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Silver, titanium dioxide and zinc oxide nanoparticles trigger miRNA/isomiR
expression changes in THP-1 cells that are proportional to their health hazard
potential.

Abstract
After over a decade of nanosafety research, it is indisputable that the vast majority of nano-sized particles
induce a plethora of adverse cellular responses - the severity of which is linked to the material’s
physicochemical properties. Differentiated THP-1 cells were previously exposed for 6 hours (6h) and 24
hours (24h) to silver, titanium dioxide and zinc oxide nanoparticles at the maximum molar concentration
at which no more than 15% cellular cytotoxicity was observed. All three nanoparticles differed in extent
of induction of biological pathways corresponding to immune response signaling and metal ion
homeostasis. In the current study, we integrated gene and miRNA expression profiles from the same cells
to propose miRNA biomarkers of adverse exposure to metal-based nanoparticles. We employed RNA
sequencing together with a quantitative strategy that also enables analysis of the overlooked repertoire
of length and sequence miRNA variants called isomiRs. Whilst only modest changes in expression was
observed within the first 6h of exposure, the miRNA/isomiR (miR) profiles of each nanoparticle was
unique. Via canonical correlation and pathway enrichment analyses, we identified a co-regulated miR-
mRNA cluster, predicted to be highly relevant for cellular response to metal ion homeostasis. These miRs
were annotated to be canonical or variant isoforms of Hsa-miR-142-5p, -342-3p, -5100, -6087, -6894-3p
and -7704. Hsa-miR-5100 was differentially expressed in response to each nanoparticle in both the 6h
and 24h exposures. Taken together, this co-regulated miR-mRNA cluster could represent potential
biomarkers of sub-toxic metal-based nanoparticle exposure.
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Introduction

In recent years, much progress has been made in the field of nanotechnology towards the
development of different kinds of nanomaterials with a wide range of applications. Because of their size,
nanoparticles can cross cell membranes, and this makes them a significant health hazard if they are
inhaled, ingested or cross the skin barrier. Additionally, the same configurable physicochemical
properties that confer industrial and biomedical relevance to nanomaterials, are directly related to their
health hazard potential (Hristozov et al. 2012). As a result, previous regulatory indications stipulated that
health risk assessment should be done for each individual nanoform variant of size, shape, surface
chemistry, etc. (for example, SCENIHR, 2009; EFSA Scientific Committee, 2011). However, it is now
recognized that the extent of animal experimentation, time and money required to completely
characterize the vast array of existing and upcoming nanomaterial configurations is just not realistic
(Hristozov et al. 2016). The increasing revenue of nanotechnology directly translates to increasing human
and environmental contact with nanoparticles, and with it, adverse health effects. More than ever,
comprehensive tools to assess implementation of protective measures, diagnose early exposures and
predict hazardous novel nanoparticles are needed.

When subjected to environmental perturbations, cells and organisms mount a coordinated
molecular response that is of homeostatic, pathologic or evolutionary importance. Therefore, profiling
changes in gene and protein expression within the context of toxicant exposure, leading to mechanistic
information on how biological networks are perturbed as a function of specific nanoparticle features,
constitutes a paradigm shift from a material-by-material approach, to predictive classification of
hazardous nanomaterials based on shared features (Fadeel et al. 2018). This is especially important
because nanoparticles can for example be classified according to their composition as being carbon-
based, metal or metal oxide based and inorganic. As such, in addition to hazard identification and
classification of nanomaterials, omics-based approaches can also be used to develop biomarkers of
adverse exposures to a range of nanoparticles that can be grouped into a specific class.

The magnetic and antimicrobial properties of metal and metal oxide nanoparticles makes them
highly desirable in medicine and industry. Silver (Ag), titanium dioxide (TiO2) and zinc oxide (ZnO)
nanoparticles, are the most common metal-based nanoparticles with a combined yearly production of up
to 6600 tons per year (Piccinno et al. 2012). These three nanoparticles currently represent 47% of nano-
enabled consumer products with known nanoparticle compositions that have been registered in the ERC-
funded nanodb database (www.nanodb.dk). TiO2 and ZnO nanoparticles are predominantly used in
sunscreens and cosmetic products, and the majority of consumer products registered to contain Ag
nanoparticles are personal care, clothing and cleaning products (www.nanodb.dk, accessed December
2018). Ag, TiO2 and ZnO are also amongst the most common nanomaterials used in food products
(Contado 2015). There is thus a significant potential for uncontrolled human exposure (via inhalation
during for example production, or through the skin) to these types of nanoparticles and studies
investigating biomarkers of adverse exposure are thus warranted.

We previously implemented microarray-based mRNA expression profiling, to characterize early
immune responses in viability-normalized (maximum 15% cell death) differentiated THP-1 cells after 6
hours (6h) and 24 hours (24h) exposures to polyvinylpyrrolidone-coated silver, titanium dioxide and zinc
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oxide nanoparticles (nAg, nTiO2 and nZnO) (Poon et al. 2017). Therein, in addition to a distinct
upregulation of a cluster of metallothionein genes, we observed induction of an antiviral-type response
in nAg- and nZnO-, but not nTiO2-exposed cells. In order to further understand common and
distinguishable mechanisms that govern the cellular reactivities of nAg, nTiO2 and nZnO, we have now
proceeded to characterize the repertoire of microRNAs (miRNome) from total RNA derived from the
same THP-1 cells. We hypothesized that, the toxicological potential of each particle will be reflected by
a typical miRNA profile from whence biomarkers of specific or common mechanism(s) of toxicity can
be identified.

It has recently emerged that the distinct length and sequence variants of canonical miRNAs
(collectively known as isomiRs) (Neilsen, Goodall, and Bracken 2012) which are frequently identified
via small RNA sequencing, increase the diversity and functionality of the miRNome (Gebert and MacRae
2018). Differential miRNA expression in response to nanoparticle exposure has been reported in a few
studies (reviewed in (Shyamasundar et al. 2015; Wong, Hu, and Baeg 2017)), but in comparison to
mRNA, miRNAs and other non-coding RNAs have received very little attention and there is a gap in
understanding the effect of nanoparticles on this part of the (epi)genome. Furthermore, because the
concept of functionally distinct isomiRs is relatively novel, previous studies investigating miRNA
changes in response to nanoparticle exposure have often used quantitative approaches that aggregate
counts from near identical sequences (Stokowy et al. 2014). In this study, we have used a quantitative
pipeline that emphasizes on identifying known miRNAs (miRBase repository) and all their stably
expressed sequence variants, to investigate the cross-talk between nanoparticle type, mRNA and miRNA
expression. We leverage an experimental set-up wherein a cell line model of the immune system was
exposed to industry-relevant nanoparticles normalized to the same biological effect dose (i.e. maximum
molar concentrations that do not cause more than 15% cellular cytotoxicity), to investigate material-
specific immune responses.



