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Abstract

This dissertation studies the fixed effects (FE) spatial panel data (SPD) models with

temporal heterogeneity (TH), where the regression coefficients and spatial coefficients are

allowed to change with time. The FE-SPD model with time-varying coefficients renders

the usual transformation method in dealing with the fixed effects inapplicable, and an ad-

justed quasi score (AQS) method is proposed, which adjusts the concentrated quasi score

function with the fixed effects being concentrated out. AQS tests for the lack of temporal

heterogeneity (TH) in slope and spatial parameters are first proposed. Then, a set of AQS

estimation and inference methods for the FE-SPD model with temporal heterogeneity is

developed, when the AQS tests reject the hypothesis of temporal homogeneity. Finally,

an attempt is made to extend these methodologies to allow the idiosyncratic errors of the

model to be heteroskedastic along the cross-section dimension, where a method called

outer-product-of-martingale-differences is proposed to estimate the variance of the AQS

functions which in turn gives a robust estimator of the variance-covariance matrix of the

AQS estimators.

Asymptotic properties of the AQS tests are examined. Consistency and asymptotic

normality of the AQS estimators are examined under both homoscedastic and heteroskedas-

tic errors. Extensive Monte Carlo experiments are conducted and the results show excel-

lent finite sample performance of the proposed AQS tests, the proposed AQS estimators

of the full model, and the corresponding estimates of the standard errors. Empirical illus-

trations are provided.
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1 Introduction

Temporal heterogeneity is an important feature in spatial panel model (SPD) model

but relatively unexplored in the spatial panel literature. In a SPD model, it can occur on

spatial parameters, intercept, slope and error variance. Many economic processes, for

example, housing decisions, technology adoption, unemployment, welfare participation,

price decisions, crime rates, trade flows, etc., exhibit time heterogeneity patterns. There-

fore, being able to control unobserved heterogeneity may be one of the most important

features of a SPD model.

In the SPD model, the strength of the interactions among locations may not stay the

same over time. Therefore, techniques based upon constant coefficient models might be

inadequate. Models with time-varying coefficients (TVC) should not be ignored, it can

enhance the short-run forecasting in terms of accuracy and consistency, and it also allows

us to identify influential data observations with estimation of parameters on a period-by-

period basis.

In this dissertation, adjusted quasi score (AQS) tests are firstly proposed to test for the

lack of temporal heterogeneity in regression slopes and spatial parameters, then a set of

AQS-based estimation and inference methods are developed for the FE-SPD with TVC

under both homoscedastic and heteroskedastic errors.

Consider the following spatial panel data model (SPD) model with two-way fixed

effects where the spatial effects appear in the model in the forms of spatial lag (SL) and

spatial error (SE):

Ynt = λtWnYnt +Xntβt + cn + αtln + Unt, Unt = ρtMnUnt + Vnt, (1.1)

where Ynt is an n×1 vector of observations on the dependent variable for t = 1, 2, . . . , T ;

Xnt is an n × k matrix containing the values of k exogenous regressors, Wn is an n × n

spatial weight matrix; Mn is another spatial weight matrix capturing the spatial interac-

tions among the disturbances, which can be the same as Wn. Vnt is an n × 1 vector of

idiosyncratic errors, possibly are subject to unknown heteroskedasticity; λt is the spatial

lag parameters in period t, ρt is the spatial error parameters in period t, and βt is the k×1

vector of regression coefficients for the tth period; cn denotes the individual-specific fixed
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effects or the spatial heterogeneity in intercept. {αt} are the unobserved time-specific ef-

fects or the unobserved temporal heterogeneity in the intercept, and ln is an n× 1 vector

of ones.

The above FE-SPD model considerd in this dissertation is fairly general, it allows the

existence of temporal heterogeneity in regression and spatial coefficients, settings specific

to each chapter will be presented chapter-wisely.

The usual transformation method used to eliminate FE is not applicable here due to

the TVC. Therefore, an AQS method is proposed to adjust the concentrated quasi score

(CQS) function with the fixed effects being concentrated out. This dissertation contains

three topics. Chapter 2 presents the first topic: “Specification Tests for Temporal Het-

erogeneity in Spatial Panel Data Models with Fixed Effects”. It introduces two types of

adjusted quasi score tests (naı̈ve and robust) for temporal homogeneity/heterogeneity in

regression and spatial coefficients in the SPD models allowing the existence of the time

and/or individual specific fixed effects. Asymptotic properties of the AQS tests are exam-

ined. The Monte Carlo results show that the robust tests have much superior finite and

large sample properties than the naı̈ve tests. The proposed tests are robust against nonnor-

mality, can be used to identify possible existence of temporal heterogeneity and can also

be repeatedly applied to identify a ‘parsimonious model’. Empirical applications of the

proposed tests are given to facilitate the applications of the methods.

Chapter 3 presents the second topic: “Adjusted Quasi-Score Estimation of Spatial

Panel Data Models with Time Varying Coefficients”. This chapter focuses on the estima-

tion and inference problems for the FE-SPD model with time varying coefficients (TVC),

where the individual- and time-specific effects take an additive form, and the temporal

heterogeneity occurs on the intercept, slopes, as well as the spatial lag parameters, al-

lowing the spatial errors in the model. The unbiased estimating functions are obtained

by adjusting the quasi scores to establish consistency and asymptotic normality of the

proposed AQS-estimator, and to give a complete set of inference methods. Monte Carlo

evidence for the good finite sample performance of the proposed methods is presented.

An empirical illustration is provided.

Chapter 4 presents the third topic: “ Heteroskedasticity Robust Estimation of Spatial

2



Panel Data Models with Temporal Heterogeneity”. The presence of social interactions

will lead to a more complicated variance structure, therefore we would expect the vari-

ances of the error terms to be different in certain applications. With spatial interactions,

the homoskedasticity assumptions are quite restrictive in the SPD models. Therefore, an

AQS estimation method is proposed to adjust the concentrated score functions with FE

being concentrated out, so that the AQS functions obtained are robust against unknown

heteroskedasticity. For heteroskedasticity robust inferences, we develop an outer-product-

of-martingale-differences (OPMD) method for estimating the variance of the AQS func-

tions, which together with the expected Hessian matrix of the AQS functions give a robust

estimator of the VC matrix of the AQS estimators. Consistency and asymptotic normal-

ity of the AQS-estimators are examined. Monte Carlo study is conducted and the results

show excellent finite sample performance of the AQS-estimators and the corresponding

estimates of standard errors.

Chapter 5 concludes this dissertation and discusses possible extensions in the future.

3



2 Specification Tests for Temporal Heterogeneity in Spa-

tial Panel Data Models with Fixed Effects

In this chapter, we propose adjusted quasi score (AQS) tests for testing the existence

of temporal heterogeneity in slope and spatial parameters in spatial panel data (SPD) mod-

els, allowing for the presence of individual-specific and/or time-specific fixed effects (or

in general intercept heterogeneity). The SPD model with spatial lag is treated in detail

by first considering the model with individual fixed effects only, and then extending it to

the model with both individual and time fixed effects. Two types of AQS tests (naı̈ve and

robust) are proposed, and their asymptotic properties are presented. These tests are then

fully extended to SPD models with both spatial lag and spatial error. Monte Carlo results

show that the robust tests have much superior finite and large sample properties than the

naive tests. Thus, the proposed robust tests provide reliable tools for identifying possi-

ble existence of temporal heterogeneity in regression and spatial coefficients. Empirical

applications of the proposed tests are given1.

2.1 Introduction

Being able to control unobserved heterogeneity may be one of the most important fea-

tures of a panel data (PD) model. Heterogeneity may occur on intercept, slope and error

variance. In a spatial PD model (SPD), it may also occur on spatial parameters (Anselin,

1988). Heterogeneity in variance is often referred to as heteroskedasticity. Heterogeneity

may occur in spatial and/or temporal dimension. When unobserved heterogeneity occurs

on the intercept, it gives rise to individual-specific effects and/or time-specific effects,

which may appear in the model additively or interactively. Change point or structural

break may be considered as a special case of unobserved heterogeneity.

