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ABSTRACT. Organic corrosion inhibitors are playing a crucial role to substitute traditional 

protective technologies, which have acute toxicity problems associated. However, why some 

organic compounds inhibit corrosion and others do not, is still not well understood. Therefore, 

we tested different machine learning (ML) methods to distinguish efficient corrosion inhibitors 

for aluminum alloys commonly used in aeronautical applications. In this work, we have 

obtained information that can greatly contribute to automate the search for new and more 

efficient protective solutions in the future: i) a ML algorithm was selected that is able to classify 

correctly efficient inhibitors (i.e., with more than 50 % efficiency) and non-inhibitors (i.e. with 

lower-equal than 50 % efficiency), even when information about different alloys at different 

pHs is included in the same dataset, which can significantly increase the information available 

to train the model; ii) new descriptors related to the self-association of the molecules were 

evaluated, but improvements to the predictive power of the models are limited; iii) average 

differences concerning the descriptors in this work were identified for inhibitors and non-

inhibitors, having the potential to serve as guidelines to select potentially inhibitive molecular 

systems. This work demonstrates that ML can significantly accelerate research in the field by 

serving as a tool to perform an initial virtual screen of the molecules. 
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1. INTRODUCTION 

 

Corrosion Science is a scientific field aiming at preventing or, at least, controlling the 

deterioration of materials with the ultimate goal of maintaining the safety of infrastructures, 

thus adding great value to the global economy. Computer guided research has been giving 

valuable insights into corrosion mechanisms and the role of potentially corrosion inhibitive 

molecules1,2. This work makes a significant contribution to what can be a process of 

accelerating the search for novel compounds able to inhibit corrosion, by identifying the best 

machine learning (ML) methods for this purpose. 

Metallic corrosion is typically the result of a redox electrochemical reaction 

characterized by an anodic part, responsible for the oxidation of the metal, and a cathodic part, 

resulting in the reduction of oxygen and water molecules from the environment3. The chemical 

reactivity of the process is described in Figure 1 for aluminum. 

 

Figure 1. Corrosion electrochemical processes exemplified for an aluminum surface, 

involving cathodic and anodic reactions (above), and adsorption of a typical corrosion 
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inhibitor, such as 1,2,3-benzotriazole, to displace water molecules and protect the surface 

from aggressive species (below). 

 

Aggressive species, such as, for example, Cl‒, SO4
2‒ and OH‒ can accelerate these 

chemical processes and, hence, the degradation of the surface. Therefore, organic corrosion 

inhibitors, such as, for example, 1,2,3-benzotriazole, are able to displace water molecules and 

protect the surface against aggressive species by adsorbing directly onto the metallic surface as 

represented in Figure 1.3 Since the seminal work of Kokalj and his coworkers that used 

molecular modeling to understand what drives the inhibition efficiency of organic corrosion 

inhibitors4, there have been important efforts in the atomistic simulation of corrosion 

processes5,6 and protective technologies, such as nanostructured conversion films7 and smart 

coating additives8 (Figure 2). 

The need to provide chromate-free corrosion protection technologies and the lack of 

understanding of how structural features of chemical compounds influence their corrosion 

efficiency, has led to the development of high-throughput testing methodologies of corrosion 

inhibitors9–12. This resulted in inhibition databases of different sizes11,13 and for different types 

of metals14, which in turn catalyzed the application of quantitative structure–property 

relationship (QSPR) approaches led by Winkler et al.2, whose efforts even received the 

financial support of a major end-user, such as the Boeing company11,15. 
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Figure 2. Some recent modelling developments in corrosion protection related to the 

understanding of phenomena at the molecular scale. 

 

The availability of larger datasets led to the application of sophisticated ML approaches. 

Neural networks have been applied to model the inhibition efficiency of data sets containing 

information regarding 28 13 and 100 11 small organic compounds for aluminum alloys. Winkler 

et al.11,15 concluded that molecular properties based on the structure of the inhibitors allowed 

to obtain a more reliable model than quantum chemical properties of the individual compounds 

(such as, for example, electronic affinity, ionization potential or electronegativity). To improve 

this situation, Fernandez et al.16 developed a new methodology to obtain 3D distributions of 

electronegativity, polarizability and van der Waals volume for the test set containing 28 small 

organic molecules. Once the 3D properties were obtained, advanced algorithms were applied 

to verify what the inhibitor and non-inhibitor molecules had in common, and also predict the 

performance of new structures. This methodology yielded impressive predictive results for a 

small test set. Würger et al.17 used a multidisciplinary approach combining high-throughput 

experimental screening of inhibitors efficiencies, unsupervised ML based on a clustering 

technique, plus data mining and density functional theory calculations, to estimate the corrosion 

inhibition efficiency of untested molecules for magnesium alloys. Despite the relatively low 