Materials and Methods

The described study is based on small RNAseq of total small RNA purified from previously isolated total
RNA of differentiated THP-1 cells exposed for 6 hours (6h) or 24 hours (24h) to silver, titanium dioxide
and zinc oxide nanoparticles (nAg, nTiO2 and nZnO). The particle characteristics provided by the
manufacturers, as well as experimentally determined hydrodynamic sizes and surface charge in complete
RPMI medium (cRPMI) are outlined in Table 1. Nano-sized rutile/anatase (90/10%) titanium dioxide
(TiO2 30-40nm, NanoAmor, 5485HT) and zinc oxide (ZnO 20 nm, NanoAmor, 5810MR) were
purchased from Nanostructured & Amorphous Materials, Inc. (Houston, USA). Nano-sized PVP-coated
silver in water (BioPure Silver Nanospheres – PVP, 20 nm / 1 mg/ml water / 1 ml, SKU: AGPB20-1M)
was purchased from NanoComposix, (San Diego, USA). All cell lines were purchased from American
Type Culture Collection (ATCC, Rockville, MD, USA). Experimental details pertaining to particle
dispersion, dosimetry modelling, cell exposures and microarray-based mRNA profiling have been
previously described (Poon et al. 2017). A brief overview of the cell exposure is provided below.

Exposure
THP-1 cells are human leukemia monocytic cells that grow in suspension. They were differentiated into
adherent macrophage-like cells by culturing them for 48 hours in growth media supplemented with 50
nM phorbol-12-myristate-13-acetate (PMA). Differentiated THP-1 cells were then exposed to
nanoparticles at a dose corresponding to the maximum nanoparticle concentration at which less than 15%
cell death was observed. The nanoparticle doses at which greater than 85% cell viability was retained,
was determined with the MTT tetrazolium assay, as described previously. This was, 10 µg/ml (6 µg/cm2)
for Ag and ZnO nanoparticles, and 100 µg/ml (60 µg/cm2) for TiO2 nanoparticles (Poon et al. 2017).
Nanoparticles were added to cell cultures of PMA-differentiated THP-1 cells, and incubated under
standard cell conditions for 6 hours and 24 hours. To validate the expression of selected miRNAs across
cell types, A549 cells were exposed to the same concentration (10 µg/ml) of Ag nanoparticles, for 24
hours. Prior to nanoparticle exposures, A549 cells were cultured to 70% confluence, in complete RPMI,
supplemented with 10% heat-inactivated FBS and 1% penicillin-streptomycin (Gibco, Life
Technologies; Grand Island, NY, USA).

Delivered dose
The actual deposited fraction of nanoparticles was modelled according to the method described by
(Deloid et al. 2017). For the exposures described above, the mean deposited fraction of silver, titanium
dioxide and zinc oxide nanoparticles were 1.2%, 8.1% and 22%, respectively (Poon et al. 2017).

Microarray-based gene expression analyses
200 ng of total RNA from each sample was utilized for gene expression analysis, based on Agilent’s Sure
Print G3 Human GE v3 8x60K arrays. This platform is designed to target both mRNA and long non-
coding transcripts, but for the purpose of simplicity we always refer to microarray transcripts as mRNAs.
Raw files were pre-processed (normalization/batch effect removal), followed by differential expression
analysis as described previously (Poon et al. 2017). The implemented cut-offs for considering a gene as



significantly different between conditions was a minimum 1.5-fold change in expression at a false
discovery rate of at most 5%.

Small RNAseq
An aliquot of the same total RNA used for microarray-based gene expression profiling was used to
investigate changes in miRNA expression. Small (15 – 35 bp) RNA-seq libraries for sequencing on
Illumina platforms were generated using the SMARTer® smRNA-Seq Kit for Illumina® (Clontech, CA,
USA). Library generation, quality control and single-end sequencing on an Illumina NextSeq platform
(High Output 75 cycle flow cell, 400M clusters) were performed as a commercial service by the
Functional Genomics Unit (FuGU, University of Helsinki).

Identification and quantification of miRNAs/isomiRs
We restricted our analysis to the identification of known miRNAs and their variants. The miRge (Baras
et al. 2015) pipeline, dedicated to the identification of novel variants from canonical miRNAs was used.
A fasta file of all known human miRNAs were obtained from miRbase (version 22, containing 2654
mature human miRNAs). Raw miRNA reads were pre-processed with the Cutadapt tool as follows: 5´and
3´ adapter trimming, trim additional 3 bp from 5´ end introduced during SMARTer® PCR, trim 3’ ends
with  > 8bp polyA stretch and finally filter out reads < 16bp. Read alignment and quantification were
done in miRge, using default settings (Baras et al. 2015).

Differential expression analysis
The output file of aligned reads – mapped.csv, was imported into Perseus (Tyanova et al. 2016) omics
data analysis platform. All reads that mapped to mRNA, miRNA hairpin and non-miRNA reads were
filtered out. All identified unique sequences that were annotated as a miRNA or an isomiR was
considered an independently expressed unit, i.e., read counts from highly similar sequences were not
combined.  Only mapped miRNAs/isomiRs with > 5 counts in at least 3 samples were retained for
differential expression (DE) analysis. The cleaned dataset was imported into Chipster’s (Kallio et al.
2011) R-based graphical interface for DE analysis. Identification of DE miRNAs between any two
exposed versus unexposed group pair was carried using Deseq2 algorithm (Love, Huber, and Anders
2014). DE miRNAs/isomiRs with an adjusted p value < 0.05 were considered significant. In addition,
we did not implement any fold change cut-off. Finally, when describing miRNAs/isomiRs, we have used
the term miR to refer to either of them.

Hierarchical clustering
Cluster dendrograms were constructed either from normalized (TMM normalization method) non-log
transformed count data, using a detrended correspondence analysis approach (implemented in Chipster),
or from normalized log2-transformed count data using a heatmap (implemented in Perseus).

