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ABSTRACT 
 

Staphylococcus aureus is a pervasive pathogen, whose infections frequently result in serious 
medical complications and death. Its encounters are yet more perilous in clinical settings where 
professional care and financial resources alone do not suffice to ensure successful treatment 
results. The virulence of the bacteria is enforced by numerous cellular mechanisms that have 
allowed it to develop resistance to every drug used to this date. The bacterial cell wall (CW) is the 
primary line of defense, the most common target in treatment strategies, and is likely to remain the 
prioritized candidate for future therapeutic solutions.  

The main structural component of bacterial CW is peptidoglycan (PG) that forms protective layers. 
PG is administered by a large number of enzymes that are involved in its synthesis, maintenance, 
and cleavage. One family of enzymes, M23 peptidases, cleaves pentaglycine bridges that link 
chains of PG and are specific to S. aureus. These enzymes can be used by the bacteria to manage 
its own PG in a controlled manner or, alternatively, by hostile microorganisms and cause cell 
death. Therefore, M23 peptidases of S. aureus are important as potential targets for drugs as well 
as pharmacological tools themselves that are already employed by nature. Substrate recognizing 
SH3b domains enhance the effectiveness of M23 endopeptidases. 

Previous research had identified a putative M23 peptidase gene, transcription of which is 
upregulated under S. aureus exposure to compounds harmful to cell wall. We examined and 
characterized the product of the gene. The protein, which we named LytU, is an M23 family zinc-
dependent enzyme that cleaves pentaglycine. It is anchored in plasma membrane and is 
extracytoplasmic, residing in a periplasm-like space. The physiological role of LytU is not 
confirmed, but evidence suggest it can recycle PG fragments and participate in daughter cell 
separation. A distinct feature of the enzyme is its ability to strongly bind a second zinc ion, which 
incapacitates catalytic residues. We propose that together with pH, the binding of second ion serves 
a regulatory function in situ. Solution structure of the LytU catalytic domain has been determined. 

Binding of substrate pentaglycine to catalytic M23 domain is very transient at least in vitro. The 
binding, nevertheless, is accomplished by SH3b domain of enzymes bearing it. Contrarily to 
previous beliefs, we found that SH3b domain binding to substrate is primarily driven by 
interactions with PG branching peptides, rather than by weaker interaction with pentaglycine. The 
binding of SH3b to substrate is independent of catalytic domain and it targets and binds the PG 
peptide moieties that are proximal to but different from the pentaglycine cleaved by catalytic 
domain. 

In summary, we have introduced and characterized a new M23 family endopeptidase, proposed a 
regulation mechanism, and changed the paradigm of substrate binding by M23 peptidases. Our 
results are expected to contribute to a better understanding of S. aureus physiology and provide 
means for the development of cures. 
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1. INTRODUCTION 
Staphylococcus aureus [from Greek and Latin staphylo – “resembling cluster, bunch of grapes”, 
coccus – “berry”, i.e. round, aureus – “golden”, i.e. yellow color], a Gram-positive bacterium, is 
one of over 2000 human bacteria species and one of just under 100 species that cause infectious 
diseases to their host (McFall-Ngai, 2007). Its medical impact is aggravated by the pervasive 
presence, morbidity of bacteremia cases, and readiness to develop drug resistance.   

Already upon the discovery of Staphylococcus in 1878, Alexander Ogston noted “micrococci so 
deleterious when injected, and so harmless on the surface of wounds and ulcers” (Ogston, 1881). 
Although it must be noted that S. aureus itself can cause skin infections, it is indeed its entrance 
into the bloodstream (i.e. bacteremia) that triggers the most severe and lethal clinical events. The 
array of S. aureus caused diseases, to name a few, includes food poisoning, cellulitis, abscesses, 
pneumonia, osteomyelitis, endocarditis, and toxic shock syndrome (Lowy, 1998; Staphylococcus 
aureus infections – infections, Merck Manuals). 
Many healthy individuals carry the bacteria as well, predominantly in their nostrils, without any 
symptoms. It is estimated that persistent and intermittent carriers account for 20 and 60% of 
population, respectively, and 20% never carry the pathogen (Kluytmans et al., 1997). Bacteremia 
afflicts 20 – 50 individuals per 100,000 of global populations, with Scandinavian rates being 
among the best and the US among the worst, and 10 – 30 percent of these cases are fatal (van Hal 
et al., 2012). S. aureus can be contracted in hospitals where drug resistant strains become 
particularly frequent and concerning. Formation of durable biofilms enables transmission of the 
bacteria via medical devices and contamination of intravenous catheters carries high risks (Brooks 
& Jefferson, 2012).  

The toughness of S. aureus against treatment has been noted by Ogston himself, who wrote: ‘Once 
established the micrococci are hard to kill – the only thing I found effective was cauterisation with 
a strong solution of chloride of zinc’ (Ogston, 1881). The adversity continues to this date and will 
in the foreseeable future. Every introduction of a major anti-staphylococcal agent was followed by 
the discovery of resistant strains: penicillin in 1940s, methicillin (MRSA) in 1960s, and vancomy-
cin (VRSA) upon the increase of its use in 1990s. The origins of infections gradually moved be-
yond hospitals and into communities and livestock (Chambers & Deleo, 2009; Knox et al., 2015). 
The medical challenges translate into an enormous economic drawback: in European Union alone, 
hospital acquired MRSA infections affect 150,000 patients and cost additional 380 million euro 
(Köck et al., 2010), and the total inflicted costs in the US are in billions (Lee et al., 2013). Calls 
for new therapeutic approaches have been made (World Health Organization, 2014; Centers for 
Disease Control and Prevention, (U.S.), 2013). New drugs are continuously proposed (Bal et al., 
2017; Choo & Chambers, 2016; Purrello et al., 2016). Nevertheless, the time-proven tendency of 
S. aureus to develop resistance to small molecules is troubling and urges to develop new treatment 
paradigms (Taubes, 2008).  
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1.1. Staphylococcus aureus drugs and resistance 

 
Antibacterial agents can be grouped into three main classes, based on their intracellular targets and 
interference objects: cell envelope (including cell wall and plasma membrane), protein synthesis, 
and DNA synthesis. Table 1 lists currently used anti-staphylococcal agents. Cell wall synthesis 
targeting β-lactam class antibiotics like penicillin/methicillin and glycopeptides related to 
vancomycin account for nearly a half and are most commonly used (Bassetti et al., 2013). New 
generation β-lactams ceftaroline and ceftobiprole as well as glycopeptides dalbavancin, 
oritavancin, and telavancin were approved by drug regulatory agencies in the last decade, 
daptomycin and linezolid have gained prominence and the development of tetracyclines, 
fluoroquinolones, and oxazolidinones is ongoing (Bal et al., 2017). 

Spearheaded by the availability of new anti-staphylococcal agents follows a horde of 
studies on combinations in their utilization. Composite application of antibiotics allows for a range 
of benefits. On one end, for example, usage of β-lactam amoxicillin is enforced by clavulanate, 
which inhibits β-lactamase that inhibits the degradation amoxicillin (Sader et al., 2007). On 
another end, the binding of dalfopristin to ribosomal 50S subunit induces conformational changes 
that facilitate the 100-fold binding increase of quinupristin, making the synergetic effect 
bactericidal, i.e. lethal, as opposed to only bacteriostatic, i.e. preventing cellular reproduction, for 
each antibiotic alone (Allington & Rivey, 2001). Literature is galore for such microbial and 
pharmacokinetic studies and, while the combination of vancomycin or daptomycin with β-lactam 
antibiotics has been gaining traction (Bal et al., 2017), arguably mainly due to their own potency, 
the consensus on preferred therapeutical methods remains to be a subject for debates (Liu et al., 
2011) with ever-growing resources and seemingly unlimited boundaries. Meanwhile, prudent 
administration of S. aureus antibiotics must be exercised due their toxicity to humans and adverse 
effects that all medications display to a certain degree. Moreover, careful selection of 
concentrations is necessary for optimal effect and heterogeneous resistance of the bacteria. 

Multi-drug resistance is the central challenge of S. aureus problem. The resistance 
mechanisms are yet more diverse, complex, and multilayered than the action mechanisms of anti-
staphylococcal agents.  

The two main classes of anti-staphylococcal agents are β-lactam class antibiotics and 
glycopeptides. β-lactams bind and inhibit enzyme transpeptidase, also known as penicillin-binding 
protein, PBP, because they are structural analogues of D-alanyl-D-alanine residues that are the 
substrate for the transpeptidase in cross-linking of S. aureus peptidoglycan chains during the 
synthesis of cell wall (Figure 1). Alternatively, glycopeptides thwart bridge formation of these 
chains by binding and covering D-Ala-D-Ala residues. In addition, glycopeptide oritavancin 
possesses a 4'-chlorobiphenylmethyl group, which is capable to permeabilize and depolarize 
plasma membrane (Belley et al., 2010). Consequently, the resistance mechanisms against these 
drugs are most studied and rather well understood. At the core of β-lactam resistance is a SSCmec 
genetic element, which carries gene mecA that encodes a PBP2a protein, which has a reduced 
susceptibility to β-lactam binding (Hartman & Tomasz, 1981; Peacock & Paterson, 2015). 
Resistance to vancomycin and related glycopeptides primarily relies on mechanisms producing 
and maintaining a thicker cell wall, which leads to the trapping of glycopeptides at the naturally 
available free D-alanyl-D-alanine residues (~20 % of the total) in the outer layers of cell wall, thus, 
preventing their access to deep layers where the linkages are formed (Hiramatsu, 2001) as well as  
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Figure 1. Synthesis of S. aureus peptidoglycan. Inhibition targets by most common classes of 
antistaphylococcal agents is shown. See text for more details. Adapted from (McCallum et al., 
2011; McCallum et al., 2010; van Heijenoort, 2001). 
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substitution of the terminal D-Ala to D-lactate or D-serine, which modifies the drug target 
(Courvalin, 2006).  

In addition to these systematic resistance mechanisms, S. aureus has an arsenal of 
approaches to evade specific drugs. The disruption of cell plasma membrane is the distinct and 
primary action mechanism of daptomycin (Pogliano et al., 2012). Mutations in several unrelated 
genes have been linked to increased resistance to daptomycin and expression of multiple peptide 
resistance factor, MprF, which couples lysine to phosphatidylglycerol thereby changing the acidity 
of membrane and prevents Ca2+ ion-bound daptomycin from interacting with the membranes 
(Baltz, 2009). Linezolid acts by arresting peptidyl-transferase center in ribosome and the resistance 
to it is promoted by a single amino residue deletion 24 Å away from its binding center, 
subsequently triggering a cascade of structural rearrangements that prevent its binding (Belousoff 
et al., 2017). Tedizolid, which is up to four times more potent than linezolid does not yet have a 
clarified resistance mechanism (Bensaci & Sahm, 2017). Tetracyclines act by preventing the 
attachment of aminoacyl-tRNA to ribosomal acceptor and the resistance occurs by mediating their 
efflux or ribosomal protection, although additional mechanisms may exist (Chopra & Roberts, 
2001). Clindamycin disrupts peptide chain initiation and its effect is halted by ribosomal 
methylation processes (Spížek & Řezanka, 2017). Dalfopristin/quinupristin obstruct the release of 
newly synthesized peptide chains and the resistance to them also relies on facilitation of their 
efflux, enzymatic modification, or alterations of their binding targets (Nailor & Sobel, 2009). 
Fusidic acid loses its competence to bind ribosomal elongation factor G upon point mutations in 
its gene fusA (Besier et al., 2003). Likewise, the resistance to rifampicin, which inhibits the 
synthesis of RNA by binding to the RNA polymerase is caused by point mutations in the 
polymerase gene rpoB (Aubry-Damon et al., 1998). Gentamycin is rendered inactive by 
staphylococcal aminoglycoside 6ˊ-N-acetyltransferase or gentamicin phosphotransferase 
(Dowding, 1977). Mupirocin is a unique antibiotic interfering with the activity of isoleucyl-tRNA 
synthetase and S. aureus has three known pathways to its resistance: one encoding a point mutation 
in the native synthetase, one encoding for another variant of synthetase almost always linked to a 
gene acquired through a plasmid, and one other linked to another likely plasmid-acquired gene 
(Hetem & Bonten, 2013). Quinolones exert their effect on DNA by converting their targets gyrase 
and topoisomerase IV to destructive enzymes that fragment DNA. S. aureus has three general types 
of resistance mechanisms to them: (i) target-mediated, when enzymes are modified for lower 
binding affinity, (ii) plasmid-mediated, which can lead to specific proteins reducing drug binding, 
or inactivating the drug, or promoting its efflux, and (iii) chromosome-mediated, by down-
regulation of porin proteins during drug uptake or efflux protein expression for drug clearance 
(Aldred et al., 2014). For example, S. aureus has been found to have mutations in both DNA gyrase 
and topoisomerase IV as well as a chromosomal efflux pump NorA (Tanaka et al., 2000). 
Cotrimoxazole is a combination of sulfonamide sulfamethoxazole and trimethoprim that bind to 
dihydropteroate synthase and dihydrofolate reductase, respectively, inhibiting de novo synthesis 
of folate and its biologically active form tetrahydrofolate, thus acting synergistically (Wormser et 
al., 1982). Yet, as with other anti-staphylococcal agents, just three years after the introduction of 
the drugs, cotrimoxazole-resistant bacteria were reported (Nakhla, 1972) and the mechanism of 
resistance has been explained by amino acid mutations in the enzymes (Dale et al., 1997; Sköld, 
2000). 
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 Table 1. Currently used anti-staphylococcal agents. 

