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ARTICLE INFO ABSTRACT

Handling Editor: Lesa Aylward Background and aims: Fetal exposure to endocrine disruptors such as phthalates and bisphenols may lead to
developmental metabolic adaptations. We examined associations of maternal phthalate and bisphenol urine

Iéﬁ;ﬁgﬁf‘; disruptors concentrations during pregnancy with lipids, insulin, and glucose concentrations at school age.

Phthalates Methods: In a population-based, prospective cohort study among 757 mother—child pairs, we measured maternal
Bisphenols phthalate and bisphenol urine concentrations in first, second and third trimester of pregnancy. We measured
Lipids non-fasting lipids, glucose and insulin blood concentrations of their children at a mean age of 9.7 (standard
Glucose deviation 0.2) years. Analyses were performed for boys and girls separately.

Results: An interquartile range (IQR) higher natural log transformed third trimester maternal urine phthalic acid
concentration was associated with a 0.20 (95% confidence interval (CI) 0.07-0.34) standard deviation score
(SDS) higher triglycerides concentration among boys. Maternal bisphenol urine concentrations were not asso-
ciated with non-fasting lipid concentrations during childhood. An IQR higher natural log transformed second
trimester maternal high molecular weight phthalates (HMWP) and di-2-ethylhexylphthalate (DEHP) urine
concentration were associated with a 0.19 (95% CI 0.31-0.07) respectively 0.18 (95% CI 0.31-0.06) SDS lower
glucose concentration among boys. An IQR higher natural log transformed third trimester maternal bisphenol F
urine concentration was associated with a 0.22 (95% CI 0.35-0.09) SDS lower non-fasting insulin concentration
among boys.

Conclusions: Our results suggest potential persisting sex specific effects of fetal exposure to phthalates and bi-
sphenols on childhood lipid concentrations and glucose metabolism. Future studies are needed for replication
and exploring underlying mechanisms.

1. Introduction medical devices (Ye et al., 2008; Russo et al., 2019; Schettler, 2006).
Fetal life may be a specific critical period for the possible effects of
Endocrine-disrupting chemicals (EDCs), such as phthalates and bi- phthalates and bisphenols because they pass the placenta (Nahar et al.,

sphenols, are widely used in food packaging, household products and 2015; Mose et al., 2007). The mechanisms by which phthalates and
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Table 1

Urinary concentrations of phthalates and bisphenols during pregnancy, stratified in boys and girls.