MiRNA/isomiR (miR) target inference and pathway analysis
Interdependencies between THP-1 transcriptome (mRNA/lncRNA) and miRnome (miRNA/isomir) were
detected via regularized canonical correlation analysis between the transcriptome and miRnome datasets



using the R-based mixOmics package (Rohart et al. 2017). We implemented a correlation score cut-off
of >|0.7| to consider a miRNA-mRNA pair as significantly correlated or anti-correlated. We used the
assumption that highly correlated/anti-correlated miRNA/isomiR-mRNA pairs, represented co-regulated
and functionally relevant networks. As such, the potential function of these miRNAs/isomiRs was
inferred from the enriched biological processes or pathways represented by their correlating/anti-
correlating gene (mRNA) pairs. Subsets of significantly correlated mRNA were then submitted to Gene
Ontology’s Pantherdb (Mi et al. 2017) tool for functional enrichment analysis. A false discovery rate of
at most 5% was implemented to consider a pathway as significantly enriched within any subset of highly
correlated genes. Correlation-inferred targets were compared to experimentally validated as well as seed
sequence-based mRNA targets using Ingenuity’s knowledgebase (IPA). In IPA, the targets of closely
related sequences (miRNAs and isomiRs) were predicted based on the seed sequences of the canonical
miRNA. A third approach to target prediction, was to identify potential mRNA binding sites for unique
seed sequences (nucleotides 2 – 8), using the TargetScan database (Agarwal et al. 2015).

Targeted miRNA validation via qPCR
Total RNA (plus miRNAs) was isolated from exposed differentiated THP-1 cells and A549 cells,
according to the protocol specifications of Norgen’s (Norgen Biotek Corp) Total RNA Purification Plus
Kit. 100ng of total RNA were employed for cDNA synthesis using a TaqManTM MicroRNA Reverse
Transcription Kit together with a specific TaqManTM miRNA Assay RT primer, or TaqManTM Advanced
miRNA cDNA Synthesis Kit (ThermoFisher Scientific). Primers and probes for hsa-miR-6087 (Assay
ID: 480183_mir), hsa-miR-142-5p (Assay ID: 477911_mir), hsa-miR-155-3p (Assay ID_477926_mir),
hsa-miR-146a-5p (Assay ID: 478399_mir) and RNU48 (small nucleolar RNA SNORD48, Assay ID:
001006), were ordered as pre-designed miRNA assay reagents (ThermoFisher Scientific). Real time
amplification was performed with TaqMan’s Fast Advanced Master Mix as described in the TaqMan®
miRNA Assays protocol (Applied Biosystems). Real time amplification was performed in 96-well optical
reaction plates on a standard 7500 Fast RT-PCR system (Applied Biosystems). Expression of RNU48
was used as an endogenous control to account for technical variability during sample prep. The relative
expression of each miRNA was calculated using the ddCt method.

Data availability
The raw sequencing files, adaptor trimmed fastq files or the output file of aligned reads (mapped.csv)
will be provided by the corresponding author [JN] upon reasonable request.



Results

Expression profile of miRNAs responding to nanoparticle exposure
Total small RNAs isolated from nanoparticle-exposed and control THP-1 cells were sequenced at a depth
of 9 to 16 million reads. An average of 160,000 reads per sample were mapped to known miRNA loci
(Fig S1A). 4089 unique sequences (miRs) with 5 or more reads in at least three independent exposures
were identified (Fig S1B). These were classified as 821 canonical miRNAs and 3268 miRNAs with 5’
or 3’ sequence variants (isomiRs). Hereinafter, we use miRs to imply both miRNAs and isomiRs. To
visualize potential differences between exposure groups as a result of miR transcriptome modulation, we
implemented a detrended correspondence analysis on normalized miR counts (Fig 1). A very modest
distinction of the different exposures was observed within the first 6 hours. After 24h, the miR
transcriptome was drastically modulated by exposure to Ag nanoparticles. TiO2 nanoparticles also
triggered clearly distinct changes on the miR transcriptome, but unlike Ag nanoparticles, the magnitude
of the expression change induced by TiO2 was considerably smaller. When considered separately, the
variation in expression was consistent for both canonical miRNAs and isomiRs, but the isomiR profile
performed slightly better in distinguishing the 6h exposures from the 24h exposures (Fig S2).
Significantly differentially expressed (DE) miRs were identified by comparing the expression levels of
miRs identified in exposed samples to that of their corresponding unexposed controls. In total 174 miRs
(49 miRNAs and 125 isomiRs) were identified as significantly different (adj. p value < 0.05 and |log2|
fold change of 0.23 – 6.85) between exposed and unexposed cells. The list of all significantly DE miRs
identified in exposed versus unexposed comparisons are provided in supplementary Table S1. Whilst the
majority of DE miRs were triggered in response to TiO2 nanoparticles (nTiO2: 102, nAg: 80 and nZn:
28) (Fig 2A), the greatest fold changes in miR expression was observed in THP-1 cells exposed to Ag
nanoparticles for 24h (Fig 2B). Consistently, a dendrogram of these DE miRs reveal that 24h exposure
to silver nanoparticles is the most distinct exposure (Fig 2C). The top DE miRs in the 24h nAg exposures
were classified as 2 isomiRs from miR-6797-3p [GGGGGGAGAGAAGGGTCGG (log2 FC, 4.54) and
GGGGGGAGAGAAGGGTCG (log2 FC, 4.93)] and 4 canonical miRNAs from miR-6087
[GAGGCGGGGGGGCGAGC (log2 FC, 6.39), GAGGCGGGGGGGCGAGCCC (log2 FC, 6.40),
GAGGCGGGGGGGCGAG (log2 FC, 6.76) and GAGGCGGGGGGGCGAGCC (log2 FC, 6.85)]. Only
6% of all DE miRs were common between the three nanoparticles (Fig 2D). 11 isomiRs from miRs -
1199-5p, -1260a, -1260b, -5100, -6807-5p, -6872-3p, -6894-3p and -7977, were DE in response to all
nanoparticles after 24h, and 2 isomiRs from miR-5100 were DE in response to all 3 nanoparticles within
6h (Fig 2D).