 
 
 

 

Agent 
 

Family/Class 
 

Target 
 

Reference 
 

 

Amoxicillin 
 

 
 
 
 
 
 
 
 
β-lactam antibiotics 

 
 
 
 
 
 
 
 
Cell wall synthesis (transpeptidase) 

 

 

 

Sader et al., 2007 
 

 

 

Cefazolin 
 

 

 

 

Li et al.,2017 
 

 

Cephalexin 
 

 

 

 

Sader et al., 2007 
 

 

Ceftobiprole 
 

 

 

 

Scheeren, 2015 
 

 

 

Ceftaroline 
 

 

 

 

Scheeren, 2015 
 

 

 

Dicloxacillin 
 

 

 

 

Miranda-Novales et al., 2006 
 
 
 

Methicillin 
 

 

 

 

Newsom, 2004 
 

 

 

 

Nafcillin 
 

 

 

 

Sakoulas et al., 2014 
 

 

 

Oxacillin 
 

 

 

 

Best et al.,1974 
 

 

 

Dalbavancin  
 

 
 
 
 
Glycopeptides 

 
 
 
 
 
 
 

Cell wall synthesis (D-Ala-D-Ala residues) 

 

 

 

Chen et al.,2007 
 

 

 

Oritavancin  
 

 

 

 

Belley et al., 2010 
 

 

 

Teicoplanin  
 

 

 

 

Peetermans et al.,1990 
 

 

 

Telavancin  
 

 

 

 

Das et al., 2017 
 
 
 

Vancomycin  
 

 

 

 

Choo & Chambers, 2016 
 

 

 

Daptomycin  
 

 

 

Plasma membrane disruption 
 

 

 

Rybak, 2006 
 

 

 

Doxycycline  
 

 
 
 

Tetracyclines 

 
 
 

Protein synthesis (30S rRNA-mRNA complex) 

 

 

 

Cunha, 2013 
 

 

 

Minocycline  
 

 

 

 

Cunha, 2014 
 

 

 

Tigecycline  
 

 

 

 

Rose & Rybak, 2006 
 

 

 

Linezolid 
 

 
 
 
 

Oxazolidonones 

 
 
 
 

Protein synthesis (50S subunit) 

 

 

 

Brickner et al., 2008 
 

 

 

Tedizolid 
 

 

 

 

Rybak & Roberts, 2015 
 

 

 

Clindamycin  
 
 

 

 

 

Lincosamides 
 

 

 

Protein synthesis (50S rRNA) 
 

 

 

Daum, 2007 
 

 

Dalfopristin+  
Quinupristin 

  

Protein synthesis (50S subunit)  
 

Allington & Rivey, 2001 
 

 

 

Fusidic acid  
 

 

 

Protein synthesis (ribosomal elongation factor G) 
 

 

 

Spelman, 1999 
 

 

 

Gentamicin  
 

 

 

 

Aminoglycosides 
 

 

 

Protein synthesis (30S subunit) 
 

 

 

Chen et al.,2014 
 

 

 

Mupirocin  
 

 

 

Protein synthesis (Isoleucine tRNA synthetase) 
 

 

 

Gilbart et al.,1993 
 

 

 

Rifampicin 
 

 
 

 

 

RNA synthesis (RNA polymerase) 
 

 

 

Hackbarth et al., 1986 
 

 

 

Ciprofloxacin  
 

 
 

Quinolones 

 
 
 

DNA separation (inhibition of DNA gyrase and 
topoisomerases II and IV) 

 

 

 

Oliphant & Green, 2002 
 

 

 

Quinolone 
 

 

 

 

Takei et al., 2001 
 

 

 

Cotrimoxazole   
 

 

 

DNA and RNA synthesis (folic acid synthesis inhibition) 
 

 

 

Lyon & Skurray, 1987 
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Evidently, the introduction of new drugs to treat S. aureus infections and continuously emerging 
resistance to them merely fuels “a rat race” with no foreseeable end. The use of anti-staphylococcal 
agents has not lowered the global prevalence of the bacteria, which continues to co-evolve with 
human host. To this end, a strategy to curtail infections by maintaining the homeostasis of the 
ecosystem, rather than futile efforts to exterminate natural flora has been proposed (Hiramatsu et 
al., 2014). The concept is based on the findings that strains previously resistant to certain drugs 
can revert and lose their acquired resistance. Therefore, the engineering of so called “reverse 
antibiotics” that, when used in combination empower the previously used ones, may be a more 
rational approach for future treatments rather than a vain pursuit of new “silver bullets”. The 
validity of this unconventional tactics remains to be seen, yet it still calls for a continuation of 
discoveries of new anti-microbials. 

 
To break this vicious cycle less orthodox approaches can be effective, and the vast diversity and 
ingenuity of the nature may provide tips for solutions and offer targets and instruments. The 
resilience of S. aureus cell wall has established and proven it as the cellular system that is not only 
the first frontier in drug resistance but is also elaborate in its maintenance and robust in defense 
mechanisms. Drawing from a proverb that enemy fortifies or threatens with what it is afraid of, it 
can be deduced that the enforcements of the cell wall of S. aureus hold the most plausible key to 
unlock weakness of the bacteria. 
 

 

1.2.  S. aureus cell wall and its main components 
 
S. aureus is a Gram-positive bacterium and its cell envelope is constituted from plasma membrane 
and cell wall, which has only one thick layer of peptidoglycan polymer, also known as murein. 
The thickness of peptidoglycan layer is about 20 nm, however, it can be thicker, for example, in 
vancomycin resistant strains, where it exceeds 30 nm (Hiramatsu, 2001). Although not typical to 
Gram-positive bacteria, S. aureus cell wall has been shown to also include a periplasmic space, 
which separates its peptidoglycan layer from membrane (Matias & Beveridge, 2006). This 
compartment, about 16 nm wide, is substantially thinner than a typical periplasmic space in Gram-
negative cells and, therefore, is not a conventional periplasm and is better distinguished by 
referring to it as an extracytoplasmic space, periplasm-like space, or simply the interface between 
plasma membrane and peptidoglycan. Herein, the terms “cell wall” and its dense section of 
“peptidoglycan layers” will be used interchangeably and, though technically a part of the cell wall, 
the periplasmic compartment will be referred to separately. 

The cell wall of bacteria takes part in countless metabolic and anabolic functions that are 
facilitated by its components, including transport and immunogenicity, and plays roles in 
numerous cellular processes, e.g. division. The scope of the studies in this thesis is one class of 
hydrolytic enzymes involved in structural integrity of cell wall. 

The primary roles of cell wall are to maintain shape of bacteria as well as to provide the 
protection and participate in cell division. The main two constituents of S. aureus cell wall are 
peptidoglycan and teichoic acids, each accounting for nearly a half of the dry cell wall weight 
(Sarvas, et al., 2004). Additional components are capsular polysaccharides, surface proteins and 
phospholipids (comprehensively reviewed in Rajagopal & Walker, 2017). 
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1.2.1. Peptidoglycan 
 
Peptidoglycan (PG) (Figure 2A) network provides a sturdy structure and support for cell wall that 
is able to sustain intracellular turgor pressure reaching nearly 2 MPa (Francius et al., 2008), for 
comparison, exceeding the regular car tyre pressure almost 10-fold. A remarkably distinct feature 
of S. aureus and just few other staphylococci PG is bridges formed by pentaglycine, whereas other 
bacteria have other types of connectors (Vollmer et al., 2008). The typical length of PG chain in 
S. aureus cell wall is 3 – 10 monomer residues, only less than 15% of chains are estimated to be 
longer than 25 monomer residues (Boneca et al., 2000), and factors determining the length of chain 
remain unknown. Consensus exists on glycan mainchain forming a helical twist (Labischinski et 
al., 1979). However, contradicting models have been presented to depict peptide stems, which 
flank pentaglycine bridges, within a plane perpendicular to the glycan mainchain, as anti-parallel 
or parallel (Dmitriev et al., 2004; Sharif et al., 2009), and both models could justify high cross-
linking degree, >80%, found in the bacteria (Cegelski et al., 2006; Sharif et al., 2009; Snowden et 
al., 1989; Vollmer & Seligman, 2010). The most recent work by solid state NMR suggests glycan 
helix with disaccharide unit periodicity of 40 Å and each successive peptide stem rotating 90º in 
respect to previous stem and cross-linked stems having parallel orientation (Kim et al., 2015). 
Cringeworthy is the fact that even the latter study was still compelled to provide evidences to 
support seemingly intuitive planar model of PG glycan strand arrangement parallel to cytoplasmic 
membrane. For the lack of unequivocal experimental evidences, a challenging alternative scaffold 
model, which posits that the glycan strands extend perpendicularly to the membrane, has been 
proposed and earnestly considered (Dmitriev et al., 2003; Scheffers & Pinho, 2005; Vollmer & 
Höltje, 2004).  

In spite of PG importance, significant gaps of understanding remain in its network 
construction and turnover. Peculiarly, the mechanisms of the network synthesis during cell 
division, growth, and in stationary phases are better investigated and understood in more complex 
oval and rod-shaped bacteria, like Bacillus subtilis and Escherichia coli, than the simplest 
geometrical form of all – spherical cocci (Pinho et al., 2013). It is helpful to remind that 
phylogenetic studies found cocci dispersed in various branches of prokaryotic tree and its deepest 
branches contained only rod-shaped bacteria, thus implying seemingly counterintuitive: cocci are 
degenerate forms of elongated bacteria rather than the latter being advanced species of the former 
(Siefert & Fox, 1998; Stackebrandt & Woese, 1979; Woese et al., 1982). A study using super-
resolution microscopy discovered that S. aureus cells briefly elongate before division and called 
for reassessment of previous cell division model (Monteiro et al., 2015). Meanwhile, the 
investigations of PG network cleavage and turnover are hindered by multiple hydrolase enzymes 
that may compensate for each other’s function (see “1.2.1.2. Cleavage of peptidoglycan network”).  
 
 
1.2.1.1. Synthesis of peptidoglycan monomer and its network 
 
The synthesis of PG is carried out in a long series of steps, which can be grouped into cytosolic, 
membrane-associated, and extracytoplasmic stages (Figure 1). Biosynthesis of PG monomers 
begins in cytosol (van Heijenoort, 1998). The precursor of monomers is fructose-6-phosphate. The  
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Figure 2. Structures of peptidoglycan monomer (A), wall teichoic acid (B) and lipoteichoic acid 
(C). R = H, D-glucosyl, or D-alanyl. 
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enzymes carrying out the synthesis are glucosamine-6-phosphate synthase, GlmM mutase, 
bifunctional GlmU enzyme catalyzing acetylation and uridylation, MurA transferase, MurB 
reductase, MurC, MurD, MurE, and MurF synthetases. Availability UDP-GlcNac is a limiting step 
for the subsequent pathways (Mengin-Lecreulx et al., 1989), and it should be noted that it is also 
required downstream in the formation of lipid II from lipid I.  

