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Abstract 

Introduction. Prenatal exposure to antiepileptic drugs (AED) is associated with 

developmental compromises in verbal intelligence and social skills in childhood. Our 

aim was to evaluate whether a multi-feature Mismatch Negativity (MMN) paradigm 

assessing semantic and emotional components of linguistic and emotional 

processing would be useful to detect possible alterations in early auditory 

processing of newborns with prenatal AED exposure. 

Material and methods. Data on AED exposure, pregnancy outcome, 

neuropsychological evaluation of the mothers, information on maternal epilepsy 

type, and a structured neurological examination of the newborn were collected 

prospectively. We compared a cohort of 36 AED exposed and 46 control newborns 

at the age of two weeks by measuring MMN with a multi-feature paradigm with six 

linguistically relevant deviant sounds and three emotionally uttered sounds.  

Results. Frontal responses for the emotionally uttered stimuli Happy differed 

significantly in the exposed newborns compared to the control newborns. In addition, 

responses to sounds with or without emotional component differed in newborns 

exposed to multiple AEDs compared to control newborns or to newborns exposed to 

only one AED.  

Discussion. Our study implies that prenatal antiepileptic drug exposure may alter 

early processing of emotionally and linguistically relevant sound information.  
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1. Introduction  

Approximately 0.3-07% of pregnant women in Western countries have a diagnosis 

of epilepsy. Most of them receive antiepileptic medication during pregnancy [1-3]. 

The adverse effects of prenatal antiepileptic drug (AED) exposure have been 

vigorously studied during the last decades. Prenatal exposure to AEDs is associated 

with both structural and functional teratogenic effects [4-6]. The most prominent 

effects have been observed with valproic acid (VPA) which is associated with 

decreased verbal intelligence [4, 7, 8], and an elevated risk of autism spectrum 

disorders [9]. 



Cortical processing can be measured by event-related potentials (ERPs) extracted 

from the electroencephalogram (EEG) already in neonates. ERP measurement is an 

economical and non-invasive technique that provides repeatable and quantitative 

information with high temporal resolution. Auditory processing has been examined by 

using Mismatch negativity (MMN) response [10] and these responses can be 

detected already during neonatal period and also in preterm newborns [11-15]. 

Altered MMN responses are observed in infants and children suffering from several 

neural and developmental conditions including dyslexia or autism spectrum disorder 

[16-22]. More specific alterations in cortical responses have been observed in 

different age groups. Dyslexic adults seem to have impaired pitch discrimination [19, 

23], whereas autistic children have modified MMN responses for pitch and phoneme-

category changes [17, 18]. Moreover, ERPs measured in term or preterm newborns 

may already have predictive value for the later development [14, 20, 21].  

In addition to phonetic changes, MMN responses to changes in the emotional 

components of the sounds have been investigated. Autistic children and adults are 

shown to have impaired discrimination of emotional speech prosody [24, 25]. Altered 

auditory processing of emotional information has been detected in young people with 

conduct disorder symptoms [26]. Orientation to emotionally salient speech may be 

altered in patients with bipolar disorder and job burnout [27, 28]. Recently a multi-

feature MMN paradigm to compare semantic and emotional components of linguistic 

and emotional processing in newborns has been developed [13, 29].  

Taken together, prior literature suggests that the long-term developmental 

compromises after prenatal exposure to AEDs is mainly observed in areas of verbal 

intelligence and social skills [4, 9, 30, 31]. To test whether early precursors of these 



developmental compromise could also be detected in newborns after fetal exposure, 

we used the recently established multi-feature MMN paradigm that allows combined 

assessment of emotional and linguistic processing in the newborn period.  

 

2. Material and methods  

 

2.1. General aspects 

The study was conducted at the Helsinki University Hospital in collaboration with 

Finnish Institute of Occupational Health and University of Helsinki Cognitive Brain 

Research Unit. The ethics committee of the Helsinki University Hospital has 

approved the study. All mothers signed a written informed consent during pregnancy. 

The study protocol followed the Declaration of Helsinki. Recruitment process was 

prospective and included background information, exposure data, pregnancy 

outcome data, and mothers’ neurocognitive evaluation. The process is represented in 

detail in a previous publication [32]. The examinations were carried out between April 

2010 and May 2014. Examiners were blinded to the exposure status of the 

newborns.  

