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Abstract: The rate-limiting step for ammonia (NH3) production via the Haber-Bosch process is known to be 

the dissociation of molecular nitrogen (N2), which requires quite harsh working conditions, even when using 

appropriate heterogeneous catalysts. Here, motivated by the demonstrated enhanced chemical activity of 

MXenes a new class of two-dimensional inorganic materials towards the adsorption of quite stable 

molecules such as CO2 and H2O, we use density functional theory including dispersion to investigate the 

suitability of such MXene materials to catalyze the N2 dissociation. Results show that MXenes 

exothermically adsorb N2, with rather large adsorption energies ranging from -1.11 to -3.45 eV and 

elongation of the N2 bond length by ~20%, greatly facilitating its dissociation with energy barriers below 1 

eV, reaching 0.28 eV in the most favorable studied case of W2N. Microkinetic simulations indicate that the 

first hydrogenation of adsorbed atomic nitrogen is feasible at low pressures and moderate temperatures, and 

that the production of NH3 may occur above 800 K on most studied MXenes, in particular in W2N. These 

results reinforce the promising capabilities of MXenes to dissociate nitrogen and suggest combining them 

co-catalytically with Ru nanoparticles to further improve the efficiency of ammonia synthesis.    
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Introduction 

Ammonia (NH3) is the essential precursor in the synthesis of many N-containing compounds,1,2 several of 

them having a high impact in our daily life, from sterilizing and cleaning products, to fertilizers and 

medicines.3 Moreover, NH3 emerges as an alternative energy carrier to reduce the fossil fuel consumption 

due to its large hydrogen capacity (17.6 wt%) and its energy density of 22.5 MJ/kg, comparable to that of 

fossil fuels such as low-ranked coals (around 20 MJ/kg).4 The growing NH3 demand has motivated a great 

interest in the artificial N2 fixation.5 However, the high N2 stability, with a triple covalent bond dissociation 

energy of almost 10 eV, makes its chemical capture and activation a real challenge. In fact, industrial NH3 

synthesis via the Haber-Bosch (HB) process requires appropriate catalysts working at high temperatures 

(400-500 ºC) along with high pressures (100-300 bar) due to thermodynamic constraints.6  

In particular, fused iron catalysts are well consolidated catalysts for HB synthesis.7 The origin of the 

catalytic activity of Fe surfaces towards N2 has been disclosed in several landmark surface science studies.8-

11 For instance, an experimentally-measured kinetic energy barrier of ~0.80 eV for N2 dissociation on 

Fe(111) has been reported at near-operational HB conditions.12 More recently, small iron Fe3 supported on 

the θ-Al2O3(010) surface have been also proposed as feasible heterogeneous catalyst for ammonia 

synthesis.13 Other suitable catalysts such as Ru nanoparticles (NPs),14 graphene-based substrates (GraN4-

Cr),15 and dicoordinate borylenes16 have been recently explored, all displaying good catalytic activity for N2 

dissociation. For instance, energy barriers for N2 dissociation in the 0.4–1.9 eV interval have been predicted 

for the reaction on Ru nanoparticles, depending on whether terrace or step sites are considered as catalytic 

active sites. Similar dissociation barriers are found on well-defined V(110) surfaces.17 Despite the fact that 

active sites at operating conditions could not necessarily coincide with those exhibiting the lowest energy 

barriers,14,17 a small energy barrier for N2 dissociation is still considered as a requisite for an efficient 

conversion. Consequently, research endeavors are aimed at finding improved catalysts that can potentially 

operate HB synthesis at milder conditions.18  

Recently, a fast-growing family of two-dimensional (2D) inorganic materials, usually referred to as 

MXenes, has been isolated by HF selective etching from precursor MAX phases.19 The resulting 2D flake 

materials have been fully characterized as made up of close-packed layers of transition metals (M = Ti, Zr, 

Hf, V, Nb, Ta, Cr, Mo, or W) intercalated by layers of carbon or nitrogen (X = C or N), with the general 

formula Mn+1XnTx (n = 1–3), where Tx represents the surface terminations bonded to the outer M layers.20 