Membrane-associated stage begins with membrane-anchored MraY transferase docking 
the cytosolic product to the membrane acceptor undecaprenylphosphate and producing 
MurNac(pentapeptide)-pyrophosphoryl undecaprenol. Next, transferase MurG yields GlcNac-
MurNac(pentapeptide)-pyrophosphoryl undecaprenol. In literature, the afore two products are 
commonly referred to as lipid 1 and lipid II, respectively. Subsequently, peptidyl transferases 
FemX, A, and B, add first, second and third, and fourth and fifth glycine residues, respectively 
(Ehlert et al., 1997; Rohrer & Berger-Bächi, 2003). This concludes the synthesis of PG monomer. 
The monomer is then transferred across plasma membrane into extracytoplasmic space by 
mechanism not yet understood and pyrophosphorylase recycles the lipid carrier. 

The PG network synthesis takes place in extracytoplasm in two steps: at first the monomers 
are linked into chains and then the chains are cross-linked (Figure 1). The first step is 
transglycosylation and produces glycan strands while bonding N-acetylglucosamine and N-
acetylmuramic acid of separate monomer units. In the following step, the chains are cross-linked 
via pentaglycine bridges by transpeptidation. These reactions are carried out by a bifunctional 
enzyme, a penicillin-binding protein, PBP2, named for its predisposition to bind penicillins. S. 
aureus has four PBPs (for comparison, B. subtilis and E. coli have 16 and 12, respectively) and 
others possess only transglycosylase function. PBP1 is involved in cell division and separation and 
possibly belongs to a divisome complex that may also include autolysis enzymes (Pereira et al., 
2009). The function of PBP3 is not well understood and in an oval pneumococcal it is found 
dispersed along cell wall (Morlot et al., 2004; Pinho et al., 2000). PBP4 is responsible for 
producing highly cross-linked PG network (Curtis et al., 1980). Notably, strains resistant to 
penicillins, like methicillin resistant MRSA, possess the fifth enzyme, PBP2A, which has a 
diminished antibiotic sensitivity and can substitute for PBP2 (Pinho et al., 2001).  

Presently, based on localization of PBPs at a division site in intact cell, it is commonly 
believed this to be likely the only location for new peptidoglycan chain incorporation, although 
peripheral synthesis is not ruled out and small-scale repair-related synthesis may accompany 
scission during the peptidoglycan turnover (Giesbrecht et al., 1998; Pinho et al., 2013). 
Peptidoglycan synthesis probably begins with PBP1. PBP2 is directed to the septum by 
recognizing its lipid II substrate and PBP4 is gathered by intermediate of locally synthesized wall 
teichoic acids (Atilano et al., 2010; Pinho & Errington, 2005).  

After formation of S. aureus division septum and before the splitting of daughter cells, new 
layers of cell wall PG are formed and they are separated by low density PG layer in between 
(Matias & Beveridge, 2007). Since this fragile PG layer does not extend to the surface of parental 
cell, it is possible that autolysins for cell splitting are only needed along the edges of septal ring.  

S. aureus bacterial tubulin homolog FtsZ assembles a ring of cell division machinery. In 
the cells devoid of FtsZ, PG synthesis is delocalized and leads to cell enlargement and lysis (Pinho 
& Errington, 2003). The localization of FtsZ in the midsection of the cell is secured by essential 
protein GpsB, which also stimulates its GTPase activity and promotes lateral bundling of the pol-
ymers (Eswara et al., 2018; Santiago et al., 2015). GpsB deletion mutants are unable to divide and 
formed enlarged cells that eventually rupture. Another essential S. aureus protein, EzrA, was 
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shown to interact with cytoplasmic FtsZ as well as nearly all other putative constituents of divi-
some in periplasm (Steele et al., 2011). This study found EzrA to be required for GpsB localiza-
tion, divisome formation and even PG synthesis. However, another study, while confirming its 
importance in properly localized FtsZ and PBP2, at the time did not find the protein to be essential, 
but rather responsible for cell size homeostasis (Jorge et al., 2011). 

At least two models have been proposed how nascent PG strands get incorporated in rod-
shaped bacteria and they both rely on “make-before-break” strategy, which postulates that new 
chains are incorporated before the cleavage of the old linkages. The first model, designed for 
Gram-positive bacteria and called “inside-to-outside”, emphasizes the unextended conformation 
of PG layer laid immediately outside the plasma membrane and increasing stretching, which leads 
to its cleavage, as the new layers are produced and older ones are pushed further away (Koch & 
Doyle, 1985). The second model, suggested for Gram-negative E. coli and called “three-for-one”, 
states that three new cross-linked strands replace one old one, upon their covalent bonding to the 
free amino groups in the cross bridges on both sides of the old one and the scission of the latter 
(Höltje, 1998). It is not known if either of the models is applicable to S. aureus.   

 
 

1.2.1.2. Cleavage of peptidoglycan network 
 
Cleavage, or lysis, of microbial cell-wall peptidoglycan is a biological process as critical as its 
synthesis. Firstly, it is vital for cell division and growth when new strands need to be incorporated. 
Secondly, it takes place during cell life cycle in PG recycling and after its death. Thirdly, it is used 
by competing strains, own parasites (e.g., S. aureus bacteriophage phi MR11) as well as in medical 
applications. PG hydrolysis participates in a variety of other more specific functions. For instance, 
PG cleavage fragments, commonly known as muropeptides, may trigger immune system response 
in host organisms. In S. aureus this mechanism remains under scrutiny, since newer reports argue 
that intact PG is more effective than muropeptides (Fournier & Philpott, 2005; Humann & Lenz, 
2009; Wolf & Underhill, 2018). 

Virtually every bond between PG constituents can be cleaved and specific enzymes are 
known. There is a large diversity of PG compositions and structures among bacteria and this 
differentiation is pronounced in the amino acid sequences of peptide stems and bridges that link 
disaccharide chains (Schleifer & Kandler, 1972; Turner et al., 2014; Vollmer & Seligman, 2010). 
The assortment of PG hydrolysis enzymes across the species, strains, and even isogenous cells is 
yet more vast and difficult to comprehend. Arguably, the most recent extensive review article 
undertook the challenge over a decade ago and additional enzymes are continuously added 
(Vollmer et al., 2008; Vermassen et al., 2019). The authors conceded to the enormity of 
information about the PG hydrolases, which “would fill many bookshelves” and the impossible 
task to summarize it in a single article. We narrow our focus to S. aureus-specific peptidoglycan 
and pertinent hydrolases (PGHs). 

Commonly cleaved PG bonds are shown in Figure 2A and the enzymes can be divided 
into groups cleaving glycan strand and branches supporting their network. The scission of glycan 
chain is carried out by glycosidases that include N-acetylglucosaminidases and N-acetyl-β-D-
muramidases. The branches with bridges in between them are cleaved by N-acetylmuramyl-L-Ala 
amidases and peptidases. Remarkably, some PGHs may have more than one and distinct function 
domain. Furthermore, the enzymes display a variety of additional domains, conserved sequences, 
and targeting signal fragments that facilitate localization and substrate recognition for the enzymes 
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to carry out their physiological roles and catalytic functions (Sharma et al., 2016; Vermassen et 
al., 2019).  

PGHs that target S. aureus PG have two types of origins: endogenous and exogenous. 
Endogenous enzymes perform essential autolytic functions during cell growth, division and death 
or are introduced by bacteriophages and allow their progeny to leave bacteria after breaching cell 
wall from inside. The enzymes are called autolysins and endolysins, respectively. Exogenous 
enzymes have only a detrimental effect on bacteria and can be produced to suppresses the bacteria 
by its hosts or released by competing strains. Studies from bioinformatics to microbiology reveal 
a vast array of putative and new PGHs found in nature, many of which do not have an apparent 
link to S. aureus, although some can be expected to eventually appear relevant. To illustrate the 
diversity, Table 2 presents a group of enzymes that have been directly shown to lyse peptidoglycan 
of S. aureus. 

Lysozyme is by far the best known and studied among PGHs. Lysozyme from hen egg 
white was the first enzyme to have had its 3D-structure determined (1965) and at the time of this 
writing, search for “lysozyme” in the Protein Data Bank (www.rcsb.org) returned 2033 related 
3D-structures. The characterization of other PGHs is not only not nearly as copious but also 
incomplete. Lysozyme was discovered in 1922 by Alexander Fleming, who later shared Nobel 
prize for the discovery of the world’s first antibiotic (Penicillin G) and was proven to be an 
antimicrobial enzyme of innate immune system, present in mucus, tears, milk, and egg’s white. 
Remaining true to its elasticity, S. aureus produces PG with the O-acylated, by O-acetyltransferase, 
N-acetylmuramic acid at C6-OH position (Bera et al., 2005; Brott & Clarke, 2019; Pushkaran et 
al., 2015). This allows it to evade the lysozyme activity and is a likely contributor for resistance 
while colonizing mucosal membranes.  

Lysozyme structure consists of a muramidase catalytic domain connected to a 
transmembrane signal peptide. The majority of S. aureus PGHs have more complex structure than 
that of lysozyme and substrate targeting domains are frequent. Other antimicrobial enzymes 
(lysostaphin and ALE-1) use M23 family peptidases as their catalytic domains. Autolysins may 
possess M23 peptidase (LytM), amidase and glucosaminidase (AtlA), as well as cysteine, 
histidine-dependent amidohydrolase/peptidase, CHAP (Sle1 and LytN). Endolysins of 
bacteriophages typically have one or more of CHAP, amidase, and glucosaminidase domains 
(Table 2). 

Four classes of lysozyme-type muramidases have been shown to be active against 
peptidoglycan but muramidases are not present in S. aureus genome (Baba et al., 2008; Vollmer 
et al., 2008). Although lacking significant sequence identity, they have similar three-dimensional 
conformations. M23 family peptidases are zinc-ion dependent enzymes that distinctly cleave 
between the second and third as well as third and fourth glycine in the pentaglycine bridge 
(Warfield et al., 2006). Amidases are found in autolysin (AtlA) as well as in endolysins. Atl is a 
prepro-protein which, following membrane transfer and removal of signal peptide, has its amidase 
and glucosaminidase domains separated and each directed to their targets in PG by repeat sequence 
domains (Baba & Schneewind, 1998). When an endolysin, amidase does not have a signal 
sequence, but is rather working in tandem with phage holin protein that creates a pore and allows 
it to transfer through plasma membrane (Loessner, 2005; Young, 1992). Glucosaminidase domain 
has been also identified in putative LytX, LytY, and LytZ enzymes, all of which possess membrane 
signal sequences (Frankel et al., 2011). CHAP domains are present in many proteins that typically
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have a role in PG hydrolysis (Bateman & Rawlings, 2003; Rigden et al., 2003). The domains have 
conserved cysteine and histidine residues and display a dual activity: L-muramoyl-L-alanine 
amidase and D-alanyl-glycyl endopeptidase. Analysis of 12 S. aureus and 44 staphylococcal 
bacteriophage genomes revealed that S. aureus genome encodes at least 10 and each phage 1 or 2 
proteins bearing CHAP domains (Zou & Hou, 2010). In autolysins and endolysins CHAP domains 
are associated with SH3b and LysM targeting domains, respectively. 

Delivery of the PGHs to their substrate, can be achieved in several ways. LytM is directed 
to plasma membrane by its 1-25 amino acid residue signal peptide (Sabala et al., 2012). To provide 
passage of out cytoplasm through cell wall for freshly constructed virion particles, endolysins 
follow the plasma membrane permeabilizing holin proteins. Once in the vicinity of a target, PG, 
effectiveness of the enzymes can be enhanced by substrate binding structures. There is a variety 
of these, some interactions are not yet understood. Covalent anchoring of proteins to cell wall, via 
LPxTG domain and by sortase A is a common mechanism in Gram-positive bacteria, yet unlikely 
applicable to PGHs (Schneewind & Missiakas, 2012). Most prominent S. aureus cell wall binding 
domains (CBDs) include ~ 90 aa residue SH3b, a bacterial analogue of src Homology-3 domain, 
and 45-65 - residue long LysM, lysin motif. Already before the start of the studies described 
hereafter, 3D-structure of ALE-1 SH3b domain has been determined, its importance was not 
questionable, yet the mechanism of binding remained to be elucidated (Lu et al., 2006). LysM 
domains, discovered in 1986, were found in over 4000 thousand proteins in merely a decade (Buist 
et al., 2008). The domains were shown to bind to N-acetylglucosamine moieties of PG and have 

been tested for numerous industrial and medical applications (Ohnuma et al., 2008; Visweswaran 
et al., 2014). 