Environment International 144 (2020) 106063

First trimester

Second trimester

Third trimester

Median (25th-75th percentile) Median (25th-75th percentile) Median (25th-75th percentile)
Boys Girls Boys Girls Boys Girls
Phthalic Acid (PA) (nmol/L) 343.1 365.1 903.8 832.3 368.7 419.5
(179.4-645.5) (185.0-779.4) (372.0-1658.6)  (337.8-1687.7)  (188.9-778.0) (219.9-889.9)
Low-molecular-weight phthalates (LMWP) (nmol/L) 1094.8 1102.0 520.5 573.8 921.1 1008.3
(477.8-2653.5)  (400.8-3118.0)  (228.1-1281.0)  (221.4-1659.0)  (372.6-2244.8)  (410.7-2773.1)
Monomethylphthalate (mMP) (nmol/L) 28.7 30.2 17.9 19.1 19.4 24.8
(15.1-54.5) (15.3-55.7) (9.9-33.6) (9.3-35.4) (10.2-37.8) (11.6-52.7)
Monoethylphthalate (mEP) (nmol/L) 677.8 710.8 315.4 376.9 581.0 658.1
(210.3-2329.3) (208.1-2574.9) (112.6-970.4) (124.0-1409.1) (205.4-1818.1) (219.9-2378.1)
Mono-isobutylphthalate (mIBP) (nmol/L) 101.5 98.1 36.5 39.9 69.3 84.2
(45.9-217.6) (43.0-191.3) (19.3-78.6) (18.8-78.8) (39.7-138.3) (43.8-174.4)
Mono-n-butylphthalate (mBP) (nmol/L) 78.5 72.6 43.0 41.3 52.9 56.9
(32.5-150.0) (32.7-140.2) (23.5-82.7) (22.3-85.6) (27.2-97.2) (28.0-117.1)
High molecular-weight phthalates (HMWP) (nmol/L) 217.3 218.4 131.8 121.9 156.7 178.2
(111.0-414.9) (115.8-385.5) (73.7-242.3) (67.8-221.4) (92.5-268.9) (97.4-318.1)
Monobenzylphthalate (mBzBP) (nmol/L) 22.0 22.4 19.6 19.2 10.8 12.8
(8.7-47.9) (9.4-47.8) (7.7-37.5) (8.2-42.5) (3.9-23.7) (4.1-25.2)
Mono-hexylphthalate (mHxP) (nmol/L) 1.0 0.9 NA NA NA NA
(0.4-2.2) (0.3-1.9)
Mono-2-heptylphthalate (mHpP) (nmol/L) 2.1 2.1 NA NA NA NA
(0.8-5.3) (0.8-5.5)
Monocyclohexyl-phthalate (mCHP) (nmol/L) 0.1 0.1 NA NA NA NA
(0.1-0.1) (0.1-0.1)
Di-2-ehtylhexylphthalate (DEHP) (nmol/L) 171.9 174.2 96.8 89.4 132.3 146.8
(89.8-315.1) (89.9-300.7) (49.9-184.2) (48.2-164.9) (75.3-225.9) (80.3-274.1)
Mono-(2-ethyl-5-carboxy-pentyl)phthalate (mECPP) (nmol/L) 51.6 51.2 33.8 30.6 54.1 59.8
(25.9-100.0) (27.1-99.4) (17.4-64.9) (17.8-58.6) (28.9-103.7) (30.4-110.3)
Mono-(2-ethyl-5-hydroxy-hexyl)phthalate (mEHHP) (nmol/L) 41.4 43.5 19.2 17.8 31.0 39.4
(20.8-79.9) (20.5-75.0) (10.0-37.1) (9.2-34.2) (17.1-59.4) (18.2-75.2)
Mono-(2-ethyl-5o0xohexyl)phthalate (mEOHP) (nmol/L) 27.0 26.5 25.2 22.5 22.0 26.9
(12.1-55.6) (12.5-49.5) (12.4-57.5) (10.6-52.5) (13.3-42.3) (14.0-50.0)
Mono-[(2-carboxymethyl)-hexyl] phthalate (nCMHP) (nmol/L)  44.2 46.9 12.51 12.3 9.7 12.4
(24.3-67.8) (24.5-83.2) (6.8-24.2) (6.9-22.9) (6.0-19.7) (5.7-22.5)
Di-n-octylphthalate (DNOP) 5.7 6.4 3.5 3.3 6.6 6.9
(3.2-11.2) (2.9-10.7) (2.0-6.8) (1.9-6.1) (3.7-12.1) (3.8-13.2)
Mono(3-carboxypropyl)- phthalate (mCPP) (nmol/L) 5.7 6.4 3.5 3.3 6.6 6.9
(3.2-11.2) (2.9-10.7) (2.0-6.8) (1.9-6.1) (3.7-12.1) (3.8-13.2)
Bisphenols (nmol/L) 9.7 8.7 6.0 5.8 8.4 10.0
(3.6-21.7) (3.4-21.6) (2.8-12.5) (2.9-13.5) (3.8-17.0) (4.5-19.3)
Bisphenol A (BPA) (nmol/L) 5.0 4.6 5.7 5.1 5.9 7.0
(1.0-12.4) (1.0-15.0) (2.6-11.6) (2.5-11.8) (2.5-11.0) (2.8-13.2)
Bisphenol S (BPS) (nmol/L) 0.8 0.6 0.1 0.1 NA NA
(0.1-3.0) (0.1-2.3) (0.1-0.5) (0.1-0.4)
Bisphenol F (BPF) (nmol/L) 0.6 0.6 NA NA 0.6 0.6
(0.6-1.7) (0.6-2.4) (0.6-2.6) (0.6-1.3)

Values represent medians (25th-75th percentiles). Absolute urinary concentration of the grouped exposures (in nmol/L urine) and individual exposures (in nmol/L
urine) with concentrations below the limit of detection imputed as limit of detection/square root of 2. Only values that are included in the calculation of the grouped

exposures are included in this table.
NA: not applicable due to > 80% of concentrations below limit of detection.

bisphenols may affect fetal development are by stimulating estrogen
and inhibiting androgen receptors, activating peroxisome proliferator-
activated receptors (PPARs) or retinoid X receptors (RXRs), and chan-
ging the fetal transcriptome (Mattison et al., 2014). Thus far, cross-
sectional studies in adult populations showed inconsistent results for
the associations of phthalates and bisphenols with several metabolic
diseases in humans, such as obesity, hypertension and diabetes
(Ranciere et al., 2015; Golestanzadeh et al., 2019; James-Todd et al.,
2012).