 6 

amount of available experimental input data for benchmarking their methodology, the proposed 

workflow showed the existence of a clear relationship between corrosion inhibition efficiency 

and the molecular structure of molecules acting as magnesium corrosion inhibitors. Feiler et 

al.18 have built upon this last work producing very promising results of model molecules for 

the corrosion protection of magnesium alloys.  

In the present work, it will be performed a comparative analysis between different ML 

algorithms for the classification of chemical compounds as inhibitors or non-inhibitors for the 

corrosion protection of aluminum alloys commonly used in aeronautical applications. This 

work will enable a better understanding of the pros and cons of each algorithm to predict the 

corrosion inhibition potential of organic compounds. 

We will also provide new descriptors related to the self-association between corrosion 

inhibitors in their simplest form, i.e., dimerization enthalpies and Gibbs energies. These 

descriptors can be a rough approximation of the strength of the interactions between the 

molecules themselves to form a cohesive thin film on the metallic surface. This film can also 

evolve to the formation of a multilayer19, and prevents or, at least, diminishes the interaction of 

aggressive species with the metallic surface20. Although the calculation of dimerization 

energies is generally more computationally demanding than obtaining energetic quantum 

properties, it provides a more close parallelism with mechanistic processes (self-interaction of 

molecules during protective film formation) that cannot be achieved by correlating inhibition 

efficiencies with electronic properties alone.  

 

2. MODELING DETAILS 

 

Molecules and descriptors. In this work, a total of 102 organic compounds were 

examined, which include mostly aromatic moieties and/or amino, carboxylic, hydroxyl and 
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thiol groups, with the names of the compounds and their chemical structures presented in the 

SI (Table S1). Such compounds were previously tested experimentally as potential corrosion 

inhibitors by other authors for aerospace aluminum alloys AA2024 and AA7075. The 

compounds were examined under mild acidic (pH = 4) and basic (pH = 10) conditions using a 

high throughput experimental methodology11, thus totaling 408 data entries. The efficiency of 

corrosion inhibition was assessed using an image processing methodology validated in a 

previous study through mass loss corrosion tests21. The efficiency scale ranged from zero (no 

inhibition) to 10 (maximum inhibition)11, which can be readily rescaled to the percentage 

scale21. 

Besides obtaining experimental inhibition efficiencies, Winkler et al.11 calculated a large 

number of descriptors (~2000) and made some available, such as molecular weight, molecular 

refractivity, octanol/water partition coefficient, polar surface area, molecular volume, 

molecular area, polar volume, number of donor atoms, number of rings (either aromatic or non-

aromatic), number of hydrophobes, number of acceptor atoms and number of rotational bonds, 

which will also be used herein. The values of these descriptors were taken from Winkler et al.11 

without further change. Those authors employed three different codes to obtain the descriptors. 

The Sybyl x2.0 molecular modelling package (Certera Limited) was used to optimize the 

molecular structures, while the Dragon22 and the Biomodeller23,24 codes were used to calculate 

the descriptors. 

Winkler et al. selected the most appropriate descriptors, while relying on linear regression 

and neural networks to obtain predictive models. They used between 11 and 31 descriptors 

depending on the alloy and pH11. Herein, we will use the same descriptors and different ML 

algorithms to model the four datasets, with the main aim of evaluating the performance of each 

algorithm. The dataset used in this work is available online 25: 

http://dx.doi.org/10.17632/v5p322m2t8.2. 

 

http://dx.doi.org/10.17632/v5p322m2t8.2
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Dimerization energies. Prior to the optimization of the dimer structures to obtain the 

dimerization energetic parameters, potential conformations of dimers were generated with a 

conformational sampling method using a modified version of the Monte Carlo Multiple 

Minimum (MCMM) algorithm of Chang, Guida and Still26, as described by Paton et al.27,28. 

The initial conformational sampling was performed using the MOPAC 2016 code29 with the 

semi-empirical PM6 method incorporating dispersion and hydrogen bonding correction terms 

(PM6-DH2)30,31, together with implicit solvation using the COSMO (Conductor-like Screening 

Model) method32. 