Two PGHs, LysWMY and PlySs2, are encoded by S. aureus prophages (Table 2). 
Prophages are mobile genetic elements incorporated into genome and are considered to be 
responsible for genetic diversity of the bacteria, which is a clonal species with conserved core 
genome (Feil et al., 2003). S. aureus genomes have one to four prophages that supply additional 
virulence and fitness factors (Azam & Tanji, 2019; Lindsay, 2010). Lysostaphin immunity factor, 
lif, acquired by S. simulans via horizontal gene transfer provides serine substitutions in 
pentaglycine bridge during PG synthesis, making the host bacteria resistant to lysostaphin, which 
is excreted to eliminate competing S. aureus (Thumm & Götz, 1997; Tschierske et al., 1997). The 
pentaglycine bridge is the most distinct feature of S. aureus PG and, therefore, is a target for 
species-specific lysis.  
 

1.2.1.3. Regulation of peptidoglycan synthesis and autolysis 
 
Synthesis and autolytic hydrolysis of PG must be tightly regulated in order for bacteria to remain 
viable during its cell cycle and under external stress factors. A significant portion of S. aureus 
enzymes involved in these processes has been identified and their functions investigated. The 
mechanisms governing them, and their topology remain to be elucidated and their understanding 
presently is fragmentary. Rod-shaped B. subtilis, posing a lower health hazard than S. aureus, 
became a primary model for Gram-positive bacteria. Yet, the information obtained from its studies 
cannot be directly translated to S. aureus, for their differences in shape and underlying structural 
systems (Pinho et al., 2013). 

Activities of S. aureus PG synthetic and hydrolytic enzymes are coregulated. Although 
widely recognized in other bacteria, direct evidence for this in S. aureus arrived not long ago 
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(Antignac et al., 2007). Cells grown in the presence of subinhibitory concentrations of β-lactam 
antibiotics specific to PBPs 1 – 4 displayed decreased expression of autolytic enzyme genes, 
namely atl, sle1, and lytM and were substantially less susceptible to autolysis. In addition, reduced 
transcription of pbpB gene, which encodes PBP2, reduced amount or activity of autolysins and 
lowered transcriptions levels of atl and sle1, but the latter were restored upon stimulation of the 
former. The same year another study showed that modulation of PG synthesis gene murF had 
genome-wide impact and altered 668 out of 2740 open reading frames of S. aureus strain COL 
(Sobral et al., 2007). Heretofore, several global mechanisms were shown to participate in PG 
modulation.  

The complexity of regulation of S. aureus physiological processes, including synthesis and 
lysis of PG, manifests in two main classes of actors that can act alone or in combination: small 
size broad range (so called global) transcription regulators and two-component signal transduction 
systems (TCSs) along with factors influencing them (Haag & Bagnoli, 2017). Due to the 
involvement of a large amounts of genes, some overlap and synergistic effects exist and 
information to expose cross-interaction is continuously pouring in. Noteworthy for a literature 
examining reader is a caution that some of the nomenclature of the same regulation factors and 
TCSs varies between researchers or is updated by the same authors during the course of studies, 
for instance, factor MgrA/RAT/NorR (Ingavale et al., 2003; Luong et al., 2003; Truong-Bolduc et 
al., 2003) and bacitracin and nisin-sensitive TCS BraRS/BceRS/NsaRS (Blake et al., 2011; Hiron 
et al., 2011; Kawada-Matsuo et al., 2013; Ohki et al., 2003; Yoshida et al., 2011). 

Multiple-gene regulator protein MgrA has the most evident function in autolysis regulation 
among global cytoplasmic transcriptional regulators. Overall, it was shown to positively regulate 
175 and negatively 180 genes in S. aureus strain Newman, including virulence factors like toxins 
and protein A (Jenul & Horswill, 2018; Luong et al., 2006). It was discovered to suppress cell 
autolysis by decreasing transcription of lytM and lytN, but did not have effect on atl, pbp2 and 
pbp4 (Ingavale et al., 2003; Luong et al., 2003). TCS ArlRS, which shares 70% of affected genes 
with MgrA, has been shown to directly recruit the regulator for virulence factor expression (Crosby 
et al., 2020). MgrA is a dimeric winged helix protein with 147 residue domains. It likely acts by 
directly binding promoters of target genes and is considered to be an oxidation sensor for its 
cysteine residue (Chen et al., 2006; Somerville & Proctor, 2009). The transcription factor is a 
homolog of SarA protein family, which is responsible for regulation a wide spectrum of S. aureus 
genes, primarily virulence factors (Cheung et al., 2008; Jenul & Horswill, 2018). Interestingly, 
sarA was found to be involved in a positive regulation of mecA, which encodes PBP2A that is 
responsible for β-lactam antibiotic oxacillin resistance (Li et al., 2016). In addition, SarA binds to 
a fmtA promoter and directly regulates expression of FmtA esterase, which modulates charge of 
cell surface by removing D-alanine from lipoteichoic teichoic acids and is increased under 
oxacillin stress (Rahman et al., 2016; Zhao et al., 2012). 
 
 
1.2.2. Two-component systems 
 
TCSs consist of transmembrane histidine kinase, cytosolic response regulator and phosphorylation 
driven signaling cascade affecting expression of a set of genes. S. aureus core genome has 16 such 
receptor-sensor systems that respond to stimuli and govern virulence genes, cell wall metabolism 
as well as react to environmental factors such as nutrients and antimicrobial agents. TCSs provide 
bacteria with features that allow to adapt to certain conditions and were generally considered to be 
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required for a free-living cell. However, a recent study has challenged this presumption and has 
shown that all TCSs are dispensable under constant environmental conditions and when growth is 
arrested only one, namely WalKR, previously called YycG/YycF, is necessary and sufficient to 
retain viability and bacterial growth (Villanueva et al., 2018). They have also been found to be 
self-sufficient entities. 

Although broad reach of TCSs does not allow to yet completely exclude any of them 
affecting regulation of S. aureus PG synthesis and lysis, involvement of several has been 
determined. The most important among the TCS, WalKR (aka WalK/WalR, WalRK, VicRK) 
plays a major role in cell wall metabolism and was named accordingly. Genes positively regulated 
by the TCS in S. aureus include atlA, lytM , sle1 as well as two genes encoding muramidase (isaA 
and sceD) and five genes with CHAP domains (ssaA, sa0620, sa0710, sa2097, and sa2353) 
(Delauné et al., 2012; Dubrac & Msadek, 2004; Dubrac & Msadek, 2008; Dubrac et al, 2007). 
WalKR-depeleted cells clustered and died but did not lyse, showed increased resistance to 
lysostaphin-induced lysis and their peptidoglycan had modestly increased cross-linking (Dubrac 
et al., 2007). S. aureus cells with inactive WalKR had thicker cell wall, impaired defective division 
septa, but LytM protein and ssaA gene each were able to restore cell growth and reduce wall 
thickness, yet abnormalities in septa remained (Delaune et al., 2011). WalKR activity was shown 
to positively correlate with biofilm formation and expression of genes of TCS SaeSR (Delauné et 
al., 2012; Beltrame et al., 2015; Dubrac et al., 2007). Incubation of vancomycin-susceptible S. 
aureus (VSSA) strains with vancomycin or daptomycin was shown to generate mutations in 
WalKR that could reduce its activity, but also increased antibiotic resistance and led to appearance 
of vancomycin-intermediate (VISA) strains (Hafer et al., 2012; Howden et al., 2011; Shoji et al., 
2011). Insertion IS256 known to contribute antibiotic resistance in S. aureus has been found both 
to increase and decrease of walKR expression (Kuroda et al., 2019; Lyon et al., 1987; McEvoy et 
al., 2013). Proteins YycH and YycI have been shown to activate WalKR and increase vancomycin 
susceptibility in methicillin resistant strains (Cameron et al., 2016).  

Autolysis regulated locus ArlRS is another TCS substantially involved in PG metabolism. 
Originally, its mutant arlS was discovered to exhibit increased autolysis and thought to 
downregulate atlA (Fournier & Hooper, 2000). Later ArlRS was shown to downregulate lytN, but 
have no effect on atlA , sle1,  lytM and have a positive regulation on another autolysis repressing 
TCS LytSR and global regulator MgrA (Crosby et al., 2016; Crosby et al., 2020; Memmi et al., 
2012; Liang et al., 2005). ArlRS knockout mutant of methicillin resistant S. aureus strains had 
significantly increased sensitivity to oxacillin, which had a synergistic effect with oritavancin (Bai 
et al., 2019).   

Other TCSs have been shown to be involved in PG metabolism as well and some of their 
roles may not be obvious. For example, AirSR identified as oxygen sensing regulator was shown 
to bind and upregulate promoters of lytM and pbp1 (Sun et al., 2013). Activity of S. aureus 
exoprotein expression SaeRS TCS correlated with atlA expression levels and a model for their 
involvement in biofilm formation was proposed (Mashruwala, Gries, Scherr, Kielian, & Boyd, 
2017). Strains lacking staphylococcal respiratory regulator SrrAB displayed reduced expression 
of AtlA impeded biofilm formation, while wild-type bacteria were increasing atlA transcription 
and cell lysis under impaired respiration (Mashruwala, Guchte, & Boyd, 2017). LytSR originally 
was identified as a TCS affecting autolysis of S. aureus cells (Brunskill & Bayles, 1996a). Later 
studies have found that LytSR controls expression of a large number of genes, many of them 
metabolic, and its suppressive effect on cell lysis is exerted by positive control of lrgAB operon 
products that inhibit proteins of cidAB operon, which encodes holin-type proteins permeabilizing 
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plasma membrane and facilitating autolysin access to PG (Brunskill & Bayles, 1996b; Groicher et 
al., 2000; Rice et al., 2003; Sharma-Kuinkel et al., 2009; Yang et al., 2013). 

Certain antimicrobial compounds, expectedly, have impact on all TCSs. Three TCSs are 
considered to be tasked with combating their deleterious effects: BraSR, GraSR, and VraSR, 
named after bacitracin, glycopeptide, and vancomycin associated resistance, respectively. 
Bacitracin binds tightly to undecaprenyl pyrophosphate and inhibits PG synthesis at the step of 
monomer translocation from cytosol to extracellular surface. BraSR initiates response that leads 
to an active elimination of the antibiotic by an ABC transporter and so far there is no evidence of 
cell wall or PG  modifications that would facilitate the resistance  (Blake et al., 2011; Hiron et al., 
2011; Kawada-Matsuo et al., 2011; Kawada-Matsuo et al., 2013).  

GraSR (aka antimicrobial peptide sensing ApsSR or GraXRS for the need of third scaffold 
component X) defense mechanism is more elaborate. It upregulates dlt operon responsible for 
teichoic acid D-alanylation which reduces negative charge of cell wall and repels cationic 
antimicrobial peptides (Li et al., 2007; Yang et al., 2012). GraSR also helps S. aureus to survive 
under oxidative stress, at pH lower and temperature higher than physiological (Falord et al., 2011; 
Muzamal et al., 2014; Villanueva et al., 2018). Notably, cells grown in the presence of last-resort 
antibiotic colistin and lacking GraSR had reduced expression rates of PGHs atlA, sle1, isaA, ssaA, 
sceD as well as five additional putative CHAP amidase genes, which meant this TCS was partially 
overlapping with the WalKR gene regulation (Falord et al., 2011). 

VraSR is quite distinct among TCSs in PG modulation by primarily providing PG 
synthesis, not lysis enzymes. It was shown to not affect transcription of  atl, ssaA and isaA, instead 
upregulating genes pbpB (PBP2), murZ (analog of MurA) as well as PBP-complementary 
glycosyltransferase gene sgtB and prsA, which ensures proper folding of PBP proteins (Gardete et 
al., 2006; Jousselin et al., 2012; Kuroda et al., 2003; Liang et al., 2018; Sengupta et al., 2012; 
Tajbakhsh & Golemi-Kotra, 2019). In addition to vancomycin, VraSR increases resistance to many 
other glycopeptides, β-lactams and other antibiotics (Cui et al., 2009; Doddangoudar et al., 2011; 
Kato et al., 2010; Mensa et al., 2014; Pietiäinen et al., 2009). Intriguingly, among the genes in its 
regulon, sa0205 was found to be upregulated up to 50-fold by a set of antimicrobial agents, 
including cationic antimicrobial peptides, vancomycin, teicoplanin, and bacitracin (Pietiäinen et 
al., 2009). Sequence analysis of the gene indicated it to encode a protein with an M23 
endopeptidase domain, which is responsible for cleaving pentaglycine bridges specific to S. aureus 
PG.   