Integrative miR target inference
Predicting miRNA target genes is challenging because a miRNA binds to its target mRNA with partial
complementarity over a short (usually nucleotides 2 – 8 from the 5’ end) seed sequence, leading to
generation of false positive targets. The false-positive rate of sequence-based candidate targets of a given
miRNA is thought to be around 30–50% (Alexiou et al., 2009; Watanabe et al., 2007). Furthermore, the
seed sequence of isomiRs can be identical to that of their canonical miRNA isoforms, making it



impossible to infer potential alternative targets of these isomiRs. To address this issue, we used an
integrative ‘omics’ approach, wherein microarray-based transcriptomics and smallRNA sequencing data
were simultaneously analyzed to identify canonical correlations between mRNA/lncRNA and
miRNA/isomiR derived from the same total RNA pool. MiR-mRNA canonical correlation covariates
were identified from expression matrices consisting of all 6h and 24h exposures together (Fig 3), and the
6h and 24h exposures separately (Fig S3). In the combined 6h and 24h exposures, 70 miRNAs were
identified as positively or negatively correlated (canonical correlation cutoff > 0.7) with 614 mRNAs. A
list of these 614 genes is provided as Table S2. Biological process and pathway enrichment analyses was
carried out based on these 614 mRNAs. Significant enrichment of processes consistent with cell cycle
regulation, inflammatory response and response to metal ions, highlights the potential function and
downstream targets of the 70 miRs changing over time and/or in response to nanoparticle exposure. The
top enriched pathways are shown in Fig 3. When we performed the canonical correlation analysis
separately for the 6h and 24h exposures, we found 33:557 and 203:763 correlated miR-mRNA pairs in
the 6h and 24 exposures, respectively. Correlation dendrograms, Venn comparisons and the topmost
biological processes represented by unique and overlapping correlated mRNAs are depicted in Fig S3.
No significantly enriched biological processes were identified amongst the correlated mRNAs unique to
the 6h exposures, while biological processes corresponding to mitotic cell division and chromosomal
segregation were prominently enriched by correlating mRNAs unique to the 24h exposures. Biological
processes consistent with inflammatory response and response to metal ion were enriched by correlated
mRNAs common between the 6h and 24h exposures. Taken together, a canonical correlation analysis of
miR and mRNA expression profiles, followed by biological process and pathway enrichment analyses,
identified co-regulated miR-mRNA clusters that are functionally implicated in the cellular response of
differentiated THP-1 cells to metal-based nanoparticle exposure. The potential of the mRNAs to be
downstream targets of their correlated miRNA/isomiR partners is furthermore highlighted by the
observation that, a heatmap of either the correlated miRs or mRNAs from the combined 6h and 24h data
matrices, clusters all exposures according to time and nanoparticle type, wherein the cells exposed to Ag
nanoparticles for 24h are the most distinct exposure at both the miR and mRNA levels (Fig S4).

Correlation-inferred miR-mRNA networks overlap with networks enriched by miR seed sequence-
based predicted target genes
As established regulators of gene expression, it can be expected that changes in miR expression occur
primarily in response to stimuli, cell division or cellular differentiation.  We found that 94% of miRs
with a high correlation (>|0.7|) to mRNA expression were DE expressed (ANOVA q value < 0.01) over
time, in response to and between exposures (Fig 4A). This is consistent with the previously-mentioned
observation that the different exposures and time points are distinguished by hierarchical clustering of
these highly correlated miRs (Fig S4). Next, we compared the extent of overlap between correlation-
based identification of potential miR target genes and miR sequence-based predicted mRNA targets.
Sequence based miR target prediction was carried out using the Ingenuity Knowledgebase (IPA®), which
combines information from miRecords, TarBase, TargetScan and Ingenuity Expert Findings to scan a
list of input miRNAs for experimentally validated and high predicted mRNA targets. IPA utilizes the
miRNA seed sequence (2 to 8 nucleotides from the 5’ end) for target prediction. Because the majority of



miRNA variants consists of canonical miRNAs with additional 5’or 3’ nucleotides, seed sequences
derived from 45 canonical miRNAs could be identified from within the subset of 70 correlated miRs. Of
which, 25 were determined to either have experimentally validated or highly predicted mRNA targets
(Fig 4B). We filtered out all putative mRNA targets with moderate scores. In total, 3580 target genes
were identified, 36 of which had been experimentally validated. Although only 14% of the THP-1 genes
with a high correlation to miR expression, were identified from amongst these seed sequence-based
predicted target genes (Fig 4C), the top enriched pathways were highly consistent with cellular responses
to metal-based nanoparticle exposure (Fig 4D).

A subset of miRs triggered by exposure to Ag nanoparticles, may regulate cellular stress response to
different types of metal-based nanoparticles
To further characterize the most relevant DE miRs, we choose DE miRs from the exposures in which
most drastic effect on the miR transcriptome had been observed – the 24h Ag nanoparticle exposures.
DE miR and mRNA transcripts between 24h nAg-exposed THP-1 cells and their corresponding
unexposed controls were selected for further analysis. A Venn comparison was then performed to identify
DE miRs and DE mRNAs that overlap with correlated miR-mRNA pairs. Out of the 60 miRs identified
as DE in response to 24h Ag nanoparticle exposure, the expression patterns of 7 of them (miR-5100:
ATCCCAGCGGGGCCTCC, miR-142-5p: CATAAAGTAGAAAGCACTAC,
CCCATAAAGTAGAAAGCACT, miR-6087: GAGGCGGGGGGGCGAGCC, miR-7704:
GGGGTCGGCGGCGACG, miR-342-3p: TCTCACACAGAAATCGCACCCGTCT, miR-6894-3p:
TGCCCGCATCCTCCACC) were highly correlated to mRNA expression from the same cells (Fig 5A).
Meanwhile, 26% (182 genes; Table S3) of the identified DE mRNAs (adj. p value < 0.05) were miR-
correlated mRNAs (Fig 5B). The most significant biological process represented by these overlapping
mRNA was stress response to metal ion (GO:0097501, adj. p value 7E-13). Six of the top 10 biological
processes were listed as cellular response or cellular homeostasis of zinc, copper and cadmium ions (Fig
5C). Within the 24h exposures, the strongest correlations between these potentially co-regulated 7 miRs
and 182 genes was observed for Ag and ZnO nanoparticles, with predominantly weak correlations
observed between the corresponding transcripts in the titanium dioxide nanoparticle exposures (Fig 5D).
When correlated miR-mRNA pairs were compared with DE miRs or DE mRNAs 63 miRs and 432
mRNAs were unique to the correlated miR-mRNA subset (Fig 5A-B; Fig S5A-B). Pathway enrichment
analysis on the 432 miR-correlated genes identified cell cycle (GO:000749, adj. p value 3E-29) as the
most enriched biological process, with all the other top 10 pathways representing biological processes
that correspond to mitotic cell division (Fig S5C). An indication that these 63 miRs and 432 mRNAs are
part of a miR-mRNA co-regulated network involved in cell cycle progression. In fact, 9 miRs identified
to be DE between 6h- versus 24h-seeded unexposed THP-1 cells, were identified amongst these 63 miRs.
53 miRs and 709 mRNAs were differentially expressed in the nAg-24h vs. Ctrl-24h comparisons, but
were not identified as significantly highly correlated (R > 0.7) (Fig 5A-B; Fig S5A-B). That is, these DE
miRs and DE mRNAs are very likely not part of a co-regulated network. The topmost biological
processes enriched by these 709 mRNA genes corresponded mainly to general cell response to chemical
stimulus (Fig S5C).



