
Orchestrating an SFC-enabled SSL/TLS traffic
processing architecture using MANO

Eduardo Sousa∗, Vitor A. Cunha∗, Marcio B. de Carvalho†, Daniel Corujo∗, Joao P. Barraca∗, Diogo Gomes∗,
Alberto E. Schaeffer-Filho†, Carlos R. P. dos Santos‡, Lisandro Z. Granville†, Rui L. Aguiar∗

∗Instituto de Telecomunicações, Portugal
†Institute of Informatics – Federal University of Rio Grande do Sul – Porto Alegre, Brazil

‡Department of Applied Computing – Federal University of Santa Maria – Santa Maria, Brazil
∗{eduardosousa,vitorcunha,dcorujo,jpbarraca,dgomes,ruilaa}@av.it.pt, †{mbcarvalho,alberto,granville}@inf.ufrgs.br,

‡{csantos}@inf.ufsm.br

Abstract—The heterogeneity of 5G requirements commands
more complex network architectures, imposing the need for
network orchestration. ETSI NFV MANO is the standard which
defines a common framework for vendors and operators to
integrate their orchestration efforts. In this paper, we evaluated
how an ETSI NFV MANO compliant orchestrator (OSM) fares
while orchestrating an SFC-enabled SSL/TLS encrypted traffic
processing architecture, which supports both edge and cloud
deployments. A quantitative evaluation was carried-out, which
assessed the responsiveness and overheads of OSM, as well as the
actual functionality of our SSL/TLS processing architecture (with
edge computing components). A qualitative evaluation was also
carried-out, providing insight into the maturity of the current
OSM release, what works well, what requires workarounds,
and the actual limitations. A demonstration of the architecture
evaluated in this work was accepted as a contribution to the
ETSI OSM PoC Framework.

I. INTRODUCTION

The evolution of operator’s networks towards 5G, as defined
by bodies such as NGMN and 5G-PPP, will require solutions
for more complex network architectures. Use-cases requiring
very low latency, such as Extreme Real-Time Communica-
tion and Ultra Reliable Communication, will require some
form of Edge Computing or Cloud-Edge Hybrid environments
to deliver applications within those constraints [1] [2]. In
addition, these bodies also recognize the rising trends of
adoption of Internet of Things (IoT) and Massive Machine
Type Communications (mMTC) that will shift the scale of
network operations. In this scenario, human intervention in
network management and operation will no longer be suitable,
requiring the use of some degree of automation in orchestra-
tion, as in European Telecommunications Standard Institute
(ETSI) Management and Orchestration (MANO) approaches.

The conjunction of Broadband Access Everywhere and the
embracing of business verticals within 5G, with highlight
to the ability of selling network slices for a given vertical,
opens new mobility experiences with direct application to busi-
nesses (that nowadays rely on VPN connections for intranet
communications). One of the biggest challenges of intranet
communications is assuring the security of the network as a
whole, not only in regard to access control, data confidentiality
and integrity, but actually dealing with existing end-to-end
ciphered communications whose content may be nefarious

(such as cloaked malware, employees inadvertently leaking
data, or legitimate applications overreaching their data scope).

A future enterprise network architecture to process
SSL/TLS encrypted traffic using Service Function Chains
(SFCs) [3] was already proposed, which addresses not only
the security dimension, but also allows to provide some
functionality lost by using encryption (such as the ability
to optimize content within those connections). Despite being
mostly a Cloud solution, deployments in Cloud-Edge hybrid
environments were already anticipated, which was shown in a
remote office use-case within that work. However, manually
orchestrating this architecture as a Network Service would be
too complex and error prone (due to the number of functions
to be configured, the need to introduce new processing profiles
as new terminals/policies are enrolled into the system, and the
growing number of Edges that can take part of the service).
Because of this, in order to make the architecture practicable
(as a 5G slice within a vertical), there is an unavoidable need
to research ways to automatically orchestrate and manage it.

In this paper, we evaluated (from quantitative and qualitative
perspectives) how an ETSI NFV MANO compliant orches-
trator (Open Source MANO (OSM) release FOUR) fares
while orchestrating an SFC-enabled SSL/TLS encrypted traffic
processing architecture, which supports both edge and cloud
deployments. In order to achieve this, we developed ways to
interface our Network Functions (NFs) with the orchestration
(through primitives), a key part of our evaluation. An outcome
of this work is its public demo, which was accepted within
the ETSI OSM Proof-of-Concepts (POCs) Framework.1

