
An SFC-enabled approach for processing SSL/TLS
encrypted traffic in Future Enterprise Networks

Vitor A. Cunha∗, Marcio B. de Carvalho†, Daniel Corujo∗, Joao P. Barraca∗, Diogo Gomes∗,
Alberto E. Schaeffer-Filho†, Carlos R. P. dos Santos‡, Lisandro Z. Granville†, Rui L. Aguiar∗

∗Instituto de Telecomunicações, Portugal
†Institute of Informatics – Federal University of Rio Grande do Sul – Porto Alegre, Brazil

‡Department of Applied Computing – Federal University of Santa Maria – Santa Maria, Brazil
∗{vitorcunha,dcorujo,jpbarraca,dgomes,ruilaa}@av.it.pt, †{mbcarvalho,alberto,granville}@inf.ufrgs.br, ‡{csantos}@inf.ufsm.br

Abstract—In this paper, we propose an architecture based on
NFV and SDN which allows to balance traffic analysis techniques
using a Classifier. It steers flows to the appropriate Service
Function Chaining (to open traffic or not) according to net-
work requirements (such as, effectiveness, flexibility, scalability,
performance, and privacy). The SSL/TLS traffic processing is
carried-out by the centerpiece of this work, the SFC-enabled
MITM. A Proof-of-Concept was conducted (focusing on our SFC-
enabled MITM) which showed that functionalities lost due to
encryption (Content Optimization, Caching, Network Anti-virus,
and Content Filter) were recovered when processing opened
traffic within its Service Function Chains. We also evaluated
its impact on performance. The results show that cipher suite
overhead plays a role but can be mitigated, the Classifier can
alleviate the performance overhead of different traffic analysis
techniques, network functions have lower impact to performance,
and Service Function Chaining length influences page load time.

I. INTRODUCTION

Network Function Virtualization (NFV) is a novel network
paradigm that relies on the virtualization of Network Functions
(NFs) that formerly were provided by network devices, appli-
ances, and middle-boxes. Virtualization itself brings benefits
to management and operation of networks that include higher
flexibility, easier scalability, and reduced CAPEX/OPEX. For
instance, OPEX is reduced by the lower cost of more efficient
software-based NFV networks (that can scale on-demand from
the resource pool, saving on power and local hardware over-
provisioning) and are easier to manage (compared to hardware-
based traditional networks that are inflexible in management
interfaces). In its turn, CAPEX is reduced by adoption of
cheaper Common-of-the-Shelf (COTS) hardware, that con-
tributes to a manageable shared resource pool, in substitution
of dedicated commercial middle-boxes.

A functionality offered by commercial middle-boxes is SSL/
TLS Inspection (also known as Man-in-the-Middle (MITM)),
which opens encrypted traffic for processing (Intrusive analy-
sis). This is also required because encryption breaks common
NFs (e.g., Cache Proxies, Content Optimizers, Content Filters)
that rely on content to work. However, a MITM violates the
security (and privacy) that endpoints attempted to enforce.
In order to avoid this, Non-intrusive analysis (statistical [1]
and behavioral approaches [2]) were developed. Despite these
approaches preserve end-to-end encryption (thus, preserving

security and privacy), they are less effective because of a
degree of failure in their content guessing algorithms.

The adoption of middle-boxes to process encrypted traffic
imposes low flexibility, low scalability, higher CAPEX/OPEX,
and less transparency over what is done with the opened traffic.
In turn, statistical and behavioral approaches are less effective
which hampers network management needs. In order to face
these challenges, enterprise network administrators have the
need to balance effectiveness, flexibility, scalability, privacy,
and performance (since Intrusive analysis can affect flow
performance) when choosing how to handle encrypted traffic.
They are in demand for a way to dynamically apply the most
suitable techniques, always complying with legal obligations
over that traffic (for instance, informed consent) and handling
sensitive information in an ethical way, but without neglecting
their own security and network management needs.

This paper proposes an architecture based on NFV and
Software Defined Networking (SDN) to balance effectiveness,
flexibility, scalability, privacy, and performance when process-
ing encrypted traffic. These requirements are fulfilled steering
encrypted traffic using a Classifier [3] (that can be policy-
driven) to determine which kind of processing chain must
be applied (Intrusive or Non-intrusive). As an alternative to
MITM functionality of commercial middle-boxes, we aim to
leverage the effectiveness and flexibility of a Service Function
Chaining (SFC) via a SFC-enabled MITM (SFC-MITM),
which is the centerpiece of our architecture.

The contributions of our proposal include: (i) flexibility
to adjust the encrypted traffic processing in regards to both
security and lawfulness, as well as to network management
needs, (ii) ability to process encrypted traffic availing all NFV
benefits, (iii) ability to apply processing functions, readily
available as Virtual Network Functions (VNFs), over opened
encrypted traffic, (iv) threat prevention and policy enforcement
over content at network level (complementing endpoint solu-
tions), and (v) network-enforced ability to upgrade cipher suite
support in Legacy Appliances, having the capability to select
different ciphers to interact with the appliance from the ones
that are used for the remote endpoint.