1We thank Editor, Gabriel Ahlfeldt, and two anonymous referees for their constructive comments that

have led to significant improvements of this chapter. Thanks are also due to the participants of the XI World

Conference of the Spatial Econometrics Association, Singapore, June 2017, and the seminar participants at

the Tohoku University, Japan, Dec. 2018, for their helpful comments. Zhenlin Yang gratefully acknowl-

edges the financial support from Singapore Management University under Grant C244/MSS16E003.
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Temporal heterogeneity is a common feature in an SPD model. It is an important is-

sue but relatively unexplored in the spatial panel literature. Temporal heterogeneity may

occur as a result of a credit crunch or debt, an oil price shock, a tax policy change, a fad or

fashion in society, a discovery of a new medicine, and an enaction of new governmental

program (Bai, 2010). Many economic processes, for example, housing decisions, tech-

nology adoption, unemployment, welfare participation, price decisions, crime rates, trade

flows, etc., exhibit time heterogeneity patterns. Values observed at one location depend

on the values of neighboring observations at nearby locations. Therefore, one may be

interested in the question whether this dependence stays the same over time.

There is a sizable literature on temporal heterogeneity in regular panel data models,

mostly on change points or structural breaks, see, Bai (2010), Liao (2008), Feng et al.

(2009), to name a few. In spatial models, previous literature has focused more on the

spatial heterogeneity (e.g., Aquaro et al., 2015; LeSage et al., 2016, 2017). The literature

on temporal heterogeneity in spatial panel data models is rather thin. We are only aware

of the following two works, Sengupta (2017) who proposes tests for a structural break in

a spatial panel model without fixed effects, and Li (2018) who studies fixed effects SPD

models with structural changes. SPD models with temporal heterogeneity also appear in

finance literature, see, e.g., Blasques et al. (2016) and Catania and Billé (2017), but under

a different setting where the time dimension is much larger than the spatial dimension.

In this chapter, we consider the fixed effects SPD models with temporal heterogeneity

in regression and spatial coefficients. We focus on the testing problems. The presence of

temporal heterogeneity renders the usual fixed effects estimation method through trans-

formation (Lee and Yu, 2010; Baltagi and Yang, 2013b; Yang et al. 2016) inapplicable in

handling the individual-specific fixed effects. A general method, the adjusted quasi score

(AQS) method, is introduced for constructing tests for temporal homogeneity/heterogene-

ity on regression coefficients and spatial correlation coefficients in SPD models, allowing

for presence of spatial-temporal heterogeneity in the intercepts (or fixed effects). The

SPD model with spatial lag dependence is first treated in detail by first considering the

model with individual-specific fixed effects only, and then extended to the model with

both individual and time specific fixed effects. Two types of AQS tests (naı̈ve and robust)

5



are proposed, and their asymptotic properties are presented. These tests are then fully

extended to the SPD models with both spatial lag (SL) and spatial error (SE) dependence.

Monte Carlo results show that the robust tests have much superior finite and large sam-

ple properties than the naive tests. Thus, the proposed robust tests provide reliable tools

for practitioners. Two empirical applications of the proposed tests are presented, and a

detailed guidance is given to aid applied researchers in their empirical studies.

The rest of the chapter is organized as follows. Section 2.2 presents AQS tests for

the panel SL model with one-way and two-way fixed effects, where a general method for

constructing non-normality robust AQS tests is outlined. Section 2.3 generalizes these

tests to the SPD models with both SL and SE dependence. Section 2.4 presents Monte

Carlo results. Section 2.5 presents two empirical applications to give a detailed illustration

on how the proposed methods are implemented. Section 2.6 discuss possible extensions

and concludes this chapter.

2.2 Tests for Temporal Heterogeneity in Panel SL Model

In this section, we introduce the general AQS method for constructing the specification

tests and a method for the practical implementations of these tests, using the simplest

panel SL model with one-way FE (i.e., unobserved spatial heterogeneity in the intercept).

Then, we extend these tests to a panel SL model with two-way FE (i.e., the unobserved

spatiotemporal heterogeneity in intercepts). Asymptotic properties of the proposed tests

are presented. Some key quantities for calculating the test statistics, the Hessian and

expected Hessian matrices, and the variance-covariance matrix of the AQS function, are

given in Appendix A.2, and proofs of theorems are sketched in Appendix A.3.

2.2.1 Panel SL model with one-way FE

Consider the following panel SL model with individual-specific FE, or one-way FE:

Ynt = λtWnYnt +Xntβt + cn + Vnt, (2.1)

where Ynt is an n×1 vector of observations on the dependent variable for t = 1, 2, . . . , T ;

Xnt is an n × k matrix containing the values of exogenous regressors and possibly their

6



spatial lags,Wn is an n×n spatial weight matrix; Vnt is an n×1 vector of independent and

identically distributed (iid) disturbances with mean zero and variance σ2; λt is the spatial

lag parameter and βt is a k× 1 vector of regression coefficients for the tth period; and cn

denotes the individual-specific fixed effects or the spatial heterogeneity in intercept.

Null hypotheses. We are primarily interested in tests for temporal homogeneity (TH)

in regression and spatial coefficients, i.e., the tests of the null hypothesis:

HTH
0 : β1 = · · · = βT = β and λ1 = · · · = λT = λ, (2.2)

allowing for the presence of unobserved cross-sectional heterogeneity in intercept, i.e.,

the individual specific fixed effects cn. IfHTH
0 is rejected, one may wish to find the ‘cause’

of such a rejection instead of fitting the general heterogeneous model (2.1). Natural tests

to proceed would be the tests of TH in regression coefficients only (RH),HRH
0 : β1 = · · · =

βT = β, and the tests of TH in spatial coefficients only (SH): HSH
0 : λ1 = · · · = λT = λ. If

HRH
0 is not rejected, then one may infer that the cause of rejection of HTH

0 is the existence

of temporal heterogeneity in spatial coefficients; if HSH
0 is not rejected, then the cause of

rejection of HTH
0 may be the existence temporal heterogeneity in regression coefficients.

In both cases, one would fit a simpler model of heterogeneous spatial coefficients only, or

of heterogeneous regression coefficients only. If both HRH
0 and HSH

0 are rejected, one may

need to fit the general model (2.1). However, rejection of both HRH
0 and HSH

0 may be due

to the existence of change points (CPs) in β-coefficients and λ-coefficients, giving rise

to a case of particular interest: change point detection in the spirit of Bai (2010) and Li

(2018):

HCP
0 : β1 = · · · = βb0 6= βb0+1 = · · · = βT and λ1 = · · · = λ`0 6= λ`0+1 = · · · = λT ,

(2.3)

where 1 < b0, `0 < T , and b0 and `0 can be the same or different. If HCP
0 is not rejected,

one may fit a much simpler model with one CP in βt at t = b0 and one CP for λt at

t = `0. These discussions can be extended to have more one CP in βt and λt. All of these

hypotheses can be put in a general framework and tests can be constructed in a general

7



manner.1

Adjusted (quasi) score functions. As λt and βt are allowed to change with t, the

usual fixed-effects estimation methods, such as first differencing or orthogonal transfor-

mation, cannot be applied. We propose an adjusted score (AS) or adjusted quasi score

(AQS) method for estimating the structural parameters in the model, which proceeds by

first eliminating cn through direct maximization of the loglikelihood function, given the

structural parameters, and then adjusting the resulted concentrated (quasi) score function

to give a set of estimating functions that are unbiased or asymptotically unbiased so as

to achieve asymptotically unbiased estimation. The resulted set of AS or AQS functions

then lead to a set of score-type of tests, referred to as the AQS tests in this chapter, for

identifying temporal heterogeneity in regression coefficients and spatial parameters.

We develop score-type tests as they require only the estimation of the null model.

However, the construction of the score-type of tests requires the full quasi score (QS)

function, derived from the quasi Gaussian loglikelihood, as if {Vnt} are iid N(0, σ2In):

`SL1(θ, cn) = −nT
2

ln(2πσ2) +
T∑
t=1

ln |An(λt)| −
1

2σ2

T∑
t=1

V ′nt(λt, βt, cn)Vnt(λt, βt, cn),

(2.4)

where θ = (β′,λ′, σ2)′, β = (β′1, . . . , β
′
T )′ and λ = (λ1, . . . , λT )′; An(λt) = In − λtWn,

In is an n×n identity matrix, and Vnt(βt, λt, cn) = An(λt)Ynt−Xntβt−cn, t = 1, . . . , T .