This paper is organized as follows. In Section II, we discuss
information available from previous POCs of ETSI OSM and
background information about the ETSI MANO standard. In
Section III, we detail both the improvements made on top of
the previous network architecture to consider edge resources
and the development of the orchestration artifacts to automate
the architecture’s deployment and operation. In Section IV,
we first present the quantitative analysis covering both the
architecture functionality and the orchestration. In Section V,
we present the qualitative analysis of our experience with
the orchestration of a complex architecture using ETSI OSM.
Finally, in Section VI, we draw the conclusions.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/333883153?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


II. RELATED WORK

Network Function Virtualization (NFV) is a paradigm that
consists of the virtualisation of the funcionality provided by
formerly physical network components [4]. This paradigm
shift can improve manageability, flexibility, and scalability of
network infrastructures because it breaks the relation between
the network infrastructure components and their functionality.
Indeed, Virtual Network Functions (VNFs) can be performed
by Commercial Off-The-Shelf (COTS) hardware, introducing
huge flexibility because of the integration/convergence of
network and computational resources.

The NFV adoption leverages the coverage of orchestration
efforts that can act potentially over full network topologies.
Indeed, it allows the easy adaptation of network services to
changes in traffic pattern or operator requirements benefiting
from the elastic nature of virtualised resources. The importance
of orchestration for future networks brought attention from
researchers that tackled specific orchestration aspects, such
as dependability [5], security [6] [7], multi-tenancy [8], and
orchestrator geo-placement [9].

In order to help the integration of orchestration efforts
conducted by operators and vendors, ETSI introduced ETSI
NFV MANO Architectural Framework [10], where it provides
a frame of reference, to how NFV should be managed and
orchestrated. The NFV MANO Architectural Framework is
composed of three components: NFV Orchestrator, VNF Man-
ager and Virtualised Infrastructure Manager (VIM).

NFV Orchestrator has two primary concerns: Resource
Orchestration and Network Service Orchestration. The NFV
Orchestrator, to fulfill its functions as Resource Orchestrator,
must verify the resources present and their usage across all
VIMs. The Network Service Orchestration functions of NFV
Orchestrator are more elaborate since it is responsible for all
the actions that must be present to onboard and manage the
Network Services and their components.

The VNF Manager is responsible for managing the lifecycle
of VNFs. For this purpose, it provides a set of generic
functions that apply to any VNF. It also must provide the
capability of specification of functions that apply just to a
specific VNF. These specific functions can be defined in the
VNF package, which consists of the artifacts that actually
perform the management tasks required by the VNFs.

VIM manage all the resources provided by the Network
Function Virtualization Infrastructure (NFVI) (the MANO
component that integrates with infrastructure components,
such as OpenStack). The primary responsibility of the VIM is
to control and manage the NFVI compute, storage and network
resources, and these resources may be in an NFVI-Point-of-
Presence (NFVI-PoP) or spread across multiple NFVI-PoPs.
A VIM can also be something more than server pool; it can
be more specialized like WAN Infrastructure Manager or a
PNF Manager (the MANO component that integrates with
Physical Network Functions (PNFs)). The ETSI NFV MANO
Architectural Framework just concerns with the VIM exposed
interfaces and not with its implementation.

ETSI provides an open source solution compliant to the
framework: ETSI OSM. In order to evaluate the solution
implementation, ETSI promotes a PoC Framework1 in which
OSM members and 3rd-party users demonstrate real-world
usage of this orchestrator. Currently it features two PoCs, one
which demonstrates a DevOps use-case for Service Function
Chains and 5G slices, specifically the assurance of a given Ser-
vice Level Agreement (SLA) through means of automatically
deployable Virtual Test Agents (VTAs) which perform active
monitoring of the service against the SLA specification. The
other PoC explores Multi-Access Edge Computing scenarios,
specifically showing that distributed multi-data center service
scenarios are possible, with end-to-end service monitoring and
an SDN-enabled VMware Integrated Openstack.

The Linux Foundation’s ONAP, a closed-loop NFV orches-
trator, also has its own set of demos2 which are comprised
of three major services: the vFirewall, whose the templates
required to run the demo are supplied within the demos page;
the vLB/vDNS demo, which shows a way to deploy Load
Balancing and DNS scaling for the cloud; and lastly the vCPE
demo, which shows a way to virtualize a Home Gateway.

The NFV paradigm is also known as an alternative to
expensive commercial middleboxes. In this sense, in our
previous work [3], we proposed an NFV approach to per-
form SSL/TLS Inspection (also known as Man-In-The-Middle
(MITM)), which is a common functionality offered by com-
mercial middleboxes to process encrypted traffic. Encryption
was conceived to hide the content of communication when
traversing the network. However, encrypted traffic also hinders
the functioning of common network management solutions
(e.g., content cache, content optimization, content filter) be-
cause these solutions rely on the access to the content to work.
In commercial middleboxes, the MITM functionality opens the
traffic enabling its processing by their internal functions.