We conducted a Proof-of-Concept (PoC) focusing on the
SFC-MITM component, showing that functionalities (Con-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/333883151?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


tent Optimization, Caching, Network Anti-virus, and Content
Filter) are recovered when processing opened traffic within
the SFCs. We also evaluated performance of SFC-MITM
comparing it in regards to different cipher suites, traffic anal-
ysis techniques, functionalities of NFs, and SFC lengths. The
results show that cipher suite overhead can be mitigated, the
need of the Classifier due to different performance overhead of
traffic analysis techniques, low impact of functionalities, and
significant impact of SFC length in regards to load time.

The paper is organized as follows. In Section II, we present
background information and related work. In Section III, we
present the architecture of our proposal. In Section IV, we
describe the scenario and objectives of the proposal evaluation
along with obtained results. Finally, in Section V, we provide
final remarks and future steps in the context of this work.

II. RELATED WORK

We start this background section by presenting the Intrusive
Analysis methods, since it is the highlight of our contribution,
followed by the presentation of secure middle-boxes that go
beyond SSL/TLS Inspection enforcing additional constraints
over opened traffic. These should not be seen only as prior-art
against our SFC-MITM solution, but rather as complementary
functions that can easily be deployed in our architecture to
achieve stricter privacy requirements. Finally, we present NFV
and SDN characteristics that are pertinent in the context of
encrypted traffic processing.

The industry’s major players already offer commercial solu-
tions that realise MITM in their midle-boxes123, with wide ac-
ceptance within corporate networks. However, these solutions
have low flexibility in the sense that they introduce general
traffic processing functions. Furthermore, these solutions are
mostly available as a closed-source appliance which impairs
any kind of audit to assess how the opened traffic is processed.

The Open-Source community delivers some good tools for
this kind of MITM. For instance, there is mitm-proxy4 which
provides MITM functionality via an HTTP proxy. It features
easy Python scripting (add-ons) for programmatic flow pro-
cessing. However, it does not provide any means to process
flows externally of the program’s code (i.e. in a VNF). A
similar tool called sslsplit5 also provides MITM functionality.
Unlike mitm-proxy, it supports generic SSL/TLS over TCP
(not just HTTPS) acting as an HTTP/Socks proxy, with Socks
being required for protocols other than HTTPS. However,
its main drawback is the lack of add-on capabilities. The
precursor sslstrip6 is widely used in traffic capture programs to
inspect HTTPS. It hijacks HTTP responses exchanging explicit
links to HTTPS sites by their HTTP versions. However,
this downgrade/striping attack is now ineffective given most
enterprises no longer provide a HTTP version of their sites.

1https://www.cisco.com/c/en/us/solutions/enterprise-networks/enterprise-
network-security/eta.html

2https://f5.com/products/security/ssl-visibility
3https://www.checkpoint.com/products/url-filtering-software-blade/
4https://mitmproxy.org/
5https://www.roe.ch/SSLsplit
6https://moxie.org/software/sslstrip/

There are also proposals of secure middle-boxes which aim
to take special care about protecting traffic opened by SSL
Inspection, such as BlindBox [4] or SGX-Box [5]. The general
approach is the creation of a secure enclave to process opened
traffic, preventing against tampering or data leakage. SGX-
Box, for instance, provides a specific language to allow the
development of traffic processing code. However, because of
the data protection, none of these solutions considered the
delivery of flows for processing in external VNFs. mcTLS [6]
attempts to solve this issue by extending TLS with multiple
decryption keys. Nevertheless, the non-standard nature of these
solutions hinders the ability to use today’s Off-the-Shelf VNFs
(such as, Content Filters/Optimizers or Anti-virus), as these
functions would need either be rewritten in the proposed
middle-box language or support the proposed TLS extension.

Recently, new network paradigms are breaking the former
inflexible network architectures, leveraging advances in traffic
processing. As an example of such paradigms, SDN decouples
the data-plane from the control-plane, effectively standard-
izing means for flow-based programmatic central control of
whole network topologies [7]. As another example, the NFV
paradigm allows the replacement of former physical network
components by virtual ones that perform the same functional-
ities. Making use of virtualization, and the flexibility given
by virtual network topologies, we can now have dynamic
deployment, replacement, and scalability of NFs. Leveraging
SDN and NFV, SFC [8] allows to build Network Services
(NS) by chaining in a given order existing NFs, enabling the
implementation of Service Function Paths (SFPs).

III. SOLUTION ARCHITECTURE

Our work assumes a future enterprise network, that is
SDN controlled and NFV capable. In addition, it also fea-
tures on-demand NF instantiation and the ability to perform
Traffic Steering/SFC amongst NFs. We start by presenting
a conceptual architecture for future enterprise networks that
balances intrusiveness, flexibility, effectiveness, privacy, and
performance when processing encrypted traffic. Then, we
zoom into the SFC-MITM (this paper’s focus), presenting and
describing its own architecture, along with the challenges that
such component must tackle.