MXenes may display different Tx terminations depending on the synthesis conditions, with O, OH, F, and H 

being the most common.21 More recently, HF-free syntheses have been reported where MXenes are 

terminated by H and OH only.22,23 In addition, post-synthesis heating treatments have been shown to 

successfully defunctionalize MXene surfaces.24,25 When devoid of Tx, MXenes are naturally quite reactive 

and are known to strongly adsorb molecules, facilitating their posterior conversion. The use of MXenes in 

catalysis has been reviewed very recently.26 Other, recent examples include CO2 and H2O adsorption and 
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dissociation.27-29 In addition, the possibility to use conducting MXenes as electrodes in electrocatalysis has 

also been considered. In particular, Seh et al.30 explored the performance of Mo2CTx and Ti2CTx as 

electrocatalysts in the hydrogen evolution reaction (HER), whereas Yi et al.31 theoretically studied the 

performance of a Ti2C monolayer as a cathode substrate to improve the performance of the Li–N2 battery. 

The latter authors found a very strong interaction between N2 and the bare Ti2C and, interestingly, the 

presence of Li atoms seemed to facilitate the N2 dissociation. In another computational keynote work, 

Azofra et al.32 investigated the mechanism of NH3 electrocatalytic synthesis from N2 using a family of M3C2 

MXenes as catalysts. These two previous studies on the N2 electrochemical reduction considered a 

mechanism involving a series of proton-electron transfers,33 resulting in the successive hydrogenation of one 

or both N atoms of N2, thus, concomitantly weakening the NN bond and eventually leading to the NH3 

formation.34-38 However, it is worth pointing out that the literature of N2 reduction via heterogeneous 

catalysis on MXenes is scarce, despite the demonstrated stability of these surfaces in inert, oxidizing, and 

reducing environments (e.g. V2CTx),
39 and thermal stability (800 ºC at least), which open the possibility of 

using MXenes at operando conditions of the HB process.24 In the case of the Ti3C2Tx MXene, thermal and 

mechanical stabilities were reported up to a temperature of 900 ºC and a pressure of 26.7 GPa.40,41 Recent 

computational studies also provide compelling evidence that bare MXene materials are mechanically and 

dynamically stable.42 All these findings strongly suggest that MXenes could display an efficient activity 

towards heterogeneous catalytic N2 dissociation and, eventually, towards NH3 synthesis in the HB process. 

Motivated and inspired by this, the present work explores the chemical activity of 18 MXenes from groups 

IV-VI —nine carbide and nine nitride MXenes— towards N2 adsorption and subsequent direct dissociation 

by means of density functional theory (DFT) methods and microkinetic modeling. The obtained results 

confirm the hypothesis that these new materials can dissociate N2 at rather mild conditions, which may have 

implications in the N2 utilization in general, and on the ammonia synthesis in particular.  

MXene Models and Computational Details 

To understand the nitrogen fixation by MXenes, the N2 dissociation mechanism was firstly investigated, 

using first-principles calculations as implemented in the Vienna ab initio simulation package (VASP).43 

Then, the potential energy diagram for NH3 synthesis from N2 and H2 on selected surfaces was thoroughly 

investigated. The MXenes basal (0001) surfaces are modeled by a periodic hexagonal p(3×3) supercell 

containing 27 atoms (Figure 1), with lattice parameters as displayed in Table S1 of the Supporting 

Information (SI). The valence electron densities have been expanded in a plane wave basis set with a cutoff 

for the kinetic energy of 415 eV, whereas the effects of the core electrons on the valence electron densities 

were taken into account by means of the projector-augmented wave (PAW) method.44 The Brillouin zone 

was sampled using a Monkhorst-Pack 551 grid of k-points.45 The calculations were carried out within the 

generalized gradient approximation (GGA), using the Perdew, Burke, and Ernzerhof (PBE) exchange-

correlation functional46, including dispersion interactions through the Grimme D3 method.47 The 

convergence criteria for the self-consistent energies and forces for relaxed structures were set to 10-6 eV and 



4 

0.01 eV·Å-1, respectively. Spin polarization was found to be necessary to properly describe the Ti2C, Zr2C, 

and Cr2C MXenes. Further details regarding the definition of adsorption energy and related quantities as 

well as Gibbs free energies calculation are reported in the SI. 

