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ABSTRACT 

The Square Kilometer Array (SKA) Telescope, is an ongoing project set to start its building phase in 2019 and achieve                    
first light in 2022. The first part of the project, the SKA1 will be comprised of 130.000 low frequency antennas (50 MHz                      
to 350 MHz) and approximately 200 mid frequency antennas (350 MHz to 15.5 GHz). The SKA1 will produce a raw                    
data rate of ~10 Tb/s, requiring a computing power of 100 Pflop/s and an archiving capacity of hundreds of PB/year. The                     
next phase of the project, the SKA2, is expected to increase the number of both low and mid antennas by a factor of 10                        
and increase the computing requirements accordingly. The key requirements for the project are a very demanding                
availability of 99.9% for its operations, computing scalability and scientific outcome reproducibility. Focusing on the               
SKA Telescope Manager requirements and architecture, we propose an approach to enforce these requirements - with an                 
optimal use of resources - by using highly distributed computing and virtualization technologies. 

Keywords: SKA, Telescope Manager, HPC, Virtualization, Radio Astronomy, Reproducibility 

INTRODUCTION 

SKA, is set to start its building phase in 2019, achieve first light by 2022, be fully operational by 2025 and collect data                       
for at least 20 years. SKA will gather radio signal observations from the all sky in a high range of frequencies from 50                       
MHz to 14 GHz, expected to be operational by 2018 and collecting data for at least 20 years. The first phase of the                       
project, the SKA1, will consist of 130.000 low frequency radio antennas - operating in the ~50 MHz to ~350 MHz band -                      
and about 200 mid frequency radio antennas - operating in the 350 MHz to 15.5 GHz band, incorporating the MeerKAT                    
precursor 64 antennas. For Phase, ie SKA2,. the project will expand in frequency and spread stations in Africa and                   
Australia over an area of 3000 square kilometers in two continents - Africa and Oceania. 

The SKA1 will produce a very high raw data rate of approximately 10 Tb/s, require a computing power of 100 Pflop/s                     
and an archiving capacity for science products - for the already reduced data - of up to 300 PB/year, just for acquiring,                      
processing the signal, transfer the data products to data centers and store them. The computing requirements for doing                  
science with these data products is expected to be several orders of magnitude higher. For comparison, in 2016 the                   
worldwide total internet traffic was approximately 212.8 Tb/s, the present worlds’ fastest supercomputer has a computing                
capacity of 93 Pflop/s and at the date of its Initial Public Offering (IPO), Facebook stored approximately 100 PB of                    
photos and videos (although from 2012, this is the most recent storage metrics for any of Facebook, Google, Amazon or                    
Apple). Due to the nature of data gathered by the SKA project and due to its operating time frame - extending for several                       
decades - it is also of major importance to provision for future uses of data showing no interest for scientific production                     
that could, on first approach, be discarded in order to keep the data storage, processing and transfer costs down. For a                     
practical example on the analysis of the use of data previously discarded as noise, that ended up having scientific interest                    
going beyond the original purpose of the instrument, see Morgado et al. [1]. 
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The next phase of the project, the SKA2, is going to increase the number of both low and mid antennas by a factor of 10                         
and, as such, increase all the computing, data transfer and storage requirements accordingly. However, we will                
benchmark activities in this paper for SKA1. 

Observation operations, data transfer, computing and storage follow a very high availability key requirement of 99.9%,                
therefore requiring redundant systems in order to ensure that this specification is met. Another requirement, not only for                  
SKA, but one that we expect to be transversal to most scientific research in the near future, is that of reproducibility.                     
Reproducibility is starting to be seen as a necessity for present scientific endeavours, mostly due to the greater                  
availability of scientific data. As now, when more and more researchers have access to data used in refereed publications,                   
scientists are supposed to be able to reproduce results from those publications independently, but in many cases we are                   
failing at it in what is being aptly named a “Reproducibility Crisis” [2]. In the case of SKA, the issue may go even                       
beyond that. The scientific outcomes will rely on such a massive amount of data and involve such a demanding amount                    
of computation resources, that we cannot afford the necessity to re-run specific computations or algorithms, a data                 
reduction pipeline or data collection, in order to check if the results were readily achieved using any specific parameter                   
configuration, algorithms or a even specific workflows that connect information from well known astronomical              
databases or suites [3, 4]. As such, we argue, that for SKA, reproducibility must be an enforced feature throughout the all                     
SKA system.  