The three most favorable conformations of each dimer system from the preceding step 

were further optimized using the Gaussian 09 code33 and dimerization enthalpies and Gibbs 

energies were calculated. The optimizations of the dimer and corresponding monomer 

molecular structures were performed with the hybrid density functional theory functional of 

Truhlar and Zhao (M06-2X)34, together with the 6-31++G(d,p) basis set. The structures were 

characterized as true minima on the potential energy surface by the absence of imaginary modes 

in vibrational frequencies analyses performed also at the M06-2X/6-31++G(d,p) level of theory. 

The vibrational frequencies calculations were also used to obtain the thermal corrections to 

enthalpies and Gibbs free energies of dimerization, at T = 298.15 K. The influence of water was 

considered implicitly in these calculations by using  the Polarizable Continuum Model (PCM)35 

as a self-consistent reaction field (SCRF) relying on the default values in the Gaussian code. 

The optimized dimer structures were made available online through iochem-bd36. 

 

Machine learning details. ML algorithms with a broad range of artificial intelligence 

applications and implemented in R were used herein to classify the compounds as inhibitors or 

non-inhibitors, in order to obtain a predictive analytical model. The algorithms tested were: k-

nearest neighbors, decision trees, decision trees with Boosting, decision trees with defined error 
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costs, bagging, random forests, classification rules, artificial neural networks and support vector 

machine. 

In order to evaluate our model, a 5-fold cross-validation method was employed (Figure 

3). Although 10-fold cross-validation is more common, 5-fold cross-validation already achieves 

a similar low bias towards the test sample and equal mean square error for different methods 

and test sets37, while being faster to employ for more computationally intensive ML techniques 

such as artificial neural networks. In 5-fold cross-validation, each algorithm is tested five times 

against five independent test samples corresponding to 20 % of the dataset after the model is 

also trained five different times against the remaining 80 %. Each algorithm is also tested for 

two different alloys at two different pHs. Furthermore, a test was also performed for the four 

datasets merged into one, thus totaling 408 data entries, including the type of alloy and pH as 

categorical variables. For the best method, it was employed both 5- and 10-fold cross-

validation. 

Moreover, for the composite dataset, where the 2 alloys and 2 pHs were modeled together, 

the three algorithms with the highest sensitivities were further evaluated employing 10-fold 

cross-validation and an independent test set with 20 % of the data. 

In order to evaluate the role of the experimental error in the results obtained, further tests 

were performed with different thresholds to label the compounds as inhibitors or non-inhibitors: 

above 40 %, 50 %, 60 %, 70 % or 80 % (for equal or below these values, the compounds were 

labeled as non-inhibitors). 

Prior to the training phase, the values of the descriptors were normalized using min-max 

normalization, according to equation 1. 

 

𝑥norm =  
𝑥i−min (𝑥)

max(𝑥)−min (𝑥)
  (1) 
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In order to perform the classification task, the compounds were labeled in such a way that 

the group of compounds with the characteristic that we are searching for, corrosion inhibition, 

has in fact a high probably of not only inhibiting corrosion, but also doing so with above average 

efficiency. Therefore, the compounds with corrosion efficiencies higher than 50 % were labeled 

as corrosion inhibitors, whereas those with efficiencies of 50 % or lower were labeled as non-

inhibitors. Note that the structural differences between inhibitors with efficiencies lower or 

equal to fifty percent (labeled as non-inhibitors) and higher but close to fifty percent (labeled 

as inhibitors) might be small, which introduces additional complexity that has to be dealt with 

by the algorithms. However, we had to split the full set of compounds in inhibitors and non-

inhibitors using a specific cutoff line. In the present work, the threshold was chosen as the 50% 

inhibition efficiency, derived after rescaling the efficiency scale from Winkler et al.11 as 

explained above. 

 

Figure 3. Exemplification of the 5-fold cross-validation statistical method employed in this 

work. 

 

k-Nearest Neighbors. The k-nearest neighbors algorithm38 measures the similarity 

between certain features to predict if a new entry in the dataset should be classified as belonging 

to a certain class or another, according to the labels of existing entries with similar features. 



 11 

The knn() function from the R package class was used39, since it provides a standard, classic 

implementation of the algorithm, and several k values from 1 to 10 were tested. 