Results and discussion 

The interactions of atomic and molecular nitrogen with the above-mentioned MXene surfaces have been 

investigated by sampling four relevant high-symmetry sites, see Figure 1. On most MXenes the N atom 

adsorbs preferably on the HM site, yet in the case of W2C and d4 nitrides the HX site is energetically 

favorable. The calculated N adsorption energies relative to 1/2·𝐸N2
 for carbide and nitride MXenes are all 

negative indicating exothermic adsorptions —see Table S2 of the SI for further details. In general, the 

atomic N adsorption becomes weaker as one moves from d2 to d4 MXenes. The N2 molecule adsorbs in a 

similar way on all MXenes, with one of the N atoms lying above an HM site and the other above a nearby HX 

site —B site for Mo2C, W2C, Nb2N, and Ta2N— with results summarized in Table 1 and Figure 2. For the 

HM-HX adsorption configurations, the molecule adsorbs approximately parallel to the plane of the surface, 

with a titling angle of ~15o. In both configurations, the N atom closest to the surface is placed ~1 Å above 

the metal atoms layer and the N-N distance is ~1.35 Å, i.e. about 20% longer than the corresponding gas 

phase value of 1.11 Å. Analogously to N adsorption, N2 adsorption is stronger on d2 MXenes and becomes 

weaker as we move to d3 and d4 metals. 

The large N2 adsorption energy and the noticeable bond length elongation are already indicative of 

N2 activation, and so, forecast an easy N2 dissociation. However, a firm statement requires locating the N2 

dissociation transition state (TS) along different breaking pathways on the studied MXene surfaces. The TSs 

have been determined and characterized as indicated in the SI. All of them can be described as early states, 

since the corresponding structure closely resembles the initial configuration just with the N atoms slightly 

farther from each other, ~1.8 Å. Taking Zr2C as an example, the most favorable adsorption site of N2 is HM-

HC, whereas the N atoms adsorb on HM sites, see Figure 2. The associated TS structure keeps one N at HM 

while moving the other farther away, so that, after the molecular dissociation, both N adatoms sit at HM 

sites. However, in the case of Nb2C, Ta2N, and W2N, the configuration after dissociation is such that one of 

the N adatoms remains on its most stable adsorption site, while the second one sits on the nearest hollow site 

at a distance of around 2.5 times the calculated N2 bond length. In this situation, there is a strong lingering 

lateral interaction between the two N adatoms that is released by moving the second N adatom to its most 

favored adsorption site. Table 1 compiles the related energies and shows that the calculated energy barriers, 

Eb, range from 0.28 to 1.1 eV, tending to decrease along the group or period of the metal. This implies that 

Eb is often smaller than the N2 adsorption energy, a feature not easily fulfilled by standard catalysts and the 

reason why high pressures are needed in the HB process. All dissociation steps are found to be exothermic, 

with reaction energies, Ereac, as large as -3.19 eV on W2N, and exothermicity increasing as the group or 

period of the MXene increases. Hence, the most exothermic dissociation occurs on the MXene with the 
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lowest Eb, suggesting that the overall process may follow a Brønsted-Evans-Polanyi (BEP) relationship.48-50 

Indeed, the plot in Figure 3 of Eb vs. Ereac shows that BEP holds and leads to a faster way to predict results 

for other possible MXenes.  