The SKA Telescope Manager (TM) is an element responsible for the architecture design of the Observations Planning                 
and Operations and Monitoring and Control system of the SKA. This architecture includes the TM interaction through                 
Internal Infaces with the compute intensive elements like the Science Data Processor (SDP) and Central Signal                
Processing (CSP). Within SKA.TM, its Local Infrastructure Architecture (TM LINFRA) and the TM Services (TM SER)                
are solving part of these technological hurdles with the help of virtualization technologies. We propose an approach to                  
enforce these requirements with an optimal use of resources, by using highly distributed computing and virtualization                
technologies. We also propose that by enforcing certain programing paradigms based on finite state machines, we can                 
optimally use the computing resources available therefore reducing hardware maintenance and running costs of the               
project. 

Virtualization technologies have been under heavy development during the last decade, accompanying the change in               
computing paradigm from increasingly fast single processing units to an increasingly bigger number of processing units                
that show little gains in terms individual computing velocity but where the overall velocity of the system - when fully                    
used - can show increases between less than 100% in the case of CPUs and several orders of magnitude in the case of                       
GPUs. This change in computing paradigm meant a convergence between High Performance Computing (HPC) and               
Cloud based environments enabling promising data mining scenarios that paved the way to a renewed effort in parallel                  
computing algorithms, and associated with it, an interest in virtualization and the ability to run several isolated threads of                   
the same or different programs distributed across various computing units, including geographically distributed units. 

Looking at the current landscape of virtualization technologies we chose to base the system’s design in the OpenStack                  
platform taking into account its modularity and the open source development that is being accomplished. Still, all the                  
rationale presented in our work is platform agnostic and can be adapted and used with other virtualization technologies.                  
We propose a system philosophy that can take into account the requirements for scalability, availability and                
reproducibility needed in SKA. 

REQUIREMENTS 

Assuming that the SKA will have several levels of interest and interaction we started building a system based on                   
virtualization that will provide different tools to different key-holders while keeping the duplication of efforts to a                 
minimum. Our main work so far has been done inside TM, which purpose and scope are presented at great length in [5],                      
but of special importance for the basis of our work in virtualization, is the nature of the deliverables inside TM.                    
Identified as a TM App, these deliverables may be stand alone or exist in conjunction with other TM Apps and be long or                       
short term running services. TM components constitute one of the main critical system elements in the telescope. Aiming                  
for a 99.9% availability, this aligns TM with a Tier 3 system as defined by the TIA-942 standard. Therefore, SKA TM                     

 
 



 
 
 
 

LINFRA is designed according to the ruling principles of such systems, as they reflect years of industry best practices for                    
operating computational infrastructures. 

Although we focus on TM, similar principles apply to the SKA Science Data Processor (SDP) element [6] - with the role                     
of processing science data from the correlator or non-imaging processor into science data products - and to the future                   
storage and provision of data through regional digital infrastructures that are currently in planning phase. For the later,                  
and as an example, in Europe, the H2020 project Advanced European Network of E-infrastructures for Astronomy with                 
the SKA (AENEAS) - is architecting the design of the SKA data mining infrastructure federating the underlying                 
large-scale e-infrastructures (compute, connectivity), to enable the scientific community at large to future access and               
exploitation of the collected data products.  