A. Network Architecture

The data-plane we propose for dealing with SSL/TLS
encrypted traffic is depicted in Fig. 1, which is comprised of
SFCs that fall under two very distinct types of analysis (intru-
sive vs. non-intrusive). Each of these chains can be built with
COTS NFs. The balance between privacy, performance, more
effective security and restored functionality will be enforced
by a policy-driven steering classifier which, according to the
classification rules, will deliver each flow to a single type of
chain (intrusive or non-intrusive).

If traffic is not eligible to be opened by intrusive approaches
due to its requirements (e.g., privacy, performance), it is
steered to a Non-Intrusive Analysis SFC. In this case, it is
processed respecting the privacy enforced by the endpoints,



which imposes the adoption of NFs based on statistical and
behavioral techniques in order to guess the content of the com-
munication. The Deep Packet Inpection (DPI) is an example
of a Non-Intrusive function, since its inspection is done over
the ciphertext (without tampering with the endpoints security).

Fig. 1. Future Enterprise Network Architecture (Data-plane)

If traffic is eligible to be opened by intrusive approaches,
it can be steered to a Intrusive Analysis SFC. In this case,
the encrypted traffic is opened by intrusive NFs, such as se-
cure middleboxes (e.g., SGX-Box) or our novel SFC-enabled
MITM (more on this follows in Section III-B).

Given that all network traffic must go through the classi-
fier, this decision point becomes critical to the performance,
scalability and reliability/resilience of the whole network.
Therefore, in order to address these issues, the choice was
made to not deviate our classifier from the ones in literature.
However, this also means that we must select between intrusive
(and non-intrusive) inspection using just header fields as clas-
sification criteria, as those are the better researched classifiers.

OpenFlow exposes a 12-tuple of header fields (<ingress
port, ether src, ether dst, ether type, vlan
id, vlan prio, ip src, ip dst, ip proto, ip tos,
port src, port dst>) to set the policies which transpar-
ently steer traffic between intrusive and non-intrusive analysis.
While non-SDN solutions are also possible, the number of
fields available for classification as well as the ways to solve
the performance, scalability and reliability/resilience issues
become entirely dependent on the technologies supported by
the equipment itself.

Conceptually, using just header fields to classify traffic
does not affect the granularity of our solution, as we can
enhance this coarse classification with the outcomes of our
processing chains. For instance, we can have a DPI function
in a non-intrusive chain analyze the Common Name (CN) of
the server certificate. As browsers expect this field to have
the matching Fully Qualified Domain Name (FQDN) of the
destination server or application, this allows to distinguish
communications which otherwise would appear to belong to
the same entity but whose control over content is in fact quite
different (ie. an IP from a CDN is a quite fallible way to
determine the content being served). Similarly, one could use
the intrusive analysis to make more informed decisions about
the kind of optimizations that content must fore-go.

The reclassification between intrusive and non-intrusive
analysis poses a challenge, as the SSL/TLS session was first

established with the wrong endpoint (either the actual remote
host or a MITM-alike function). Despite SSL/TLS having
built-in session restart methods, those are not applicable when
crossing security domains (we do not control the remote
private keys), therefore we have no means to perform a smooth
handover. We address this by performing a connection reset in
the transport layer, which causes the flow to close (having then
the user to repeat the request). Once the new request happens,
the new classification can be applied.

B. SFC-enabled MITM

The SFC-enabled MITM must provide three major func-
tionalities: (i) split the SSL/TLS session in two, one facing
the client and the other facing the remote server, having in the
middle the plain text; (ii) handle the delivery and the return
of traffic to be processed by its SFCs, tracking the respective
SSL/TLS session in which requests must be tunneled once
again; (iii) perform Layer-7 specific sanitations to circumvent
any tamper-detection enforced by endpoints, or that would
result in an invalid configuration when sent to another NF.

Fig. 2. SFC-enabled MITM Architecture (Data-plane)

The general architecture for this MITM is presented in
Fig. 2, where the Chaining Handler communicates with the
SFC over regular sockets (configured with a transport protocol
according to the intercepted application). One must note that,
in padlocks 1 and 2, the first refers to a SSL/TLS session
negotiated using the remote PKI (acting the MITM as a client,
on behalf of the user) and the second is a SSL/TLS session
established using certificates issued by our own CA (which the
user must trust). While conceptually it holds true that such an
architecture would be able to handle any application that uses
SSL/TLS, as the MITM itself handles that security layer then
passing any of the tunneled data in plain text to the processing
NFs, reality shows that some application protocols (such as
HTTPS) already have measures that allow the endpoints to
detect (and prevent) this kind of attack.