In this architecture, an SFC-enabled MITM forwards the
opened traffic to be processed by an Service Function Chaining
(SFC) composed by stock solutions for traffic processing
acting as NFs. This approach recovers the functionality of
these solutions that was lost due to encryption. However,
as long as this approach improves effectiveness (recovered
functionality), flexibility and scalability (compared to mid-
dleboxes), it is also intrusive (hinders privacy) and expensive
(imposes performance degradation). In this sense, the SFC-
enabled MITM needs to be incorporated into a network
architecture that steers the traffic (Classifier functionality)
to balance effectiveness, flexibility, scalability, privacy, and
performance when processing encrypted traffic.

III. THE NETWORK SERVICE AND ITS ORCHESTRATION

In this section we start by describing the changes made to
the architecture of our Network Service (NS), followed by our
proposed integration with OSM.

1https://osm.etsi.org/wikipub/index.php/OSM PoC Framework
2https://wiki.onap.org/display/DW/Running+the+ONAP+Demos



Fig. 1. Hybrid Network Architecture (Data-plane)

A. Changes to the Network Service
We have extended the SSL/TLS traffic processing architec-

ture [3] to improve the SFC-enabled MITM so that it becomes
aware of Cloud-Edge hybrid environments, particularly to
allow its chains to span across locations, as depicted in Figure
1 (black lines show the hybrid deployment, gray lines show
the cloud-only deployment; both will coexist). Because the
MITM is transforming end-to-end encrypted traffic into clear-
text versions of the protocols, in order to send this opened
traffic across locations (Edge to Cloud, and vice-versa), we
must provide some means to secure the data while in transit
between the sites. There are two fundamental approaches to
this matter. The first follows on the concept of slicing. If we are
the full owner of the network (or have strong and enforceable
slicing contracts with the provider), then we may be able to
delegate this security to the underlying network. However, we
propose to err on the side of caution and provide the choice
of additional security mechanisms (in the chain extension
between the Edge-Cloud), such as a new TLS based tunnel
between the two sites. This approach assures confidentiality
and data integrity between the sites and is actually more
suitable for OTT providers, which are arguably a big target of
the 5G verticals. It also allows for multi-operator deployments.

In order to have this flexibility, we had to develop a new
component (uC for short), which receives the requests opened
in the Edge and continues their SFC processing in the Cloud.
When the response traffic is received, this component sends
that to the Edge (the last NF of the chain in that location) so
that it continues the SFC processing in the Edge side before
returning the flow to the MITM, which will then send it to the
user. In short, we propose to split SFC-enabled MITM in half,
leaving the part that acts as server (to the user) in the Edge
and the part that acts a client (to the remote) in the Cloud.

B. Proposed integration with OSM
We must specify configuration primitives according to the

needed interactions between the OSS/BSS, the NFV-MANO,
and the actual functions. We propose two categories of primi-
tives, the ones that manage the connectivity of the NS, and

the ones that manage actual functionality within the NS.
The former determines service and functions reachability,
both inside the NS (between NFs), and the external entities
to which the service will be provided. The latter handles
NF specific configurations, changing functionality parameters.
Table I shows the proposed primitives to orchestrate the NS
(as depicted in fig. 1). We must note there are two special
primitives. First, the “hello-world” has no real use to the NS
other than allowing the later evaluation of OSM overheads.
Lastly, the “add-chain / del-chain” primitive will do some
reachability configurations within the functionality part of the
NFs, taking advantage of function specific proxy capabilities.
In particular, the present NS allows the option of performing
SFC as a proxy-chain of upstream proxies, which relaxes the
requirements of the virtual infrastructure (ie., doing SFC even
without native VNF Forwarding Graph capabilities).

IV. QUANTITATIVE EVALUATION

We will start by presenting the quantitative results gathered
from the execution of the primitives stated in the proposal
and the functionality provided by the orchestrated Network
Service. Then, we will conduct a remote office and data
caps optimization case-study, to demonstrate the achieved
functionality of the orchestrated Network Service.

Our evaluation was conducted using OSM Release FOUR
along with Openstack Ocata (as the NFVI/VIM of choice).
OSM was running in a virtual machine with 8 vCPUs and
32 GB of RAM, the Openstack controller was running in
Intel R© Xeon R© E5-2620 v4 CPU with 32 GB of RAM. The
instantiated VMs had 1 vCPU and 2 GB of RAM available.