 

2.1. Cohort 

The original cohort included 56 newborns with prenatal AED exposure and 67 control 

newborns. AEDs used during pregnancies were valproic acid (VPA), carbamazepine 

(CBZ), oxcarbazepine (OXC), levetiracetam (LEV), lamotrigine (LTG), topiramate 

(TPM), and clonazepam (CZP). Due to newborn related issues we were not able to 

extract ERP epochs form five of the exposed and six of the control newborns. In 



addition, we missed ERP data due to lack of reference electrode (eight exposed 

newborns) or due to inadequate trigger data or artefacts (7 exposed and 15 control 

newborns). Therefore, a full data set was obtained from 36 exposed and 46 control 

newborns. Of the exposed newborns, 25 were exposed to only one AED 

(Monotherapy group), and 11 newborns to more than one AED (Polytherapy group). 

Exposure status of the monotherapy group is shown see in Table 1. Polytherapy 

combinations were (number of newborns in the group): LTG + LEV (1), CBZ + LEV 

(3), OXC + LEV (1), OXC + GBP (1), LTG + OXC + CZP (1), LTG + LEV + CZP (3), 

LTG + TPM + CLB (1). In the monotherapy group, mean dosages and mean serum 

concentrations during the first trimester were: OXC 825 mg (27 umol/l), LTG 280 mg 

(7.7 umol/l), VPA 740 mg, (total serum concentration 283 umol/l, free serum 

concentration 24 umol/l), and LEV 825 mg.  

 

Of background variables (Table 2), the exposed newborns had lower mean birth 

weight the unexposed newborns. The difference in Apgar scores was due to one 

outlier, and vanished if we left this outlier out. Mothers of the AED group tended to 

have higher educational level and lower performance IQ level than the mothers of the 

control group. Background information is revealed in detail in Table 2. 

 

Neurological status of the newborns were assessed by Hammersmith Neonatal 

Neurological Examination [33]  at the CA of 41 to 42 weeks. As observed before 

when analysing the entire cohort [32], the exposed newborns of this subcohort had 

slightly lower limb and axial tone than the control newborns. The mean Compound 

Optimality Score Tone for exposed newborns of the subcohort was 5.9 and for 



controls 7.1 (p = 0.003), and the mean Total Optimality Score 23.9 and 25.4 (p = 

0.029). Neurological findings were reported in detail in our previous publication [32].  

 

 

2.2. MMN 

EEG signals were collected by using NicOne EEG amplifier at sampling frequency of 

250 or 500 Hz and EEG caps with 20-32 sintered Ag/AgCl electrodes positioned 

according to the International 10-20 standard. For sleep state assessment, we 

included channels for chin EMG, ECG, eye movements, and respiratory sensors. The 

sleep state of trace alternant or quiet sleep was determined visually by using 

NicoletOne Reader software by consensus agreement (MV and SV) when needed. 

MMN recordings were assessed with the multi-feature mismatch negativity paradigm 

during either trace alternant or quiet sleep. A standard stimulus (pseudo-word /ta-ta/), 

six types of linguistically relevant deviant stimuli (vowel duration, vowel change, 

intensity changes (+/-6dB), frequency changes (+/-25.5Hz) and three types of 

emotionally uttered stimuli (happy, angry, sad) were performed as explained in full 

detail in previous publications from Pakarinen et al [29] and Kostiainen et al [13]. The 

stimuli were presented via a loudspeaker located at a distance of approximately 1 

meter. The MMN data were collected from the frontal (F3, Fz, F4), central (C3, Cz, 

and C4), and occipital (Oz) electrodes. The Oz was used as a reference electrode. 

As the paradigm for emotional stimuli was only introduced after the recruitment had 

already started, the first 18 recordings lacked the emotional stimuli. 



Intervals between 100–200 ms and 300–500 ms were considered descriptive for the 

brain responses and the averaged value of the signal within these latency windows 

was collected. The mean amplitude values from frontal electrodes were averaged 

together as electrode line F and from central electrodes as electrode line C. The 

mean values were calculated for each infant and each stimulus type for both time 

windows. To obtain standard-subtracted mean amplitudes, amplitude of standard 

stimulus was subtracted from the mean value in each electrode lines (F and C). 