First, given θ, `SL1(θ, cn) is partially maximized at: c̃n(β,λ) = 1
T

∑T
t=1[An(λt)Ynt −

Xntβt], which gives the concentrated loglikelihood function of θ upon substitution:

`cSL1(θ) = −nT
2

ln(2πσ2) +
T∑
t=1

ln |An(λt)| −
1

2σ2

T∑
t=1

Ṽ ′nt(β,λ)Ṽnt(β,λ), (2.5)

where Ṽnt(β,λ) = An(λt)Ynt −Xntβt − c̃n(β,λ). Then, differentiate `cSL1(θ) to get the

concentrated score (CS) or concentrated quasi score (CQS) function of θ:

ScSL1(θ) =


1
σ2X

′
ntṼnt(β,λ), t = 1, . . . , T,

1
σ2 (WnYnt)

′Ṽnt(β,λ)− tr[Gn(λt)], t = 1, . . . , T,

− nT
2σ2 + 1

2σ4

∑T
t=1 Ṽ

′
nt(β,λ)Ṽnt(β,λ),

(2.6)

1Various conditional tests of, e.g., RH given SH, SH given RH, CP on βt only given SH, and CP on λt

only given RH, are also of interest, of which, the test of RH given SH is an extension of the well known

Chow’s (1960) test for a linear regression and Anselin’s (1988, Sec. 9.2.2) test for a spatial error model.
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where Gn(λt) = WnA
−1
n (λt), t = 1, . . . , T .

Let θ0 = (β′0,λ
′
0, σ

2
0)′ be the true value of the general parameter vector θ = (β′,λ′, σ2)′.

We view that Model (2.1) holds only under the true θ0. The usual expectation and

variance operators correspond to θ0. At the true θ0, we have c̃n(β0,λ0) = V n + cn

and thus Ṽnt ≡ Ṽnt(β0,λ0) = Vnt − V n, where V n = 1
T

∑T
t=1 Vnt. Furthermore,

WnYnt = Gn(λt0)(Xntβt0 + cn + Vnt). With these, it is easy to show that,

E[ScSL1(θ0)] =
{

0′Tk,1, − 1
T

tr[Gn(λt0)], t = 1, . . . T, − n
2σ2

0

}′
,

where 0m,r denotes anm×r matrix of zeros. Clearly, 1
nT

E[ScSL1(θ0)] 9 0, unless T →∞.

A necessary condition for consistent estimation is violated. Therefore, the direct approach

does not yield consistent estimators unless T goes to large. Even if T goes large with

n, there will be an asymptotic bias of order O( 1
T 2 ) for the estimation of {λt}, and an

asymptotic bias of order O( 1
T

) for the estimation of σ2.

To have a inference method that is consistent and asymptotically unbiased, CS or CQS

function given in (2.6) should be adjusted by subtracting the above bias vector from it,

leading to the AS or AQS function as

S?SL1(θ) =


1
σ2X

′
ntṼnt(β,λ), t = 1, . . . , T,

1
σ2 (WnYnt)

′Ṽnt(β,λ)− T−1
T

tr[Gn(λt)], t = 1, . . . , T,

−n(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ

′
nt(β,λ)Ṽnt(β,λ).

(2.7)

It is easy to show that E[S?SL1(θ0)] = 0, and that 1
nT
S?SL1(θ0)

p−→ 0 as n → ∞ alone,

or both n and T go infinity. Thus, this AQS function gives a set of unbiased estimating

functions, and paves the way for developing asymptotically valid score-type tests.2

Construction of AQS tests. Denote by θ̃SL1 the constrained estimator of θ under

H0.3 Let JSL1(θ) = − ∂
∂θ′
S?SL1(θ), ISL1(θ0) = E[JSL1(θ0)] and ΣSL1(θ0) = Var[S?SL1(θ0)],

2Solving the estimating equation, S?
SL1(θ) = 0, gives the unconstrained AQS estimator of θ. Simplify-

ing this AQS function under the null gives AQS function of the null model, and the constrained estimates

of the null model parameters. See the end of section for a general method for estimating the null models.
3For testing HTH

0 in (2.2), for example, β̃SL1 = 1T ⊗ β̃SL1, λ̃SL1 = 1T ⊗ λ̃SL1, and θ̃SL1 =

(β̃′SL1, λ̃
′
SL1, σ̃

2
SL1)
′, where β̃SL1 and λ̃SL1 are the estimators of the common β and λ, and 1T is a T × 1

vector of ones.
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with their expressions given in Appendix A.2.1. The usual score test, treating S?SL1(θ)

as a genuine score vector so that the information matrix equality (IME) holds, takes the

form:

TSL1 = S?SL1(θ̃SL1)
′J−1

SL1(θ̃SL1)S
?
SL1(θ̃SL1), (2.8)

where JSL1(θ̃SL1) can be replaced by ISL1(θ̃SL1) or ΣSL1(θ̃SL1). However, S?SL1(θ) is not

a genuine score function even if the errors are normal, as it comes from the original

score function after some adjustments. In this case, the IME or its generalized version

(Cameron and Trivedy, 2005; Wooldridge, 2010) does not hold. Hence, the test statistic

TSL1 constructed in this usual way may not be valid even if the errors are normal, unless

under ‘specific’ situations where ISL1(θ0) and ΣSL1(θ0) are asymptotically equivalent,

i.e., the IME holds asymptotically. See the discussions below Theorem 2.1 for details.

To address this issue, denoting kq = dim(θ) = (k + 1)T + 1, we put our testing

problem in a general framework with null hypothesis being written as

H0 : Cθ0 = 0, (2.9)

where C is a kp × kq matrix generating kp linear contrasts in the parameter vector θ.

For example, for testing HTH
0 in (2.2), the number of constraints kp = (k + 1)(T − 1),

and the linear contrast matrix C = [blkdiag{Ck
T , C

1
T}, 0kp,1], where blkdiag{· · · }

forms a block diagonal matrix, and Cm
τ is an m(τ − 1)×mτ matrix defined as

Cm
τ = [(1τ−1 ⊗ Im), −(Iτ−1 ⊗ Im)], (2.10)

where ⊗ is the Kronecker product; for testing HRH
0 , C = [Ck

T , 0kp,T , 0kp,1] and kp =

(T − 1)k; for testing HSH
0 , C = [0kp,kT , C

1
T , 0kp,1] and kp = T − 1; and for testing HCP

0 in

(2.3), C = [blkdiag{Ck
b0
, Ck

T−b0 , C
1
`0
,

C1
T−`0}, 0kp ] and kp = (T − 2)(k + 1). The C matrices for tests of CP on β-coefficients

only or tests of CP on λ-coefficients only can be formulated easily. The CP-test can be

carried out repeatedly until the ‘true’ change points are detected. In all these and other

interesting cases, kp and C can be easily written out.

The score-type test is constructed based on the AQS function S?SL1(θ̃SL1), and its

asymptotic variance-covariance (VC) matrix. Denote by N0 = n(T − 1) the effective

10



sample size to differentiate from the overall sample size N = nT . Under mild regular-

ity conditions, such as the
√
N0-consistency of θ̃SL1 under the null, we have by Taylor

expansion:

1√
N0
S?SL1(θ̃SL1) = 1√

N0
S?SL1(θ0) + 1

N0
ISL1(θ0)

√
N0(θ̃SL1 − θ0) + op(1), and

[ 1
N0
ISL1(θ0)]−1 1√

N0
S?SL1(θ̃SL1) = [ 1

N0
ISL1(θ0)]−1 1√

N0
S?SL1(θ0) +

√
N0(θ̃SL1−θ0) + op(1).

As Cθ0 = 0 under H0, we have Cθ̃SL1 = 0 (see Wooldridge 2010, p.424). It follows that

C[ 1
N0
ISL1(θ0)]−1 1√

N0
S?SL1(θ̃SL1) = C[ 1

N0
ISL1(θ0)]−1 1√

N0
S?SL1(θ0) + op(1), (2.11)

leading to the asymptotic VC matrix of C[ 1
N
ISL1(θ0)]−1 1√

N
S?SL1(θ̃SL1) as

ΞSL1(θ0) = C[ 1
N0
ISL1(θ0)]−1[ 1

N0
ΣSL1(θ0)][ 1

N0
ISL1(θ0)]−1C ′. (2.12)

This gives an asymptotically valid and nonnormality robust AQS test:

T
(r)
SL1 = S̃?′SL1Ĩ

−1
SL1C

′(CĨ−1
SL1Σ̃SL1Ĩ

−1
SL1C

′)−1
CĨ−1

SL1S̃
?
SL1, (2.13)

where S̃?SL1 = S?SL1(θ̃SL1), ĨSL1 = ISL1(θ̃SL1), and Σ̃SL1 = ΣSL1(θ̃SL1).