A. OSM Primitive Execution Times

We started by determining the overhead inflicted by OSM
in each primitive, breaking it down each step of the way,
as shown in fig. 2. We have observed that the step between
the VNF Configuration and Abstraction (VCA) and the Juju
Charm is the one that took the most time (over 2 seconds).
This is likely due to the message queuing time and best-effort
nature in which new requests are processed. The connection



TABLE I
PRIMITIVES DEVELOPED TO ORCHESTRATE THE EDGE SFC-ENABLED MITM

NS Primitive Short description NFs Parameters

hello-world Just to evaluate the orchestration overhead dummy - none

add-tunnel Creates/deletes a tunnel between the Edge Gateway and the Cloud
Classifier

Edge Gateway - Tunnel endpoint IP
del-tunnel Cloud Classifier - Tunnel technology

Router (ie. VxLAN/OpenVPN)
(Edge/Cloud) [*] optional tunnel keys

add-route Creates/deletes routes that influences each NF’s routing table. Has the
ability to perform NAT, mostly used in the cloud gateway, so that
multiple terminations may share the same cloud IP.

all - Network address
del-route - Mask

[*] optional NATing rules

add-range Allows for client activation/deactivation within the Network Service,
using its network range (from our own IPAM)

Classifier - Client IP
del-range MITM - Mask

add-rule Creates/deletes rules to decide which kind of traffic processing tech-
niques is applied over matched traffic (intrusive or non-intrusive
analysis, via selection of chain number)

Classifier - 5-tuple
del-rule (Edge/Cloud) - Action (SFC number)

add-chain Configures/deconfigures the NFs which will be used within the SFC-
enabled MITM

MITM - Chain list coded in Base64
del-chain

NF Primitive Short description NFs Parameters

add-exclusion
Adds/deletes an URL to the Anti-virus white-list

HAVP - URL
del-exclusion

add-filter Adds/deletes content filters, according to e2guarding filter syntax e2guardian - Extra filter file
del-filter (encoded in Base64)

clean-cache Cleans the Squid cache squid (none)

add-profile Adds content optimization profiles, delete restores default ziproxy - Configuration file
del-profile (encoded in Base64)

from the Charm to the NF was the next one, taking about
1.3 s. In part, this may be attributed to the use of SSH as the
communication protocol to the NF. The other overheads are of
a smaller order, with the connection between the Northbound
Interface (NBI) and the VCA taking about 80 ms, and the
return of an output from the NF to the Charm taking less than
5 ms. The full process, end-to-end, takes about 3.6 s.

We evaluated the execution time of each primitive in two
ways. The first is the individual time, which shows how long
it would take to perform that operation once we are already
inside the NF (to have a control). This metric completely
disregards any time taken to access the machine and be in
a ready state to execute the command (it just shows how long
the actual command takes to complete). Then, we show the
total time elapsed when running the same operation through
OSM, which is an end-to-end test that takes into account all
orchestration overheads. The results are shown in table II.
Outside of the waiting for the tunnels to actually be up (which
is one order away, at around 650 ms), NFV-only orchestrator
primitives are two orders away from the overheads inflicted

Fig. 2. OSM Primitive Overheads (ms)

by OSM (as evaluated previously in fig. 2). In the context
of this NS, this is not really detrimental as the 3.6 seconds
of overhead do not meaningfully impact the configuration’s
responsiveness needs, and are more than recouped by the
capabilities made available by the orchestrator.

We have verified that configuring a given chain is an
operation which can be parallelized across the functions of that
take part of the chain, meaning that outside of a few liveness
checks performed by some NFs (of the next function of the
chain), the total configuration time of a chain is close to the
time it takes to configure the slower NF (plus the few liveness
checks). MITM is the slowest function to be configured (on
par with e2guardian), but given the MITM must take part
of all intrusive chains, this means that no SFC configuration
can ever be faster than about 3.86 s. Nevertheless, the worst
case scenario (all NFs in a chain) takes just 5.46 s, being the
increase attributable to the fact we have two Squids performing
liveness checks of their (respective) next NF. When taking
into account all OSM overheads, we can fully configure a
chain (day-1) with all NFs (in a single go) in little under
10 s, a very good result for the initial provisioning of the
service. Day-2 configurations, the ones that happen after the
service is already running, should be made in a more pro-
active fashion (rather than reactive). Literature and some
experimentation suggests that, most NFs herein used, allow
for a smooth reconfiguration without causing any downtime of
existing connections. Nevertheless, further study is required to
determine the duration of a transient state while reconfiguring
the NFs, which would be much lower than the seconds which