 
  
1.2.3. Teichoic acids 
 
Teichoic acids (TAs) are cell wall neighbors of peptidoglycan and some of their functions are 
connected. They are a major constituent of S. aureus CW and may account for as much as 50 – 
60% of its mass (Hancock, 1997; Sarvas et al., 2004). These anionic polymers belong to one of 
the two main classes: wall teichoic acids (WTAs) and lipoteichoic acids (LTAs). Their structures 
are shown in Figure 2. WTAs are covalently bound to PG via phosphodiester between their 
disaccharide ManNac(β1-4)GlcNAc and MurNAc (NAM) of PG chain (Araki & Ito, 1989). The 
bulk of WTAs is composed of glycerol and ribitol phosphates each having 2 – 3 and 30 – 50 
repeats, respectively (Coley et al., 1976; Endl et al., 1983; Navarre & Schneewind, 1999; 
Sanderson et al., 1962). Ligation is carried out by LytR-CpsA-Psr family enzymes (Chan et al., 
2013). LTAs are anchored in the plasma membrane lipid layer to Glc(1-4)Glc-(1-3)diacylglycerol 
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and their moiety is composed of disaccharide and 16 – 40 repeats of glycerol phosphate (Koch et 
al., 1984; Navarre & Schneewind, 1999). The attachment of glucose units to diacyl glycerol is 
performed by YpfP (Kiriukhin et al., 2001). 

Despite structural similarities between WTAs and LTAs, their synthesis pathways are 
separate and performed by different enzymes (Gründling & Schneewind, 2007a; Gründling & 
Schneewind, 2007b; Brown et al., 2008;). The key difference is that WTAs are synthesized in 
cytoplasm, thereupon flipped to the surface of membrane and ligated to PG in the last step, whereas 
LTAs only have two glucose units added to diacylglycerol in cytosol, and addition of glycerol 
phosphate is carried out after this anchor is flipped across the membrane. S. aureus WTAs are not 
essential for survival in vitro and their synthesis genes can be deleted altogether, however, 
inhibition of only later steps is lethal, since it leads to ”poisoning” of plasma membrane with WTA 
intermediate, depletion of carrier lipid and obstruction of PG synthesis (Chaudhuri et al., 2009; 
D'Elia et al., 2009; Qiao et al., 2014; Weidenmaier et al., 2004). In vivo WTAs are important for 
colonization and infection, LTAs appear to be dispensable only at temperatures below 30 ℃ and 
both types of TAs cannot be deleted at the same time, probably because they compensate for each 
other’s functions (Oku et al., 2009; Schirner et al., 2009; Weidenmaier et al., 2005). 

The most common modifications of TAs are D-alanylation and glycosylation (Figure 2 B 
& C). It is estimated that in S. aureus LTAs 70% of glycerol phosphates carry D-alanine, 15% 
have GlcNAc and 15% are not modified (Schneewind & Missiakas, 2014). D-alanine is added by 
proteins of dlt operon in cell envelope, but the steps are not yet understood. Enzymes glycosylating 
WTAs but not LTAs are known, and the process is thought to take place in cytoplasm (Brown et 
al., 2012; Sobhanifar et al., 2015). The main purpose of alanylation is to regulate the net charge 
of cell wall as the addition of positive charges reduces overall negative charge. Glycosylation has 
been shown to be instrumental in adhesion, colonization and interaction with phages (Winstel et 
al., 2015; Xia et al., 2011). 

The many roles of TAs include immune response, biofilm formation, adhesion, virulence, 
antibiotic resistance (Rajagopal & Walker, 2017; Xia et al., 2010). TAs also have functions in S. 
aureus cell division, morphology, and PG autolysin regulation. WTAs and LTAs are necessary for 
proper division septa formation (Campbell et al., 2011; Gründling & Schneewind, 2007; Oku et 
al., 2009). FtsZ division ring is not assembled in the absence of both LTAs and WTAs and for the 
cells grown in the presence of tunicamycin, with WTA synthesis inhibited, D-alanylated LTAs 
were able to come to cell rescue (Santa Maria et al., 2014). WTAs were found necessary for 
localization of lytic AtlA and synthetic PBP4 at the cell division septum (Atilano et al., 2010; 
Schlag et al., 2010). Blocking WTA synthesis decreased methicillin resistant S. aureus resistance 
to β-lactams, although PBP2A synthesis was not impaired (Campbell et al., 2011). Impeded 
synthesis of LTAs and inhibited D-alanylation of TAs has yielded reduced autolysis acitivity 
(Fedtke et al., 2007; Peschel et al., 2000). 
 
 
1.2.4. M23 peptidases 
 
S. aureus pentaglycine bridges that link PG chains are cleaved by M23 endopeptidases. The 
MEROPS database of peptidases distinguishes M23 family as a group of enzymes, their 
homologues, and putative proteins most of which share a ~130 amino acid residue domain with 
active sites residues in motifs HXXXD and HxH, incorporate a zinc ion in their catalytic site, and 
typically have preference for Gly-Gly bonds (Rawlings et al., 2018). The database identifies over 
11 000 M23 gene sequences and the family members can be found in bacteria, archaea, protozoa, 
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plants, animals, and viruses. The family is divided into A and B subfamilies, the former has a wider 
range of substrates and they also differ in metal coordination and sequence alignment. However, 
M23B members constitute the vast majority of the family (>95%) and herein will be the focus. 
Concomitantly, the enzymes are frequently referred to as the LytM family enzymes, although their 
earliest described and most-studied representative is lysostaphin (Schindler & Schuhardt, 1964). 
Doubtless, this is because LytM was the first enzyme identified with a single well-defined domain, 
which was M23 endopeptidase, whereas lysostaphin has an additional domain with a different 
function. 
 
 
1.2.4.1. Composition and roles of M23 peptidases 
 
The apparent function of known M23 peptidases is the cleavage of S. aureus PG and their origins 
can be internal (autolysins, endolysins) or external (bactericidal). Lysostaphin and ALE-1, secreted 
by Staphylococcus simulans and Staphylococcus capitis, respectively, are two examples of the 
latter. Both proteins have a single M23 domain, which is flanked by repeat sequences upstream 
and a C-terminal SH3b domain downstream that is a bacterial analog of SRC Homology 3 domain 
facilitating substrate recognition. Lysostaphin is produced as a preproprotein, including a 36 amino 
acid residue signal peptide directing it to plasma membrane, 15 tandem repeats each consisting of 
13 residues, and a mature protein part of 246 residues that carries M23 and SH3b domains. 
Although active in proprotein form, lysostaphin is 4.5-fold more active after the repeat sequences 
are removed, a process catalyzed in cell cultures by extracellular cysteine protease (Neumann et 
al., 1993; Thumm & Götz, 1997). The role of the repeats remains unclear, their deletion does not 
obstruct secretion and folding of active lysostaphin and, in general, activity of the enzyme 
increases by reducing the number of repeats attached to mature protein (Thumm & Götz, 1997). 
The 12-residue fragment between the signal peptide and the first repeat sequence, however, 
appears to be important for secretion, but does not affect the synthesis of enzyme or cell growth. 
ALE-1 shares 91% and 84% sequence identity with lysostaphin M23 and SH3b domains, 
respectively (BLAST, National Center for Biotechnology Information). It is 362-residue long and 
shorter than 493-residue lysostaphin. It has only six 13-residue repeats and these do not need to be 
cleaved off for the full enzymatic activity (Sugai et al., 1997a). Both lysostaphin and ALE-1 are 
encoded by plasmids acquired by staphylococci, not necessary for normal cell growth, and are 
accompanied by genes encoding resistance factors, lif and epr respectively, that replace glycine 
with serine residues in PG bridges at positions 3 and 5 to make hosts immune to these lytic enzymes 
(Ehlert et al., 2000; Heath et al., 1989; Sugai et al, 1997b; Thumm & Götz, 1997). Likely orthologs 
of these lysis enzymes and their immunity factors, zoocin A and zif, have been found in 
Streptococcus equi subsp. zooepidermicus (Beatson et al., 1998; Lai et al., 2002; Simmonds et al., 
1996). Staphylococcus sciuri was the first staphylococcus found to possess the immunity factor 
alone, without carrying the gene for enzyme against lysis of which it would protect (Heath et al., 
2005).   

LytM is a well-studied and until research described hereafter was the only known M23 
family autolysin of S. aureus. It is a 316-residue protein that has a single endopeptidase domain in 
its C-terminus, which shares 50% identity with lysostaphin and ALE-1 catalytic domains. The first 
studies reported the gene to be located in chromosome and conserved only in S. aureus species. 
The protein caused cell lysis, contained one zinc atom per molecule, and its even distribution 
across cell suggested role in cell growth (Ramadurai & Jayaswal, 1997; Ramadurai et al., 1999). 
Subsequently, a full-length LytM was demonstrated to be inactive and required cutting of the 
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catalytic domain away from the N-terminal section that was blocking active site and adding 
additional coordination to the zinc cofactor (Firczuk et al., 2005; Odintsov et al., 2004). Later 
study provided rather controversial results finding lytM deletion mutant to have no effect on cell 
autolysis, rather promoting it under oxacillin stress, and authors questioned LytM function as an 
autolysin (Singh et al., 2010). Nevertheless, it has been shown that overexpression of LytM can 
restore growth of WalKR-depleted S. aureus cells, it is regulated by this TCS as well as global 
regulator RNAIII, it is suppressed under stationary growth, and generally accepted as autolysin  
(Chunhua et al., 2012; Delaune et al., 2011; Lioliou et al., 2016). Release of the characteristic S. 
aureus protein A has also been attributed to lytic capability of LytM (Becker et al., 2014). 

There is a wide range of M23 family proteins that are neither involved with S. aureus PG 
pentaglycine cleavage nor even peptidases. For instance, B. subtilis phage φ29 gene 13 product 
gp13 is a structural component of phage tail, shares 14% identity with LytM catalytic domain and 
has several possible functions, including D,D-endopeptidase (Cohen et al., 2008; Cohen et al., 
2009). Short 99-residue M23 domain of EnpAC from Enterococcus faecalis shares 40% sequence 
identity and cleaves D-Ala-L-Ala bonds in a variety of bacteria (de Roca et al., 2010). EnvC and 
related factors from E. coli share ~30% identity with LytM but lack peptidase function and instead 
act as cell wall separation regulators (Uehara et al., 2009; Uehara et al., 2010). Related recruitment 
proteins recently were found in Haemophilus influenzae, Caulobacter crescentus, Xanthomonas 
campestris, and multicellular cyanobacterium Anabaena (Bornikoel et al., 2018; Ercoli et al., 
2015; Yang et al., 2018; Zielińska et al., 2017). 
 
 
1.2.4.2. Characteristics of M23 peptidase domains 
 
M23 domains share similar structural fold not only among members of the subfamilies and within 
the family, but also have similar core elements with M15 peptidases that include D-Ala-D-Ala 
peptidases. Based on their common coordination of Zn2+ ion by Nε, Oδ and Nδ atoms of histidine, 
aspartate and histidine, respectively, a joint classification “LAS enzymes” has been proposed 
(Bochtler et al., 2004). However enticing search for similarities, patterns, and new classifications 
may be, any inclusion of peripheral proteins complicates specifications within the group and 
should be avoided if not necessary. The unifying features of active M23 peptidases is their 
conserved active site residues and overall fold. Known to the author 3D-structures of active M23 
domain include LytM (PDB ID 1QWY, 2B0P, 2B13, 2B44, 4ZYB), lysostaphin (4LXC, 4QP5, 
4QPB), zoocin A (5KVP), gp 13 (3CSQ), LasA from Pseudomonas aeruginosa (3IT5, 3IT7), 
NMB0315 from Neisseria meningitidis (3SLU), and D,D-endopeptidase from Vibrio cholerae 
(2GU1). The proteins have a characteristic groove formed by β-sheet and bordered by fours loops 
(Figure 3A, blue and red arrows respectively). The catalytic Zn2+ ion is coordinated by histidine 
and aspartate from HXXXD motif as well as one histidine from HXH motif. The second histidine 
from the latter fragment together with a remote conserved histidine are understood to be catalytical. 
Mutation of these residues to alanine abolishes catalytic activity of ALE-1 (Fujiwara et al., 2005). 
It has been noticed that a tyrosine residue is always present in the first loop of catalytic domain of 
LytM and closely related enzymes (Figure 3B), and its mutation to other residues significantly 
lowers activity, hence implying a role in catalytic mechanism (Grabowska et al. 2015; Spencer et 
al., 2010). Presence of one zinc ion per molecule has been confirmed in these enzymes (Odintsov 
et al., 2004; Sugai et al., 1997a; Trayer & Buckley, 1970; Wang et al., 2011). Other metal ions, 
Co2+, Mn2+, Cu2+, have been shown to activate zinc-depleted LytM, although the full activity 
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observed with zinc was not restored (Firczuk et al., 2005). Metal ion chelators, e.g. EDTA, are 
potent and reversible inhibitors. The pH optima for lysostaphin, ALE-1, LytM, and LasA are 7.5, 
7-9, 7.5, and 8-9, respectively (Browder et al., 1965; Firczuk et al., 2005; Spencer et al., 2010; 
Sugai et al., 1997a).  
 