The key requirements for a TM App, from the point of view of SKA1 TM LINFRA and SKA1 TM SER, and extendable                      
to the Apps running in a virtualization layer in SDP or any future AENEAS infrastructure federations is then three fold: 

● Modularization - An App should be defined in smaller, independent parts: This means an App should not be                  
monolithic but instead rely on smaller modules. For instance, an App that uses an internal database, should run                  
all pertaining functionality to that database in a module outside the main module and have the main module                  
waiting for the availability of the database module. The rationale for this requirement, is that it will allow the                   
underlying infrastructure of TM LINFRA to migrate these modules in real time between hardware resources,               
while the App is running. This capability, will at the same time, allow for failsafe implementations and the                  
optimal use of computing resources; 

● State based - An App should depend only on the state of the system as input in order to function: This is the                       
principle behind a logical state machine. Although it adds complexity to the development process of an App, it                  
will allow the App to run independent of its starting state. For example, if the App computation relies only on a                     
set of configuration files, databases and temporary state description variables stored in a file, then it can be                  
easily migrated in the middle of a computation and be able to pick up those computations exactly where it left                    
them. This operating principle allied to a redundancy of the underlying computation layer, will ensure the high                 
availability of the system and its scalability; 

● Parallelization - An App should, as much as possible, be able to carry out its function while running in parallel                    
with other instances of the same App: This is now a quite normal requirement in computing due to the nature of                     
the change in computing paradigm from the last decade. We are steadily moving from increases in the velocity                  
of processing in single threaded computing to a massive parallelization of computing resources. If an App is                 
then capable of performing in parallel - and this requirement will be especially important for systems like the                  
SKA SDP element and for future federation of e-infrastructures efforts like AENEAS - the underlying               
orchestration system is then capable of launching several threads of the same App if the available computing                 
resources at a given time permit it, thus greatly speeding up the computation in some cases. 

METHODS 

In order to allow for the previously exposed requirements to integrate with the different systems - namely with at the TM                     
level as a showcase - we propose that the access and the configuration of the various parts of the all system, built upon                       
the Virtualization layer, relly on a three layered approach. At the base level, the configuration of the systems would be                    
defined by SKA1 TM LINFRA, then a middle layer with access and computing resources agreed upon the various key                   
players, and finally a top layer where the Apps would be able to perform the computation and require access between                    
them and beyond them - as defined by the middle layer. 

As such, we predefined these three levels of complexity within the system and divided the needed configurations for                  
each one. Figure 1 presents a view of this approach and it is specified as following: 

● A Physical Resource Layer that will provide a uniform hardware view for all software: As the SKA1 will                  
include tens of thousands of devices just for controlling the telescopes and acquire data, we want to provide all                   
the different key-holders of the project with the means to build tools - deliverables - that will work                  
independently of the hardware. At the same time we want to ensure that advances in computing hardware or a                   

 
 



 
 
 
 

change in the computing resources providers can be met easily by the project. This absolutely avoids any                 
adaptation process outside of the work done by TM LINFRA and TM SER; 

● A Product Execution Layer that will consist of a distributed environment operating towards the provisioning of                
highly available products: SKA1 services will be composed of a multitude of software code components that                
needs to observe certain key points. One of those key points is to ensure that the adequate computing resources                   
get allocated to each of these services and TM LINFRA will be able to automatically balance the hardware                  
resources available to each service according to their immediate specific needs and the hardware resources               
available at the moment. Another key point is to ensure a high availability of the services, and in order to do so                      
SKA TM LINFRA will detach the running hardware from a specific machine meaning that in case of hardware                  
failure the service will continue to run on other available machines; 

● A Virtualized Resource Layer, consisting of the virtual machines, containers and other hardware that has a                
logical representation to the Product Execution Layer and is part of a template or is available to be used by                    
future templates: SKA services need a high degree of interoperability and communication, this part of the                
software abstraction will provide a deliverable product, modular in its nature, that will already have defined its                 
hardware access, resource usage and communication capabilities with other parts of SKA. By ensuring that it                
resides in a layer above the other two layers, it means that the specifics of the SKA product can be changed at a                       
lower level and later deployed and put into production without disruptions to the service being provided. 

 
Fig 1: Template and Instance presentation. 

 
What this architecture achieves, is that the interface for the virtualization system - that will be the basis upon which all                     
the SKA Telescope Manager software will run - will be constrained by exposing template actions externally according to                  
the aforementioned three layers. The end objective is then to provide high availability, abstracting the underlying                
hardware infrastructure, and allowing software defined failover and horizontal scalability. 