Because 24h Ag nanoparticle exposure resulted in differential expression of miR-5100, miR-142-5p,
miR-142-5p*, miR-6087, miR-7704, miR-342-3p and miR-6894-3p, that were highly correlated (R >
0.8) to genes involved in cellular metal ion response (Fig 5C-D), we next asked whether this regulatory
relationship can be indirectly harnessed (expression of these 7 miRNAs) to investigate other types of
adverse metal-based exposures. To this end, we compared differentially expressed genes identified from
24h exposures of the same THP-1 cells to nano-sized (20 nm) silver particles, nano-sized (20 nm) zinc
oxide particles, bulk-sized (300 nm) zinc oxide particles and non-particulate nitric acid silver ions.
Although each exposure type triggered a unique change in the gene expression profile, 10 genes were
commonly triggered by both bulk-sized (ZnO) and nano-sized (ZnO and Ag) particles, as well as non-
particulate silver ions. While 37 genes were commonly triggered by exposure to the three particles but
not silver ion solution (supplementary Figure S6A). Consistently, a response to metal ion was identified
as the most enriched biological process when GO enrichment analysis was performed based solely on
the 10 or 37 common DEGs (supplementary Figure S6B). A list of differentially expressed genes from
the 24h exposures is provided as supplementary Table S4.

Upregulation of miR-6087 presented as a distinct hallmark of adverse nAg exposure in THP-1 cells
Canonical and isomeric variants of hsa-miR-6087, were identified as the most upregulated miRs across
all exposures. Within 6h of seeding, the average combined expression of reads derived from the miR-
6087 locus across all samples was about 552 reads per million mapped reads (RPM). The number of
sequenced miR-6087 reads increased to 1,170 RPM in all 24h samples except those exposed to Ag
nanoparticles. The average combined expression of miR-6087 miRs in samples exposed to Ag
nanoparticles for 24h was starkly contrasting, at 17,774 RPM. A heatmap of normalized and log2
transformed read counts of all identified canonical and variant miRNAs of miR-6087, separates the 24h
Ag nanoparticles exposures from all the other exposed and control samples (Fig 6A). When miR-6087
variants with over 100 read counts across all samples are compared to the hsa-miR-6087 stem loop
sequence, or aligned against a canonical miR-6087 miRNA (Fig 6B), we find that the majority of these
miR-6087 miRNA variants are 3’-isomirs, derived from a combination of both alternative Drosha/Dicer
cleavage and RNA editing. 5’-isomiRs of miR-6087 were derived exclusively from alternative
Drosha/Dicer cleavage. mRNA target prediction (TargetScanHuman6.0, default settings), based on the
alternative seed sequences (nucleotides 2 – 8) generated by the most abundant miR-6087 isomiRs, reveal
that only 3% of the potential target genes are shared by 2 or more 5’-isomir variants (Fig 6C).

RT-PCR validation of selected differentially expressed miRs

The expression of 2 (hsa-miR-142-5p and hsa-miR-6087) of the 7 key miRs (see Fig 5A), as well as 2
other miRNAs (hsa-miR-155-3p and hsa-miR-146a-5p) that were available in-house, was validated via
qPCR. The expression of these miRs as determined via qPCR was in line with our smallRNAseq data
(Fig S7). We could also confirm the upregulation of hsa-miR-6087 and hsa-miR-155-3p in A549 cells
exposed to the same concentration of Ag nanoparticles as PMA-differentiated THP-1 cells (Fig S7).



Discussion

In the present study we investigated changes in the expression of miRNAs in response to sub-toxic metal
and metal oxide nanoparticles. We also used gene (mRNA) expression profiles from the same cells to
predict functional mRNA-miRNA networks linked to early response to metal-based nanoparticles. A
variety of RNAseq tools exist, each with certain advantages and limitations, without consensus on an
optimal method. We opted for a tool that emphasizes distinction of isomiRs from canonical
miRNAs. Being only 19–21 bp long on average, miRNAs/isomiRs will likely align to random sequences.
This makes their proper assignment based on alignment to the entirety of the genome difficult and more
subject to inaccuracies than mRNAs. To address this issue, we performed alignments against a library
consisting of known human miRNA sequences from the miRbase (v22) repository, with 2654 unique
mature miRNA entries. Furthermore, because miRNAs can act cooperatively with other miRNAs to
modulate gene expression (recently reviewed in Bracken et al. 2016), we chose not to implement any
fold change cut-offs during identification of DE miRs. As such, the modestly differentially expressed
miRs identified herein should be interpreted with caution. Nonetheless, the identified top correlating
miRs, predicted to be involved in cellular response to metal ions were all differentially expressed by
more than 1.5-fold.

Recent studies have brought the potential relevance of isomiRs to the forefront by showing that
5’ isomiRs are expressed in a cell-specific manner (Neilsen, Goodall, and Bracken 2012), are
evolutionary conserved (Tan et al. 2014) and have distinct functions (Yu et al. 2017). In addition to de
novo sequence and length variants, the miRge annotation pipeline also distinguishes validated SNPs. As
such, the 821 unique miRNA sequences identified were annotated to 215 miRNAs, whilst the 3268
unique isomir sequences were annotated to 540 miRNAs. The most diverse set of miRNA sequence
variants identified belonged to all 12 members of the let-7 family of miRNAs – with a total of 97 unique
miRNA and 504 unique isomiR sequences. Let-7 miRNAs are the most conserved, and as a result, the
most studied miRNA family to date. Whilst there are indications that they may be relevant for normal
cellular development, they have also been shown to serve important and functionally redundant roles as
tumor suppressors (Su et al. 2012). The occurrence of this pervasive sequence variation in such a highly
conserved and physiologically important miRNA family, is in line with recent views that miRNA
sequence variation is most likely not an artefact (Desvignes et al. 2015). With all the above in mind, we
have favored a quantification and target identification approach that considers each miR
(miRNA/isomiR) sequence as a functionally unique miRNA entity.