As a result, and given the rise of adoption of HTTPS on the
web, we focus on this protocol. Modern browsers have support
for HTTP Public Key Pinning (HPKP), which allows any
website to use headers to set the expected public key of any



certificate in the Trust Chain (therefore invalidating a MITM-
alike attack). Some known services may even have their public
keys pre-baked into the browser (i.e., Google Chrome and
Google services). Nevertheless, as we are within an enterprise
context, we have full authority over the terminals. This means
that we can disable pre-baked lists using our own version of
the browser (similarly to Opera Turbo) and, without disabling
HPKP, we can replace these headers with our public key(s) in
the MITM therefore subverting this protocol to only allow our
devices to connect to those sites via our network (otherwise
SSL/TLS will fail). Additionally, there are integrity fields that
can be appended to anchor tags, which are meant to provide
tamper resistance against changes to the referenced content.
In order to change that content (for instance, with a Content
Optimizer), we must either remove these tags altogether or
update them accordingly. Other NFs (such as Content Caches)
add identifying headers of the proxy software and requesting
host, which we must remove if we want to conceal this
fact to the remote endpoint. Lastly, HTTP features Transfer-
Encoding and Content-Length headers which are meant to
inform the endpoints of how to decode the payload. Yet,
because our MITM actually decodes the content on behalf of
the client/server, we must make sure to correct these headers
before sending them to the NFs.

The SFCs may be achieved through different means. While
(in the example of HTTP) one could build a proxy chain
using upstream proxies, we are proposing to use instead Traffic
Steering. This has the advantage of not requiring to go down
to the application level to reconfigure functions on-the-fly (to
accommodate a chain change), but instead just seamlessly steer
traffic according to a classification, which should alleviate the
orchestration efforts.

IV. EVALUATION

To evaluate our architecture, we developed a PoC using
mitmproxy (version 2.0.2) with an addon script which imple-
mented the Chaining Handler. We used Python’s http module
to implement the server/client SFC sockets, allowing for par-
allel requests via a synchronized pool class that handles four
threads (per flow), two for the callbacks of the split SSL/TLS
tunnel (one for client, another for server) and two more for the
SFC handling of the flow. Linux Policy Based Routing (along
with netfilter marking and ARP table mangling) were used as
replacement to the OpenFlow-alike Flow Mods.

All tests were conducted in a shared Proxmox Virtual En-
vironment 4.4-1/eb2d6f1e, using 4 VMs. One VM to simulate
the architecture (with 8 cores and 8GiB of RAM) where all
NFs and MITM are instantiated as LXD containers. One VM
(with 2 cores and 2GiB of RAM) was used to act as the user.
Another VM (with 4 cores and 2GiB of RAM) was used as
webserver. Lastly a VM (with 2 cores and 512MiB of RAM)
was used to act as Classifier and DPI. The vCPUs are slices
of an Intel(R) Xeon(R) CPU X5670, with AES-NI enabled.

The webserver is an Apache 2.4.18 hosting static pages
built to check both the architecture performance and the NFs
functionalities when processing traffic within the SFC. These

pages were built referring to a fixed number of JPEG images
(5, 10, 15, 20, 25, and 30) retrieved from INRIA Holidays
dataset [9] selecting the 30 smaller ones that range from 83
KiBytes to 483 KiBytes. However, preliminary observations
showed these pages provided similar conclusions. Therefore,
we continue the evaluations using the 5 JPEG images page.

The DPI is a fork of ndpi-netfilter7, running in an Ubuntu
14.04 LTS. It tries to identify Facebook (by certificate CN),
Skype (a sequence of given packet lengths + byte pattern(s)
at given offset(s)), Dropbox (combination of protocol, ports
and a substring within the payload), and general SSL/TLS on
all TCP flows (which analyses packet sequences along with
mixed binary and textual patterns to infer information from
the handshake), regardless of port. When verdicts overlap, it
returns the most specialized label (for instance, despite being
SSL/TLS, Facebook receives just its own tag).

Along the evaluation, we collected measurements in regards
to Round-Trip-Time (RTT), load time, CPU consumption,
and throughput (these parameters are important to measure
the user experience). RTT was measured using the httping
tool, which measures the elapsed time from making a re-
quest (HEAD method) to obtaining the response (headers).
Load time was measured using a web client simulated with
PhantonJS8 that parses the static pages, detailed previously,
downloading the required images and simulating their render-
ing like an end-user web-browser (which benchmarking tools
such as ApacheBench or common tools like curl or wget do
not perform). CPU consumption was measured collecting the
clock ticks used by the MITM process, which is provided
by the /proc/PID/stat file. Throughput was measured
by downloading an incompressible 10 MiB file, using wget.
The results show means and confidence intervals (95%) for 30
repetitions of each observation.

We start by evaluating how our proposed architecture be-
haves, focusing on the performance impact the MITM has and
how it compares to non-intrusive methods. Then, we evaluate
a simple case-study in which functionality is restored (through
use of previous NFs that worked with unencrypted traffic).

A. Architecture evaluation

We start by evaluating the cryptographic influence over the
architecture in regards to load time, comparing Direct Access
(DA) (client to web server), Stock MITM (S-MITM) (client
to web server through the original version of mitmproxy),
and SFC-MITM (client to web server through the mitmproxy
with our SFC handling). We also compare the cryptographic
influence in regards to CPU consumption between the unmod-
ified (“Stock”) MITM and SFC-enabled MITM. Our baseline
for the evaluation were the cipher suites available by default
in modern Linux distributions (Ubuntu 16.04 and Debian
9). These measurements were taken using no cryptography
(HTTP), TLSv1.1 or TLSv1.2 (as supported by the respective
cipher suite). Table I presents the results that are assessed next.