Remark 2.1 Although the AQS test given in (2.13) is developed based on the panel SL

model with 1FE, the general principles behind apply to all models considered in this

chapter. It also applies to more complicated spatial models as well as many non-spatial

models.

Asymptotic properties. In studying the asymptotic properties of the proposed tests,

we focus on the tests of temporal homogeneity to ease the exposition. Therefore, some of

the regularity conditions, i.e., Assumptions 2 and 4, correspond to the null model under

HTH
0 in (2.2) only. However, these assumptions can be easily relaxed to cater a non-

homogeneous null model. Denote X◦nt = Xnt − X̄n, where X̄n = 1
T

∑T
t=1Xnt.

Assumption 1. The disturbances {vit} are iid across i and t with mean zero, vari-

ance σ2
0 , and E|vit|4+ε0 <∞ for some ε0 > 0.

Assumption 2. Under H0, the parameter space Λ of the common λ is compact, and

the true value λ0 is in the interior of Λ. The matrix An(λ) is invertible for all λ ∈ Λ.

11



Assumption 3. The elements of Xnt are non-stochastic, and are bounded uniformly

in n and t, such that limN0→∞
1
N0

∑T
t=1X

◦′
ntX

◦
nt exists and nonsingular. The elements of

cn are uniformly bounded.

Assumption 4. Wn has zero diagonal elements, and is uniformly bounded in both

row and column sums in absolute value. A−1
n (λ) is also uniformly bounded in both row

and column sums in absolute value for λ in a neighborhood of λ0.

Theorem 2.1 Under Assumptions 1-4, if further, (i) θ̃SL1 is
√
N0-consistent for θ0 under

HTH
0 , and (ii) ISL1(θ) and ΞSL1(θ) are positive definite for θ in a neighborhood of θ0

when N0 is large enough, then we have, under HTH
0 , T (r)

SL1

D−→ χ2
kp

, as n→∞.

Note that in case of testing for temporal homogeneity, kp = (T − 1)(k + 1), and that

in case of testing for a ‘single change’ of points, kp = (T − 2)(k + 1). It can easily

be seen that TSL1 is in general not an asymptotic pivotal quantity due to the violation of

IME. However, if ISL1(θ0) � ΣSL1(θ0), where � denotes asymptotic equivalence, then

Ĩ−1
SL1C

′(CĨ−1
SL1Σ̃SL1Ĩ

−1
SL1C

′)−1
CĨ−1

SL1 � Ĩ−1
SL1 (see Wooldridge, 2010, p. 424), and hence TSL1

becomes valid. This is in fact true when T is also large as seen from the expressions given

in Appendix A.2.1, but this case needs an extra care as in Remark 2.2 below.

Remark 2.2 When T → ∞ as n → ∞, the degrees of freedom (d.f) of the chi-square

statistic increase with n. In this case, one may apply the arguments for ‘double asymp-

totics’ (see, e.g., Rempala and Wesolowski, 2016) to show that (T
(r)
SL1 − kp)/

√
2kp

D−→

N(0, 1) as n/
√
T → ∞. This sample size requirement (n goes large faster than

√
T ) is

rather weak as it is typical in spatial panels that n is at least as large as T .

Estimation of null models. The construction of the AQS tests requires estimation

of various null models, which could be the homogeneous model as specified by HTH
0 in

(2.2), the model with homogeneity in β’s only, the model with homogeneity in λ’s only,

or the model with change points as specified by HCP
0 in (2.3), etc. Each null model can be

estimated by solving the simplified AQS equations by simplifying S?SL1(θ) according to

the null hypothesis, which is clearly inconvenient to the applied researchers. To facilitate

practical applications of our methods, a general Lagrange Multiplier (LM) method is

12



introduced. Let lSL1(θ) be the objective function to be maximized subject to Cθ0 = 0,

with S?SL1(θ) given in (2.7) being its partial derivatives. Define the Lagrangian

LSL1(θ) = lSL1(θ)− φ′(Cθ),

where φ is a kp×1 vector of Lagrange multipliers. Taking partial derivatives and equating

to 0, we have kq equations ∂LSL1
∂θ

= S∗SL1(θ)−C ′φ = 0kq ,1. Together with the kp constraints

Cθ = 0, we have kq + kp equations for the kq + kp unknowns θ and φ, leading toθ̃SL1

φ̃SL1

 = arg

 S?SL1(θ)− C ′φ = 0kq ,1

Cθ = 0kp,1

 . (2.14)

To further aid the applications, we make the Matlab codes available upon request, or

online at http://www.mysmu.edu/faculty/zlyang/.

Finally, from the expressions of ISL1(θ0) and ΣSL1(θ0) given in Appendix A.2.1, we

see that they both contain cn, which is estimated by plugging the null estimates β̃SL1 and

λ̃SL1 into c̃n(β,λ). Furthermore, in case of nonnormality, the VC matrix ΣSL1(θ0) con-

tains two additional parameters, the skewness γ and excess kurtosis κ of the idiosyncratic

errors Vn,it, and their estimates are obtained by applying Lemma 4.1(a) of Yang et al.

(2016). See Sec. 2.5 for a detailed discussion on issues related to practical implementa-

tions.

However, as the hypothesis HTH
0 given in (2.2) and the corresponding homogeneous

model plays an important role in studying the asymptotic properties of the test and in

Monte Carlo simulation, an outline is given on how S?SL1(θ) is simplified and how it

leads to constrained AQS estimators with the desired asymptotic properties. Let θ =

(β′, λ, σ2)′. The constrained estimate of cn given (β, λ) becomes c̃◦n(β, λ) = An(λ)Ȳn −

X̄nβ where Ȳn and X̄n are the averages of {Ynt} and {Xnt}, respectively. Along the same

line leading to (2.7), one can easily show that AQS function for the homogeneous model

takes the form:

S◦SL1(θ) =


1
σ2

∑T
t−1X

◦′
ntṼ

◦
nt(β, λ),

1
σ2

∑T
t−1(WnY

◦
nt)
′Ṽ ◦nt(β, λ)− (T − 1)tr[Gn(λ)],

−n(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ

◦′
nt (β, λ)Ṽ ◦nt(β, λ),

(2.15)
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Ṽ ◦nt(β, λ) = An(λ)Ynt − Xntβ − c̃◦n(β, λ) = An(λ)Y ◦nt − X◦ntβ, where Y ◦nt = Ynt − Ȳn
and X◦nt = Xnt − X̄n. Solving the estimating equations, S◦SL1(θ) = 0, gives the null

estimator θ̃SL1 of θ. The AQS estimation provides an alternative to the QML estimation

based on transformation of Lee and Yu (2010). The two can be shown to be asymptotically

equivalent, and therefore θ̃SL1 is
√
n(T − 1)-consistent for θ.

2.2.2 Panel SL model with two-way FE

While the unit-specific fixed effects are important to the spatial panel data models,

the time-specific effects often cannot be neglected. In this section, we extend our tests to

panel SL model with two-way FE (2FE). The model takes the following form:

Ynt = λtWnYnt +Xntβt + cn + αt1n + Vnt, (2.16)

where {αt} are the unobserved time-specific effects or the unobserved temporal hetero-

geneity in the intercept, and 1n is an n × 1 vector of ones. As the spatial parameters and

regression coefficients change only with time. One can apply transformation method to

eliminate the time-specific effects as is widely applied in the literature, see, e.g., Lee and

Yu (2010), Baltagi and Yang (2013b) and Yang et al. (2016). Define Jn = In − 1
n
1n1′n.

Assume Wn is row-normalized (i.e., row sums are one). Then, JnWn = JnWnJn.

Let (Fn,n−1,
1√
n
1n) be the orthonormal eigenvector matrix of Jn, where Fn,n−1 is the

n × (n − 1) sub-matrix corresponding to the eigenvalues of one. By Spectral Theorem,

Jn = Fn,n−1F
′
n,n−1. It follows that F ′n,n−1Wn = F ′n,n−1WnFn,n−1F

′
n,n−1. Premultiplying

F ′n,n−1 on both sides of (2.16), we have the following transformed model:

Y ∗nt = λtW
∗
nY
∗
nt +X∗ntβt + c∗n + V ∗nt, t = 1, . . . , T, (2.17)

where Y ∗nt = F ′n,n−1Ynt, and so are X∗nt, c
∗
n and V ∗nt defined; and W ∗

n = F ′n,n−1WnFn,n−1.