The observation that the expression profile of all unique miR (miRNA/isomiR) variants
distinguished exposure duration and nanoparticle type, echoes conclusions from decades of research that
miRNAs are bonafide pathophysiological biomarkers. We are of the opinion that isomiRs can also serve
as robust biomarkers. Exposure to TiO2 and Ag nanoparticles was still observed as the most unique
treatments when the expression profile of either the miRNAs or isomiRs were considered separately,
although combining miRNA/isomiR profiles better distinguished the time point and exposures than each
sub-profile. This suggests that sequence variation is a functionally relevant phenomena that may have
evolved as a more efficient way (for example in terms of cell energy resources) to fine tune gene
regulation, without the need to increase the total miRNA turnover rate.



The miR-6087 locus was particularly sensitive to nAg exposure. Canonical and length and
sequence variants of miR-6087 were drastically upregulated after 24h of exposure to Ag nanoparticles.
Further studies are warranted to investigate the functional role of miR-6087 within the context of silver
toxicity, and general metal-based nanoparticle toxicity. For now, we can only speculate that, the
extensive variation (that potentially modify its mRNA targets), and coordinated upregulation of canonical
and variant miR-6087 transcripts may be functionally indispensable for homeostatic immune response
to sub-toxic silver exposure.

In terms of number of differentially expressed miRs, it was actually unexpected to find the most
in TiO2-exposed cells because, on the mRNA level, exposure to TiO2 elicited the least number of
differentially genes (Poon et al. 2017). In certain in vivo set-ups, TiO2 nanoparticles have been reported
to cause pulmonary toxicity and lung inflammation (reviewed in (Shi et al. 2013)). However, contrary to
Ag and ZnO nanoparticles that induce cytotoxicity, inflammation and genotoxicity mostly through
dissolution and generation of reactive oxygen species, TiO2 nanoparticles are in general considered to be
stable and insoluble, requiring considerably higher molar concentrations to trigger similar adverse effects
like Ag and ZnO nanoparticles. In addition, given that; 76% of the identified DE miRs in TiO2-exposed
cells were downregulated (Fig 2A), 70% of DE miRs in TiO2-exposed were common between 6h and
24h exposures as opposed to 10% and 15% in nAg- and ZnO-exposed cells, respectively, it seems that
the bulk of the identified DE miRNAs/isomiRs in response to TiO2 nanoparticles can be attributed to
miRNA/isomiR binding to the surface of TiO2. Especially, when also considering that miRNAs/isomiRs
with the strongest correlation to a subset of genes related to stress response to metal ion and inflammatory
response, were weakly correlated in the TiO2 exposures. In addition, similar to phosphopeptides,
ribonucleotides - the building blocks of miRNAs/isomiRs, have been shown to have a high affinity (over
a broad pH range of 2–11) for the surface of TiO2 (Cleaves et al. 2010). In fact, in the same way that
TiO2-based columns, beads, etc., are being used for adsorption-based enrichment of phosphorylated
peptides (Thingholm et al. 2006; Montoya et al. 2011), engineered TiO2 nanofibers were very recently
proposed as a tool for enrichment of miRNAs from biological matrices (Jimenez et al. 2018).

High complementarity between miRNA seed sequence (usually 2 – 8 nucleotides from the 5’
end) and mRNA 3’ UTRs which results in cleavage through an RNA interference mechanism (Bartel
2004), is the most conserved mechanism of miRNA-mediated gene expression regulation. In contrast,
partial complementarity, as may be the case if an isomiR binds the same target as its canonical miRNA
or if a canonical miRNA binds 3’ UTRs from several genes, results in translational inhibition(Bartel
2009), and is commonly seen in mammalian cells. However, predicting miRNA targets using sequence
complementarity-based approaches often leads to false positives and false negatives, because miRNA
seed sequence independent features like 5’and 3’ length and sequence variants, have been shown to affect
target selection and seed-target duplex stability (Hibio et al. 2012). Having access to DE mRNA from
the same samples is known to improve seed sequence-based target prediction. Because we considered all
identified unique miR sequences as independently expressed units, the integrated miR-mRNA
correlation-based target prediction approach we have used treats each sequence variant as a unique
variable, thus taking into account the target-modulating potential of length and sequence variants outside
the seed region. The biological processes and pathways represented by the mRNA in co-regulated miR-
mRNA networks indicate that THP-1 miRNAs/isomiRs regulate the expression of genes involved in cell



cycle regulation, immune response and response to metal ions. This canonical correlation-based approach
seems to be highly specific because, firstly, a heatmap based on the identified mRNAs with high
correlation (cutoff >|0.7|) to miRNA/isomiR expression, separates all exposures according to duration of
exposure and nanoparticle type. Secondly, when we compared the DE genes to miRNA-correlated genes,
for example, for the 24h silver nanoparticle exposures (nAg-24h), we find that the top biological
processes enriched by the intersecting 182 genes were related to metal ion and inflammatory responses,
whilst the 432 DE genes that were unique to the miRNA-correlated subset were more involved in cell
cycle related biological processes. These 432 genes may represent genes that are DE between 6h and 24h
seeded cells. Finally, 709 genes that were unique to DE genes in nAg-24h, were predominantly involved
in response to cytokines. We deduce from this that, in as much as the downstream immune responses
(e.g. inflammation) are regulated at the level of the miRNA, the early immune signaling events, like
response to cytokine, are regulated in a miRNA-independent manner. The poor dissociation of the
different exposures based on 6h miRNA/isomiR expression profiles, supports this view.

Sequences from miRs -142-5p, 142-5p*, -342-3p, -5100, -6087, -6894-3p and -7704 were the
most correlated with 182 differentially expressed THP-1 mRNAs that were highly enriched for biological
processes corresponding to cellular response to metal (listed as zinc, copper and cadmium in the gene
ontology database) ions and inflammatory response. Because the genes responsible for these enriched
pathways were triggered in response to Ag nanoparticles, it seems that metal-based nanoparticles have
overlapping mechanisms of action. In addition, although we previously (Poon et al. 2017) identified
distinct gene expression profiles between THP-1 cells exposed to bulk- vs. nano-sized particles (300 nm
ZnO vs. 20 nm ZnO) and between nanoparticles and metal ion solution (nAg vs. Ag+ ion), analysis of
shared DEGs revealed response to metal ion as a common mechanism of toxicity (Fig S6). Since this
pathway is activated (albeit to varying degrees) in response to non-particulate (Ag+), nano-sized (nAg
and nZnO) and bulk-sized (bZnO) metal ions, it may constitute a common mechanism of toxicity for a
broad class of metal and metal oxide nanoparticles. It follows therefore that, the change in expression of
miRNAs identified as potential regulators of its component genes (in this case, the 7 miRs that were
highly correlated to metal ion response – Fig 5) may be useful proxies (biomarkers) to investigate adverse
exposure to metal-based nanoparticles. Indeed, we find that the degree of correlation within this
miR:gene cluster, increases from nTiO2 to nZnO and nAg exposures (Fig 5D), in very much the same
way as the previously assayed cytotoxicity potential of these nanoparticles (Poon et al. 2017). We thus
propose that, these 7 DE miRs are components of a co-regulated miR:gene cluster that is triggered in
response to metal ions, and changes in their expression may be used to evaluate adverse exposure to
metal-based nanoparticles. MiR-6087, miR-7704, miR-5100 and miR-6894-3p were upregulated in nAg-
24h, while the two variants of miR-142-5p and miR-342-3p were downregulated in nAg-24h. The fact
that we could also confirm the expression of the most upregulated miRNA (miR-6087) in similarly
exposed A549 cells (Fig S7), highlights the biomarker potential of this highly correlated miR subset. In
reviewing the literature, we find that these miRNAs/isomiRs have been functionally validated in several
studies to be involved in processes such as, viral and bacterial immune responses, response to metal ions,
cellular differentiation and phagocytosis. For example, Mn2+ ion uptake in neuron cells exposed to MnCl2