Currently, only limited prospective studies on the associations of
fetal exposure to phthalates or bisphenols with metabolic diseases are
available and they showed no clear association of fetal exposure to
phthalates or bisphenols with childhood lipid and glucose metabolism
(Vafeiadi et al., 2016, 2018; Perng et al., 2017; Watkins et al., 2016). In
a Greek cohort study, first trimester bisphenol A (BPA) urine con-
centrations were not associated with non-fasting lipid concentrations at
4 years, while third trimester phthalates urine concentrations were
negatively associated with non-fasting high density lipoprotein (HDL)-

cholesterol concentrations at 4 years, but not with cholesterol con-
centrations or metabolic outcomes at 6 years (Vafeiadi et al., 2016,
2018). In another study among 227 mother—child pairs from Mexico, no
consistent associations were found for pregnancy-averaged maternal
urine BPA or phthalate concentrations with lipid profiles among 8-14-
year-old children (Perng et al., 2017). Sex- and pubertal status-depen-
dent associations were observed of third trimester phthalate and BPA
exposures with C-peptide and fasting glucose at 8-14 years (Watkins
et al., 2016). Although the previous studies explored sex-specific asso-
ciations, the study populations were smaller than 300 subjects and thus
might have been underpowered.

We hypothesized that fetal exposure to phthalates and bisphenols
leads to fetal metabolic adaptations, which persistently affect glucose
and lipid metabolism. We assessed the sex-specific associations of ma-
ternal phthalate and bisphenol urine concentrations in first, second and
third trimester of pregnancy with non-fasting lipids, glucose and insulin
concentrations in their children at the age of 10 years.
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2. Materials and methods
2.1. Study design

This study was embedded in the Generation R Study, a population-
based prospective cohort study from early fetal life onwards in
Rotterdam, the Netherlands (Jaddoe et al., 2012). Phthalate and bi-
sphenol concentrations were measured among a subgroup of 1,405
mothers, whose singleton children also participated in postnatal stu-
dies. We excluded mothers without information on phthalate and bi-
sphenol urine concentrations for at least one time point in pregnancy
and whose children had no measurement of metabolic risk factors at
10 years. The population for analysis comprises 757 mother—child pairs
(the specific sample per outcome is shown in Supplemental Fig. 1). The
study protocol confirms to the ethical guidelines of the 1975 Declara-
tion of Helsinki and has been approved by the Medical Ethical Com-
mittee of the Erasmus MC, University Medical Centre in Rotterdam.
Written informed consent was obtained from all participants.

2.2. Maternal phthalate and bisphenol urine concentrations

Phthalate and bisphenol concentrations were measured in spot
urine samples obtained from each woman at three time points during
pregnancy (median 12.9 weeks of gestation (25th-75th percentiles
12.1-14.6); median 20.4 weeks of gestation (25th-75th percentiles
19.9-20.9); median 30.2 weeks of gestation (25th-75th percentiles
29.9-30.8)). These periods were considered as first, second and third
trimester. Urine samples were collected between February 2004 and
July 2005. The analyses of phthalate, bisphenol and creatinine con-
centrations were performed at the Wadsworth Center, New York State
Department of Health, Albany, New York, USA, using previously de-
scribed methods (Philips et al., 2018). Urine biomarkers for exposure to
phthalate metabolites were grouped according to their molecular
weight and parent phthalates into low molecular weight phthalates
(LMWP) and high molecular weight phthalates (HMWP), which in-
cludes subgroups of di-2-ethylhexylphthalate (DEHP) and di-n-oc-
tylphthalate (DNOP) metabolites. Phthalic acid (PA) was analyzed se-
parately as a proxy for total phthalate exposure. Bisphenols A (BPA), S
(BPS) and F (BPF) were grouped and used as proxy for total bisphenol
exposure. Weighted molar sums were calculated for the different groups
of phthalates and bisphenols. Individual phthalates and bisphenols
were included in the groups if < 80% of their concentrations at that
time point was below the limit of detection (LOD). All concentrations
below the LOD were substituted by LOD divided by the square root of 2
(LOD/V2) (Hornung, 1990). The descriptive statistics of the individual
and grouped phthalates and bisphenols investigated are shown for boys
and girls in Table 1 and for the total group in Supplemental Table S1.
The intraclass correlation coefficients between the grouped natural log-
transformed phthalates and bisphenols across pregnancy were assessed
using a single measurement, absolute agreement and two-way mixed
effects model and varied between 0.06 and 0.35 (Supplemental Table
S1). We also assessed the Pearson’s correlation coefficients between all
natural log-transformed creatinine-corrected phthalates and bisphenols
which showed that the overall correlations were low-moderate, espe-
cially between different trimesters and different groups (Supplemental
Table S2). To account for urinary dilution, urine concentrations of
phthalates and bisphenols were converted to umol/g creatinine for the
metabolite groups. To reduce the potential for exposure misclassifica-
tion due to temporal variability, we calculated the overall mean ex-
posure during pregnancy by summing the first, second and third tri-
mester phthalate and bisphenol urine concentrations and dividing that
by the three time points.
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2.3. Childhood metabolic risk factors