After the transformation, the overall sample size is (n − 1)T . Model (2.17) takes an

identical form as Model (2.1). Furthermore, V ∗nt ∼ (0, σ2
0In−1), which is normal if V ∗nt is,

and is independent of V ∗ns, s 6= t.4 Hence, the steps leading to the score-type tests and the

consistent estimation of the null model are similar to those for the SL one-way FE model.
4The time-specific effects can also be eliminated by pre-multiplying Jn on both sides of (2.16). How-

ever, the resulted disturbances JnVnt would not be linearly independent over the cross-section dimension.
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Define A∗n(λt) = In−1 − λtW
∗
n , t = 1, . . . , T . The quasi Gaussian loglikelihood

function of θ = (β′,λ′, σ2)′ and c∗n of Model (2.17) is

`SL2(θ, c
∗
n) = − (n−1)T

2
ln(2πσ2) +

∑T
t=1 ln |A∗n(λt)|

− 1
2σ2

∑T
t=1 V

∗′
nt (λt, βt, c

∗
n)V ∗nt(λt, βt, c

∗
n), (2.18)

where V ∗nt(βt, λt, c
∗
n) = A∗n(λt)Y

∗
nt −X∗ntβt − c∗n. Given θ, `SL2(θ, c∗n) is maximized at:

c̃∗n(β,λ) = 1
T

∑T
t=1[A∗n(λt)Y

∗
nt −X∗ntβt], (2.19)

which gives the concentrated loglikelihood function of θ upon substitution:

`cSL2(θ) = − (n−1)T
2

ln(2πσ2)+
∑T

t=1 ln |A∗n(λt)|− 1
2σ2

∑T
t=1 Ṽ

∗′
nt (β,λ)Ṽ ∗nt(β,λ), (2.20)

where Ṽ ∗nt(β,λ) = A∗n(λt)Y
∗
nt −X∗ntβt − c̃∗n(β,λ). Now, define G∗n(λt) = W ∗

nA
∗−1
n (λt).

Differentiating `cSL2(θ) gives the CS or CQS function of θ of Model (2.17):

ScSL2(θ) =


1
σ2X

∗′
ntṼ

∗
nt(β,λ), t = 1, . . . , T,

1
σ2 (W ∗

nY
∗
nt)
′Ṽ ∗nt(β,λ)− tr[G∗n(λt)], t = 1, . . . , T,

− (n−1)T
2σ2 + 1

2σ4

∑T
t=1 Ṽ

∗′
nt (β,λ)Ṽ ∗nt(β,λ).

(2.21)

Takes the expectation of the above score, we have,

E[ScSL2(θ0)] =
{

0′Tk, − 1
T

tr[G∗n(λt0)], t = 1, . . . T, −n−1
2σ2

0

}′
,

which again shows that model estimation based on maximizing the quasi loglikelihood

would not lead to consistent estimates of the model parameters. The CQS function given

in (2.21) should be adjusted by recentering, giving the AQS function of Model (2.17):

S?SL2(θ) =


1
σ2X

∗′
ntṼ

∗
nt(β,λ), t = 1, . . . , T,

1
σ2 (W ∗

nY
∗
nt)
′Ṽ ∗nt(β,λ)− T−1

T
tr[G∗n(λt)], t = 1, . . . , T,

− (n−1)(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ

∗′
nt (β,λ)Ṽ ∗nt(β,λ).

(2.22)

It is easy to show that E[S?SL2(θ)] = 0, and that 1
nT
S?SL2(θ0)

p−→ 0 as n → ∞ alone,

or both n and T go infinity. Thus, this AQS function gives a set of unbiased estimating

functions, and paves the way for developing asymptotic valid score-type tests. Again,
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simplifying this AQS function under various null hypotheses gives the AQS functions of

the null models and the constrained estimates. See the end of the Section for a general

formulation.

Now, the tests concerning {βt} and {λt} allow the existence of both unobserved cross-

sectional and time-specific heterogeneity in the intercept, i.e., the existence of both indi-

vidual specific fixed effects and the time specific fixed effects. As the transformed 2FE

panel SL model takes an identical form as 1FE panel SL model, the tests developed for

1FE panel SL model extends directly to give tests for the 2FE panel SL model. Let θ̃SL2 be

the null estimate of θ. Let ISL2(θ0) and ΣSL2(θ0) be, respectively, the expected negative

Hessian and the VC matrix of S?SL2(θ0), given in Appendix A.2.2. The AQS test, robust

against nonnormality and taking into account of the estimation of fixed effects, is:

T
(r)
SL2 = S̃?′SL2Ĩ

−1
SL2C

′(CĨ−1
SL2Σ̃SL2Ĩ

−1
SL2C

′)−1
CĨ−1

SL2S̃
?
SL2, (2.23)

where S̃?SL2 = S?SL2(θ̃SL2), ĨSL2 = ISL2(θ̃SL2), and Σ̃SL2 = ΣSL2(θ̃SL2). As in the case of

1FE-SL model, when ISL2(θ0) � ΣSL2(θ0), Ĩ−1
SL2C

′(CĨ−1
SL2Σ̃SL2Ĩ

−1
SL2C

′)−1
CĨ−1

SL2 � Ĩ−1
SL2, and

hence T (r)
SL2 reduces to the naı̈ve test: TSL2 = S̃?′SL2J̃

−1
SL2S̃

?
SL2, where J̃SL2 = − ∂

∂θ
S?SL2(θ̃SL2).

Asymptotic properties of these tests can be studied along the same line as the tests

for 1FE panel SL model. Again we focus on the test of HTH
0 for ease of exposition. The

effective sample size becomes N0 = (n − 1)(T − 1) due to the ‘estimation’ of both

individual- and time-specific FEs. Let ΞSL2(θ) and X∗◦nt be defined as ΞSL1(θ) and X◦nt in

SL-one way FE model.

Assumption 3′: The elements of Xnt are nonstochastic, and are bounded uniformly

in n and t, such that limN0→∞
1
N0

∑T
t=1X

∗◦′
nt X

∗◦
nt exists and is nonsingular.

Theorem 2.2 Under Assumptions 1-2, 3′, and 4, if further, (i) θ̃SL2 is
√
N0-consistent for

θ0 under HTH
0 , and (ii) ISL2(θ) and ΞSL2(θ) are positive definite for θ in a neighborhood

of θ0 when N0 is large enough, then we have, under HTH
0 , T (r)

SL2

D−→ χ2
kp

, as n→∞.

Note that while the effective sample size for the 2FE-SL model is smaller than that of the

1FE-SL model, the d.f. associated with the test statistics remain the same. As discussed

below Theorem 2.1, TSL2 is not an asymptotic pivotal quantity unless T is also large. As

in Remark 2.2, if T grows with n, (T
(r)
SL2 − kp)/

√
2kp

D−→ N(0, 1), as n/
√
T →∞.
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Estimation of null models. The general constrained root-finding method, the LM

procedure, presented at the end of the section for the panel SL model with 1FE directly

applies to the panel SL model with 2FE to give constrained estimates of various null mod-

els. This greatly facilitates the practical applications. Again, the homogeneous model

specified by HTH
0 in (2.2) and its AQS estimation play important roles in studying the

asymptotic properties and performing Monte Carlo simulations, and therefore an outline

is given on the estimation procedures based on the simplified AQS function. The con-

strained estimate of c∗n, given (β, λ), becomes c̃∗◦n (β, λ) = A∗n(λ)Ȳ ∗n − X̄∗nβ, where Ȳ ∗n

and X̄∗n are the averages of {Y ∗nt} and {X∗nt}, respectively. Along the same line leading to

(2.15), we have the AS or AQS function for the homogeneous panel SL model with 2FE:

S◦SL2(θ) =


1
σ2

∑T
t−1X

∗◦′
nt Ṽ

∗◦
nt (β, λ),

1
σ2

∑T
t−1(W ∗

nY
∗◦
nt )′Ṽ ∗◦nt (β, λ)− (T − 1)tr[G∗n(λ)],

− (n−1)(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ

∗◦′
nt (β, λ)Ṽ ∗◦nt (β, λ),

(2.24)

where Ṽ ∗◦nt (β, λ) = A∗n(λ)Y ∗nt − X∗ntβ − c̃∗◦n (β, λ) = An(λ)Y ∗◦nt − X∗◦ntβ, Y ∗◦nt = Y ∗nt −

Ȳ ∗n and X∗◦nt = X∗nt − X̄∗n. Solving the estimating equations, S◦SL2(θ) = 0, gives the

null estimator θ̃SL2 of θ. Again, it can be shown to be asymptotically equivalent to the

transformation-based QML estimator of Lee and Yu (2010). Thus, θ̃SL2 is
√

(n− 1)(T − 1)-

consistent for θ. The estimation of cn and γ and κ contained in ISL2(θ0) and ΣSL2(θ0)

proceeds similarly.