Epochs with signal values larger than +/- 150μV at any channel, or response average 

larger than +/- 10 microvolts at an individual electrode, were considered to be 

artefactual. Artefactual epochs were rejected, and individual artefactual ERP 

responses were left out from the averages.  

 

2.3. Statistical analysis 

To compare the ERPs of AED exposed and unexposed newborns, the mean 

standard-subtracted ERP amplitudes of frontal and central signals were computed for 

the given time windows.  

Both latency windows (100–200 ms and 300-500 ms) were tested separately. For 

group comparisons, we used independent-sample t-test (2-tailed) for continuous 

variables, and Chi-square test for independence, or if the expected frequency was 

less than five, Fisher’s Exact test, for categorical variables.  

When evaluating whether gender affected the mean amplitudes, we applied one-way 

analysis of variance (ANOVA), and when evaluating the effect of age and 



conceptional age on the brain responses, we applied the analysis of covariance 

(ANCOVA). In cases with multiple comparisons, we applied Bonferroni correction. 

 

 

3. Results  

 

3.1. AED group 

Standard-subtracted mean amplitudes, both emotionally uttered stimuli and 

linguistically relevant deviant stimuli, in the exposed and unexposed newborns are 

shown in Table 3 and Figure 1. 

 

The mean amplitude of the emotional variant Happy in the late latency window from 

the frontal electrode line was found to significantly differ between the groups: the 

exposed newborns showed positive polarity (2.08 uV, SD +/- 3.03) while the controls 

showed negative polarity (-1.30 uV, SD +/- 4.35 p = 0.04). To evaluate the impact of 

age and conceptional age (CA) on the reaction to the stimulus, we conducted one-

way between-groups analysis of covariance (ANCOVA) by using age and CA of the 

newborn as covariates. Exposure status was the independent variable and standard-

subtracted mean amplitude was the dependent variable. After adjusting for age and 

CA, there were still no significant differences between AED and control groups for 

any other stimuli or latency window than emotional variant Happy in the late latency 

window from the frontal electrode line (p = 0.04).  

 

 

3.2. Polytherapy and Monotherapy groups  

Commented [MV1]: Sampsalta 11_2018 käsite ”frontal 
electrode line” kuulostaa neurofysiologille pahalta.  
toki siinä viiva=line, mutta kun tehdään aivotutkimusta niin 
siinä ei ole viiva vaan signaali. 
Siis ERP/EEG/signal from the frontal electrode/brain 
area/tmv. 
 
Tämä tulee pitkin paperia, ehkä voisi kaikki vaihtaa? 
 



Newborns with exposure to more than just one antiepileptic drug (polytherapy group) 

had significantly more positive standard-subtracted mean amplitudes than control 

newborns in the early latency window for emotional variant Angry in the frontal line 

(Polytherapy group 4.26 uV, SD +/-2.41, Control group 0.29 uV, SD +/-3.45, p = 

0.01). The polytherapy group also differed significantly from the control group with 

regard to early positive frequency deviants in both frontal and in central electrode 

lines (frontal electrodes: Polytherapy group -1.02 uV, SD +/-0.89, Control group 0.83 

uV, SD +/-2.60, p < 0.001, and central electrodes: Polytherapy group -1.12uV, SD +/-

1.97, Control group 0.45 uV, SD +/-2.09, p = 0.03). We observed similar statistically 

significant findings when we compared standard-subtracted mean amplitudes of the 

polytherapy and monotherapy groups with each other though monotherapy group as 

itself did not differ significantly from the control group. 

When different monotherapy groups were compared to each other and to the control 

group, we did not find significant differences in standard-subtracted mean amplitudes 

(ANOVA).  

A summary of the statistically significant findings is outlined in Table 4. 

 

4. Discussion  

Our results suggest that prenatal antiepileptic drug exposure may affect early 

processing of emotionally relevant linguistic information. Earlier studies have shown 

that auditory evoked potentials are linked to language functions, and they may 

specifically predict language impairments [34]. There has been an association 

between MMN amplitudes and performance in cognitive tests [35], and the intensity 



of auditory evoked potentials have been shown to correlate with attention [36]. 

