 
-

0.028 
30
.9 

8.3 
0.00
45 

5 
SWR 

Wettable (%) 
0.02 0.70 

-
0.057 

31.
9 

11.4 
0.00
09 

5 Rain (mm) 0.02 0.51 0.004 
25
.4 

6.7 
0.01
04 

        6 
LiǕer+veg. 

(%) 
0.02 0.53 0.006 

8.
8 

6.5 
0.01
17 

0.700.700.700.700.70     0.530.530.530.530.53     
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FigurFigurFigurFigurFigure ce ce ce ce capǋonapǋonapǋonapǋonapǋons s s s s 
     

FigurFigurFigurFigurFigureeeee     11111     -----     LocaǋoLocaǋoLocaǋoLocaǋoLocaǋonnnnn     ofofofofof     thethethethethe     ColmealColmealColmealColmealColmeal     studystudystudystudystudy     areaareaareaareaarea     (leƊ);(leƊ);(leƊ);(leƊ);(leƊ);     DetailedDetailedDetailedDetailedDetailed     topographtopographtopographtopographtopographicicicicic     mapmapmapmapmap     ofofofofof     thethethethethe     burneburneburneburneburneddddd     catchmecatchmecatchmecatchmecatchmentntntntnt     withwithwithwithwith     the the the the the 

speciŬcspeciŬcspeciŬcspeciŬcspeciŬc     locaǋlocaǋlocaǋlocaǋlocaǋon of eachon of eachon of eachon of eachon of each     study sitstudy sitstudy sitstudy sitstudy site (U e (U e (U e (U e (U unplunplunplunplunplowed siowed siowed siowed siowed site, DP te, DP te, DP te, DP te, DP dowdowdowdowdownslope plnslope plnslope plnslope plnslope plowed siowed siowed siowed siowed site, andte, andte, andte, andte, and     CP CP CP CP CP contcontcontcontcontour plowour plowour plowour plowour plowed site)ed site)ed site)ed site)ed site)     and and and and and 

of thof thof thof thof the installede installede installede installede installed     equipmenequipmenequipmenequipmenequipment (rightt (rightt (rightt (rightt (right). ). ). ). ). 

FigurFigurFigurFigurFigure 2 - Averagee 2 - Averagee 2 - Averagee 2 - Averagee 2 - Average     (a) liǕer(a) liǕer(a) liǕer(a) liǕer(a) liǕer, (b) stones,, (b) stones,, (b) stones,, (b) stones,, (b) stones,     (c) vegetaǋ(c) vegetaǋ(c) vegetaǋ(c) vegetaǋ(c) vegetaǋon, (d) ashon, (d) ashon, (d) ashon, (d) ashon, (d) ash     and (e) bare soand (e) bare soand (e) bare soand (e) bare soand (e) bare soil cover at eacil cover at eacil cover at eacil cover at eacil cover at each study sih study sih study sih study sih study site (n=4).te (n=4).te (n=4).te (n=4).te (n=4).     StandarStandarStandarStandarStandard d d d d 

errorerrorerrorerrorerror     indicatindicatindicatindicatindicated by ered by ered by ered by ered by error barror barror barror barror bars. s. s. s. s. 

FigurFigurFigurFigurFigure 3 e 3 e 3 e 3 e 3 AvAvAvAvAverage moerage moerage moerage moerage monthly rnthly rnthly rnthly rnthly rainfall aainfall aainfall aainfall aainfall at Góis mt Góis mt Góis mt Góis mt Góis meteo-steteo-steteo-steteo-steteo-staǋon froaǋon froaǋon froaǋon froaǋon from 191m 191m 191m 191m 1917 7 7 7 7 19971997199719971997     (SNIRH,(SNIRH,(SNIRH,(SNIRH,(SNIRH,     2016).2016).2016).2016).2016).     to to to to to 

FigurFigurFigurFigurFigure 4 e 4 e 4 e 4 e 4 AvAvAvAvAverage serage serage serage serage seasonaleasonaleasonaleasonaleasonal     soil moistsoil moistsoil moistsoil moistsoil moisture (ure (ure (ure (ure (a) and sa) and sa) and sa) and sa) and soil wateroil wateroil wateroil wateroil water     repellrepellrepellrepellrepellency frency frency frency frency frequencyequencyequencyequencyequency     (n=1(n=1(n=1(n=1(n=180). 80). 80). 80). 80). 