As described previously, children were invited to visit our research
center around the age of 10 years (Kooijman et al., 2016). We obtained
non-fasting venous blood samples and measured total cholesterol, HDL-
cholesterol, triglycerides, glucose and insulin concentrations. Total
cholesterol, HDL-cholesterol, triglycerides and glucose concentrations
were measured on the Cobas 8000 analyzer using the c702 module.
Insulin was measured with electrochemiluminescence immunoassay
(ECLIA) on the E411 module (Roche, Almere, the Netherlands)
(Kruithof et al., 2014). Low-density lipoprotein (LDL)-cholesterol was
calculated according to the Friedewald formula (Onyenekwu et al.,
2014). For the assessment of the risk of adverse cardio-metabolic risk
factors, children were divided into groups based on their concentrations
of triglycerides, HDL-cholesterol, LDL-cholesterol and insulin. The 75th
percentile was used as the cut-off for triglycerids (=1.3000 mmol/l),
LDL-cholesterol (=2.6927 mmol/l) and insulin (=310.0500 pmol/1)
and the 25th percentile was used as the cut-off for HDL-cholesterol
(=<1.2300 mmol/1).

2.4. Covariates

Information on maternal characteristics, including age, ethnicity,
pre-pregnancy body mass index, use of folic acid supplementation,
educational level, parity, and maternal smoking habits and alcohol
consumption (specifically in first, second and third trimester of preg-
nancy or during pregnancy) and maternal diet were obtained from
questionnaires during pregnancy. To assess maternal diet, a previously
developed food-based diet quality score was used, reflecting adherence
to national dietary guidelines (Nguyen et al., 2017). Child’s sex was
obtained from midwife and hospital records at birth. Weight and height
were measured during the visit at our research center to calculate the
child’s body mass index (BMI), which was then standardized for age and
sex. A simplified Directed Acyclic Graph (DAG) showing the hypothe-
sized relationship between fetal exposure to phthalates and bisphenols,
childhood metabolic risk factors and the covariates is presented in
Supplemental Fig. 2.

2.5. Statistical analysis

For all analyses, maternal phthalate and bisphenol urine con-
centrations were natural log-transformed to reduce variability and ac-
count for right skewness of the distribution and further standardized by
the interquartile range (IQR) to ease the interpretation of effect sizes.
We also natural log-transformed the non-normally distributed child-
hood metabolic risk factors (triglycerides and insulin) and constructed
standard-deviation scores (SDS) [(observed value - mean)/SD] of the
sample distribution of all outcomes to enable comparisons of effect
sizes. Participants were compared with non-participants on all ex-
posures and covariates by using Chi-square tests, student’s t-tests and
Mann-Whitney U tests, when applicable.

We assessed linearity of the associations of maternal phthalate and
bisphenol urine concentrations (per time point and overall mean during
pregnancy) with childhood metabolic risk factors by assessing the re-
siduals of the regression in a P-P plot, assessing homoscedascity and
multicollinearity and used linear regression models if the residuals were
normally distributed, the residuals were homoscedastic and if the var-
iance inflation factors were below 5.00. To examine the independent
associations of maternal first, second and third trimester phthalate and
bisphenol urine concentrations with childhood metabolic risk factors,
we created a mutually adjusted model by simultaneously including in
the model the exposures at all three time points during pregnancy, after
testing whether there were no issues with multicollinearity
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(correlations < 0.70) (Supplemental Table S1). We used logistic re-
gression to assess the associations of maternal urine phthalate or bi-
sphenol concentrations with being in the highest risk-category.

First, models were adjusted for child’s age and sex only (basic
model). Potential confounders were identified based on the graphical
criteria for confounding by visualizing a DAG and then we included
those in the models that changed the effect estimates > 10% for at
least one of the outcomes (Santos et al., 2019). The inclusion of
childhood BMI in the model marginally decreased the effect estimates
and we only present the fully adjusted models including childhood BMI.
As a sensitivity analysis, we performed the analyses of insulin with
glucose included in the model because non-fasting samples were used
and the time since the last meal was unknown. Based on our hypothesis
of sex-specific effects and based on the influence of folic acid on the
metabolism of phthalates and bisphenols, we tested for statistical in-
teraction of child’s sex. We also tested for statistical interaction of folic
acid supplement use, since folic acid can influence methylation and one
of the proposed mechanisms by which phthalates and bisphenols exert
their influence could by through changes in DNA methylation (Gules
et al.,, 2019; Dolinoy et al., 2007; Pauwels et al., 2017). We found
statistically significant interactions (p-value < 0.10) for child’s sex
only and presented all results for boys and girls separately.