Atypical processing of the emotional sounds has been observed in patients with 

autism spectrum disorders [24] [25]. These together are compatible with the idea that 

the present findings might reflect an early precursor of developmental challenge 

caused by AED exposure.   

Our study is in line with previous studies showing no major adverse effects on verbal 

development in association with prenatal OXC, CBZ, LEV, or LTG exposure [4, 7, 8]. 

Our study was initially motivated by the earlier findings that intrauterine VPA 

exposure leads to later risk of verbal and social compromise [37]. Epilepsy patients 

with VPA medication have shown to have decreased P300 amplitudes when 

compared to epilepsy patients with CBZ medication, epilepsy patients without 

medication, or healthy controls [38]. Delayed and smaller MMN responses (N270) 

have been observed in epilepsy patients compared to the responses of healthy 

controls [38].  

The main limitation of our study was the relatively small number of exposed 

newborns in each monotherapy group, particularly VPA group (Table 1). MMN data 

was further limited due to artefact or incomplete electrode settings, and data from 

emotionally uttered stimuli was limited as the paradigm for emotional stimuli was only 

introduced after the first 18 recordings of all MMN data. Thus, the number of the 

newborns exposed to any particular AED was too few to evaluate the impact of an 

individual medication. We cannot exclude the possibility that individual drugs might 

have, either adverse or protective, effects on neonatal auditory processing. 

There are several strengths in this study. The background information including 

exposure data was collected prospectively. During all measurements and analyses, 



the researchers were blinded for the exposure status of the child. Furthermore, MMN 

recordings were conducted during the same sleeping state (quiet sleep) and during 

limited time range (conceptual age) thus eliminating the effects of sleeping states and 

maturation on the quality of the MMN response [39-42].  

In our cohort, there was a trend toward lower mean performance intelligence quotient 

in women with epilepsy than in women without epilepsy (Table 2) which could be 

explained by lower processing speed of the mothers with epilepsy [43]. However, the 

percentage of the women having either tertiary or secondary education was higher 

among women with epilepsy. Higher educational level might be due to 

neuropsychological evaluation included in neurological follow-up thus enabling earlier 

and/or more intensive educational support, or due higher motivation to show one’s 

capacity despite living a life with a chronic disease. Aspects regarding both strengths 

and limitations regarding enrollment and background data collection are discussed in 

more detail in our previous publication [32]. 

MMN paradigms are applied to several clinical approaches to increase understanding 

of disease mechanisms of many neurodevelopmental, neuropsychiatric, and 

neurological disorders, or to serve as biomarkers for risk of these disorders [44]. In 

particular, MMN responses have been used to explore the relationship between 

auditory processing and developmental disorders. It remains seen whether the 

deviant responses to sad and angry stimuli in frontal lines of the polytherapy group in 

our study (Table 4), have correlation to later susceptibility to depression or anxiety 

disorders. MMN might provide a noninvasive bedside method for detection functional 

neurotoxicity associated with fetal drug exposure, and thus offer the possibility of 

early supportive measures [45, 46].  



 

Together with other neuroscience techniques, auditory ERP responses have 

supported the idea of continuity in the development of language starting from the 

early precursors of language in the first year of life to full blown linguistic abilities [47]. 

Fetal AED exposure has shown to interfere with several developmental events in 

rodent brain including apoptosis and myelination [44[48]. These particular 

developmental phenomena are reflected in evoked potentials [49]. Functional toxicity 

of fetal AED exposure seen in previous studies [4] may thus have origin in disturbing 

neonatal developmental “building blocks” [48, 50].  

 

By investigating auditory responses already as early as the neonatal time period, we 

were able to focus on the effects fetal exposure and minimize the effect of imminent 

environmental confounders encountered in long term follow up studies. Subtle drug-

related alterations in auditory processing measured in the newborn period may lead 

to developmental compromises later in life. This remains unanswered in the present 

study, and will require further follow-up of the cohort.  

 

5. Conclusions  

Prenatal exposure to antiepileptic drugs may affect auditory processing of 

emotionally relevant information. This may be detected within the first postnatal 

weeks. The clinical relevance and possible applications of evaluating early auditory 

processing still require further research.  
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Figure Captions 

Figure 1. Standard-subtracted mean amplitudes Frontal lines. 