7https://github.com/betolj/ndpi-netfilter
8http://phantomjs.org/



TABLE I
CIPHER SUITE IMPACT ON MITM PERFORMANCE

Direct Access Stock mitmproxy SFC-enabled MITM

TLS version / Cipher Suite load time [ms] load time [ms] CPU [ticks] load time [ms] CPU [ticks]

NONE / UNENCRYPTED 24.56± 0.82 171.04± 3.80 19.46± 0.57 263.94± 4.83 26.65± 0.54
TLSv1.1
DHE RSA AES 256 CBC SHA 75.50± 1.46 389.45± 10.40 46.97± 1.39 607.58± 10.20 56.66± 1.12
DHE RSA AES 128 CBC SHA 74.29± 1.14 403.48± 7.62 48.94± 1.55 595.90± 10.91 55.72± 1.12
RSA AES 256 CBC SHA 46.91± 1.24 352.27± 8.62 42.21± 1.36 436.51± 8.22 48.32± 1.13
RSA AES 128 CBC SHA 44.91± 0.98 365.29± 9.84 44.50± 1.58 431.32± 6.75 47.79± 1.10
ECDHE RSA AES 128 CBC SHA 46.40± 0.87 362.58± 7.97 44.29± 1.32 445.62± 9.01 48.88± 1.11
ECDHE RSA AES 256 CBC SHA 46.66± 1.19 359.85± 9.88 43.57± 1.36 438.85± 6.85 48.74± 1.02
TLSv1.2
DHE RSA AES 256 GCM SHA384 73.79± 1.26 402.45± 9.58 48.53± 1.20 597.55± 10.99 56.43± 1.38
DHE RSA AES 128 GCM SHA256 72.03± 1.31 398.97± 13.99 48.16± 2.01 597.70± 10.45 56.54± 1.37
DHE RSA AES 256 CBC SHA256 80.41± 1.84 407.22± 8.44 49.79± 1.45 609.77± 9.92 57.75± 1.08
DHE RSA AES 128 CBC SHA256 81.53± 1.60 407.48± 12.18 50.00± 2.09 614.02± 10.70 58.32± 1.16
RSA AES 256 GCM SHA384 44.24± 1.00 357.97± 6.42 42.94± 1.15 433.94± 9.61 47.98± 1.37
RSA AES 128 GCM SHA256 42.79± 0.84 357.64± 10.73 43.06± 1.71 433.06± 7.43 47.81± 1.05
RSA AES 256 CBC SHA256 48.77± 0.95 356.09± 13.43 42.85± 1.79 425.45± 8.43 46.73± 1.44
RSA AES 128 CBC SHA256 49.88± 1.37 360.97± 8.19 43.58± 1.25 436.00± 9.21 47.96± 1.28
ECDHE RSA AES 256 GCM SHA384 46.32± 2.56 365.65± 9.22 44.26± 1.34 437.81± 10.05 48.42± 1.49
ECDHE RSA AES 128 GCM SHA256 43.45± 0.78 361.75± 7.48 43.27± 1.37 427.02± 8.18 47.04± 1.33
ECDHE RSA AES 256 CBC SHA384 51.44± 1.01 370.91± 12.18 45.45± 1.75 446.27± 10.12 48.77± 1.09
ECDHE RSA AES 128 CBC SHA256 52.26± 2.18 360.33± 11.61 44.26± 1.61 429.47± 8.00 47.12± 1.31

Having already separated TLS version, we must now break-
down cipher suite evaluation according to its four components:
Key Exchange/Agreement, Authentication, bulk-data Encryp-
tion, and Integrity. First, we consider Diffie-Hellman (DH)
+ RSA, Elliptic-Curve Diffie-Hellman (ECDH) + RSA and
just RSA for Key Exchange/Agreement. As expected, DH
+ RSA was far slower than just RSA (when performing a
direct access, ≈ 30ms slower, which is ≈ +90%), being
ECDH + RSA only slightly slower (on average) than using
just RSA (negligible difference as they are very near each
others’ interval). However, in relative terms, the difference
becomes less pronounced when using a MITM. The stock
mitmproxy has a penalty of about ≈ 50ms (≈ +10%) for
DH + RSA vs. just RSA, while our version with the SFC
addon has a penalty of about ≈ 150ms (≈ +33%) for the
same comparison. These relative differences between MITMs
are justifiable by the contribution that (different) internal traffic
processing has over the results, as we can see when comparing
against the unencrypted control, which shows that (in our
worst case) adding DH + RSA has a similar relative penalty
(over unencrypted) in both MITM, ≈ (225− 230)%.

As for bulk-data encryption, we compare AES with two
block sizes (128 and 256 bits) along with two cipher modes
(CBC and GCM). However, given the available cipher suites
tend to force different digests for different block sizes, we must
take care when analyzing these results. We observed that per-
formance is similar between AES 128 and 256 bits (when us-
ing same digests), having GCM outperformed CBC across the
board. As for digests, we observed that going from SHA256
to SHA384 (while also increasing block size from 128 to 256
bits) yields results within the margin of each other, therefore
the impact in this scope is negligible. Given the similarity
in performance between just RSA and ECDH, similar perfor-

mance with both block sizes, and GCM cipher mode perform-
ing faster than CBC. For further evaluation of our SFC-MITM,
we used the ECDHE RSA AES 256 GCM SHA384 cipher
suite as it provides the best compromise between highest
security and best performance.