To correct for multiple hypothesis testing, each p-value was com-
pared with a threshold defined as 0.05 divided by the effective number
of independent tests estimated based on the correlation structure be-
tween the exposures (p-value threshold of 0.0098) (Li et al., 2012). To
maintain statistical power and reduce bias related to missing data on
covariates, we performed multiple imputation according to the Markov
Chain Monte Carlo method. The percentage of missing values for cov-
ariates ranged from O to 22.7%. Covariates were used as predictor
variables and imputed when necessary, while metabolic risk factors
were used as predictor variables only. In addition, birth weight, ge-
stational age at birth, blood pressure at 10 years old and heart fre-
quency at 10 years old were used as predictor variables. Ten imputed
datasets were created and no substantial differences were found be-
tween the original and imputed datasets. We present results based on
pooled imputed datasets. All statistical analyses were performed using
the Statistical Package of Social Sciences version 25.0 for Windows
(SPSS Inc., Chicago, IL, USA).

3. Results
3.1. Participant characteristics

Table 2 shows participant characteristics for the total group and for
boys and girls separately. Non-response analyses showed that non-
participants tended to have higher urine concentrations of some
phthalates, were younger, lower educated and less likely to consume
alcohol during pregnancy (Supplemental Tables S3 and S4).

3.2. Maternal phthalate urine concentrations and childhood lipid profiles

Table 3 shows that among boys an IQR increase in natural log-
transformed third trimester maternal urine phthalic acid concentrations
was associated with 0.20 (95% Confidence Interval (CI) 0.07; 0.34) SDS
higher natural log transformed triglyceride concentrations (basic
models are presented in Supplemental Table S5). This association was
also present in the mutually adjusted model (Supplemental Table S6).
The associations of higher overall mean maternal DEHP and overall
mean maternal DNOP urine concentrations with higher triglycerides
concentrations among boys did not remain significant after multiple
testing adjustment (Table 3 and Supplemental Table S7). Similarly, the
associations among girls of higher second trimester maternal phthalic
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acid urine concentrations with lower triglyceride concentrations in both
the adjusted and mutually adjusted model and the association of higher
third trimester maternal DNOP urine concentrations with higher nat-
ural log transformed triglyceride concentrations did not remain sig-
nificant after multiple testing adjustment (Table 3 and Supplemental
Table S6). Maternal phthalate urine concentrations were not associated
with cholesterol concentrations among boys or girls.

3.3. Maternal bisphenol urine concentrations and childhood lipid profiles

Among boys, maternal bisphenol urine concentrations were not
associated with childhood total or LDL cholesterol concentrations
(Supplemental Table S8). The associations of higher first and third
trimester maternal BPF urine concentrations with higher HDL-choles-
terol and triglycerides concentrations, respectively, among boys did not
remain significant after correction for multiple testing (Table 4). Higher
natural log-transformed overall mean maternal bisphenol and BPA
urine concentrations were associated with lower natural log trans-
formed triglyceride concentrations among girls, although these asso-
ciations did not remain significant after correction for multiple testing
(Supplemental Table S7). Maternal bisphenol urine concentrations were
not associated with total or HDL-, or LDL-cholesterol concentrations
among girls (Table 4). No associations were found in the mutually
adjusted model (Supplemental Table S9).

3.4. Maternal phthalate urine concentrations and childhood glucose
metabolism

Among boys, after adjustment for confounders, an IQR higher
second trimester and overall mean maternal HMWP and DEHP urine
concentrations was associated with a 0.19 (95% CI 0.31-0.07), 0.18
(95% CI 0.30-0.06), 0.18 (95% CI 0.31-0.06), 0.19 (95% CI 0.31-0.07)
SDS lower glucose concentrations (Table 5 and Supplemental Table
S10, basic models are presented in Supplemental Table S11). In the
mutually adjusted model, these associations were attenuated towards
non-significance (Supplemental Table S12). Maternal phthalate urine
concentrations were not associated with insulin concentrations during
childhood (Table 5). When including glucose concentrations in the
model, maternal phthalate urine concentrations were again not asso-
ciated with insulin concentrations during childhood (Supplemental
Table S13).