 
 



 
 
 
 

CONTEXT 

The TM Virtualization Service is implemented at the lower level, below the domain logic and the infrastructure as                  
presented in Figure 2. It follows the following layered structure: 

● Domain/Business Layer: functional monitoring and controlling of business logic performed by each application;  

● Services Layer: Monitors and controls processes on a generic level (non-functional) like web services, database               
servers, custom applications;  

● Infrastructure Layer: Monitors and controls virtualization, servers, OS, network, storage.  

 

Fig 2: TM architecture context. 

QUALITY ATTRIBUTES 

The main quality that drove the development of the present architecture was the maintainability intended as availability                 
(reliability and recovery), scalability and reproducibility.  

This design then focuses on the following quality attributes: 

● Maintainability: By creating an uniformization layer above the hardware and by providing a set of descriptive                
creation of the TM Apps running times, it becomes significantly simpler to maintain the service; 

● Reusability: The three tier system for the description of the Virtualization Service allows for each building                
block to be reused in creating more complex ones; 

● Availability: By defining the priority of the processes in the interface therefore allowing the Virtual Machine                
Service to manage the allocation of resources, we are able to ensure high hardware fault tolerance and high                  
concurrent availability of resources; 

● Performance: The Virtual Machine Service automatic allocation or resources according to their priority will              
ensure that the available resources are maximized; 

● Reliability: Having a fault tolerant system by containerizing all its components makes it capable of redirecting                
computing resources upon their failure to the available ones automatically greatly increases reliability; 

● Scalability: The system is built to be scalable by design and from the ground up. Increasing or decreasing the                   
available computing resources will automatically be managed by the virtual Machine Service and immediately              
put to use as soon as they are added to the existing computing resources pool; 

● Reproducibility: Using Virtualized containers fully defined from the ground up and having a system, with all its                 
components defined from the hardware level up to the product execution level, permits to know exactly the                 
conditions (software versions, algorithms) on which any of the TM Apps had run in order to access the final                   
result. 

 
 



 
 
 
 

RUNTIME VIEW 

SKA1 TM LINFRA will function as a block managing the available hardware through the use of virtualization resources                  
(vResources), namely the orchestrator; networking modules; storage; and monitoring modules, assigned to a specific              
configuration of an hardware entity. Every entity has associated a template that is a description of the set of instances                    
(servers, VMs or containers) with an SLA (Service Level Agreement), user ACLs (Access Control Lists) and network                 
ACLs needed by the entity. 

 

Fig 3: Virtualization data model within the context of TM. 
 

A vResource is composed by:  

● vResourceCompute: Virtualized computational resources (Hardware, vHardware, Container or Virtual         
Machine); 

● vResourceNetwork: Virtual network for communication between modules of an App or between different Apps; 

● vResourceStorage: Virtual access to storage for an App and its modules. 

 
 



 
 
 
 

The Template and the vResource blocks have a state associated that is collected and managed by the Software System                   
Monitor (SSM). Figure 3 shows the data model for the use of the virtualization system made for TM. 

CONCLUSION 

The SKA, due to its massive scale, has extremely demanding requirements set in place at various levels in its                   
infrastructure. These requirements mainly focus on three key points: availability, scalability and reproducibility. 
 
Implementing from the start of the project a paradigm built upon virtualization and expressing a set of requirements                  
enforcing: modularization, state based logic and parallelization; allows for an architecture relying upon a three level                
access and control system, capable of optimally managing available computing resources in order to deliver TM’s                
products. It also sets similar scenarios for other SKA elements like SDP and future post-SDP e-infrastructures                
federations like AENEAS. More so, this same paradigm when implemented in a system with redundant hardware                
resources, ensures an high availability of services while simultaneously fully utilizing all available computing resources. 
 
Finally, since all the various components of the system will necessarily have to be described through configuration files                  
that define their building blocks, resource access and computing steps needed to obtain a product, the system becomes,                  
by design, reproducible at any given time in the future. Thereby, any data or scientific deliverable created, could have                   
associated the full history - from source data gathering to the final result - on how that deliverable came to exist. 
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