Regarding CPU time, we can see that going from unen-
crypted to encrypted in both MITM versions has an overhead
of ≈ 25 − 30 ticks. Comparing SFC-MITM to S-MITM, we
can observe a rise of ≈ 10 ticks for the most computationally
demanding ciphers suites, while less demanding ones have a
smaller rise (≈ 3 ticks). The introduction of SFC support in
the MITM has some impact in CPU consumption, but it can
be mitigated with appropriated choice of cipher suite.

We also evaluated the influence in regards to RTT, load time,
and throughput of different traffic analysis techniques com-
paring DA (no traffic analysis), DPI (Non-Intrusive analysis),
S-MITM (Intrusive analysis: opened traffic is processed within
mitmproxy), and SFC-MITM (Intrusive analysis: opened traf-
fic is processed by a SFC without NFs). Table II, Traffic
Analysis shows the collected results.

Comparing DA to DPI, we can observe their confidence
intervals overlap in all measurements both for Plain Text
and for the chosen cipher suite. Thus, we can conclude that
statistically they have the same performance. In regards to
RTT and load time, we can observe that SFC-MITM imposes
a rise comparable both to DA and DPI and to unencrypted and
encrypted content, but we can also observe that most of this
rise is due to the introduction of a MITM and cryptography.
Thus, we can conclude that most of the impact in regards to
RTT and load time comes from the MITM approach through
mitmproxy (with an added penalty for SFC) and adoption of
encryption. In regards to throughput, most confidence intervals
overlap, except SFC-MITM when processing encrypted traffic.



TABLE II
OVERHEAD INFLICTED BY INTRUSIVENESS AND NETWORK FUNCTIONS IN CHAIN

Plain Text TLSv1.2 (ECDHE RSA AES 256 GCM SHA384)

Traffic Analysis rtt (ms) load time (ms) throughput (MiB/s) rtt (ms) load time (ms) throughput (MiB/s)

Direct Access 6.49± 0.21 24.56± 0.82 111.66± 5.45 6.51± 0.21 43.66± 1.00 104.53± 6.62
Non-Intrusive (DPI) 6.87± 0.22 25.48± 0.79 111.19± 4.81 6.39± 0.17 44.34± 0.92 99.02± 6.52

Stock mitmproxy 13.40± 0.44 171.04± 3.80 114.19± 5.85 36.76± 2.22 357.21± 8.10 96.94± 4.92
SFC-enabled MITM (0 NFs) 20.18± 0.57 263.94± 4.83 113.77± 5.24 45.71± 1.53 421.43± 7.81 82.78± 2.51

Intrusive NFs
Anti-Virus (HAVP) 20.76± 0.56 279.60± 6.33 107.41± 3.88 45.24± 0.97 484.83± 8.22 80.32± 2.25

Content Cache (squid) 13.70± 0.45 218.88± 3.74 105.55± 6.20 39.61± 0.58 309.96± 5.92 81.94± 2.34
Content Filter (e2guardian) 21.99± 0.72 268.79± 4.90 108.72± 3.57 46.53± 1.26 440.56± 8.10 80.22± 1.95
Content Optimizer (ziproxy) 20.80± 0.42 296.72± 6.22 114.49± 5.29 46.21± 1.21 459.13± 7.29 83.92± 1.93

Both CC+CO (squid+ziproxy) 15.92± 0.60 184.53± 4.97 103.98± 4.33 41.37± 0.84 271.83± 7.09 74.28± 2.53
All of above in chain 14.61± 0.64 210.23± 4.93 112.84± 4.74 45.05± 1.53 295.11± 10.86 78.29± 2.35

SFC length (with ziproxy)
SFC-enabled MITM (1 NFs) 20.98± 0.59 299.24± 6.08 112.64± 5.22 43.55± 0.74 453.35± 7.76 84.01± 2.34
SFC-enabled MITM (2 NFs) 21.06± 0.34 324.94± 5.45 111.62± 4.63 48.21± 1.36 476.00± 7.71 83.77± 2.70
SFC-enabled MITM (3 NFs) 24.82± 0.99 350.39± 8.53 113.56± 4.34 45.95± 0.90 515.08± 9.74 82.44± 1.91
SFC-enabled MITM (4 NFs) 23.56± 0.65 363.89± 7.51 109.35± 3.74 51.14± 2.19 546.91± 9.31 83.74± 2.78
SFC-enabled MITM (5 NFs) 25.22± 0.77 391.90± 8.20 109.30± 5.21 51.82± 1.80 577.41± 10.81 81.06± 2.31
SFC-enabled MITM (6 NFs) 25.17± 0.51 426.66± 6.95 108.06± 4.07 50.73± 1.87 605.98± 8.84 81.42± 2.72
SFC-enabled MITM (7 NFs) 28.21± 0.81 445.30± 8.26 112.79± 3.86 50.96± 1.44 625.52± 12.13 84.64± 2.89
SFC-enabled MITM (8 NFs) 26.99± 0.56 475.94± 6.15 111.07± 3.97 51.72± 1.27 663.68± 11.84 82.83± 2.86
SFC-enabled MITM (9 NFs) 28.01± 0.56 504.00± 12.20 109.81± 4.48 54.81± 1.69 677.40± 12.75 81.40± 2.27