FigurFigurFigurFigurFigureeeee     5 5 5 5 5 AveragAveragAveragAveragAverage monthly raie monthly raie monthly raie monthly raie monthly rainfall and runoũ nfall and runoũ nfall and runoũ nfall and runoũ nfall and runoũ the four yeathe four yeathe four yeathe four yeathe four years following the wildŬrs following the wildŬrs following the wildŬrs following the wildŬrs following the wildŬre atre atre atre atre at     the unplthe unplthe unplthe unplthe unplowed (U), downslowed (U), downslowed (U), downslowed (U), downslowed (U), downslope ope ope ope ope ininininin     

ploweploweploweploweplowed (DP) ad (DP) ad (DP) ad (DP) ad (DP) and contnd contnd contnd contnd contour plowour plowour plowour plowour plowed (Ced (Ced (Ced (Ced (CP) sites.P) sites.P) sites.P) sites.P) sites.     Wet pWet pWet pWet pWet periods ieriods ieriods ieriods ieriods in blue an blue an blue an blue an blue and drynd drynd drynd drynd dry     periodsperiodsperiodsperiodsperiods     in whitin whitin whitin whitin white backe backe backe backe backgrounds.grounds.grounds.grounds.grounds.     

FigurFigurFigurFigurFigure 6 e 6 e 6 e 6 e 6 AvAvAvAvAverage moerage moerage moerage moerage monthly rnthly rnthly rnthly rnthly rainfallainfallainfallainfallainfall     erosivityerosivityerosivityerosivityerosivity, I30, I30, I30, I30, I30maxmaxmaxmaxmax and and and and and     erosion ierosion ierosion ierosion ierosion in then then then then the     four yefour yefour yefour yefour years followars followars followars followars following ting ting ting ting the wildŬrhe wildŬrhe wildŬrhe wildŬrhe wildŬre at thee at thee at thee at thee at the     

unplowunplowunplowunplowunplowed (U),ed (U),ed (U),ed (U),ed (U),     downsldownsldownsldownsldownslope plope plope plope plope plowed (Dowed (Dowed (Dowed (Dowed (DP) andP) andP) andP) andP) and     contourcontourcontourcontourcontour     ploweploweploweploweplowed (CP) sid (CP) sid (CP) sid (CP) sid (CP) sites. Wtes. Wtes. Wtes. Wtes. Wet periodset periodset periodset periodset periods     in blin blin blin blin blue andue andue andue andue and     dry perdry perdry perdry perdry periods in wiods in wiods in wiods in wiods in white hite hite hite hite 

backgrbackgrbackgrbackgrbackgrounds.ounds.ounds.ounds.ounds.     

FigurFigurFigurFigurFigure 7 e 7 e 7 e 7 e 7 ScatScatScatScatScatter plotter plotter plotter plotter plots of runs of runs of runs of runs of runoũ oũ oũ oũ oũ rainfalrainfalrainfalrainfalrainfall (n=464l (n=464l (n=464l (n=464l (n=464) and) and) and) and) and     erosion erosion erosion erosion erosion IIIII3030303030maxmaxmaxmaxmax     (n=378(n=378(n=378(n=378(n=378) for th) for th) for th) for th) for the diũerente diũerente diũerente diũerente diũerent     landlandlandlandland     

managmanagmanagmanagmanagementementementementement     pracǋcpracǋcpracǋcpracǋcpracǋces (plowes (plowes (plowes (plowes (plowed aned aned aned aned and unplowd unplowd unplowd unplowd unplowed, aned, aned, aned, aned, and b) andd b) andd b) andd b) andd b) and     soisoisoisoisoil moisturel moisturel moisturel moisturel moisture     condiǋcondiǋcondiǋcondiǋcondiǋons (wons (wons (wons (wons (wet andet andet andet andet and     dry, c adry, c adry, c adry, c adry, c and d). nd d). nd d). nd d). nd d). 
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Highlights 

Post-ŧre runoŤ beǖer explained by rainfall and soil water repellency. is 

Post-ŧre erosion beǖer explained by rainfall intensity and cover variables. is 

Pre-ŧre land management seem to aŤect post-ŧre runoŤ and erosion processes. 

Staǌsǌcal models indicate runoŤ and erosion processes change in wet and dry soil moisture 

condiǌons. 
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