TABLE II
EXECUTION TIMES OF THE IMPLEMENTED SERVICE PRIMITIVES

Management Individual Time (ms) OSM time (ms)

add-tunnel VxLAN
del-tunnel creation 33.21± 4.60 3644.96± 412.30

actual-up 673.63± 147.36 4318.60± 437.85
removal 30.52± 4.25 3642.28± 412.30

OpenVPN
creation 82.27± 9.51 3694.03± 412.39

actual-up 644.01± 148.43 4338.03± 438.29
removal 66.38± 6.96 3678.14± 412.34

add-route 94.15± 5.55 3705.90± 412.32
del-route 91.83± 5.45 3703.59± 412.31

add-range 15.56± 3.54 3627.32± 412.29
del-range 15.88± 2.63 3627.64± 412.29

add-rule 92.92± 5.52 3704.67± 412.32
del-rule 99.86± 6.06 3711.62± 412.32

Management Individual Time (s) OSM time (s)

add-chain SFC
del-chain all NFs 5.46± 0.05 9.07± 0.42

empty 3.91± 0.02 7.52± 0.41
(cloud squid+ziproxy) 4.64± 0.04 8.25± 0.41

(edge squid + cloud squid+ziproxy) 5.00± 0.05 8.62± 0.42
NFs

MITM 3.86± 0.02 7.47± 0.41
DNS 1.59± 0.01 5.20± 0.41

e2guardian 3.86± 0.02 7.47± 0.41
HAVP 3.11± 0.05 6.72± 0.42
squid 2.76± 0.02 6.38± 0.41

ziproxy 3.39± 0.04 7.00± 0.41

are implied in table II (that evaluates day-1 configuration).

B. Remote Office and Data Caps Optimization Case-Study

The remote office scenario showcases the functionality
achieved through the orchestration of this NS. In table III,
we evaluated how 8 different SFCs (shown at the top of
the table) improve data usage on the User link (U), Edge
link (E) and Remote link (R) (shown at the middle, first
with VxLAN to inter-connect the Edge to Cloud, then with
OpenVPN). We have validated that deploying a Content Cache
(Squid) at the Edge does indeed greatly reduce the data caps
utilization on the Edge link (chains 2, 4, 6 and 8 – after the
first request, in which the cache is populated, the data usage
becomes about 1KiB per request). We have also demonstrated
that using a Content Optimizer on the Cloud (chains 5 and
6) further helps to reduce the data usage on the Edge link
(the page is now one order away from its original size, at
about 133KiB down from aprox. 1500KiB). We have also
concluded that, in terms of used data, the overheads difference
of VxLAN vs OpenVPN is negligible for larger amounts
of data (less than 1%). The largest difference was observed
when using the Content Optimizer, in which the overheads
of OpenVPN rose to about 3% (when compared against
VxLAN). The first is likely attributable to the cryptographic
overheads of OpenVPN, being the second just a side-effect of
the compression within OpenVPN being less effective when
the content was already optimized.

Lastly, the page load time (response time) follows the same
trend as the data-usage of the Edge link. This means that the
processing time overhead inflicted by the Content Optimizer
is being beneficially compensated by the lower data usage of

the link, making the chain with just the Ziproxy (5) faster
than the control (1). When used in conjunction with content
caches, the page load time becomes even more favorable
(2, 4, 6 and 8), being peek performance achieved when we
cache the optimized output of Ziproxy also on the cloud side
(making way for gains in multi-edge environments). However,
we have also observed that (unlike what happened with data
usage) OpenVPN becomes slower (compared to VxLAN) as
more data is transmitted within the tunnel. This is likely a
consequence of the cryptographic overheads, which may be
harder in computational time rather than in added packet data.

V. ETSI OSM QUALITATIVE EVALUATION

In this section, we describe the quantitative evaluation that
was conducted to evaluate the suitability of ETSI OSM release
FOUR to perform the NS orchestration. First, we describe
the NS orchestration requirements which will be used as our
evaluation methodology. Afterwards, we present the achieved
results (pertaining to OSM itself) divided in three categories:
what works well, what needs workarounds, and the limitations.

A. NS orchestration requirements
1) NS composability: which is the ability to compose a

NS from the catalog of available VNFs, therefore delivering
new functionalities by combining existing NFs. To achieve
NS composability, the NSD must be capable of referencing
different VNFDs, and organize them into a topology.

2) VNF independence: in order to have NS composability
it is necessary that VNFs are independent of each other (ie.
the existence or current operation of one does not affect the
other), allowing for a loosely coupled architecture.

3) VNFD and NSD versioning: services and functions may
improve over time, a natural consequence of the DevOps feed-
back loop. It is therefore needed to have multiple deployments
with different versions to test the impact of changes, allowing
testing and upgrade/downgrade of versions when needed.

4) Day 0/1/2 configuration: Day 0 configuration is the most
elemental capability, which is the first configuration made
during the startup of a new unit (VDU/“VM”). After all the
units are up and running, it may be needed to perform another
step of configuration to make them work together as a VNF
and/or NS, which is called Day 1 configuration. However, day-
to-day operations dictate that (often times) NS/VNF configu-
rations need to be updated. These are Day 2 configurations,
for instance enrolling new clients or allowing a new tunnel.