The waveforms of the standard-subtracted mean amplitudes of the newborns 

exposed to antiepileptic drugs (AED, red line) and control newborns (blue dotted 

line) from Frontal (F) electrode lines. Reactions to each emotional variant and each 

deviant are illustrated in separate figures: Happy, Sad, Angry, Vowel change, Vowel 

duration, Positive Intensity Change, Negative Intensity Change, Positive Frequency 

Change, and Negative Frequency Change.  

 

Figure 2. Standard-subtracted mean amplitudes Central lines. 

The waveforms of the standard-subtracted mean amplitudes of the newborns 

exposed to antiepileptic drugs (AED, red line) and control newborns (blue dotted 

line) from Central (C) electrode lines. Reactions to each emotional variant and each 

deviant are illustrated in separate figures: Happy, Sad, Angry, Vowel change, Vowel 

duration, Positive Intensity Change, Negative Intensity Change, Positive Frequency 

Change, and Negative Frequency Change.  

 

 

 

 

 

 

 

 

 



 
 

 

Table 1. AED exposure 
 

  
OXC*/CBZ* 
N (%) 
 

 
VPA* 
N (%) 
 

 
LTG* 
N (%) 
 

 
LEV* 
N (%) 

 
TPM* 
N (%) 

 
Polytherapy 
N (%) 

 
All 
N (%) 

 
All enrolled   

 
19 (35) 

 
5 (9) 

 
8 (15) 

 
7 (13) 

 
1 (2) 

 
14 (25) 

 
55^ (100) 

 
ERP data 
available  

 
9 (25) 
  
 

   
5 (14) 
 

 
5 (14) 
 

  
6 (17) 
 

 
0 (0) 
 

 
 11 (31) 
 
 

 
36 (100) 

OXC= Oxcarbazepine, CBZ= Carbamazepine, VPA= Valproic acid, LTG= Lamotrigine, LEV= Levetiracetam, TPM= 
Topiramate. *Monotherapy. ^Exposure status is not available for one newborn  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Background information 
 

 
AED (n=46)  

Controls (n=36) Sig. (AED vs. 
Controls^) 



GA* (weeks, mean (range, SD)) 40.2 (37.9-42.3, +/-1.15)) 40.3 (38.4-42.1, +/-1.11) 0.67 
CA** during ERP (weeks, mean) 42.3 (40.4-44.4, +/-0.94) 42.2 (40.0-43.7, +/-0.86) 0.81 
Age during ERP (weeks, mean) 2.1 (0.58-0.40, +/-1.04) 2.0 (0.0-4.85, +/-1.04) 0.65 
Enrollment (GA* weeks, mean) 7.35 (3-24, +/-3.75) 10.00 (5-15, +/-7.07) 0.36 
Educational level of the mother 
(primary/secondary/tertiary) 34%/57%/9%  64%/30%/7%  0.05 
Age of the mother (mean, yrs) 31.5 (24.0-41.0, +/-4.36) 31.7 (21.0-38.0, +/-3.66) 0.82 
Smoking during the third trimester (%) 3% 0% 0.53 
Neuropsychology of the mothers 

        VIQ# (mean)  

PIQ ##(mean) 

Executive problems (no 
problems/slight problems)  

 

111 (69-137, +/-13) 

116 (62-132, +/-13) 

72%/28% 

 

115 (103-133, +/-9) 

123 (102-138, +/-10) 

87%/13% 

 

 

0.25^^ 

0.05^^ 

0.46 

Gender (Male %) 64% 69% 0.58 
Apgar at 1 min (mean) 9.0 (7-10) 8.5 (2-10) 0.02 
Folic acid amount during the 1st 
trimester (mean, mg) 2.9 (0.3-5.0, +/-1.75) 3.3 (0-8.0, +/-2.29) 0.42 