  A 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  B 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
Figure 3. Overall structure of LytM catalytic domain (188-316) (A) and close-up view of the 
active site residues with zinc ion (green) coordinated in the center (B). Catalytic groove (blue 
arrow) is formed by four flanking loops (red arrows). Residues H210, D214, H293 coordinate zinc 
ion together with cacodylate (C2H6AsO2

-) ion (orange). Residues H260 and 291 are catalytic and 
Y204 is implied in catalytic mechanism as well. Figures are based on PDB ID 2B0P (Firczuk et 
al., 2005). 
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1.2.4.3. SH3b domains of M23 peptidases 
 

SH3b domains are ~ 90-residue long bacterial analogs of smaller ubiquitous eukaryotic SH3 
domains that are involved in signaling pathways and interact with proline-rich fragments (Ponting 
et al., 1999; Saksela & Permi, 2012; Whisstock & Lesk, 1999). Yet the binding of typical PXXP 
site in SH3bs is partially obstructed and instead these domains have 20-residue extension, which 
creates an interface for interaction with pentaglycine (Gu et al., 2014; Hirakawa et al., 2009; Lu 
et al., 2006).  

This property of SH3b domains has been recruited by some M23 peptidases that can take 
advantage of substrate recognition. The enzymes include lysostaphin and ALE-1, and the 
structures of their SH3b domains are known (Baba & Schneewind, 1996; Hirakawa et al., 2009; 
Lu et al., 2006). Before this study, however, little has been understood about the interaction of 
SH3b domains and peptidoglycan. It has been accepted that pentaglycine bridges are essential for 
the interaction of lysostaphin SH3b with cell wall PG, but other cell wall components, like proteins 
and teichoic acids, were not involved (Gründling & Schneewind, 2006). Additional support for the 
central role of pentaglycine was provided in case of ALE-1, and in a separate study interaction 
between ALE-1 catalytic and SH3b domains was observed in vitro (Lu, H. et al., 2013; Lu, J. Z. 
et al., 2006). Towards the end of the study described herein, a 3D-structure of SH3b-pentaglycine 
complex was released (PDB ID: 5LEO, 2017). Pentaglycine was shown to occupy the predicted 
N-groove of the domain (Figure 4) and it furthered the focus on pentaglycine as the key factor in 
substrate binding.  

 
 

Figure 4. SH3b domain from lysostaphin with co-crystalized pentaglycine (PDB ID: 5LEO, 
Jagielska at al., 2017). 
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1.2.4.4. Application of M23 peptidases 
 
All S. aureus peptidoglycan hydrolases are of interest and importance for two main reasons: (i) 
they provide insight into the pathogen’s physiology and (ii) can potentially be used in antibacterial 
therapies. As such, they are not only prospective targets, but are also conspicuous instruments 
themselves. Already the first study identifying lysostaphin asserted its anti-staphylococcal 
potential (Schindler & Schuhardt, 1964).  

 Vast research showing lysostaphin activity against S. aureus in vitro, in vivo, in biofilms, 
and different infection models alone and in combination with other antimicrobials has been 
reviewed (Bastos et al., 2010; Kumar, 2008; Septimus & Schweizer, 2016; Suresh et al., 2019; 
Wittekind & Schuch, 2016). The main advantage of lysostaphin is that it is active against the 
antibiotic-resistant strains, because it targets the characteristic pentaglycine bridge in cell wall PG 
and not the enzymes or steps leading to cell wall synthesis that have evolved to be drug-resistant. 
Native LytM has been reported to have a very low anti-staphylococcal activity in physiological 
conditions (Sabala et al., 2012). This activity, however, can be enhanced up to 540-fold when the 
M23 domain is fused with the cell wall recognition SH3b domain and the enzyme becomes 
therapeutically relevant (Osipovitch & Griswold, 2015). Moreover, in low ionic environment, 
catalytic domain of LytM is more active than catalytic domain of lysostaphin (Jagielska et al., 
2016). Phage endolysins with catalytic domains from different families have received a lot of 
attention, but the potential of some enzymes remains untapped and M23 domains with their S. 
aureus specificity demand for special consideration (Kashani et al., 2018; Nelson et al., 2012; 
Pastagia et al., 2013). To this end, molecular engineering of known and hypothetical autolysins 
can provide a wealth of resources (Blazanovic et al., 2015; Jagielska et al., 2016; Osipovitch et 
al., 2015).   
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2. AIMS OF THE STUDY 
 
The research was triggered by the finding of S. aureus gene sa0205 upregulation under stress of 
antimicrobials which interfere with cell wall integrity. We postulated that the gene encodes a 
protein important to maintain cell wall. Analysis of the gene sequence indicated it to contain an 
M23 peptidase domain. This led us to hypothesize that the protein is an active enzyme. 
Consequently, we have set out to investigate the properties and functions of the protein.  
 
During progression of the studies, new questions continuously arose and to address them 
approaches were designed and tasks were undertaken. The main aims of the study were the 
following: 
 
1. To obtain the protein in a form suitable for studies, including the structural ones by NMR 
(Article I) 
2. To investigate its physiological role (Article II) 
3. To reveal its enzymatic properties (Article II) 
4. To determine its structural features as the basis for 2 and 3 (Article II) 
5. To clarify substrate binding (Article III) 
 
The overall goal was two-fold: (i) characterization of a new member of the family and (ii) increased 
knowledge about peptidoglycan cleavage in S. aureus cell wall.  
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3. METHODS AND MATERIALS 
 

The following is the summary of methods used during the studies. For detailed information a reader 
is invited to visit the Materials and Methods’ sections of the original publications as referenced 
below. 

The applied methods are conventional and did not require specific adaptations. Nonetheless, in our 
work we have introduced a new approach to monitor reaction and measure activity of pentaglycine-
cleaving enzymes. 

Table 3. Methods used to obtain the results covered in the thesis.  

Method Article 

Cloning, expression, and purification of LytU  
Cloning, expression, and purification of LytU mutants and LytM 
Cloning, expression, and purification of lysostaphin  
Protein NMR spectroscopy 
Generation of LytU deletion mutant 
Generation of LytU overexpression construct 
Construction of GFP-LytU fusion protein 
Cell fractionation 
Immunolocalization of proteins 
Microscopy 
Cell lysis measurement 
Enzyme activity measurement by NMR spectroscopy 
ITC 
Molecular dynamics simulations 
SAXS 

I, II 
II 
III 

I, II, III 
II 
II 
II 
II 
II 
II 
II 

II, III 
II 
III 
III 

 

Chromosomal DNA from Staphylococcus aureus strain Newman was used as the gene template 
for proteins LytU and LytM. Gene of mature lysostaphin (residues 251-493) was synthesized de 
novo at GenScript (NJ, USA). For purification, all proteins were cloned into pGEX-2T vector (GE 
Healthcare Life Sciences) and expressed with GST tag in E. coli BL21 (DE3) cells (Merck 
Biosciences, Germany).  
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4. RESULTS 
 
This section provides condensed main findings and the results that are discussed in greater detail 
in the original publications. 
 
4.1. Identification of LytU protein 
 
In the beginning, the sequence of putative protein encoded by gene sa0205 was analyzed by 
HMMTOP, MODELLER, and SignalIP tools (Nielsen et al., 1997; Sali & Blundell, 1993; 
Tusnády & Simon, 2001). The protein, consisting of 192 amino acid residues, was predicted to 
have a membrane-spanning fragment (residues 7-25), a disordered region (26-48), and an M23 
catalytic domain in its C-terminus (Figure 5A). Its catalytic domain region (residues 49-182) has 
41.9, 43.2, and 42,4% sequence identity with its counterparts in LytM, lysostaphin, and ALE-1, 
respectively (Figure 5B). The protein possesses conserved residues Y 67, H76, D80, H125, H157, 
and H159 characteristic to M23 peptidases. Sequence alignment revealed a distinct insertion at 
position 151, which, depending on the S. aureus strain, can be isoleucine or lysine. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B  
 
LytU           KWEDFFRGSRITETFGKYQHSPFDGKHYGIDFALPKGTPIKAPTNGKVTRI-FNNELGGKVLQIAEDNGEYHQWYLHL 

Lysostaphin    HSAQWLNNYKKGYGYGPYPLGINGGMHYGVDFFMNIGTPVKAISSGKIVEAGWSNYGGGNQIGLIENDGVHRQWYMHL 

ALE-1          HSASWLNNYKKGYGYGPYPLGINGGNHYGVDFFMNVGTPVRAISDGKIVEAGWTNYGGGNEIGLVENDGVHRQWYMHL 

LytM           KDASWLTSRKQLQPYGQY---HGGGAHYGVDYAMPENSPVYSLTDGTVVQAGWSNYGGGNQVTIKEANSNNYQWYMHN 

 
LytU           DKYNVKVGDRVKAGDIIAYSGNTGIQTTGAHLHFQRMKGGVGNAYAEDPKPFIDQL 

Lysostaphin    SKYNVKVGDYVKAGQIIGWSGSTG-YSTAPHLHFQRMVNSFSNSTAQDPMPFLKSA 

ALE-1          SKFNVKVGDRVKAGQIIGWSGSTG-YSTAPHLHFQRMTNSFSNNTAQDPMPFLKSA 

LytM           NRLTVSAGDKVKAGDQIAYSGSTG-NSTAPHVHFQRMSGGIGNQYAVDPTSYLQSR 

 

 
Figure 5. A. Comparison of the full-length sequences of lysostaphin, ALE-1, LytM, and LytU. 
Red, signal sequence; green, catalytic domain; blue, SH3b domain. The exact limits of domains 
may vary in literature and among research groups. B. Sequence alignment of the catalytic domains 
corresponding to 49-182 residues in LytU. Conserved active site residues Y67, H76, D80, H125, 
H157, and H159 are highlighted in red. The unique LytU insertion at position 151 is highlighted 
in green. (Adapted from Article II.) 
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We cloned the gene lacking hydrophobic transmembrane peptide into pGEX-2T plasmid 
and expressed it in E. coli with a GST-tag, which assisted in purification and subsequently was 
removed. The purified protein was not homogeneous and had a varied length with several evident 
proteolytic cleavage sites in N-terminal fragment, the furthest downstream occurring between 
residues 69 and 70. In addition, the full-length (26-192) soluble portion of the protein delivered 
poor quality NMR 1H,15N-HSQC spectrum, expectedly caused by flexible N-terminal fragment. 
We produced several proteins of different length based on these cleavage sites. Truncation at the 
start of catalytic domain (49-192) allowed to obtain a mostly uniform length protein, yielded 
satisfactory NMR spectra with well-dispersed peaks, and was suitable for structural studies 
(Figure 6). By following existing nomenclature, the next available identifier was LytU and we 
named the protein accordingly.   
 

 

 
 
Figure 6. 1H, 15N-HSQC spectrum of one zinc-bound LytU 49-192. (Adapted from Article I.) 