5) PNF configuration: NSs may require to integrate some
sort of physical equipments (ie. Access Point). These are
Physical Network Functions (PNFs) and they need to be
configured by some means. The challenge with this kind
of equipment is that their interfaces vary from manufacturer
to manufacturer, so they may have something standard like
SNMP, or some obscure protocol that only applies to a specific
series of that manufacturer. Therefore, it is needed to have a
PNF configuration framework within the orchestration, so that
(1) equipment support can be easily added, and (2) those PNF
configurations could be triggered in the Day 1/2 configuration
scripts, as part of the service/function logic.



TABLE III
HYBRID SCENARIO - RESOURCES DEPLOYED IN EDGE AND CLOUD ENVIRONMENTS (TLSv1.2 ECDHE RSA AES 256 GCM SHA384)

Network Functions deployed within the Service Function Chain – (E - Edge, C - Cloud)

NF 1 2 3 4 5 6 7 8

mitm(E) D D D D D D D D

squid(E) D D D D

squid(C) D D D D

ziproxy(C) D D D D

uC(C) D D D D D D D D

Data Transferred (VxLAN) (Kbytes) – (U - User link, E - Edge link, R - Remote link)

1 2 3 4 5 6 7 8

Req. U E R U E R U E R U E R U E R U E R U E R U E R

1 1505.8 1489.2 1492.2 1511.3 1492.4 1492.1 1513.4 1499.5 1494.1 1510.9 1501.8 1492.9 149.4 133.8 1494.0 148.7 134.3 1491.2 148.4 135.3 1490.6 149.1 135.0 1492.9
2 1514.6 1489.6 1492.3 1521.0 0.9 2.6 1517.9 1494.9 2.6 1524.3 1.0 2.6 148.9 133.7 1493.1 148.9 0.9 2.7 149.0 135.6 2.6 148.6 1.0 2.6
3 1505.8 1490.5 1493.0 1526.1 0.9 2.7 1505.4 1490.9 2.7 1518.1 1.0 2.6 149.1 133.9 1495.1 149.4 0.9 2.6 149.0 136.6 2.6 148.8 1.0 2.6
4 1524.2 1495.9 1492.5 1498.0 0.9 2.6 1524.4 1489.9 2.6 1520.8 1.0 2.6 148.9 133.8 1496.9 149.0 0.9 2.6 149.4 136.0 2.6 148.8 1.0 2.6
5 1513.5 1493.4 1494.6 1523.5 0.9 2.6 1528.0 1494.5 2.6 1524.1 1.0 2.6 149.2 133.9 1493.8 148.7 0.9 2.6 149.2 136.1 2.6 149.8 1.0 2.7

Data Transferred (OpenVPN) (Kbytes) – (U - User link, E - Edge link, R - Remote link)

1 2 3 4 5 6 7 8

Req. U E R U E R U E R U E R U E R U E R U E R U E R

1 1514.2 1531.1 1494.2 1519.6 1531.1 1491.2 1513.3 1532.2 1492.7 1516.3 1539.6 1492.9 149.3 137.3 1492.9 148.6 138.0 1493.4 148.6 138.2 1490.3 148.4 138.6 1493.3
2 1522.3 1531.1 1493.5 1512.3 0.9 2.6 1523.6 1532.1 2.6 1525.3 1.0 2.6 149.0 137.3 1491.1 149.0 0.9 2.6 148.4 138.1 2.6 149.9 1.0 2.6
3 1517.4 1531.1 1493.6 1523.3 0.9 2.6 1525.4 1532.4 2.6 1508.8 1.0 2.7 148.9 137.3 1494.2 149.4 0.9 2.7 148.9 138.0 2.6 148.4 1.0 2.6
4 1512.2 1531.1 1494.4 1526.6 0.9 2.6 1517.8 1532.1 2.6 1512.7 1.0 2.6 149.1 137.3 1492.5 149.0 0.9 2.6 149.2 138.1 2.7 149.3 1.0 2.6
5 1509.0 1531.1 1495.5 1525.8 0.9 2.6 1522.6 1532.1 2.6 1519.2 1.0 2.6 148.4 137.3 1493.1 148.9 0.9 2.7 149.1 138.1 2.7 149.0 1.0 2.6

Response Time (VxLAN/OpenVPN) (ms)

Req. 1 2 3 4 5 6 7 8

1 804/860 816/827 731/809 731/793 661/650 685/682 639/652 668/662
2 748/894 435/399 537/628 431/444 617/600 315/273 296/296 287/285
3 753/825 438/416 530/635 455/434 599/599 285/287 293/299 285/288
4 764/859 442/433 516/657 438/432 598/619 284/289 311/274 303/278
5 761/844 439/437 510/616 448/417 620/603 298/282 281/314 267/275

6) Automatic scaling and Performance management: scal-
ing is a required capability for NSs that need to adjust the
amount of resources accordingly to a variable load. It requires
performance management information to trigger scale in/out
events if necessary. It may seem natural since it just create
more VDUs, but this requires particular attention because the
new VDUs need configuration, the old VDU might have to be
reconfigured, and the traffic needs to be split between the old
and new VDU to distribute the load.