To go beyond the previous thermodynamic and kinetic analyses and to account for real operando 

conditions, we consider the variation of the Gibbs free energy of adsorption of the reacting systems at 1 bar 

and 300 K —see details in the SI. For all the studied MXenes, trends in Gibbs free energy of adsorption of N 

and N2 are similar to those reported for Eads although weaker by 0.25 and 0.50 eV, respectively. The reaction 

energy values are practically unaffected by temperature and pressure, with differences lower than 0.01 eV 

with respect to the values listed in Table 1, while Eb values are reduced by circa 0.06 eV. From this set of 

results, one can conclude that increasing the temperature is, if any, beneficial for the dissociation of N2 on 

MXenes, as it both lowers the Eb values and contributes towards replacing the MXene surface termination 

by N2. Furthermore, the obtained values do not seem to be assignable solely to the explored M:X 2:1 

stoichiometry, as test simulations for N2 dissociation on the experimentally isolated Ti4N3, Nb4C3, and 

Ta4C3, all 4:3 stoichiometric MXenes,51,52 yield nearly identical results to those obtained for the M2X 

stoichiometry, with Eads and Eb values differing by up to 0.05 eV at most. These findings strongly support 

that conclusions taken from the present calculations are likely to apply to thicker MXenes as well, in line 

with the already reported very small variation of the CO2 capture capabilities of MXenes of different 

thickness.53 

To further assess the catalytic capability of MXene for nitrogen fixation, we compare the present 

results with available data in the literature. To this end we rely on Eb values for N2 dissociation although a 

comparison of present and previously reported N2 adsorption energies on MXenes is provided in the SI. In 

the case of Ti2C, the present value for Eb of 0.98 eV compares well with the 1.17 eV value reported by Yi et 

al.31 Note, however, that the latter has been acquired in the different context of the electrocatalytic HER. In 

any case, to find that these two values are only slightly larger than the experimentally measured barrier of 

0.80 eV for N2 dissociation on Fe (111) at conditions close to the ones required for the HB process12 is really 

remarkable. Encouragingly, lower Eb values are predicted for other MXenes, see Table 1, where W2N 

MXene (0001) surface features the lowest value of 0.28 eV. It is worth to point that this activation barrier is 

similar to that reported for the step regions of Ru surfaces54 and on a cesium-promoted ruthenium particle 

supported on MgO55 that show 0.40 and 0.34 eV, respectively (Tables S3 and S5). Nevertheless, other 

MXenes exhibit quite low Eb values close to 1.0 eV. In general, carbide and nitride MXenes emerge as 

potentially suitable materials for N2 dissociative adsorption with a reactivity comparable or even superior to 

other reported transition metal surfaces or NPs.12,14,17 Therefore, MXenes appear as potential catalysts 

candidates for N2 fixation; i.e. in the NH3 synthesis. However, the latter requires considering the successive 

N adatom hydrogenation steps as well. These have been studied in detail for Nb2C, Mo2N, and W2N, chosen 

because of their low N2 dissociation energy barriers. The total and Gibbs free energy profiles at standard 

conditions, plotted in Figure 4, reveal that, for such a catalyzed process, the rate-limiting step would be these 
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hydrogenation steps instead of the N2 dissociation one. Actually, for the three systems with smallest N2 

dissociation barriers, the energy barriers for these hydrogenation steps are somewhat higher than those 

reported, for instance, on a model Ru (001) surface,54 yet surmountable at working conditions, especially for 

W2N. At this point, it is worth considering whether PBE results provide an accurate enough comparison to 

experiment.56 From Figure 4, it is clear that, as expected, PBE poorly describes the gas phase 

thermochemistry of this reaction (see gray lines in Figure 4). Nevertheless, there is compelling evidence that 

this DFT approach performs satisfactorily for surface reactions,14 where the electron density is less 

localized. This is further supported by the good agreement between experimental turnover frequencies and 

predictions from kinetic Monte Carlo and microkinetic simulations using DFT derived rates.57,58 

To further assess the capability of MXenes for ammonia synthesis, microkinetic simulations were 

carried out to obtain insights into the production of NH3 on W2N by using the MKMCXX program59,60 —

further details of the microkinetic simulations are given in the SI. Note that the choice of the W2N MXene is 

justified as this material exhibits the lowest energy barriers for N2 dissociation and subsequent 

hydrogenation steps leading to the formation of ammonia, see Table S3. The simulations were carried out 

taking a gas phase mixture with a N2:H2 molar ratio of 1:3 at 1 bar. Two limiting cases were studied 

separately; assuming that after N2 dissociation the two N* species are located at the nearby surface sites, or 

that instead they immediately migrate to outlying regions, see Figure 5. In the first scenario, displayed in 