2.3 Test for Temporal Heterogeneity in Panel SLE Model

The tests introduced in the earlier section can be easily extended to a more general

SPD model where the the disturbances are also subject to spatial interactions, giving an

SPD model with both spatial lag and error (SLE) dependence. Again, we first present

results for the one-way FE model, and then the results for the two-way FE model.
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2.3.1 Panel SLE model with one-way FE

The SLE model with one-way fixed effects has the form:

Ynt = λtWnYnt +Xntβt + cn + Unt, Unt = ρtMnUnt + Vnt, (2.25)

where Mn is another spatial weight matrix capturing the spatial interactions among the

disturbances, which can be the same as Wn, and {ρt} are the spatial error parameters,

possibly changing with time. Again, we are primarily interested in the test for temporal

homogeneity, which now corresponds to a test of the following null hypothesis:

HTH
0 : β1 = · · · = βT = β, λ1 = · · · = λT = λ, and ρ1 = · · · = ρT = ρ. (2.26)

If this test is rejected, one would be interested in testing various hypotheses discussed in

Sec. 2.1, includingHCP
0 in (2.3) extended to include the ρ-component, to find out the cause

of the rejection. An interesting test for the panel SLE model would be the conditional

test: HTHC
0 : β1 = · · · = βT = β, and λ1 = · · · = λT = λ, given ρ1 = · · · = ρT = ρ.

In this case, the alternative (full) model is a submodel of (2.25) with the disturbance

following a homogeneous SAR process: Unt = ρMnUnt + Vnt. We present the most

general case here, and give necessary details related to this submodel at the end of Sec.2.3.

Following the same set of notation as in the earlier section, and further denoting ρ =

(ρ1, . . . , ρT )′, θ = (β′,λ′,ρ′, σ2)′, and Bn(ρt) = In − ρtMn, t = 1, . . . , T , we have the

(quasi) Gaussian loglikelihood for (θ, cn):

`SLE1(θ, cn) =− nT
2

ln(2πσ2) +
∑T

t=1 ln |An(λt)|+
∑T

t=1 ln |Bn(ρt)|

− 1
2σ2

∑T
t=1 V

′
nt(βt, λt, ρt, cn)Vnt(βt, λt, ρt, cn), (2.27)

where Vnt(βt, λt, ρt, cn) = Bn(ρt)[An(λt)Ynt −Xntβt − cn], t = 1, . . . , T .

Similarly to the developments in the previous section, we first eliminate cn through

a direct maximization of the loglikelihood function, given the other model parameters

θ, and then adjust the resulted CS or CQS function to eliminate the asymptotic bias or

inconsistency. Given θ, `SLE1(θ, cn) is maximized at

c̃n(β,λ,ρ) =
[∑T

t=1B
′
n(ρt)Bn(ρt)

]−1∑T
t=1

[
B′n(ρt)Bn(ρt)

(
An(λt)Ynt −Xntβt

)]
,

(2.28)
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leading to the concentrated (quasi) Gaussian loglikelihood function of θ upon substitu-

tion:

`cSLE1(θ) =− nT
2

ln(2πσ2) +
∑T

t=1 ln |An(λt)|+
∑T

t=1 ln |Bn(ρt)|

− 1
2σ2

∑T
t=1 Ṽ

′
nt(β,λ,ρ)Ṽnt(β,λ,ρ), (2.29)

where Ṽnt(β,λ,ρ) = Vnt(βt, λt, ρt, c̃n(β,λ,ρ)) = Bn(ρt)[An(λt)Ynt−Xntβt−c̃n(β,λ,ρ)].

To facilitate the subsequent derivations, denote U◦nt(βt, λt) = An(λt)Ynt−Xntβt, and

Dn(ρt) = B′n(ρt)Bn(ρt) and Dn(ρ) =
∑T

t=1Dn(ρt). Then,

Ṽnt(β,λ,ρ) = Bn(ρt)U
◦
nt(βt, λt)−Bn(ρt)c̃n(β,λ,ρ),

c̃n(β,λ,ρ) = D−1
n (ρ)

∑T
t=1Dn(ρt)U

◦
nt(βt, λt), and the key term in (2.29):

∑T
t=1 Ṽ

′
nt(β,λ,ρ)Ṽnt(β,λ,ρ) =

∑T
t=1 U

◦′
nt(βt, λt)Dn(ρt)U

◦
nt(βt, λt)

−
(∑T

t=1Dn(ρt)U
◦
nt(βt, λt)

)′D−1
n (ρ)

(∑T
t=1 Dn(ρt)U

◦
nt(βt, λt)

)
.

Differentiating `cSLE1(θ) gives the CS or CQS function of θ:

ScSLE1(θ) =



1
σ2X

′
ntB

′
n(ρt)Ṽnt(β,λ,ρ), t = 1, . . . , T,

1
σ2 (WnYnt)

′B′n(ρt)Ṽnt(β,λ,ρ)− tr[Gn(λt)], t = 1, . . . , T,

1
σ2 Ṽ

′
nt(β,λ,ρ)Hn(ρt)Ṽnt(β,λ,ρ)− tr[Hn(ρt)], t = 1, . . . , T,

− nT
2σ2 + 1

2σ4

∑T
t=1 Ṽ

′
nt(β,λ,ρ)Ṽnt(β,λ,ρ),

(2.30)

where Hn(ρt) = MnB
−1
n (ρt), t = 1, . . . , T .

At the true θ0, we have, c̃n(β0,λ0,ρ0) = cn + D−1
n

∑T
s=1 B

′
nsVns and hence Ṽnt ≡

Ṽnt(β0,λ0,ρ0) = Vnt−BntD−1
n

∑T
s=1 B

′
nsVns, and WnYnt = Gnt(Xntβ0 + cn+B−1

nt Vnt),

where Bnt = Bn(ρt0), Gnt = Gn(λt0), and Dn = Dn(ρ0). It is easy to show that,

E[ScSLE1(θ0)] =



0Tk,1,

−tr[D−1
n (ρ0)B′n(ρt0)Bn(ρt0)Gn(λt0)], t = 1, . . . T,

−tr[Bn(ρt0)D−1
n (ρ0)B′n(ρt0)Hn(ρt0)], t = 1, . . . T,

− n
2σ2

0
.
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Therefore, the AS or AQS function of θ for Model (2.25) takes the form:

S?SLE1(θ) =



1
σ2X

′
ntB

′
n(ρt)Ṽnt(β,λ,ρ), t = 1, . . . , T,

1
σ2 (WnYnt)

′B′n(ρt)Ṽnt(β,λ,ρ)− tr[Rnt(ρ)Gn(λt)], t = 1, . . . , T,

1
σ2 Ṽ

′
nt(β,λ,ρ)Hn(ρt)Ṽnt(β,λ,ρ)− tr[Snt(ρ)Hn(ρt)], t = 1, . . . , T,

−n(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ

′
nt(β,λ,ρ)Ṽnt(β,λ,ρ),

(2.31)

where Rnt(ρ) = In − D−1
n (ρ)B′n(ρt)Bn(ρt) and Snt(ρ) = In −Bn(ρt)D−1

n (ρ)B′n(ρt).

It is easy to show that E[S?SLE1(θ)] = 0, and that 1
nT
S?SLE1(θ0)

p−→ 0 as n→∞ alone,

or both n and T go infinity. Thus, this AQS function gives a set of unbiased estimating

functions, and paves the way for developing asymptotic valid score-type tests.

Construction of AQS tests. Denote the constrained estimator (under H0) of θ by

θ̃SLE1.5 To test various hypotheses concerning temporal homogeneity/heterogeneity, one

is tempt to use the naı̈ve test, TSLE1 = S?SLE1(θ̃SLE1)
′J−1

SLE1(θ̃SLE1)S
?
SLE1(θ̃SLE1), treating

S?SLE1(θ) as a genuine score function, where JSLE1(θ0) = − ∂
∂θ′
S?SLE1(θ0), which can be re-

placed by ISLE1(θ0) = E[JSLE1(θ0)], or ΣSLE1(θ0) = Var[S?SLE1(θ0)] (see Appendix A.2.3

for their expressions). Again, S?SLE1(θ) is not a genuine score function. Hence, the test

constructed in the usual way may not be a valid test statistic, even if the errors are normal.