7) Scaling groups: is the capability to scale groups of
VNFs that are dependent from the perspective of the NS
functionality. It is needed to define which VNFs must be scaled
together. A scaling group can be a composed by just one VNF,
two or three VNFs or all the VNFs that compose the NS. The
critical point is that the scaling group must scale all together.

8) VNF healing, update, and Fault management: VNF
healing is a desired capability because it allows the operators
to repair the internal state of VNFs, which might be behaving
out of spec. There is another capability that must be present
which is fault management, to help in anomaly detection.
Fault management, when combined with VNF healing, helps
to reduce downtime and prevent erroneous states. Another
significant capability is VNF updates since it allows to patch
the VNF, therefore allowing to solve performance or security
problems that may have arisen or merely to update the
implementation because the specification has changed.

9) NS lifecycle notifications: after the NS has been in-
stantiated and Day 0/1 configurations have been successful,
there might be a need to run Day 2 configurations. The
OSS/BSS should initiate these configurations since it is the

entity that holds the business logic and must decide what the
configurations to run and their parameters. So there should
be an NS lifecycle notification system to notify the OSS/BSS
about the NS state, as proposed by ETSI.

10) SFC support: SFC seamlessly steers traffic at the
network level (ie. without reconfiguring the NFs themselves).
This allows for better resources and network optimization over
the service path, which could be resolved on-the-fly according
to policies defined in the NSD and enforced by the SDN-C.

B. Results

1) Works Well: During the orchestration of the proposed
Network Service, the most crucial aspect that worked flaw-
lessly and made the whole process easier was NS com-
posability. The modeling provided by the OSM Information
Model was adequate and allowed the composition of a Net-
work Service with multiple VNFs, which did not need to
be included in the same descriptor of Network Service. The
fact that VNFDs were not packaged directly with the NSDs,
facilitated updates of the VNFDs because the interfaces and
the identifiers could be maintained, but the internal could
be changed. VNF interfaces should be static once they are
defined, also allowing for VNF independence. The lack of
dependence between VNFs allows making changes without
having significant concerns about the impact on the other
VNFs. It is also essential for NS composability since they are
composed of multiple VNFs combined with different orders,
which can be made without adverse effects.

Day 0/1/2 configuration is another aspect that is supported
by OSM through the use of Cloud-Init and VNF Proxy



Charms. Cloud-Init is a script that runs when a VDU starts
up, and this script can do a myriad of operations, such as
creating users and groups, update and delete files, amongst
other stuff. A Proxy Charm is a Juju charm that runs inside
a container that is being controlled by OSM. The VNF Proxy
Charm runs after the VNF starts up and is responsible for Day
1/2 configurations. These configurations can be done using
a multitude of protocols, such as SSH, SNMP or HTTP. To
create a VNF Proxy Charm, the VNF developer can use Python
or Ansible. Through the use of this configuration mechanism,
the operator that deploys the NS is able to configure all the
service primitives defined previously.

2) Workarounds: There are some capabilities, that although
implemented, they do not work as intended or do not work at
all. The first one is VNFD and NSD versioning. Even though
versioning is included in the OSM Information Model, it is not
respected. VNFD can have a version, but it is not referenced in
the NSD. It is a problem because different versions of the same
VNF cannot coexist with the same identifier. The workaround
was done inserting a version directly in the identifier, but this,
in turn, causes the problem that the same VNFD has multiple
identifiers, when it should have one with multiple versions.

Another workaround was the use of Policy Based Routing
along with Proxy Chaining to achieve Traffic Steering and
Service Function Chaining. Although OSM supports SFC, it
was not working due to problems with package versions.

3) Limitations: During the orchestration of the proposed
NS, several limitations were found. Starting with the fact that
performance and fault management are not working, so there
is no way to have this information and act over it, for instance,
triggering automatic scaling or VNF healing events.

Without automatic scaling, because there is no mechanism
to trigger it, it only remains the manual scaling option, which
is not present in OSM. Therefore, as scaling is not working,
we cannot test whether scaling groups are working. Although
they are in the Information Model and it is possible to define
which VNFs should be scaled and in which quantities.

VNF healing and update are not working also. Although it
is mentioned in ETSI NFV MANO Architectural Framework,
it is not yet in the scope of OSM.