 

Decision trees. Decision trees is a ML method that divides the data into smaller and 

smaller portions until patterns are identified40,41, thus forming a tree, similar to a flowchart, 

where the nodes indicate the decision made based on a certain descriptor. These nodes split into 

branches that indicate several decision possibilities. After several branches are subdivided into 

other branches, the tree ends with leaf nodes that denote the result of a combination of decisions 

at each branch node. The division of the data is stopped and a terminal node is reached when 

nearly all data entries at the final node share the same class, or there are no features to divide 

the data even more, or the three has grown until a predefined size. 

This approach of dividing data into smaller subsets can be valuable to understand 

corrosion inhibitors, since some quantum chemical molecular properties have been successful 

to understand very small sets of corrosion inhibitors4, but when applying a regression analysis 

to large datasets the same has not been true11,15. This approach can be worthwhile because, for 

example, the reason why smaller compounds inhibit might be different from why larger 

compounds inhibit, according to the representation in Figure 4.  

The C5.0 algorithm developed by J. Ross Quinlan and implemented in the R package C50 

was used in this work, since it is the industry standard for producing decision trees42. 
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Figure 4. Example of how a decision trees ML method could work in the case of identifying 

corrosion inhibitors. 

  

The application of the C5.0 algorithm was also accompanied by boosting43, which is an 

ensemble technique that combines several weak classifiers to obtain a much more accurate one. 

When the algorithm attempts to model a class of one or several data entries in the dataset, if 

these data entries are modeled correctly, they are less likely to appear in further iterations of the 

decision tree when boosting is used. Therefore, additional iterations will focus solely on the 

more difficult data entry to classify. 

 The C5.0 algorithm also allows to define the cost of errors. Therefore, the cost of 

identifying a real corrosion inhibitor as a non-inhibitor was increased in comparison with 

identifying a non-inhibitor as an inhibitor. This can result in more false positives (predicted 

inhibitors which in reality are not) and less true negatives (less non-inhibitors are classified 

correctly), but might contribute to find more inhibitors overall increasing the true positives even 

if, in certain cases, the overall accuracy is lower.  

 

Classification rules. The classification rules algorithm uses a set of if-else statements, 

to create conditions that allow to logically understand the data44. An example of a possible rule 

would be: “if organic compounds have high polar surface area and favorable dimerization 

energy, then they are corrosion inhibitors”. When a rule can be applied to a subset of examples 

in the training data, then this subset is separated from the remaining of the training data. As 

more rules are added, additional subsets of data are separated until no more data entries remain 

in the training data. Ideally, classification rules are best employed to non-numerical data, but it 

was applied in this work because the rules are often readable in plain language. 
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 In this work, it was used the repeated incremental pruning to produce error reduction 

(RIPPER) algorithm44 implemented in R through the RWeka package, which is an advanced 

version of more basic classification rules. 

    

 Ensemble methods: bagging and random forests. One way to improve standalone 

ML methods is by using ensemble methods. Ensemble methods create and combine different 

models, by artificially varying the input data, to achieve better results than the original model 

alone. Two examples are bootstrapped aggregation (bagging)45 and random forests46 that work 

as represented in Figure 5. 

 

Figure 5. How the bagging (left) and random forests (right) ensemble methods work. 

 

Bagging creates multiple models of the same type (usually, decision trees, but can be 

applied to other algorithms) from different sub-samples of the overall dataset, whereas random 

forests (or decision tree forests) combines samples bagging with property bagging. Random 

forests also act on the properties available to describe the outcome by reducing the number of 

properties used in each model and providing different trees at each decision node to generate 
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random sub-sets of the samples (with repetition) and properties (without repetition to decrease 

the correlation between different trees). Therefore, an ensemble of several decision trees is 

obtained, hence a forest. The ipred45 and randomForest46 packages were used for bagging and 

random forests, respectively. 

 

 Artificial Neural networks. Artificial neural networks use concepts inspired on how 

the biological brain works47, employing a collection of nodes called artificial neurons, which 

can transmit information from one to another like the synapses in a biological brain. Artificial 

neural networks have an input layer (the properties of the inhibitors) and an output layer (the 

inhibition efficiencies). Depending on the algorithm formulation, it can include several 

intermediary layers (called hidden layers), each layer having a certain number of nodes (hidden 

nodes), as shown in Figure 6. The number of hidden layers and the number of nodes can be 

changed when formulating a model. If too few nodes are defined, the model might not describe 

well enough the train set, whereas, if too many nodes are defined, the model might over fit the 

train set, resulting usually in a bad performance for the test set. 