To give a general robust test, we again, as in the previous section, put our testing

problem in a general framework with null hypothesis being written as H0: Cθ0 = 0,

with some modifications on C to include the ρ parameters. The dimensions of C are

again denoted as kp × kq with kp linear contrasts on the parameter vector θ of dimen-

sion kq = (k + 2)T + 1. For HTH
0 in (2.26), we have kp = (T − 1)(k + 2) and

C = [blkdiag{Ck
T , C

1
T , C

1
T}, 0kp,1], where Cm

τ is defined in (2.10). For tests of CP

in βt, λt and ρt at time points b0, `0 and r0, respectively, kp = (T − 2)(k + 2) and

C = [blkdiag{Ck
b0
, Ck

T−b0 , C
1
`0
, C1

T−`0 , C
1
r0
, C1

T−r0}, 0kp,1].

Similarly, the score-type test is based on the AQS function S?SLE1(θ̃SLE1) evaluated at
5In case of testing HTH

0 given in (2.26), the constrained estimators of β, λ and ρ are, respectively,

β̃SLE1 = 1T ⊗ β̃SLE1, λ̃SLE1 = 1T ⊗ λ̃SLE1, and ρ̃SLE1 = 1T ⊗ ρ̃SLE1, where β̃SLE1, λ̃SLE1 and ρ̃SLE1

are the estimators of the common β, λ and ρ, leading to the constrained estimator of θ as θ̃SLE1 =

(β̃′SLE1, λ̃
′
SLE1, ρ̃

′
SLE1, σ̃

2
SLE1)

′.
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the null estimate θ̃SLE1 of θ, and the asymptotic VC matrix of S?SLE1(θ̃SLE1). Now, the

effective sample size is back to N0 = n(T −1) as for the 1FE panel SL model. Following

the fundamental developments in Sec 2.2, we have, under mild regularity conditions such

as the
√
N0-consistency of θ̃SLE1, an asymptotically valid and nonnormality robust AQS

test:

T
(r)
SLE1 = S̃?′SLE1Ĩ

−1
SLE1C

′(CĨ−1
SLE1Σ̃SLE1Ĩ

−1
SLE1C

′)−1
CĨ−1

SLE1S̃
?
SLE1, (2.32)

where S̃?SLE1 = S?SLE1(θ̃SLE1), ĨSLE1 = ISLE1(θ̃SLE1), and Σ̃SLE1 = ΣSLE1(θ̃SLE1).

Asymptotic properties of the proposed tests are established based on Assumptions 1-4

in Sec. 2.2, and the following additional conditions on Mn and Bn(ρ).

Assumption 5. Under H0, the parameter space P of the common ρ is compact. The

true value ρ0 is in the interior of P. The matrix Bn(ρ) is invertible for all ρ ∈ P. Mn

has zero diagonal elements, and are uniformly bounded in both row and column sums in

absolute value. B−1
n (ρ) is uniformly bounded in both row and column sums in absolute

value for ρ in a neighborhood of ρ0.

Furthermore, the existence and consistency of the constrained estimator β̃SLE1 de-

pends on the existence and nonsingularity of limn→∞
1
nT

∑T
t=1 X

◦′
ntB

′
nBnX

◦
nt, which fol-

lows from Assumption 2 and the positive definiteness of B′nBn. Denoting ΞSLE1(θ) =

CI−1
SLE1(θ)ΣSLE1(θ)I−1

SLE1(θ)C ′, we have the following theorem.

Theorem 2.3 Under Assumptions 1-5, if further, (i) θ̃SEL1 is
√
N0-consistent for θ0 under

HTH
0 , and (ii) ISLE1(θ) and ΞSLE1(θ) are positive definite for θ in a neighborhood of θ0

when N0 is large enough, then we have, under HTH
0 , T (r)

SLE1

D−→ χ2
kp

, as n→∞.

Note that the d.f. associated with the test statistics is kp = (T − 1)(k + 2) for testing

for temporal homogeneity, and kp = (T − 2)(k + 2) for testing for a ‘single change’.

Similarly, if T increases with n it can be shown that TSLE1 is not an asymptotic pivotal

quantity, and that (T
(r)
SLE1 − kp)/

√
2kp

D−→ N(0, 1), as n/
√
T →∞.

Estimation of null models. The general LM procedure presented previously can be

applied to estimate various null (1FE-SLE) models based on S?SLE1(θ) and a properly

specified linear contrast matrix C. To estimate the homogeneous model for asymptotic

analyses and Monte Carlo simulation, let θ = (β′, λ, ρ, σ2)′. Under HTH
0 , the constrained
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estimate of cn given (β, λ) becomes c̃◦n(β, λ) = An(λ)Ȳn − X̄nβ, and the error vector

becomes Ṽ ◦nt(β, λ, ρ) = Bn(ρ)[An(λ)Y ◦nt−X◦ntβ], where Y ◦nt = Ynt−Ȳn,X◦nt = Xnt−X̄n,

and Ȳn = 1
T

∑T
t=1 Ynt and X̄n = 1

T

∑T
t=1Xnt. The AQS function at HTH

0 takes the form:

S◦SLE1(θ) =



1
σ2

∑T
t=1X

◦
ntB

′
n(ρ)Ṽ ◦nt(β, λ, ρ),

1
σ2

∑T
t=1(WnY

◦
nt)
′B′n(ρ)Ṽ ◦nt(β, λ, ρ)− (T − 1)tr[Gn(λ)],

1
σ2

∑T
t=1 Ṽ

◦′
nt (β, λ, ρ)Hn(ρ)Ṽ ◦nt(β, λ, ρ)− (T − 1)tr[Hn(ρ)],

−n(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ

◦′
nt (β, λ, ρ)Ṽ ◦nt(β, λ, ρ).

(2.33)

Solving the estimating equations, S◦SLE1(θ) = 0, gives the null estimator θ̃SLE1 of θ, which

is shown to be asymptotically equivalent to the transformation-based QML estimator of

Lee and Yu (2010), and thus is
√
n(T − 1)-consistent. To estimate cn, γ and κ, refer to

the discussions at the end of the discussion for SL-one way FE model.

2.3.2 Panel SLE model with two-way FE

The panel SLE model with two-way fixed effects has the form:

Ynt = λtWnYnt +Xntβt + cn + αt1n + Unt, Unt = ρtMnUnt + Vnt, (2.34)

which extends Model (2.16) by adding the spatial error dependence term. Applying the

same orthonormal transformation as that for Model (2.16), i.e., premultiplying F ′n,n−1

on both sides of (2.34), and using JnWn = JnWnJn, JnMn = JnMnJn and Jn =

Fn,n−1F
′
n,n−1, we have the following transformed model:

Y ∗nt = λtW
∗
nY
∗
nt +X∗ntβt + c∗n + U∗nt, U∗nt = ρtM

∗
nU
∗
nt + V ∗nt, (2.35)

where Y ∗nt,X
∗
nt, c

∗
n,W ∗

n and V ∗nt are defined as in Model (2.17), andM∗
n = F ′n,n−1MnFn,n−1.