Birth Weight (grams) 3480 (2490-4555, +/-465) 3714 (2808-4800, +/-474) 0.03 

Hemoglobin of the newborn 167 (127-199, +/-19) 166 (127-214, +/-22) 0.93 

*GA = Gestational Age (weeks), **CA =Conceptional Age (weeks), #=Verbal Intelligence Quotient, ## =Performance 
Intelligence Quotient, ^ T-test, Pearson’s Chi-Square test or Fisher’s Exact test, ^^After discarding one outlier 
mother with VIQ 69 and PIQ 62 the p- value for VIQ is 0.42 and for PIQ 0.12 (mean VIQ: AED 112, control 114 and 
mean PIQ: AED 117, control 122) 

 
 
 
 
 
 
 
 
 



Table 3.  Standard-subtracted mean amplitudes of AED exposed and control newborns 

Stimulus 

 

AED/100-200 ms 

uV (min, max, SD) 

Control/100-200 ms 

uV (min, max, SD) 

p* 

 

AED/300-500 ms 

uV (min, max, SD) 

Control/300-500 ms 

uV (min, max, SD) 

p* 

Emotional variants       

Happy /ta-ta:/       

Frontal 0.72 (-5.79, 4.74, 
+/-3.14) 

-0.25 (-11.25, 10.95, 
+/- 4.69) 

0.33 2.08 (-3.93, 8.32, +/-
3.03) 

-0.13 (-14.93, 9.36, 
+/- 4.35) 

0.04 

Central 0.51 (-5.03, 3.67, 
+/- 2.19) 

0.21 (-6.61, 6.88, +/- 
2.97) 

0.65 0.44 (-6.08, 3.80, +/-
2.21) 

-0.24 (-14.89, 6.90, 
+/-3.14) 

0.32 

Sad /ta:-ta:/       

Frontal -0.38 (-7.26, 7.63, 
+/-4.21) 

-0.59 (-8.28, 11.45, 
+/- 4.34) 

0.86 1.57 (-6.35, 12.13, 
+/-4.99) 

1.27 (-11.42, 14.41, 
+/-5.44) 

0.83 

Central 0.46 (-0.39, 7.73, 
+/-2.76) 

0.04 (-6.05, 7.67, +/-
2.63) 

0.57 1.01 (-6.66, 6.18, +/-
3.04) 

0.30 (-11.14, 11.50, 
+/- 4.25) 

0.45 

Angry /ta-ta/       

Frontal -0.25 (-10.05, 7.59, 
+/-4.49) 

-0.29 (-7.02, 6.47, +/- 
3.45) 

0.97 0.48, (-5.16, 4.47, 
+/- 2.77) 

1.28 (-8.55, 21.05, 
+/-5.01) 

0.41 

Central 0.45 (-4.35, 7-08, 
+/-2.89) 

0.15 (-8.16, 11.26, 
3.30) 

0.71 0.39 (-2.43, 7.22, +/-
2.14) 

1.53 (-5.11, 18.57, 
+/-4.07) 

0.14 

Deviants       

Vowel change /ta-to/       

Frontal -0.34 (-4.00, 3.75, 
+/-1.88) 

0.26 (-5.33, 7.69, +/-
2.28) 

0.19 0.03 (-2.83, 3.12, +/-
1.58) 

0.34 (-4.52, 5.91, 
+/- 2.26) 

0.47 

Central -0.24 (-2.82, 3.03, 
+/- 1.17) 

-0.02 (-4.93, 4.90, +/- 
1.88) 

0.53 0.27 (-2.78, 3.98, +/-
1.36) 

-0.02 (-2.34, 3.82, 
+/-1.28) 

0.33 

Vowel duration /ta-ta:/       

Frontal -0.10 (-2.42, 5.82, 
+/-1.71) 

0.12 (-5.36, 7.04, +/-
2,58) 

0.64 0.07 (-290, 3.73, +/-
1.59) 

-0.65 (-5.01, 3.13, 
+/-1.90) 

0.07 

Central -0.05 (-2.62, 3.21, 
+/-1.36) 

-0.02 (-4.50, 6.56, +/-
2.06 

0.94 0.08 (-2.18, 2.80, +/-
1.15) 

-0.36, (-4.28, 3.83, 
+/-1.50) 

0.13 

Frequency (positive) /ta-ta/       

Frontal 0.22 (-3.95, 4.81, 
+/-2.40) 

0.83 (-5.45, 6.21, +/- 
2.60) 