 Connecting the nodes, there are different weights that are iterated over the learning 

process, and an activation function. An activation function is a function that tells the neuron to 

pass the information onto the next neuron if a certain criterion is meet. In a first phase, the 

neurons are activated in sequence from the input layer to the output layer, applying each 

neuron's a random weight and an activation function along the way. When the signal reaches 

the output layer, a final signal with the outcome is produced. After this phase, a backward phase 

is initiated in which the network's final output signal resulting from the previous phase is 

compared with the true outcome of the training data. The difference between the model's output 

and the true output results in an error that is propagated backwards in the network to modify 

the weights that connect the different neurons and reduce future errors. To model our data, the 

neuralnet package was used48, and it was tested up to ten nodes for each of a combination of 
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one, two or three hidden layers. The best results for AA2024 pH = 4, AA2024 pH = 10, AA7075 

pH = 4, AA7075 pH = 10, and the composite mode were obtained with (8 × 7), (7 × 6 × 5), (2 

× 10), (7 × 3 × 5), and (2 × 2) hidden nodes, respectively. 

 

Figure 6. Basic demonstration of how a neural network works. 

 

 Support vector machine. The support vector machine algorithm combines concepts of 

k-nearest neighbors and linear regression modeling to produce a surface, called a hyperplane, 

which separates data according to different features. The hyperplane is calculated in such a way 

that the separation between classes of points is as wide as possible. Moreover, by adding new 

dimensions to the data, it is possible to separate non-linear data, using what is the so-called 

kernel trick, as represented in Figure 7. The kernlab package that implements a support vector 

machine algorithm49 was used in this work. 
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Figure 7. Hyperplane and kernel trick in the support vector machine algorithm. 

  

Statistical parameters to evaluate the performance of the models. For classification 

tasks, performance measures consider the classes of the test set. The class of interest, herein 

corrosion inhibitors, is known as the positive class, while the other, the non-inhibitors, is known 

as negative. The relationship between both classes can be depicted in Figure 8 comprising four 

possible outcomes: i) true positives (TP): correctly classified corrosion inhibitors; ii) true 

negatives (TN): correctly classified non-corrosion inhibitors; iii) false positives (FP): 

compounds classified as corrosion inhibitors that are actually non-inhibitors; iv) false negatives 

(FN): compounds that were classified as non-corrosion inhibitors, but that are in fact corrosion 

inhibitors. Knowing this, the balanced accuracy, sensitivity and specificity defined by equations 

(2), (3) and (4) were used as measures of performance for classification. 

 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
   (2) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (3) 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
  (4) 

 

Figure 8. Four possible outcomes from the classification of inhibitors and non-inhibitors. 

 

4. RESULTS AND DISCUSSION 

Exploratory data analysis. Figure 10 schematically presents the main features of the 

experimental inhibition efficiencies evaluated herein by ML. It is possible to deduce that the 
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inhibitors are less efficient under basic conditions than under acidic conditions, according to 

the box plot. 

 

Figure 9. Box plot, showing the minimum, first quartile, median, third quartile, and 

maximum, (above) and bar plots (4 charts bellow) of the experimental inhibition efficiencies 

under different conditions evaluated in this work. 

 

 As can be noticed by the skewness of the bar plots (Figure 9) to the higher inhibition 

efficiencies, there is a considerably lower number of efficient corrosion inhibitors than weak 

inhibitors and non-inhibitors, which make it more challenging for ML algorithms to learn about 

the data and correctly identify compounds as inhibitors. 
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 Figure 10 presents the correlation plot of the molecular descriptors and the inhibition 

efficiencies to be modeled in this work. Only the number of hydrogen bond donor atoms 

correlates reasonably well with the inhibition efficiencies, followed by the polar surface areas, 

polar volumes and number of rings. This demonstrates that the identification of molecular 

structures capable of being corrosion inhibitors is a highly non-linear problem, for which linear 

regression is not of much use. 

 Contrarily to other descriptors which can be self-correlated, the enthalpies and Gibbs 

energies of dimerization are not correlated at all with the remaining properties, thus making 

them differentiated properties. 

 

 

Figure 10. Linear correlation plot from the regression analysis of the inhibition efficiencies 

and descriptors modelled in this work. The blue color means positive linear correlation, 

whereas the red color means negative linear correlation. Larger circles mean a higher absolute 
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linear correlation value, whereas smaller or no circles mean lower absolute correlation value 

or zero linear correlation. 