3.5. Maternal bisphenol urine concentrations and childhood glucose
metabolism

Among boys, an IQR higher natural log-transformed third trimester
maternal BPF urine concentrations was associated with 0.22 (95% CI
0.35; 0.09) and 0.19 (95% CI 0.32; 0.05) SDS lower natural log trans-
formed insulin and glucose concentrations (Table 6, basic models are
presented in Supplemental Table S14). The association of third trime-
ster maternal BPF urine concentrations with glucose concentrations and
with insulin concentrations when corrected for glucose concentrations
did not remain after multiple testing adjustment (Supplemental Table
S15). The associations of higher first trimester maternal BPS urine
concentrations with lower natural log transformed insulin and glucose
concentrations among boys did not remain after adjustment for mul-
tiple testing (Table 6). In the fully adjusted and mutually adjusted
model, among boys higher third trimester total bisphenol maternal
urine concentrations was associated with lower natural log transformed
insulin concentrations, although these associations did not remain after
correction for multiple testing (Table 6 and Supplemental Table S16).
Among girls, maternal bisphenol urine concentrations were not asso-
ciated with insulin or glucose concentrations (Table 6).
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Table 2
Characteristics of mothers and their children.
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Total group Boys Girls

n = 757 n = 382 (50.5%) n = 375 (49.5%)
Maternal characteristics
Age at enrolment, mean (SD) (years) 31.0 (4.6) 31.1 (4.5) 30.9 (4.7)

Parity, n (%)
Nullipara
Multipara
Ethnicity, n (%)
European
Non-European
Education, n (%)
Low
Middle
High
Pre-pregnancy BMI, median (95% range) (kg/m2)
Maternal diet quality score, mean (SD)*
Folic acid supplementation, n (%), yes
Smoking during pregnancy, n (%), yes
First trimester, n (%), yes
Second trimester, n (%), yes
Third trimester, n (%), yes
Alcohol consumption during pregnancy (any), n (%), yes
First trimester, n (%), yes
Second trimester, n (%), yes
Third trimester, n (%), yes
Child characteristics

Age, mean (SD) (years)

BMI, median (95% range) (kg/m2)
Triglycerides, median (95% range) (mmol/L)
Total cholesterol, mean (SD) (mmol/L)

HDL cholesterol, mean (SD) (mmol/L)

LDL cholesterol, mean (SD) (mmol/L)
Insulin, median (95% range) (pmol/L)

464 (61.6%)
289 (38.4%)

478 (63.6%)
274 (36.4%)

52 (7.1%)
286 (39.0%)
396 (54.0%)
22.7 (18.6-34.7)
7.9 (1.5)
503 (82.2%)
165 (23.9%)
104 (20.7%)
75 (11.3%)
68 (10.5%)
419 (61.2%)
361 (53.6%)
251 (38.1%)
256 (39.7%)

232 (60.9%)
149 (39.1%)

245 (64.5%)
135 (35.5%)

26 (7.0%)
141 (37.8%)
206 (55.2%)
22.6 (18.5-34.4)
7.9 (1.6)
259 (83.8%)
81 (23.6%)
67 (20.1%)
35 (10.4%)
36 (10.7%)
221 (64.8%)
194 (57.7%)
133 (40.2%)
147 (44.3%)

232 (62.4%)
140 (37.6%)

233 (62.6%)
139 (37.4%)

26 (7.2%)
145 (40.2%)
190 (52.6%)
22.8 (18.6-35.1)
7.9 (1.4)
244 (80.5%)
84 (24.1%)
73 (21.4%)
40 (12.3%)
32 (10.2%)
198 (57.6%)
167 (49.4%)
118 (36.1%)
109 (34.8%)

Glucose, mean (SD) (mmol/L) 5.5 (0.9)

9.7 (0.2) 9.7 (0.3) 9.7 (0.2)

16.8 (14.0-25.0) 16.6 (13.9-24.1) 17.1 (14.0-25.5)

1.0 (0.4-2.5) 0.9 (0.4-2.6) 1.0 (0.5-2.3)

4.3 (0.6) 4.2 (0.6) 4.4 (0.6)

1.5 (0.3) 1.5 (0.3) 1.4 (0.3)

2.3 (0.6) 2.2 (0.6) 2.4 (0.6)

198.9 (37.5-671.0) 193.3 (31.5-571.0) 207.4 (38.5-804.6)
5.5 (0.9) 5.4 (0.9)

Values represent mean (SD), median (95% range) or number of subjects (valid %).