 
 
4.2. Physiological role of LytU 
 
To grasp the physiological role of LytU, we have investigated its cellular location and impact of 
expression on cell growth. For the first purpose, LytU was expressed in S. aureus cells with Strep-
tag and separately fused with GFP protein. Immunoblotting against Strep-tag showed that LytU 
was present in cell membrane fractions. Removing of cell wall peptidoglycan layer with 
lysostaphin left cell protoplasts with LytU bound, but it was removed by trypsin, indicating that 
soluble part of the protein is extracytoplasmic. Expression of LytU-GFP fusion showed that LytU 
is found across cell membrane, including septa between dividing daughter cells (Figure 7A). 

LytU deletion and overexpression constructs were produced to explore its in situ function. 
LytU deletion did not have a clear effect on cellular viability and growth, thus, the protein was 
determined to be non-essential. During careful examination of cells, small flaws resembling 
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tearing edges could be seen on the surface. These edges arguably corresponded to previous division 
planes and thus indicated that LytU plays a role in cell separation, which is not executed properly 
in its absence.  

Overexpression of LytU affected cells profoundly. Overexpression of lytU gene led to cell 
death in cultures (Figure 7B). Inspection of individual cells by electron microscopy showed that 
individual cells were dividing, yet, their daughter separation was hindered and eventually occurred 
by the rupture at septum.   

 
A           B  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Figure 7. A. Localization of LytU-GFP fusion protein. Yellow arrows point to LytU accumulation 
at the start of division septum formation. Blue arrows show high LytU density in septa. Scale bar 
is 2 μm. B. Induction of LytU overexpression. The arrow indicates induction point. (Adapted from 
Article II.)  

 
 

4.3. Enzymatic properties of LytU 
 

Expectedly, in our initial experiments, lysis of stationary and logarithmic growth phase 
cells was observed upon addition of the recombinant LytU to cell cultures. The results, however, 
did not provide unequivocal conclusions, since the activity was observed also with metal ions that 
were determined to not be cofactors of active enzyme. Free metal ion concentrations, their binding 
by cell wall components, exchange, any additional lytic processes, and vague microenvironments 
rendered cell culture to be too complicated and with too many variables for a system intended for 
accurate enzyme study. Adoption of other techniques using insoluble and non-physiological 
substrates was not optimal as well. Therefore, we have devised the minimalistic system, using 
pentaglycine as a substrate that allowed for direct reaction monitoring and convenient product 
quantification by NMR (Figure 8). 

 LytU cleaves pentaglycine. We have tested the activity in the pH range from 6.2 to 7.9 
and found it highest at the pH 7.9. Higher pH values were not explored due to the limitations of 
the essay at the time. We also found that LytU activity at 25 ℃ drops to just over 20% of that at 
37 ℃. The observation implies that LytU does not provide any advantages for cells at the 
temperature that would be encountered by biofilms on medical equipment. 
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Figure 8. Cleavage of pentaglycine by LytU as observed by NMR. (Adapted from Article II.) 

 
LytU can use several different metal ions as cofactors. Besides Zn2+, these include Mn2+, 

Cu2+, and Co2+. Mg2+, Fe2+, and Ca2+ did not confer activity to the enzyme. Interestingly, activities 
with copper and cobalt ions were several-fold higher than that with zinc ion. Although Mn2+ and 
Co2+ were also suitable cofactors for lysostaphin, they were less optimal than Zn2+. We have found 
that lysostaphin replenishment with molar excess of Cu2+

 allowed to exceed activity of zinc-bound 
enzyme, which could be explained by copper being a more suitable cofactor with a lower protein 
affinity. 

Full-length soluble LytU has the same pentaglycine cleavage activity as the truncated 
catalytic M23 domain, suggesting that N-terminus does not need to be cleaved off in vivo. LytU 
isoform Lys151 is about 40% more active against pentaglycine than Ile151, which is as active as 
catalytic domain of LytM (Figure 9). Most strikingly, these residues, insertions when compared 
to M23 domains in other related proteins, appear essential for catalytic activity, since their deletion 
inactivates the enzyme, while keeping the overall structural fold intact. On the other hand, the 
introduction of these insertions into LytM made the protein insoluble and obstructed its 
purification.  

 
 

Figure 9. Comparative 
catalytic activity of 
selected proteins. 
(Adapted from Article 
II.) 
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Our robust catalytic activity monitoring setup system allowed us to detect the effect of 
excess zinc ions on LytU catalysis. The binding of second zinc ion is inhibitory. These inhibitory 
effects were significantly smaller in LytM and lysostaphin. The binding of second zinc is pH-
dependent and NMR titration experiments show that at pH 6.5 and higher, in the presence of 
second zinc, catalytic histidines are arrested. Kd values, determined by isothermal titration 
calorimetry, for LytU-Ile and LytU-Lys binding of the first and second zinc ions were 0.26 and 
0.22 nM and 0.32 and 0.49 µM, respectively.  
 
 
4.4. Structural features of LytU catalytic domain 
 
The catalytic domain fold of LytU is akin to those of its M23 family and superposition of its 
backbone atoms in secondary structure elements with LytM catalytic domain results in RMSD of 
0.9 Å (Figure 10A). The apparent substrate accommodating groove is shaped by five β-strands 
and four loops, namely, N-terminal, β3-β4, β6-β7, and C-terminal. We have determined one- and 
two-zinc bound structures of LytU and the average displacement of loop β6-β7 is smaller in the 
two-zinc form, most likely due to rigidity induced by the coordination of second zinc atom (Figure 
10B). The catalytic site is formed by residues H76, D80, and H159 that coordinate catalytic zinc 
ion and residues H125 and H157 believed to be directly involved in catalysis or, alternatively, 
inhibited by the second zinc. The loop β6-β7 is the residence of residue 151, however due to the 
flexibility, its precise side chain conformation cannot be determined.  
 
A                                                                                B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. A. Superposition of LytU (cyan) and LytM (gray) catalytic domains, corresponding to 
LytU residues 60-192 and LytM residues 197-316 (PDB IDs: 5KQB and 2B0P, respectively). The 
green fragment indicates the backbone of residue 151. B. Ensembles of fifteen structures of the 
least restraint violation of one- and two-zinc bound LytU, blue and purple, respectively (PDB IDs: 
5KQB and 5KQC). Residue 151 is located in the loop β6-β7, which remains flexible after binding 
the second zinc ion. The second inhibitory zinc ion is not illustrates bound to LytU, due to the 
inability to determine its third ligand and not fully clear location. (Adapted from Article II.) 
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Regrettably, we were not able to determine the third ligand of second zinc. Proximal 
candidates N148 and Q152 were shown to not be involved, since mutations N148A and 
N148S/Q152A did not cancel the binding of second zinc. Nevertheless, the second zinc seemed to 
stabilize hydroxyl protons of S146 and T149 as well as region 64-75, which contains tyrosine 67, 
the analogs of which in LytM and LasA were implicated in catalytic mechanism. The Y67 role in 
the LytU catalysis is supported by our finding that the shortest proteolytically stable LytU (70-
192) retained the overall structure but was completely inactive.  
 
 
4.5. Substrate binding by SH3b domain 
 
We were not able to map substrate, pentaglycine, binding to LytU catalytic domain or its analogs 
of lysostaphin and LytM. Hundred-fold excess of substrate did not induce detectable shift 
perturbations in NMR spectra. This led us to hypothesize that the interaction between the catalytic 
domain and the substrate is very transient and only occurs during the reaction between the catalytic 
site residues and the scissile bond. Consequently, in search for the more pronounced enzyme-
substrate interaction, our attention shifted to the SH3b domain of lysostaphin. 

In our experiments, SH3b did bind pentaglycine in the N-terminal groove similarly as 
determined previously. The binding is not dependent on the presence of catalytic domain and the 
14-residue linker in between remains flexible despite presence or absence of the substrate. The 
binding, however, is exceptionally weak with Kd estimate larger than 10 mM. We hypothesized 
that additional interactions must be taking place. Indeed, we have found that lysostaphin SH3b 
domain binding had a significantly higher affinity when using a synthetic A-d-EK-GGGGG-A-d-
EK-d-A PG fragment, which would resemble the stem-cross-bridge-stem sequence in native 
peptide. The peptide interaction sites on the SH3b surface were inferred from an NMR chemical 
shift perturbation assay (Figure 11). Structural models generated from existing structures and 
NMR binding data suggested that the SH3b domain recognizes pentaglycine and branch peptide 
moieties that are not directly linked and compose a larger structural unit in the complex PG 
architecture. 

 
Figure 11. Surface of the lysostaphin SH3b domain from different angles. The surface of G5K 
peptide binding groove is shown in green. Lysine was included to solubilize pentaglycine. 
Additional cyan and blue binding surfaces were mapped when A-d-EK-GGGGG-A-d-EK-d-A 
peptide was used. Blue surfaces represent residues R427 and W489 that are strictly conserved in 
S. aureus-targeting SH3b domains and their mutations R296A and W358A in ALE-1 reduced 
binding 3- and 2-fold, respectively, when compared to wild type binding (Lu et al., 2006). PDB 
ID: 5NMY. (Adapted from Article III.) 
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We found no evidence of interaction between lysostaphin catalytic and SH3b domains in 
vitro. Replacement of zinc ion with paramagnetic Mn2+, which induces transverse paramagnetic 
relaxation enhancement and as a result “bleaches” or broadens peaks in NMR spectra within up to 
35 Å distance, showed no effect on peaks in the catalytic domain beyond 23.6 Å including SH3b 
domain. Overall rotational correlation times, τc, derived from relaxation data were different for 
catalytic and SH3b domains: 7.8 and 6.0 ns at 35°C, respectively. Although isolated SH3b had τc 
4.1 ns, indicating some motion restriction from the attached catalytic domain, the τc estimate for a 
unified complex was 13.4 ns and suggested flexibility between partly independent domains. Small-
angle X-ray scattering showed a full-length lysostaphin to form two main conformation 
populations – a more extended and a more compact one – the latter one being preferred.  
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5. DISCUSSION 

 
The large number of peptidoglycan hydrolases tempts to downgrade the importance of any single 
enzyme. In fact, so far only one gene, pcsB in Streptococcus pneumoniae, has been shown to be 
essential for the viability of its host (Sham et al., 2011; Wheeler et al., 2015). The author of this 
thesis would like to invite quite an opposite perspective and bolster a different viewpoint: the large 
repertoire of the enzymes is not to be considered as a mere redundancy, but rather exemplifies the 
critical value of their shared functions that cells cannot afford to lose. The costly energetic and 
genomic resources are justified and there is no “just another peptidase in a wall” (Scheffers & Tol, 
2015). Moreover, employment of separate enzymes allows for dedicated roles and accurate control 
spatially and temporally. Full comprehension of the network is inevitably compulsory to appreciate 
role of each constituent and recognition of each and every member and its individual function are 
important to understand the global mechanism. 

A prototypical S. aureus strain was found to have up to 13 known or putative PGHs 
(Antignac et al., 2007). In this study we introduce LytU, a previously unreported peptidase and 
the second representative of the M23 family. The enzyme is encoded in chromosome but is not 
essential. It is anchored in the membrane and its soluble part is extracytoplasmic. Evidence shows 
LytU is involved in daughter cell separation and its gene transcription previously was found 
upregulated upon exposure to certain antibacterial compounds (Pietiäinen et al., 2009). The 
enzyme is metal ion-dependent and can successfully use Zn2+, Mn2+, Cu2+, and Co2+ ions, the latter 
two making it hyperactive when compared to ostensibly physiological zinc. LytU can bind a 
second zinc ion in a process that is pH-dependent and results in locked catalytic residues. 
Enzymatic activity is expressed by cleaving pentaglycine. 

Our findings achieved initial aims, but they also prompt new questions and their 
contribution to the larger goal – to enhance knowledge on peptidoglycan cleavage in S. aureus cell 
wall – is anything but complete. The imminent discussion topics could be grouped under two 
general questions: What does LytU do in situ? What properties of LytU define its role?  

 In situ role. The presence of LytU in plasma membrane facing cell wall is expected from 
an autolysis enzyme. Its even dispersion in adult and dividing cells precludes from extracting 
specific clues about its function. It is counted on LytU-GFP fusion to not interfere with native 
LytU localization. It could be argued that the amount of the LytU is slightly higher in septa between 
dividing cells (Figure 7A, blue arrows), but this observation can be attributed to the double 
membrane layer at the septum as well as the point of view not precisely perpendicular to the septum 
and hence occupying a broader angular view and visible area. Increase in density of LytU can be 
seen at the newly emerging division sites (Figure 7A, yellow arrows), but this also cannot answer 
whether the larger quantities of the enzyme are required or are only a lateral result of formation of 
additional membrane layer. The detrimental effect of LytU overexpression on cell separation 
seems counterintuitive, yet the explanation can be as simple as LytU overloading and 
incapacitating separation mechanism, an event even more likely if LytU was indeed involved in 
cell separation and formed complexes with other relevant proteins.    