 

Classification. In order to identify the structures whose features can lead to corrosion 

inhibition of aluminum alloys, ML models were obtained for the train set, and then their 

performances evaluated against the test set, by means of 5-fold cross-validation. Figure 11 

presents the average results obtained for each alloy under each pH value. Most methods had 

specificities of nearly 90 % or even higher. However, the high specificities (probability of 

identifying correctly the non-inhibitors) can be due to the higher number of non-inhibitors in 

the dataset. Therefore, their correct identification by chance is statistically more probable. On 

the other hand, the sensitivity refers to the probability of correctly classifying the true inhibitors, 

which are in lower number and are also the compounds with the condition of interest in this 

work (corrosion inhibition). In the dataset used in this work, only 10 to 20 % of the compounds 

have corrosion inhibition efficiencies above 50 % (labeled as corrosion inhibitors), thus, 80 to 

90 % of the compounds have corrosion inhibition efficiencies equal or below 50 % (labeled as 

non-corrosion inhibitors). As a result, if, for example, a particular algorithm predicts that every 

compound is a non-corrosion inhibitor, it will have a specificity of 100 %, but its performance 

still would not be satisfactory, since it would not identify any corrosion inhibitor correctly. 

Therefore, the most important parameters are the balanced accuracy, used in this work similarly 

to other literature works because of the unbalanced number of inhibitors and non-inhibitors in 

the dataset50, and sensitivity, which is the ratio of true corrosion inhibitors that were identified 

correctly. 

 When considering the average balanced accuracy for the four independent datasets 

corresponding to the 2 alloys at the two pH conditions, the following order of performance of 

the algorithms is obtained: decision rules < decision trees with boosting < decision trees < 
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bagging < decision trees with error costs < k-nearest neighbors < support vector machine < 

random forests < artificial neural networks. Regarding the sensitivity (correct identification of 

true corrosion inhibitors), the following 3 methods had the best performances for the individual 

datasets: decision trees with error costs < artificial neural networks < random forests. It is 

evident that the numeric nature of the descriptors does not favor the application of decision 

rules. Three different ensemble methods were tested with decision trees: boosting, bagging and 

random forests. Boosting focuses on the most difficult examples as the decision trees final 

model is optimized, which does not lead to improved results. However, sample bagging 

(combining the results of several different models obtained for several smaller resamples of the 

whole training set) leads to better results than the original decision trees. Likewise, random 

forests, which combines sample bagging with property bagging, improves the results even 

more, being the most sensitive of all methods. Clustering with k-nearest neighbors and support 

vector machine allow to correctly identify at least half of the total inhibitors, but neural 

networks and decision trees with error costs can on average identify more than sixty percent 

and almost seventy percent, respectively, of all the molecules that are able to inhibit corrosion. 

The error costs in decision trees increase the number of inhibitors that are correctly classified 

(true positives) at the expense of increasing the number of non-inhibitors that are incorrectly 

classified as inhibitors (false positives). However, this leads to a lower overall accuracy. This 

feature is also present in random forests. Neural networks is the most balanced method tested 

in this work for the individual datasets, with the best compromise between sensitivity and 

balanced accuracy, while random forests has the highest sensitivity. 
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Figure 11. Average performance of ML algorithms for the two alloys under different pHs 

examined in this work (above) and performance of the algorithms for trained and tested for 

the composite dataset two alloys at two pHs included in the same dataset (bellow). 

 

Two alloys under two pHs in a single dataset. In order to gather more data for the 

training phase of the algorithms, the four sub-datasets (102 examples each), corresponding to 

the two alloys, each tested for two pHs, were mixed in a single dataset containing a total of 408 

data points. The objective of performing this test is that, if successful, it opens the door to build 
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larger datasets containing experimental tests corresponding to different alloys, conditions, and, 

desirably, also different metals. 

 Each data point was identified in the dataset with a categorical variable indicating the 

alloy and the pH that it corresponds to. Decision rules, decision trees and related algorithms 

with different ensemble methods can handle directly categorical variables, whereas k-nearest 

neighbors, neural networks and support vector machine, these variables (alloys and pH) were 

transformed into binary variables (0 and 1), indicating for each data point in question the alloy 

or pH it corresponded to. 

 In fact decision rules, and decision trees and its ensemble variations, all obtain better 

results, with higher balanced accuracy, sensitivity and specificity, when the two alloys at 

different pHs are trained together (Figure 11). This should be due to the larger amount of 

information available to train the models. 