0.27 -0.11 (-5.82, 6.21, 
+/-2.50) 

0.12 (-486, 5.61, +/-
2.30) 

0.67 

Central -0.21 (-4.18, 3.30, 
+/- 1.91) 

0.45 (-5.15, 6.07, +/- 
2.09) 

0.13 0.07 (-2.40, 5.63, +/-
1.72) 

0.07 (-5.54, 4.57, 
+/-2.03) 

1.00 

Frequency (negative) /ta-ta/       

Frontal 0.33 (-5.48, 8.40, 
+/-2.90) 

0.29 (-10.34, 12.20, 
+/- 3.66) 

0.95 -0.18 (-4.96, 7.59, 
+/-2.99) 

0.15 (-5.15, 4.58, 
+/-2.06) 

0.57 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4. Outlines of significant differences in standard-subtracted mean amplitudes  

Central 0.14 (-3.24, 6.115, 
+/-1.94) 

0.44 (-7.10, 9.28, +/- 
2.67 

0.56 -0.23 (-3.93, 8.32, 
+/-3.03) 

0.29 (-3.76, 5.64, 
+/-1.72) 

0.19 

Intensity (positive) /ta-ta/       

Frontal 0.30 (-6.16, 5.58, 
+/-2.62) 

-0.08 (-11.35, 8.09, 
+/- 4.05) 

0.60 -0.16 (-5.94, 5.86, 
+/-3.07) 

-0.01 (-5.40, 8.85, 
+/-2.83) 

0.82 

Central -0.002 (-5.95, 2.50, 
+/-1.91) 

0.11 (-9.27, 8.11, +/- 
3.04) 

0.84 0.13 (-3.10, 4.29, 
+/-1.93) 

0.49, (-4.44, 7.21, 
+/-2.13) 

0.43 

Intensity (negative) /ta-ta/       

Frontal 0.34 (-5.87, 8.79, 
+/-3.59) 

0.73 (-4.00, 10,82, 
+/-3.00) 

0.61 1,21 (-3.84, 6.97, 
+/-2.33) 

0.34 (-7.10, 6.37, 
+/-3.02) 

0.14 

Central -0.46 (-5.14, 3.73, 
+/-2.13) 

0.29 (-3.54, 5.09, +/-
2.06) 

0.12 0.47 (-2.76, 4.20, 
+/-1.56) 

0.09 (-11.09, 5.61, 
+/-2.76) 

0.43 



Comparisons AED vs. Controls Mono vs. Controls Poly vs. Controls Mono vs. Poly 

Stimulus 100-200 
ms  

300-500 
ms 

100-200 
ms 

300-500 
ms 

100-200 
ms 

300-500 
ms 

100-200 
ms 

300-500 
ms 

Emotional variants  

Happy /ta-ta:/  
   Frontal # 0.04 # # # # # # 
   Central # # # # 3 # # 0.08 
Sad /ta:-ta:/  
   Frontal # # # # 0.06 # 0.02 # 
   Central # # # # # # # # 
Angry /ta-ta/  
   Frontal # # # # 0.01 # 0.02 # 
   Central # # # # # # 0.06 0.04 

Deviants  

Vowel change /ta-to/  
   Frontal # # # # 0.06 # 0.01 # 
   Central # # # # # # # # 
Vowel duration /ta-ta:/  
   Frontal # 0.07 # # # # # # 
   Central # # # # # # # # 
Frequency (positive) 
/ta-ta/  

   Frontal # # # # <0.001 # 0.005 # 
   Central # # # # 0.03 # 0.06 0.10 
Frequency (negative) 
/ta-ta/  

   Frontal # # # # # # # # 
   Central # # # # # # # # 
Intensity (positive) /ta-
ta/  

   Frontal # # # # # # # # 
   Central # # # # # # # # 
Intensity (negative) /ta-
ta/  

   Frontal # # # # # # # # 
   Central # # 0.06 # # # # # 
P-values (t-test) 0.05 - 0.1 are represented with blue, < 0.05 with red, > 0.1 with #.  
AED = newborns exposed to antiepileptic drugs  
Mono = newborns exposed to one drug 
Poly = newborns exposed to more than one drug 
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