The functions of autolysins in living cells commonly are considered during cell division 
and growth. The third, less glamorous function, is the maintenance of existing PG layers and 
recycling of its fragments. It is a well-established process in Gram-negative bacteria and E. coli 
has been estimated to recycle over half of its PG in each generation (Park & Uehara, 2008). PG 
recycling, however, has received substantially less attention and, after a prolonged debate, has 
been confirmed to occur in Gram-positive bacteria only very recently (Mayer et al., 2019). It would 
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be reasonable to consider the involvement of LytU, the gene of which is upregulated upon the 
damage of CW. 

The overall structure of LytU may provide more information for interpretation of its 
function. LytU is anchored in membrane and the 20-residue linker between the anchor and the 
catalytic domain has neither a strict structure nor a known function. Although it may be imagined 
that it forms interaction with other CW components, any evidence is lacking and it may simply be 
a swivel for the broader reach of the catalytic domain. LytU is localized in periplasm-like space 
between cell membrane and PG layers. This space was measured to be ~ 16 nm wide (Matias & 
Beveridge, 2006). Our calculations show that with LytU linker even in the fully stretched 
conformation, LytU would extend only to about 2/3 of the compartment width and not be able to 
reach the layers of PG. This would be consistent with LytU cleaving fragments of CW that are 
floating in periplasm-like space. It also cannot be excluded that brief conditions exists when this 
space narrows and LytU has access to the layered PG. The C-terminus of LytU ends with a 10-
residue tail that does not appear to belong to the catalytic domain. Curiously, the first residues of 
the tail are LPDG, somewhat reminiscent of characteristic LPXTG fragment which bears scissile 
bond T-G used by sortase A to anchor proteins to PG (Navarre & Schneewind, 1994; Schneewind 
& Missiakas, 2012). Evidently, this anchoring does not occur, and it is not clear if the sequence is 
an evolutionary rudiment or just a coincidence. 

Metal ions. The ability of some enzymes to use different metal ions as cofactors is well 
known and this feature of LytU is not surprising. The hyperactivation by Cu2+ and Co2+ is unlikely 
to play role in vivo yet should be taken into consideration when designing antimicrobial enzyme 
applications that can be more effective with a substitute ion. Ion affinity towards native enzymes 
or their mutants and derivatives must be addressed before these substitutions are implemented. 

The most remarkable finding was the binding of second zinc, which was inhibitory and had 
a high affinity. Notably, high concentrations of zinc have been shown to be inhibitory to M23s in 
the past, but the mechanism was not explained. In our work we saw that molar excess of zinc ion 
led to the binding to catalytic residues H125 and H157 in LytU as well as H329 and H360 in 
lysostaphin. In the previous studies, for the lack of the better knowledge, the enzymes routinely 
were exposed to ion concentrations that we have found already to be halting catalytic reaction. The 
ability to detect this effect should be partly attributed to our reaction monitoring system that we 
would highly recommend to research groups that have access to NMR equipment. Presently, there 
is no consensus system for pentaglycine cleavage monitoring. The closest to the standard 
procedure is the lysis of S. aureus cells, however, this system is too complicated to resolve delicate 
details. 

 A lot remains to be desired in understanding of ionic microenvironments of the S. aureus cell 
envelope compartments. Teichoic acids conduct processes governing charge and metal ion 
distribution across CW PG, and proton gradient furnishes pH at the surface of plasma membrane. 
Zinc concentration in blood is in 9.2 – 20 µM range and anionic TAs traffic the ions across CW. 
Further details are scarce, studies of zinc contents in S. aureus CW are lacking and conditions need 
to be inferred from other systems. Discrepancies among studies exist due to their methodology and 
different subjects. An earlier study of intact S. aureus walls determined Kd of 350 µM for Mg2+ 
(Lambert et al., 1975). Investigation of complete CW using solid-state NMR produced Kd of 600 
± 300 μM for Mg2+ binding to the phosphate of the repeating unit in B. subtilis (Kern et al., 2010). 
Significantly lower Kd values were obtained for isolated streptococcal LTAs: 15 and 8.9 mM for 
Mg2+ and Ca2+, respectively (Rose & Hogg, 1995). The comprehensive and consolidating model 
of metal ion binding was proposed in isolated B. subtilis CW (Thomas & Rice, 2014). Two zones 
of binding were demonstrated: strong initial binding followed by a negative cooperativity-induced 
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weaker binding. The calculated Kd values for Ca2+ and Mg2+ at pH 5.65 were 1.43 and 1.49 µM, 
respectively (Thomas & Rice, 2014). Taking into account previously determined similar values 
between Zn2+, Ca2+, and Mg2+ in isolated B. subtilis walls (Doyle et al., 1980) and our data for the 
first and second zinc binding sites (Kd values 0.2 - 0.3 nM and 0.32 - 0.49 µM, respectively), both 
LyU sites can successfully compete against CW in metal ion binding. 

Regulation. Autolysins are sensitive to pH, which can be used for their regulation (Calamita 
& Doyle, 2002). For example, AtlA has been shown to be subject to pH regulation orchestrated by 
cooperation of membrane proton gradient and wall teichoic acids that contribute positive and 
negative charges, respectively (Biswas et al., 2012). Additional dimensions to regulation 
mechanism are created by alanylation of teichoic acids that reduces overall negative charge and 
attraction of metal ions to the negative charges of phosphate network.  

The binding of second zinc has been observed in several other proteases, for instance the 
well-known carboxypeptidase A and thermolysin, where it is inhibitory as well (Gomez-Ortiz et 
al., 1997; Holland et al., 1995). The binding of second zinc ion by LytU is apparently stronger 
than by lysostaphin and LytM. Such vulnerability of the enzyme to lose its activity seems 
evolutionary impractical. Therefore, a rationale should exist, and regulation mechanism seems to 
be a plausible explanation, especially, since other regulation mechanisms, e.g. inhibition by N-
terminal sequence, are not known. Based on our data and results, we propose a framework model 
for LytU regulation (Figure 12). The enzyme exists in an active state only under well-balanced 
conditions. Lowering pH protonates and inactivates catalytic histidines. At higher pH and lower 
proton concentration, the inhibition is carried out by the binding of second zinc ion. 

 

 
 

Figure 12. Regulation of LytU activity by pH and zinc ions. Catalytic histidines (H125 and H157) 
are emphasized in red frames when inactivated by protons at low pH (left) and the excess second 
inhibitory zinc ion (right). The catalytic zinc is shown in light gray, the inhibitory zinc is shown in 
black. (Adapted from Article II.) 
 

Binding of PG by SH3b.Our research has brought a paradigm shift in PG binding and 
cleavage by lysostaphin. Previously, pentaglycine bridges have been the focal point in the SH3b-
promoted binding to PG. We, however, showed that the SH3b binding is driven by PG branch 
peptides, rather than weaker binding to pentaglycine. Our data strongly indicate that SH3b binds 
to branch peptides and pentaglycine that are not directly linked. The flexible linker acts as an 
entropic spring. Furthermore, the cleavage of the bound pentaglycine seems sterically obstructed 
and the function of SH3b domain is to anchor lysostaphin to PG, whereas the contact with the 

  



41 
 

substrate pentaglycine is established by the catalytic domain alone, by browsing the vicinity of its 
anchoring site.  

In accordance with our NMR peptide binding data, a very recent study proposes a two-site 
recognition mechanism between the lysostaphin SH3b and S. aureus PG (Gonzalez-Delgado et al., 
2020). The authors solved by X-ray crystallography the structure of the complex between SH3b 
and a branched PG fragment, AQK[GGGGG]A. In the complex, pentaglycine and branch peptide 
are recognized by different binding sites on opposite sides of the SH3b domain. The authors 
postulate an unusual binding mechanism, in which binding leads to clustering of SH3b domains, 
permitting a dynamic and synergistic target recognition. 

Outlook. Several directions can be taken to advance the research on LytU and M23 
peptidases in general. The most basic one is rather tedious, unlikely to result in exciting findings 
but could provide valuable foundation for long-term goals. That would be characterizing all 
currently known M23s, and possibly other PG hydrolases, in parallel, in a range of directly 
comparable and uniform conditions. Presently available information includes different protein 
expression and activity assessment systems, thus making direct comparison impossible and any 
extrapolated conclusions of little virtue. Recently, a separate study has also found lysostaphin to 
be reversibly inhibited by excess of zinc ions (Ojha et al., 2018). The authors referred to the 
phenomenon observed in LytU, but because of the different experimental setup and context of the 
enzyme environment, refrained from further elaborations. Another seemingly natural inclination 
would be to generate S. aureus cells with double or multiple autolysin deletions and determine 
which enzymes can compensate for the function of another. Although such studies seem inevitable, 
one should be prepared for anticlimactic results, since many of hydrolase functions overlap and 
even the double deletion of major autolysins Atl and Sle1 proved non-lethal and only severely 
impaired daughter cell separation, which to a smaller degree can be observed upon some individual 
gene knockouts (Kajimura et al., 2005).  

Construction of LytU chimeras can prove the enzyme to be a prospective antimicrobial 
candidate. As a matter of fact, a very recent study has already put LytU to the task and showed 
that the fusion protein with the lysostaphin SH3b, had MIC against MRSA 421-fold lower than 
that of LytU alone (Taheri-Anganeh et al., 2019). LytU, as a homolog of lysostaphin, may share 
some medical advantages. Lysostaphin is valued for being active against dividing and non-dividing 
cells, not having negative effect on gut microbiota, not being toxic, and being active in human 
serum (Bastos et al., 2010). Clearly, the biggest concern is the potential resistance acquired via lif 
or erp factor, which would incorporate serine residues into pentaglycine bridge making S. aureus 
defiant to lysostaphin. On the bright side, strains that have acquired such resistance have shown 
reduced viability and hence, could be more susceptible to treatments that combine M23 peptidase 
with other antimicrobial agents (Kusuma et al., 2007).  

Upon the discovery of lysostaphin in 1964, a lot of hope has been put into its anti-
staphylococcal effect. This excitement has gradually subsided because of the discovery of new 
antibiotics and commercial manipulations. However, with the emergence of strains highly resistant 
to antibiotics, the lysostaphin family is regaining attention and experiences the advent of 
applications.  
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6. CONCLUSIONS 
 

The research described in this thesis began with the inquiry about the function of S. aureus gene 
sa0205 and led to the investigation of its product protein LytU. Granting that it was initiated by 
scientific curiosity, it has been shaped by the context of peptidoglycan hydrolases and directed by 
pertinent hypotheses along the way. Some findings were unexpected and invited unscripted paths 
of study. Based on the harvested results and knowledge accumulated during the project, the 
following conclusions can be drawn. 

1. S. aureus possesses previously not characterized and unreported autolysin that belongs to 
the M23 peptidase family. Its participation in PG cleavage must be taken into account when 
exploring the roles of other hydrolases and when comprehension of cell-wide processes is 
in question. 

2. At least this particular enzyme is subject to tight regulation by pH and concentration of the 
physiological metal ion. Awareness and recognition of these factors are necessary when 
investigating PG hydrolysis. 

3. The ability of certain metal ions to bestow catalytic hyperactivity when compared to natural 
cofactor should be considered when designing ad hoc therapeutic tools.  

4. More research is required to gain substantially better understanding of ionic 
microenvironments in situ and in vivo.  

5. Catalytic domain of M23 peptidases is not efficient at binding substrate in vitro and 
substrate targeting domains should be employed to enhance their function. Moreover, the 
interaction of these domains and substrate can be studied separately and the focus should 
shift from pentaglycine bridges to the 3D-architecture of PG. 

6. In order to characterize and compare different enzymes in vitro, a reliable reaction 
measurement system must be utilized and the number of known variables has to be 
maximized. 

7. The determined structures of LytU and its distinct properties, namely the insertion-bearing 
loop neighboring the active site, can potentially provide further insights into the catalytic 
mechanism. 

8. In addition to contributing to innate cell processes, LytU can supplement resources in 
search for anti-staphylococcal remedies.   
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