Figures 5a and 5b, the formation of NH* is predicted to take place at 1 bar and below 600 K. However, the 

backward reactions towards the N* and H* species are favored by higher temperatures. This simulation 

confirms that the formation of NH3 could be affordable (Figure 5b) reaching the maximum of production at 

1075 K, where the apparent activation energy is zero (Figure S2). The reaction orders of N2 and H2 as a 

function of temperature are depicted in Figure S3. From this figure, it can be seen that the reaction orders of 

the reactants increase with temperature, they are related with the decreasing of the coverage, in consistency 

with Figure 5a. The degree of rate control (DRC) shown in Figure S4, concludes that the NH2+H 

recombination on the W2N MXene (0001) surface is the rate-limiting step. Finally, the rates of the reaction 

following eight elementary reaction steps are depicted in Figure S5. In the second situation, the W2N 

catalyst is poisoned by the N* species (Figure 5c) and, consequently, the formation of NH3 does not take 

place. Interestingly, the differences between these two situations may be found in the backward reaction, 

which corresponds to the recombination of the N* species into N2, see Table S5. These activation barriers 

are 1.12 and 3.46 eV for the nearby and outlying situation, respectively. In conclusion, a large backward 

energy barrier indicates that the W2N MXene dissociates the nitrogen molecule poisoning the surface and 

cutting the reaction off. For the most interesting scenario, i.e. N* species adsorbed at nearby surface sites, 

results from microkinetic simulations in Figures S6-S8 obtained for a gas phase mixture with N2:H2 molar 

ratio of 1:3 but at a higher pressure, viz. 200 bar, show that it is not only possible to form significant 

amounts of NH* but that it is possible to reach NH2* at temperatures below 600 K. 
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The present computational study strongly suggests that MXenes may constitute appropriate materials 

for dissociating the N2 molecule even at standard pressure, reporting better forward activation barriers for 

the dissociation of N2 molecule than Ru nanoparticles, see Table S5. Finally, although the hydrogenation of 

easily formed N adatoms on MXenes may be more difficult, other strategies can be envisaged to overcome 

this possible hurdle, e.g. using MXenes as a support material for Ru NPs61 in a tandem, bifunctional catalyst, 

with the MXene substrate adsorbing and dissociating N2, whereas the Ru active centers would be better 

suited in hydrogenating the formed N adatoms towards NH3, thus ideally permitting the Haber-Bosch NH3 

synthesis at milder conditions. 

Conclusions 

To summarize, MXenes are introduced here as potential catalysts to adsorb and exothermically dissociate N2 

at mild conditions, with energy barriers ranging from 0.28 to 1.10 eV, which are comparable to, or even 

lower than, those corresponding to models of transition metal-based industrial catalysts. Even though the 

present conclusions hold for MXenes with M:X 2:1 ratio, additional simulations on MXenes with 4:3 ratio 

revealed negligible material thickness effect. Moreover, the fact that the N adatom hydrogenation steps are 

somewhat more costly than the same steps on commercial transition metal-based catalysts suggests 

synergistically using MXenes as supports of metal nanoparticles used in the Haber-Bosch process leading to 

bifunctional catalysts with better activities at a lower cost. The remarkable chemistry of MXenes towards N2 

suggest that they could be used in the Haber-Bosch ammonia synthesis. Nevertheless, additional work from 

both modelling and experimental points of view are needed to further confirm this hypothetical and, at the 

same time, appealing catalytic activity. 
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Table 1 N2 adsorption sites, adsorption energies, Eads, dissociation energy barriers, Eb, and dissociation 

reaction energies, Ereac, on the studied MXene (0001) surfaces. The N2 adsorption site is specified by the 

surface sites occupied by the two nitrogen atoms, see Figure 1. All values are given in eV and include the 

zero point energy (ZPE) contribution.  