SFC-enabled MITM (10 NFs) 29.61± 0.65 522.68± 7.78 112.64± 3.31 53.16± 1.01 718.69± 13.11 83.67± 3.02

Thus, we can conclude that introducing SFC support into
mitmproxy had an impact in regards to throughput. These
results confirm our assumption that, performance wise, the
Classifier is important to choose the appropriated analysis
(Intrusive or not) to best fit the performance requirements.

We evaluated the impact of each function type (Table II,
Intrusive NFs). Overall, the results show that all NFs have
a similar impact in our system, being most results (RTT,
load time, and throughput) within the confidence interval of
each other. One exception is when Content Cache (squid)
is in the SFC because its cache functionality improves all
measurements. Other exception is Content Optimizer (ziproxy)
that achieved the best results in regards to throughput.

We evaluated the impact of the SFC length (Table II, SFC
length) varying its length from 1 to 10 NFs. In regards to
RTT, we can observe an increase of ≈ 1ms per NF both
for Plain Text and for the chosen cipher suite. In regards
to load time, we can observe a higher rise (≈ 25 − 30ms)
per NF accumulating ≈ 270ms when the 10 NFs are in
place. In regards to throughput, we can observe that all
measurements overlap both in Plain Text and in chosen cipher
suite groups. In this sense, we can conclude that the throughput
is not affected by the SFC length, but by the computational
overheads (manifested with cryptography).

Our experiments exhibit an expected impact of performance
introduced by MITM approaches, which emphasize that NFV
can be a interesting enabler of MITM approaches due to easier
scalability achieved by the paradigm. These observations also
show that the SFC approach is appropriated to handle traffic
opened by the SFC-MITM through NFs. It must be noted the
required care about the SFC length in regards to load time.

B. Functionality evaluation - Case Study

We considered an enterprise which has remote workers
connected through constrained connections which require opti-
mization to communicate with other workers/access content in
the main office. Bring-Your-Own-Devices (BYODs), sophisti-
cated malware, and disgruntled employees may compromise
endpoint security, therefore displacing security enforcement
to the network is a requirement of our scenario. Throughout
the enterprise network, it is prohibited access to inappropriate
content, which requires filtering capabilities in the network to
block such content. Since ISPs started adopting data caps, the
enterprise requires caching the content to reduce its Internet
bill. Data caps also apply to the connection to remote offices
enforcing the optimization requirement in that network link.

As our architecture allows for any existing NF to process
traffic, we used well established open source solutions to
evaluate these functionalities: a Content Optimizer (ziproxy);
a Content Filter (e2guardian); an Anti-Virus (HAVP); and a
Content Cache (squid). However, with the rise of adoption of
encryption, their functionalities “out-of-the-box” are hindered
because they rely on the content to work properly. We decided
to check whether their functionalities could be recovered by
the SFC-MITM with these solutions acting as NFs. Although
both e2guardian and squid could act as their own MITM, for
the sake of manageability, we chose to use only our MITM to
perform this task. Other NFs would not work properly without
the SFC-MITM delivering the Plain Text to them.

The functionalities provided by the Anti-virus (HAVP) and
Content Filter (e2guardian) were checked through individual
tests giving to them the encrypted traffic or the traffic opened



TABLE III
REMOTE OFFICE AND DATA CAPS OPTIMIZATION SCENARIOS (TLSv1.2 ECDHE RSA AES 256 GCM SHA384)

Data to Remote Office (Client) [KiB] Data from Internet (Router) [KiB] Page Load Time (Client) [ms]

#Req squid ziproxy squid+ziproxy SFC-MITM squid ziproxy squid+ziproxy SFC-MITM squid ziproxy squid+ziproxy SFC-MITM

1 1491.60 148.16 148.87 1491.40 1514.32 1514.32 1515.28 1513.87 446 480 454 430
2 1493.26 148.11 148.44 1491.61 0 1514.78 0 1510.64 302 445 251 433
3 1505.84 148.31 148.65 1491.61 0 1499.46 0 1519.49 300 534 300 423
4 1492.55 148.21 148.55 1491.55 0 1526.71 0 1505.78 301 425 252 440
5 1495.46 148.21 148.55 1491.35 0 1509.53 0 1503.10 316 462 250 453

by the SFC-MITM within the SFC. In this case, Anti-Virus
successfully detected the “virus” signature of the eicar test file
and the Content Filter blocked pages containing inappropriate
words to enterprise environments. This evaluation shows that
their functionalities were recovered when acting as NFs within
an SFC to process traffic opened by the SFC-MITM. Thus,
they can be useful again for enterprise’s networks.