3.6. Maternal phthalate and bisphenol urine concentrations and risk of
adverse cardio-metabolic risk factors

An IQR increase in the natural log transformed third trimester
maternal phthalic acid concentrations was associated with an increased
triglycerides concentration among boys (Odds Ratio (OR) 1.67 (95% CI
1.20; 2.31)) (Supplemental Table S17). An IQR increase in the natural
log transformed third trimester maternal DNOP concentrations was
associated with high triglycerides concentrations among girls (OR 1.62
(95% CI 1.21; 2.18)). Among boys, an IQR increase in the natural log
transformed third trimester maternal total bisphenol urine concentra-
tions was associated with lower insulin concentrations (OR 0.64 (95%
CI 0.46; 0.90)) (Supplemental Table S18).

4. Discussion
4.1. Main findings

In this population-based prospective cohort study, we observed that
higher third trimester fetal exposure to phthalic acid is associated with
higher non-fasting triglycerides concentrations among boys, while we
observed no association of fetal exposure to phthalates with other lipid
concentrations during childhood. Maternal bisphenol urine concentra-
tions were not associated with non-fasting lipid concentrations during
childhood. Fetal exposure to phthalates was not associated with non-
fasting insulin concentrations at 10 years old. Higher second trimester
and overall mean HMWP and DEHP urine concentrations were asso-
ciated with lower non-fasting glucose concentrations among boys.
Higher third trimester maternal urine BPF concentrations were also
associated with lower non-fasting insulin concentrations among boys.

%As based on the food frequency questionnaire filled out in early pregnancy.
4.2. Interpretation of main findings

Exposure to phthalates and bisphenols is ubiquitous. Previous an-
imal and cross-sectional human studies have suggested associations of
higher exposure to phthalates and bisphenols with adverse lipid and
glucose metabolism (Li et al., 2014; Lee et al., 2016). However, results
from the few prospective studies in humans are inconsistent (Vafeiadi
et al., 2016, 2018; Perng et al., 2017; Watkins et al., 2016). Fetal ex-
posure to endocrine disruptors such as phthalates and bisphenols may
lead to developmental metabolic adaptations, which could have long
term consequences. In the current study, we examined the associations
of maternal urine phthalate and bisphenol concentrations during
pregnancy with non-fasting lipids, glucose, and insulin concentrations
at school age.

The associations of fetal phthalate or bisphenol exposure with lipid
concentrations during childhood have been studied in three prospective
human studies (Vafeiadi et al., 2016, 2018; Perng et al., 2017). In a
study among 260 mother—child pairs, maternal third trimester urine
monoethylphthalate (mEP) concentrations were inversely associated
with non-fasting HDL-cholesterol concentrations at 4 years, but not at
6 years (Vafeiadi et al., 2018). No associations were found between
maternal phthalate concentrations and total cholesterol concentrations
in childhood (Vafeiadi et al., 2018). Among 235 mothers from the same
cohort, no associations were observed for maternal urine BPA con-
centrations with non-fasting blood concentrations of total cholesterol
and HDL-cholesterol among 4-year-old children (Vafeiadi et al., 2016).
In another study among 227 mother—child pairs, no consistent asso-
ciations were observed for the pregnancy-averaged maternal urine
phthalate and BPA concentrations with fasting triglycerides, total
cholesterol, HDL-cholesterol and calculated LDL-cholesterol among
8-14-year-old children (Perng et al., 2017). In the present study, higher
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studies, as these effects of BPF were not previously assessed in humans.
These results suggest that fetal exposure to bisphenols could be asso-
ciated with lower non-fasting glucose and insulin concentrations later
in life, however, these results need to be replicated with fasting glucose
and insulin levels to more accurately assess insulin sensitivity.

In conclusion, our results add to the growing body of evidence that
fetal exposure of specific phthalates and bisphenols could influence
later metabolic health in humans. We cannot draw conclusions about
causality due to the observational nature of this study. The effect esti-
mates observed in this study are small, but they are of interest from a
public health perspective because of the widespread use of bisphenols
and phthalates.

4.3. Possible underlying mechanisms

From animal studies it has been suggested that phthalates, via the
PPARalpha-receptor, can increase HDL-cholesterol concentrations and
decrease production of triglycerides by influencing lipid oxidation and
fatty acid synthesis and can increase the uptake of triglycerides
(Hayashi et al., 2011; Colin et al., 2013; Laplante et al., 2007). It is not
clear whether these mechanisms are as important in humans as they are
in animals. The discrepancy between the findings in human studies and
animal studies might thus be based on an interspecies difference of
unknown origin. This could also explain the absence of effect of most
studied phthalates on lipid concentrations observed in this study. On
the other hand, laboratory studies have found that phthalate metabo-
lites increase cytokine production and thus can lead to an adverse in-
flammatory environment (Jepsen et al., 2004). This could be the reason
that higher exposure to phthalic acid was found to be associated with
higher triglycerides concentrations among boys in this study. Specific
phthalates have also been shown to affect insulin signaling (Rajagopal
et al., 2019).