was shown to trigger upregulation of miR-6087 and miR-7704 (He et al. 2017). Hsa-miR-7704 has also
been validated as a miRNA that is upregulated by more than 20-fold in virus-infected dendritic cells



(Baños-Lara et al. 2018). MiR-342-3p was observed to be downregulated in A549 cells exposed to
chitosan conjugated gold nanoparticles (Choi et al. 2018). Being a tumor suppressor, downregulation of
miR-142-3p has been typically observed in cancer cells (Shen et al. 2013; Xu et al. 2014). Overexpression
of miR-142-3p, significantly inhibited E. coli phagocytosis in human monocyte derived macrophages,
peripheral blood mononuclear cells, dendritic cells and monocytes (Naqvi, Fordham, and Nares 2015).
Implying that downregulation of miR142-3p as observed in THP-1 cells may amplify or promote
phagocytosis of nanoparticles.

The above findings, together with the fact that the cells were exposed to particle concentrations
that elicited maximum 15% cellular cytotoxicity, support the potential of the miRNAs within the co-
regulated miR-mRNA cluster to be biomarkers of early adverse exposure to metal-based nanoparticles.



Conclusion

For most nanoparticles the actual human exposure is unknown, as such, in addition to implementation of
minimal human and environmental contact, there has to be biomarkers of early or sub-toxic exposures
and rapid identification of hazardous novel nanoparticles. Mechanism-based mode of action approaches
for read across, and grouping of nanomaterials based on similar toxicologically relevant features, has
been widely adopted by the scientific community as the way forward. Consequently, there has been a
steady increase in the volume of experimental data on the mechanisms of biological effects induced by
exposure to nanomaterials. However, predictive modelling and classification of related nanoparticles
from these data is not straightforward because unlike chemicals, the notion of dose when applied to ENM
is not only limited to standard particle exposure metrics like mass and concentration. That is, even when
assay protocols and test models are harmonized, the determined nanoparticle toxicity constitutes a broad
domain of dose-relevant parameters like aggregation state, cellular uptake, solubility, etc., which can be
replicated in future studies but are quite challenging to normalize across the bulk of already existing
omics datasets. This issue is mitigated by an experimental set-up such as the one from which our data is
derived. There-in, exposures were normalized to induce similar levels of the same relevant biological
outcome – in this case maximum 15% cellular cytotoxicity. Here-in, we used integrative miRNA/mRNA
profiling to propose 7 key miRNAs as possible biomarkers of potentially a broad range of metal-based
nanoparticles. In cells exposed for 24h to silver, titanium dioxide or zinc oxide nanoparticles, we showed
that the degree of correlation of these miRNAs to differentially expressed metal ion response genes, is
proportional to particle cytotoxicity. The rationale of using the expression of these miRNAs to investigate
other metal-based nanoparticle exposures, is evidenced by modulation of their potential target genes in
response to different types of metal-based nanoparticles and non-particulate metal ions. Of note, none of
these 7 miRNAs/isomiRs that were highly predicted to be involved in the regulation of cellular response
to metal ions have been identified in the few studies investigating changes in miRNA expression
following exposure to Ag, TiO2 and ZnO nanoparticles (Eom et al. 2014; Huang, Lü, and Ma 2014;
Schultz et al. 2016; Zhao et al. 2016). The markedly more elevated nanoparticle mass concentrations
employed in those studies may have skewed the identified mechanisms to mostly reflect molecular
differences due to biological outcome severity rather than upstream particle-specific bioreactivity – the
latter of which, in our opinion, is more relevant to stratify ENM features according to their mode(s) of
action. Furthermore, by limiting the extent of cell death most of the identified differentially expressed
miRNAs/isomiRs will be biomarkers of early exposure. Ours is the first study that considers both miRNA
abundance and canonical miRNA sequence variation, to elucidate sub-toxic, particle-specific immune
cell-nanomaterial reactivity.
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Table 1: Particle characteristics provided by manufacturer
Nanoparticle Ag TiO2 ZnO
Coating Polyvinylpyrrolidone - -
Dissolution 1 ppb – 2 ppm/H2O supplied as powder supplied as

powder
Phase - 90:10(anatase:rutile) -
Purity (%) 99.99 99.00 99.50
Size (nm) 20 30-40 20
Specific surface area (m2/g) 27.4 30 50
#Hydrodynamic size (nm) in
cRPMI

86.43±0.77 642.00±18.04 377.80±5.33

#Zeta potential value (mV) in
cRPMI

-10.60±1.19 -10.90±0.59 -11.50±1.01

#Poon et al. 2017



Figures

Figure 1

Expression profile overview of miR (miRNA/isomiR) transcripts. Detrended correspondence analysis
of global miR expression reveal relatively minor change in expression within 6h as opposed to 24h. Silver
nanoparticles (nAg) induced drastic (the biggest) changes in miR expression, after 24 hours of exposure.
The dotted red square includes all samples (coloured symbols) exposed for 6h and the dotted black square
all the samples exposed to nanoparticles for 24h.