 On the other hand, support vector machine produces only a marginal improvement for 

the larger dataset, whereas neural networks and k-nearest neighbors actually produce slightly 

worse results, especially in terms of sensitivity. This can be indicative of the difficulty in 

handling non-continuous variables by the latter algorithms. 

 Therefore, the different variations of decision trees, especially random forests, with a 

balanced accuracy and a specificity of 82 %, and a sensitivity of 84 %, look very encouraging 

to identify corrosion inhibitors from more complex datasets, including other factors and 

conditions, such as, for example, different types of metals, concentration of inhibitors and types 

of corrosion environments. 

 The Random Forests results obtained with 5-fold cross-validation were also validated 

using 10-fold cross-validation. The balanced accuracy, sensitivity and specificity are presented 

in Table 1. For the 10-fold cross-validation test, the results were slightly better than the results 

obtained with 5-fold cross-validation (Figure 11). It demonstrates the lack of bias towards a 

portion of the dataset by the less computational expensive 5-fold cross-validation method. This 
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also demonstrates the positive effect of having more data to train the algorithms, since for 10-

fold cross-validation, 90 % of the dataset (~367 examples) is used to train the algorithm, instead 

of 80 % (~326 examples) as in the case of 5-fold cross-validation. 

 Moreover, the three algorithms with the highest sensitivities for the composite dataset, 

random forests, decision trees with error costs and decision trees with boosting, were further 

evaluated employing a training set, a validation set and a test set, in a two-phase approach, 

where in the first phase the model was trained and validated using 10-fold cross-validation for 

80 % of the data, and, in the second phase, it was further tested against 20 % of the data. The 

results are presented in Table 1, where it is possible to observe that their performance is still 

very satisfactory even after using an independent test set of data not considered for cross 

validation. 

 

Table 1. Sensitivity, accuracy and specificity for the performance tests made on the composite 

dataset, with the two alloys and pHs modelled together, of the three methods with the highest 

sensitivities.  

Algorithm Test 
Sensitivity / 

% 

Balanced 

accuracy / 

% 

Specificity / 

% 

Cross-validation on the complete dataset 

Random forests 
10-fold  

cross-validation 
87 85 83 

 

Cross-validation on 80 % of the dataset, plus independent test on the remaining 20 % 

Random forests 
10-fold  

cross-validation 
83 82 80 

Random forests independent test 80 82 84 

Decision trees + error 

costs 

10-fold  

cross-validation 
75 74 73 

Decision trees + error 

costs 
independent test 67 75 82 
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Decision trees + 

boosting 

10-fold  

cross-validation 
50 73 95 

Decision trees + 

boosting 
independent test 47 74 100 

 

 In order to evaluate the role of the experimental error in the results obtained, the 

prediction tests were repeated using the method with the highest sensitivity, random forests, for 

the composite dataset, considering different thresholds to label the compounds as inhibitors: 

above 40 %, 50 %, 60 %, 70 % or 80 % (for efficiencies equal or below these values, the 

compounds were labeled as non-inhibitors). The results were presented in SI. 

 

Influence of dimerization. In this work, two new parameters were introduced to rank 

corrosion inhibitors: dimerization enthalpies and Gibbs energies. These parameters were 

calculated with state-of-the-art computational chemistry approaches to try to capture in an 



 26 

indirect way the influence of the intermolecular interactions involved in the formation of 

protective films of corrosion inhibitors. 

The most stable structures of the dimers are stabilized mostly by hydrogen bonding and 

non-covalent interactions (Table S2). Figure 12 presents the most frequent types of interaction, 

namely, O‒H···O, O‒H···N, N‒H···N, S‒H···N, N‒H···S, and π···π.  

 

 

Figure 12. Molecular structures exemplifying the main types of intermolecular interactions 

resulting from the dimerization of the corrosion inhibitors in the datasets (spheres color code: 

carbon - grey; nitrogen - blue; oxygen - red; sulphur - yellow; hydrogen - white). 

 

 Therefore, the best performing methods for the individual datasets modeled separately 

were tested with and without these parameters, and it was found that the performance of the 

algorithms improves when information about dimerization energies is taken into account. 
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Figure 13. Effect of dimerization enthalpies and Gibbs energies on the average performance of three 

methods with high sensitivities for the individual alloys under different pHs. Neural networks (NN), 

decision trees (DT) and random forests (RF) were tested with and without dimerization enthalpies and 

Gibbs energies. 