NS lifecycle notifications are another capability that is not
yet supported in OSM Release FOUR, which affects the
control over what is deployed and the timely fashion of
when actions should be executed. For example, soon after our
proposed NS is spawned, the client configurations should be
added. Also, to be able to start using the service from the
moment it is ready, there is the need of a mechanism to inform
the OSS/BSS that the NS is ready to receive requests.

PNF configuration is a missing capability that would be
useful for this NS use case since we could use vCPEs to
establish the VxLAN tunnel between the edge and the cloud.
There are also another PNFs that would be useful to be able
to configure, such as APs that are in edge premises and could
be used to redirect traffic to the classifier in the Fog/Edge.
Therefore, PNF configuration would be a useful capability that
is not yet present in OSM Release FOUR.

VI. CONCLUSION

We have evaluated (both quantitative and qualitative) how
an ETSI NFV MANO compliant orchestrator (OSM re-
lease FOUR) performs while orchestrating an SFC-enabled
SSL/TLS encrypted traffic processing architecture, which now
supports both edge and cloud deployments. We have developed
the required primitives to orchestrate both the NFs and the NS
as a whole. The results show that day-0/day-1 configuration
can be done in just a few seconds, which is more than enough
for the initial provisioning of the service. We have also shown
that SFC configuration can be done in a parallelized fashion (at
worst, taking less than 10s with all overheads accounted). The
successful use of the orchestration (and changes made to the
NS architecture) was demonstrated in our data optimization
use-case. A public demo of this work was accepted within the
ETSI OSM POCs Framework.1

ACKNOWLEDGMENT

This work is supported by the European Commission Hori-
zon 2020 Programme under grant agreement number H2020-
ICT-2016-1/732497 - 5GinFIRE (Evolving FIRE into a 5G-
Oriented Experimental Playground for Vertical industries),
the European Regional Development Fund (FEDER), through
the Competitiveness and Internationalization Operational Pro-
gramme (COMPETE 2020) of the Portugal 2020 framework
[Project Smart EnterCom with Nr. 021949 (POCI-01-0247-
FEDER-021949)] and by CAPES within the Ministry of Edu-
cation of Brazil, under the project FCT number 0409/2016 en-
titled ”Um Ecossistema para Funções Virtualizadas de Rede”.

REFERENCES

[1] NGMN Alliance, “NGMN 5G White Paper,” NGMN, 2015.
[2] 5GPPP Architecture Working Group, “View on 5G Architecture (Version

2.0),” 5GPPP, 2017.
[3] V. A. Cunha, M. Carvalho, D. Corujo, J. P. Barraca, D. Gomes, A. E.

Schaeffer-Filho, C. R. P. D. Santos, L. Z. Granville, and R. L. Aguiar,
“An SFC-enabled approach for processing SSL/TLS encrypted traffic
in future enterprise networks,” in 2018 IEEE Symposium on Computers
and Communications (ISCC 2018), Natal, Brazil, Jun. 2018.

[4] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” IEEE Communications Surveys and Tutorials, 2016.

[5] A. J. Gonzalez, G. Nencioni, A. Kamisinski, B. E. Helvik, and P. E.
Heegaard, “Dependability of the NFV Orchestrator: State of the Art and
Research Challenges,” IEEE Communications Surveys Tutorials, 2018.

[6] B. Jaeger, “Security Orchestrator: Introducing a Security Orchestrator in
the Context of the ETSI NFV Reference Architecture,” in 2015 IEEE
Trustcom/BigDataSE/ISPA, vol. 1, 2015, pp. 1255–1260.

[7] M. Pattaranantakul, Y. Tseng, R. He, Z. Zhang, and A. Meddahi, “A First
Step Towards Security Extension for NFV Orchestrator,” in Proceedings
of the ACM International Workshop on Security in Software Defined
Networks & Network Function Virtualization (SDN-NFVSec ’17). New
York, NY, USA: ACM, 2017, pp. 25–30.

[8] R. Muñoz, R. Vilalta, R. Casellas, R. Martinez, T. Szyrkowiec, A. Aut-
enrieth, V. López, and D. López, “Integrated SDN/NFV Management
and Orchestration Architecture for Dynamic Deployment of Virtual SDN
Control Instances for Virtual Tenant Networks,” J. Opt. Commun. Netw.,
vol. 7, no. 11, pp. B62—-B70, nov 2015.

[9] M. Abu-Lebdeh, D. Naboulsi, R. Glitho, and C. W. Tchouati, “NFV
orchestrator placement for geo-distributed systems,” in 2017 IEEE
16th International Symposium on Network Computing and Applications
(NCA), 2017, pp. 1–5.

[10] ETSI, “Network Functions Virtualisation (NFV); Management and Or-
chestration,” GS NFV-MAN 001 V1.1.1, 2014.

View publication statsView publication stats

https://www.researchgate.net/publication/332278213