  M2C M2N  

 M Site Eads Eb Ereac Site Eads Eb Ereac 

d2 Ti HM-HC -3.26 0.98 -1.55 HM-HN -3.45 0.93 -2.00 

 Zr HM-HC -2.84 1.10 -1.60 HM-HN -3.08 0.91 -2.25 

 Hf HM-HC -3.14 0.96 -2.02 HM-HN -3.30 0.75 -2.61 

d3 V HM-HC -2.99 0.80 -1.77 HM-HN -2.10 0.78 -2.20 

 Nb HM-HC -2.41 0.75 -2.18 HM-B -1.76 0.60 -2.70 

 Ta HM-HC -2.35 0.53 -2.72 HM-B -2.12 0.48 -3.06 

d4 Cr HM-HC -2.12 0.85 -1.90 HM-HN -1.66 0.61 -1.85 

 Mo HM-B -1.59 0.93 -2.35 HM-HN -1.55 0.45 -2.76 

 W HM-B -1.11 0.37 -2.48 HM-HN -1.34 0.28 -3.19 
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Figure 1. Top view of the p(3×3) supercell employed to model the MXene (0001) surfaces. The transition 

metal atoms are shown as grey spheres, while X atoms are shown as green spheres. The dashed rhombus 

represents the boundaries of the employed supercell. The labels refer to the four relevant high-symmetry 

sites on the surface: bridge (B), top (T), hollow metal (HM), and hollow carbon/nitrogen (HX) —in practice, 

HC or HN. 
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Figure 2. Initial state (IS - left), transition state (TS - middle), and final state (FS – right) configurations of 

N2 dissociation on the Zr2C MXene (0001) surface, as seen from the side (top) and top (bottom) views. 

Color code as in Figure 1, N atoms are shown as dark blue spheres. Note that this particular case is 

representative for most carbide and nitride MXene (0001) surfaces investigated, while on Nb2C, Mo2N, 

Ta2N, and W2N the two N adatoms remain on their original HM and HX sites after dissociation, but about 

twice as far from each other as in the TS. 
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Figure 3. Plot of the BEP relationship for N2 dissociation reaction energy barrier, Eb, and the dissociation 

energy, Ereac, on the MXene surfaces investigated; the black line defines the linear regression, with equation 

𝐸b = 0.387 · 𝐸reac + 1.611, and correlation coefficient R = 0.79. Blue and red dots correspond to carbide 

and nitride MXenes, respectively.  
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Figure 4. Total (top) and Gibbs (down) free energy reaction profiles of ammonia synthesis on Nb2C (blue), 

Mo2N (red), and W2N (black) MXene (0001) surfaces. Gibbs energy profiles are obtained assuming a 

temperature of 300 K and N2 and H2 partial pressures of 1 bar. The energy barriers are collected in Table S3. 

Gray lines correspond to accurate thermochemistry description of this reaction in the gas phase, considering 

the golden standard coupled cluster with single, doubles, and perturbative triples —CCSD(T)— method 

(top), and the experimental reaction Gibbs energy at a working temperature of 300 K and a pressure of 1 bar 

for H2 and N2 gases (down). The CCSD(T)/cc-pVTZ calculations were taken from the Computational 

Chemistry Comparison and Benchmark Database (https://cccbdb.nist.gov/).  
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Figure 5. Results from microkinetic simulations performed on the W2N MXene (0001). The gas phase 

contains a mixture of N2 and H2 in a 1:3 molar ratio at a total pressure of 1 bar. Two different scenarios are 

analyzed: (a) and (b) correspond to a situation where the N* species are close to each other (high-coverage), 

whereas in (c) and (d) the N* species are far from each other (low-coverage). The coverage of the most 

abundant species for the N2 fixation on MXene surface along with the ammonia production as a function of 

the temperature are figures a-c and b-d, respectively for each of the investigated scenarios. The gray bar 

indicates the temperature conditions at which the industrial HB process takes place. 
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