It has been found that BPA could affect fatty acid and glucose me-
tabolism and it is thought that exposure to BPA alters the glucose-sti-
mulated insulin response (Ji et al., 2019; Stahlhut et al., 2018; Alonso-
Magdalena et al., 2006). However, in this study fetal exposure to BPA
was not associated with lipid concentrations or glucose metabolism at
10 years old. In contrast to a previous study that suggested that BPF
exposure could lead to hyperglycemia in zebrafish, we found that
higher BPF concentrations during pregnancy were associated with
lower insulin concentrations and not with higher glucose concentra-
tions in children at 10 years old (Zhao et al., 2018).

Both phthalates and bisphenol A influence epigenetic regulatory
mechanisms, which may need considerable time to lead to measurable
changes in circulating biomarkers and this timing issue could possibly
explain the discrepancies (Martinez-Ibarra et al., 2019; Somm et al.,
2009; Goodrich et al., 2016). It has even been suggested that exposure
to bisphenols influences health in subsequent generations (Bansal et al.,
2019; Susiarjo et al., 2015). The relationship between exposure to en-
docrine disruptors and metabolic disturbances is potentially sex-specific
(Miura et al., 2019). This could be due to sex-specific differences in
PPAR-activity of phthalates and the estrogenic effect of BPA (Jalouli
et al,, 2003; Huang and Chen, 2017). In animals, epigenetic repro-
gramming is also considered a potential molecular mechanism that
might underlie the sex-specific associations of the prenatal exposure to
endocrine disruptors with metabolic outcomes later in life (McCabe
et al., 2017; Neier et al., 2019). Further studies are needed to elucidate
the underlying mechanisms of endocrine disruptors on lipid and glucose
metabolism in humans specifically.

4.4. Methodological considerations

An important strength of this study is the population-based cohort
design from fetal life onward, with repeated measurements of maternal
phthalate and bisphenol concentrations. We also measured childhood
lipid and glucose concentrations in a large number of mother—child
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pairs. Selection bias due to selective loss to follow-up would be of
concern in any study if the associations of prenatal phthalate and bi-
sphenol concentrations with childhood lipid and glucose metabolism
are different between participants and non-participants. This seems
unlikely, but cannot be excluded with certainty, because the reported
differences in ethnicity could influence diet and lifestyle choices which
could influence the associations. Furthermore, we measured maternal
phthalate and bisphenol urine concentrations once per trimester. It is
possible that one urine sample per trimester does not accurately re-
present the concentration during the whole trimester because of the
reported short biological half-lives of phthalates and bisphenols
(Mattison et al., 2014; Braun et al., 2013). However, it has been found
that a single urine sample reflects phthalate exposure up to three
months (Hauser et al., 2004). Variability has also been reported to be
biomarker specific, with strong correlations for LMWP metabolites and
reasonable correlations for BPA and DEHP metabolites (Braun et al.,
2012; Mahalingaiah et al., 2008). In this study, we found moderate
variability for phthalates and high variability for bisphenols during
pregnancy. We also used the overall mean to partly correct for the re-
maining variability. These associations were comparable to the trime-
ster-specific associations. The main limitation of using a linear regres-
sion approach is that it does not take into account the association of the
investigated exposure with other exposures. This could provide un-
reliable results if the exposures are highly correlated, which the ex-
posures are not (Supplemental Table S2). We used non-fasting blood
samples collected at different times during the day depending on the
time of visit. This could have led to non-differential misclassification of
children and consequently an underestimation of the associations.
However, previous studies in adults have shown that non-fasting blood
lipid concentrations can accurately predict increased risks of cardio-
vascular events later in life and that semi-fasting insulin resistance is
moderately correlated with fasting values (Langsted and Nordestgaard,
2019; Hancox and Landhuis, 2011). We also assessed the association of
phthalates and bisphenols with insulin, independent of glucose, to
partially correct for the varying times since last meal and found com-
parable results. However, these results need to be replicated with non-
fasting lipid, insulin and glucose concentrations in children. Future
studies could also assess the effects of childhood exposure to phthalates
and bisphenols on metabolic outcomes. Finally, we collected informa-
tion on many potential confounders, although, as in any observational
study, residual confounding due to unmeasured variables might remain
an issue.

5. Conclusion

Results from our population-based prospective cohort study suggest
persisting effects of fetal exposure to phthalates and bisphenols on
childhood lipid concentrations which could be sex specific. Future
studies are needed for replication and exploring underlying mechan-
isms.
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