The functionalities provided by the Content Optimizer
(ziproxy) and Content Cache (squid) were checked through
a sequence of 30 requests to the same static page, detailed
previously. The squid cache was emptied before each iteration.
Table III shows the received data on the client (Remote Office
Optimization) and on the Router from the Internet (Data Caps
Optimization). We also combined an SFC with both NFs
(squid+ziproxy). The SFC-MITM values are provided as a
control because it reflects a chain without NFs. The values
are referred to the initial 5 requests to the static page with 5
images because the next requests show the same pattern.

Remote Office Optimization is in charge of the Content
Optimizer (ziproxy). Table III shows that ziproxy reduces the
amount of traffic received in the client from ≈ 1491KiB to
≈ 148KiB. It was configured to convert images to gray scale
ones. Although this configuration sounds unrealistic, it visually
exposes, as intended, that its functionality was recovered.

Data Caps Optimization is in charge of the Content Cache
(squid). Table III shows that squid reduces the amount of traffic
received on the Router from the web server from ≈ 1519KiB
to 0 between the first request (clean cache) and the second
one. These results may be exaggerated due to the static nature
of the pages evaluated. Even though nowadays most pages
are dynamic and only certain assets may be cached, this still
exposes that cache functionality was recovered inside the SFC,
as intended, allowing further study, such as leveraging this as a
local cache to serve content when the mobile link is dropped.

The functional evaluation showed that SFC-MITM em-
powered with functionalities provided by the NFs can be
appropriated for achieving enterprise network requirements.

V. CONCLUSION

It was shown that the lost functionality taken by the mass-
adoption of encryption could be recovered using the proposed
MITM and SFCs built from existing plain-text VNFs. How-
ever, as expected, the MITM method introduces a signifi-
cant computational overhead, which we have addressed with
the proposed network architecture. The architecture allows
to make on-the-fly tradeoffs between privacy, performance,

security, and functionality, by choosing the most appropriate
intrusive or non-intrusive SFC to process that given flow. The
results confirm that non-intrusive methods have a significant
performance advantage, while intrusive methods make-up for
their losses in restored functionality. The study shows that
the architecture is promising, calling for further research
of policy definition schemes and control-plane decisions for
classification, and its relation with data security in NFV/NFs.

ACKNOWLEDGMENT

This work is supported by the European Regional Devel-
opment Fund (FEDER), through the Competitiveness and In-
ternationalization Operational Programme (COMPETE 2020)
of the Portugal 2020 framework [Project Smart EnterCom
with Nr. 021949 (POCI-01-0247-FEDER-021949)] and by
CAPES (Brazilian Federal Agency for Support and Evaluation
of Graduate Education) within the Ministry of Education of
Brazil, under the project FCT number 0409/2016 entitled ”Um
Ecossistema para Funções Virtualizadas de Rede”.

REFERENCES

[1] A. W. Moore and D. Zuev, “Internet traffic classification using bayesian
analysis techniques,” in Proceedings of the 2005 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer
Systems. New York, NY, USA: ACM, 2005, pp. 50–60.

[2] B. Anderson and D. McGrew, “Identifying encrypted malware traffic with
contextual flow data,” in Proceedings of the 2016 ACM Workshop on
Artificial Intelligence and Security, ser. AISec ’16. New York, NY,
USA: ACM, 2016, pp. 35–46.

[3] J. Halpern and C. Pignataro, “Service function chaining (sfc) architec-
ture,” Internet Requests for Comments, RFC Editor, RFC 7665, October
2015.

[4] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “Blindbox: Deep
packet inspection over encrypted traffic,” in Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication,
ser. SIGCOMM ’15. New York, NY, USA: ACM, 2015, pp. 213–226.

[5] J. Han, S. Kim, J. Ha, and D. Han, “Sgx-box: Enabling visibility on
encrypted traffic using a secure middlebox module,” in Proceedings of
the First Asia-Pacific Workshop on Networking, ser. APNet’17. New
York, NY, USA: ACM, 2017, pp. 99–105.

[6] D. Naylor, K. Schomp, M. Varvello, I. Leontiadis, J. Blackburn, D. R.
López, K. Papagiannaki, P. Rodriguez, and P. Steenkiste, “Multi-context
tls (mctls): Enabling secure in-network functionality in tls,” in Proceed-
ings of the 2015 ACM Conference on Special Interest Group on Data
Communication. New York, NY, USA: ACM, 2015, pp. 199–212.

[7] E. Haleplidis, K. Pentikousis, S. Denazis, J. H. Salim, D. Meyer, and
O. Koufopavlou, “Software-Defined Networking (SDN): Layers and
Architecture Terminology,” RFC 7426, Jan. 2015.

[8] D. Bhamare, R. Jain, M. Samaka, and A. Erbad, “A survey on service
function chaining,” Journal of Network and Computer Applications,
vol. 75, pp. 138–155, 2016.

[9] M. D. Herve Jegou and C. Schmid, “Hamming embedding and weak
geometry consistency for large scale image search,” in Proceedings of
the 10th European conference on Computer vision, October 2008.