 

To compare the influence of dimerization with the influence of the other features for the 

composite model, tests were performed using random forests with and without each individual 

descriptor. From the results presented in Table 2, it is possible to verify that the Gibbs energy 

and enthalpy of dimerization have a similar effect to the other features, albeit very negligible 

for this composite model. Nevertheless, for the composite model, the best results are obtained 

when all the features are combined together and that no single feature is decisively more 

important than the others. The latter observation is justified by the consistently lower values of 

balanced accuracy and sensitivity, which are all within a similar range. 

 

Table 2. Random forests performance for the composite model, considering the influence of 

each feature, by removing one for each test. The results correspond to 5-fold cross-validation. 

Features considered Sensitivity / % 
Balanced 

accuracy / % 
Specificity / % 

All 84 82 80 

No alloy 73 79 84 

No pH 71 77 83 

No mol. weight 78 78 78 
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No mol. refractivity 76 78 79 

No LogP(octanol/water) 77 78 79 

No polar surf. area 78 79 80 

No mol. Vol. 75 78 80 

No mol. Area 82 81 79 

No polar Vol. 76 79 81 

No no. donors 76 78 80 

No no. rings 78 79 79 

No hydrophobes 82 80 78 

No no. acceptors 82 81 80 

No no. rot. bonds 78 78 78 

No ΔH(dim) 76 78 80 

No ΔG(dim) 82 79 76 

 

What characterizes a corrosion inhibitor? In order to gain further insights into the 

properties that distinguish inhibitors from non-inhibitors, the average values were obtained for 

the whole available data, with the results presented in Figure 14. 

 The results indicate that inhibitors have one or two aromatic rings with few or no 

rotational bonds (a large number of rotational bonds does not favor corrosion inhibition). They 

are also more polar, have between three and four hydrogen bond donor atoms, and have more 

favorable Gibbs energies of dimerization, despite the enthalpies of dimerization being also 

favorable but of the same magnitude for both inhibitors and non-inhibitors. The more favorable 

Gibbs energies, but similar enthalpies of dimerization, also point to the importance of the 

entropic term (ΔGdim = ΔHdim ‒ 298.15 K x ΔSdim) to the formation of the dimers, which is also 

associated with higher inhibition efficiency. 
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Figure 14. Percentage stack plot of the average properties of inhibitors and non-inhibitors 

with the respective standard error (left) and main characteristics of corrosion inhibitors in 

comparison with non-inhibitors (right). 

 

5. CONCLUSIONS 

 

 This is foundational work to provide a support methodology that allows to restrict the 

number of unknown compounds that have to be tested experimentally by excluding the 

compounds classified as non-inhibitors and selecting those identified as inhibitors. For this 

purpose, random forests is the most successful method.  

 For the four independent datasets (AA2024 and AA7075, under pH = 4 and pH = 10), 

random forests had an average accuracy of 68 %, while being able to identify correctly 83 % of 

the inhibitors. If the four datasets are used together with the type of alloy and pH are included 

as categorical variables, the overall accuracy increases to 80 %, while identifying correctly 84 

% of the inhibitors. This should be due to the increased amount of data that is provided to train 

the algorithm, and shows that in the future it might be possible to analyze data that include, not 

only different types of alloys and pHs, but, possibly, also other electrolyte conditions such as 

aggressive anions concentration, inhibitor concentration or even type of metal. 
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 The dimerization enthalpy and Gibbs energy were introduced as indirect measures of the 

intermolecular interactions involved in the formation of protective films. By comparing the 

accuracy, sensitivity and specificity of algorithms with and without considering these 

parameters, it was verified that the dimerization thermodynamic properties have some 

importance to model the smaller individual datasets, but no significant importance to model the 

composite dataset. 

 A statistical analysis of the average value of the properties of inhibitors and non-inhibitors 

was performed, indicating that inhibitors have one or two aromatic rings with few or no 

rotational bonds. Moreover, a large number of rotational bonds seems to hinder corrosion 

inhibition. Inhibitors are also more polar, have between three and four hydrogen bond donor 

atoms in their structure, and have more favorable Gibbs energies of dimerization, despite the 

enthalpies of dimerization being also favorable, but of the same magnitude for both inhibitors 

and non-inhibitors, suggesting that the dimerization entropy is an important factor in the 

protection mechanism. 
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