Figure 2

Differentially expressed (DE) miRs between exposed and unexposed controls. Transcriptome of
exposed versus unexposed cells were analysed for DE of unique miR sequences (A). The length of the
bars represents the number of downregulated or upregulated miRs. The exposure with the most severe
effect on the miR transcriptome was identified by constructing a cluster dendrogram based solely on DE
genes between exposed and unexposed control cells (B).  24 hours (24h) exposure to silver nanoparticles
(nAg) induced the most drastic change on the miR transcriptome. This is in line with the identification
of the most DE miRs in cells exposed to nanosilver for 24h (C). DE miRs were compared across
nanoparticles with the same exposure duration. Venn comparisons of DE expressed miRs, at each time
point across all nanoparticles, or for each nanoparticle across time points are shown in (D). The miRs
that were commonly DE across the different nanoparticle exposures were classified as isomiRs. Their
sequences and names are outlined next to the Venn comparisons.



Figure 3

miR target gene and functional effect prediction. In order to identify the genes that are potentially
modulated by the identified miRs, a correlation analysis between miR expression and microarray-derived
mRNA expression on RNA obtained from the same cells was performed. The heatmap (left panel) shows
significant negative and positive correlations (cutoff > 0.7) between the mRNA/lncRNA and
miRNA/isomiR data layers. Pathways enriched by these top correlating genes are shown in the right
panel.



Figure 4

Comparison of correlation-based and sequence-based target prediction. Venn comparison between
miRs (A) identified to have a high correlation (cutoff, R >|0.7|) with mRNA expression and those
identified as differentially expressed across time points and exposures (ANOVA q value < 0.01). 45
canonical seed sequences (nucleotides 2 – 8) of most frequently observed miRNA) could be identified
from the set of 70 mRNA-correlated miRs. Experimentally validated or high predicted target genes were
identified via IPA® miRNA target filtering, for 55% of the submitted canonical miRNAs (B). 85 targets
of the canonical miRNAs were identified to be amongst the miR:mRNA highly correlating transcript
pairs (C). The topmost biological processes enriched by these 85 genes are depicted in (D). FDR is the
false discovery rate.



Figure 5

Correlated miR: mRNA pairs relevant to silver nanoparticle exposure. To identify exposure-related
genes that were potentially modulated via miRNA targeting, the miRs (miRNA/isomiR) (A) and genes
(B) identified as differentially expressed (Benjamini-Hochberg FDR < 0.05, log2 difference > 0.58) in
cells exposed to silver nanoparticles for 24h were compared with the correlated miR-mRNA pairs
identified via canonical correlation analysis of mRNA and miRs from all exposed and control cells. Venn
comparisons reveal 7 miRs and 182 genes are potentially co-regulated in response to silver nanoparticle
exposure. These 182 genes consisted of significantly enriched subsets of genes involved in cellular
responses to metal ion (C). Within the 24h exposures, the strongest correlations between these potentially
co-regulated cluster of 7 miRs and 182 genes was observed for silver nanoparticles (nAg) followed by
zinc oxide nanoparticles (nZnO), and predominantly weak correlations in titanium dioxide nanoparticle
(nTiO2) exposures (D).



Figure 6

Functional relevance of miR sequence variants. miR-6087 was the most upregulated miR across all
nanoparticle exposures. Several canonical and isomeric variants of miR-6087 were upregulated in the
24h silver nanoparticle exposures. A heatmap of all identified miR-6087 transcripts is depicted in (A).
In (B), sequence alignment of the most abundant variants (> 100 read counts across all samples) relative
to a canonical mir-6087 miRNA sequence (highlighted in yellow) is shown. Red characters represent the
canonical seed sequence, blue characters – 5’ sequence variants (5’-isomiR) and green characters – 3’
sequence variants (3’-isomiR). Potential differential mRNA targeting, as a result of variations in the seed
sequence of miR-6087 are shown as Venn comparisons in (C). Sequence-based miR target prediction
was done via TargetScan, using default settings.



Supplementary files

Figure S1: Read count distribution. Total (A) and unique (B) read counts are shown for each biological
replicate. On average, 150,000 reads corresponding to approximately 1700 to 2900 unique miRNAs with
a minimum of 5 read counts, were identified across all samples.

Figure S2: Side by side comparison of canonical and variant miRNA expression reveal consistent
response to nanoparticles. A slightly better distinction of exposure duration was observed for the variant
containing miRNAs (isomiRs). The dotted red square includes all samples (coloured symbols) exposed
for 6h and the dotted black square all the samples exposed to nanoparticles for 24h.



Figure S3: Integrative miR:mRNA transcriptome correlation-based miRNA target prediction. (A)
Heatmap of correlated (cutoff >|0.7|) miR:gene pairs, for 6 hours and 24 hours exposures. (B) Venn
comparisons of correlated miRs and genes between time points. (C) Biological processes enriched by
correlated genes that were common to 6h and 24 exposures (red box), unique to 24h exposures (blue box)
or unique to 6h exposures (black box).



Figure S4: Side by side heatmaps of correlated miRs (left) and genes (right). MiR and mRNA
transcriptome were profiled in same total RNA pool obtained from unexposed (Ctrl) THP-1 cells or THP-
1 cells exposed to titanium dioxide (nTi), zinc oxide (nZn) and silver (nAg) nanoparticles, for 6h or 24h.

Figure S5: Venn comparison between miRs (A) identified to have a high correlation (cutoff >|0.7|) with
mRNA expression and those identified as differentially expressed following 24h exposure to silver
nanoparticles (nAg). Similarly, mRNAs that correlated with miR expression (cutoff >|0.7|) were
compared to those that were differentially expressed as a result of 24h exposure to silver nanoparticles
(B). The topmost enriched biological processes, represented by the unique mRNAs from the set of
compared mRNAs in (B), are depicted in (C) and (D). FDR is the false discovery rate.



Figure S6: Venn comparison of differentially expressed genes (Benjamini-Hochberg FDR < 0.05, log 2
difference > 0.58) in cells exposed to bulk-sized ZnO particles (bZnO – 300 nm), nano-sized ZnO
particles (nZnO – 20 nm), Ag nanoparticles (nAg – 20 nm) and non-particulate nitric acid silver [Ag
(1+)] is shown in (A). Response to metal (zinc, copper, cadmium) ion is the most enriched pathway
represented by shared (10 genes in all exposures and 37 genes particle-based exposures) differentially
expressed genes (B). Metal ion response related pathways are highlighted in green.



Figure S7: Relative expression of selected miRNAs, as quantified by RT-PCR. Seq denotes expression
as determined by small RNA sequencing while qPCR denotes the relative expression determined via real
time PCR. Real time PCR expression was determined relative to endogenous RNU48 expression. Y-axis
is log2-transformed, normalized count data from small RNAseq, and log2-transformed relative qPCR
expression using the ddCt method. Error bars indicate mean and SEM from three (smallRNAseq) or four
(qPCR) replicates.