After the transformation, the effective sample size becomes N0 = (n − 1)(T − 1) as for

the 2FE panel SL model. As Model (2.35) takes an identical form as Model (2.25) and

the elements of V ∗nt are iid normal if the original errors are normal, the steps leading to

the score-type test and the steps leading to consistent estimation of the null models are

similar. We first present the results for the general model, and then give the necessary

details for the submodel with constant ρ at the end of this section and in Appendix A.2.5.
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Define A∗n(ρt) = In−1 − λtW ∗
n and B∗n(ρt) = In−1 − ρtM∗

n, t = 1, . . . , T . Similar to

the previous section, we eliminate c∗n through a direct maximization of the loglikelihood

function to give the concentrated loglikelihood function of θ:

`cSLE2(θ) =− nT
2

ln(2πσ2) +
∑T

t=1 ln |A∗n(λt)|+
∑T

t=1 ln |B∗n(ρt)|

the− 1
2σ2

∑T
t=1 Ṽ

∗′
nt (β,λ,ρ)Ṽ ∗nt(β,λ,ρ) (2.36)

where Ṽ ∗nt(β,λ,ρ) = B∗n(ρt)U
◦∗
nt (βt, λt)−B∗n(ρt)D∗−1

n (ρ)
∑T

s=1D
∗
n(ρs)U

◦∗
ns(βs, λs), D∗n(ρ) =∑T

t=1 D
∗
n(ρt), D∗n(ρt) = B∗′n (ρt)B

∗
n(ρt), and U◦∗nt (βt, λt) = A∗n(λt)Y

∗
nt −X∗ntβt. As in the

previous subsection, we can obtain the AS or AQS function of θ for Model (2.34) as

S?SLE2(θ) =



1
σ2X

∗′
ntB

∗′
n (ρt)Ṽ

∗
nt(β,λ,ρ), t = 1, . . . , T,

1
σ2 (W ∗

nY
∗
nt)
′B∗′n (ρt)Ṽ

∗
nt(β,λ,ρ)− tr[R∗nt(ρ)G∗n(λt)], t = 1, . . . , T,

1
σ2 Ṽ

∗′
nt (β,λ,ρ)H∗n(ρt)Ṽ

∗
nt(β,λ,ρ)− tr[S∗nt(ρ)H∗n(ρt)], t = 1, . . . , T,

− (n−1)(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ

∗′
nt (β,λ,ρ)Ṽ ∗nt(β,λ,ρ),

(2.37)

where R∗nt(ρ) = In−1 − D∗−1
n (ρ)D∗nt(ρt), and S∗nt(ρ) = In−1 −B∗nt(ρt)D∗−1

n (ρ)B∗′nt(ρt).

Denote the null estimator of θ by θ̃SLE2. Let JSLE2(θ) = − ∂
∂θ′
S?SLE2(θ), ISLE2(θ0) =

E[JSLE2(θ0)] and ΣSLE2(θ0) = Var[S?SLE2(θ0)] with their expressions given in Appendix

A.2.4. The robust AQS test, taking into account of estimation of fixed effects, has the

forms:

T
(r)
SLE2 = S̃?′SLE2Ĩ

−1
SLE2C

′(CĨ−1
SLE2Σ̃SLE2Ĩ

−1
SLE2C

′)−1
CĨ−1

SLE2S̃
?
SLE2, (2.38)

where S̃?SLE2 = S?SLE2(θ̃SLE2), ĨSLE2 = ISLE2(θ̃SLE2), Σ̃SLE2 = ΣSLE2(θ̃SLE2), and the linear

contrast matrixC has the same form as that for the 1FE panel SLE model. Similarly, when

ISLE2(θ0) � ΣSLE2(θ0), T (r)
SLE2 reduces to the naı̈ve test: TSLE2 = S̃?′SLE2J

−1
SLE2(θ̃SLE2)S̃

?
SLE2.

Let ΞSLE2(θ) be defined similarly as ΞSLE1(θ) for the 1FE panel SLE model.

Theorem 2.4 Under Assumptions 1-2, 3′, and 4-5, if (i) θ̃SLE2 is
√
N0-consistent for θ0

under HTH
0 , and (ii) ISLE2(θ) and ΞSLE2(θ) are positive definite for θ in a neighborhood

of θ0 when N0 is large enough, then we have, under HTH
0 , T (r)

SLE2

D−→ χ2
kp

, as n→∞.

The d.f. kp associated with these tests remain the same as that in Theorem 2.3. Simi-

larly, it can be shown that TSLE2 is not an asymptotic pivotal quantity, and that (T
(r)
SLE2 −
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kp)/
√

2kp
D−→ N(0, 1), as n/

√
T →∞.

Estimation of the null model. Again, the general LM procedure can be adapted

to estimated a null (panel SLE-2FE) model based on the AQS function S?SLE2(θ) and a

properly specified linear contrast matrix C. To estimate the null model specified by HTH
0 ,

the constrained estimate of cn given (β, λ) becomes c̃◦∗n (β, λ) = A∗n(λ)Ȳ ∗n − X̄∗nβ where

Ȳ ∗n and X̄∗n are the averages of {Y ∗nt} and {X∗nt}, respectively. Along the same line leading

to (2.37), one can easily show that AQS function of Model (2.35) at HTH
0 takes the form:

S◦∗SLE2(θ) =



1
σ2

∑T
t=1X

◦∗′
nt B

∗′
n (ρ)Ṽ ◦∗nt (β, λ, ρ),

1
σ2

∑T
t=1(W ∗

nY
◦∗
nt )′B∗′n (ρ)Ṽ ◦∗nt (β, λ, ρ)− (T − 1)tr[G∗n(λ)],

1
σ2

∑T
t=1 Ṽ

◦∗′
nt (β, λ, ρ)H∗n(ρ)Ṽ ◦∗nt (β, λ, ρ)− (T − 1)tr[H∗n(λ)],

− (n−1)(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ

◦∗′
nt (β, λ, ρ)Ṽ ◦∗nt (β, λ, ρ),

(2.39)

Ṽ ◦∗nt (β, λ, ρ) = B∗n(ρ)[A∗n(λ)Y ∗nt−X∗ntβ− c̃◦∗n (β, λ)] = B∗n(ρ)[A∗n(λ)Y ◦∗nt −X◦∗ntβ], where

Y ◦∗nt = Y ∗nt − Ȳ ∗n and X◦∗nt = X∗nt − X̄∗n. Solving the estimating equations, S◦∗SLE2(θ) = 0,

gives the null estimator θ̃SLE2 of θ = (β′, λ, ρ, σ2)′, which is shown to be asymptotically

equivalent to the transformation-based estimator of Lee and Yu (2010). Thus, θ̃SLE2 is√
(n− 1)(T − 1)-consistent for θ. Estimation of cn, γ and κ proceeds similarly.

A special submodel is the panel SLE model homogeneous ρ-coefficients. With two-

way FE, the AQS function of θ = (β′,λ′, ρ, σ2)′ is obtained by simplifying S?SLE2(θ):

S?0SLE2(θ) =



1
σ2X

∗′
ntB

∗′
n (ρ)Ṽ ∗nt(β,λ, ρ), t = 1, . . . , T,

1
σ2 (W ∗

nY
∗
nt)
′B∗′n (ρ)Ṽ ∗nt(β,λ, ρ)− T−1

T
tr[G∗n(λt)], t = 1, . . . , T,

1
σ2

∑T
t=1 Ṽ

∗′
nt (β,λ, ρ)H∗n(ρ)Ṽ ∗nt(β,λ, ρ)− (T − 1)tr[H∗n(ρ)],

− (n−1)(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ

∗′
nt (β,λ, ρ)Ṽ ∗nt(β,λ, ρ).

(2.40)

This provides a channel for carrying out various conditional tests, given the temporal

homogeneity in ρ. Necessary details for constructing these tests are provided in Appendix

B.5., and these can easily be simplified to give AQS tests for the 1FE model.

Finally, a very special submodel, the SPD model with spatial errors (SE), is also briefly

discussed here as it parallels with the panel SL models popular in practical applications.
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The AQS function of θ = (β′,ρ′, σ2)′ of the panel SE model with 2FE takes the form:

S?SE2(θ) =


1
σ2X

∗′
ntB

∗′
n (ρt)Ṽ

∗
nt(β,ρ), t = 1, . . . , T,

1
σ2 Ṽ

∗′
nt (β,ρ)H∗n(ρt)Ṽ

∗
nt(β,ρ)− tr[S∗nt(ρ)H∗n(ρt)], t = 1, . . . , T,

− (n−1)(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ

∗′
nt (β,ρ)Ṽ ∗nt(β,ρ),

(2.41)

where Ṽ ∗nt(β,ρ) = B∗n(ρt)U
◦∗
nt (βt)−B∗n(ρt)D∗−1

n (ρ)
∑T

s=1 D
∗
n(ρs)U

◦∗
ns(βs), andU◦∗nt (βt) =

Y ∗nt −X∗ntβt. This can be used to perform tests concerning {βt} and {ρt} in the panel SE

model with 2FE. The necessary detail for constructing these tests are given in Appendix

A.2.6, which can easily be simplified to give the AQS tests for panel SE model with 1FE.

2.4 Monte Carlo Study

Extensive Monte Carlo experiments are conducted to investigate the finite sample

performance of the proposed tests, based on the following four data generation processes

(DGPs), the SPD models with, respectively, 1FE-SL, 2FE-SL, 1FE-SLE and 2FE-SLE:

DGP1 : Ynt = λt0WnYnt +X1ntβ1t0 +X2ntβ2t0 + cn0 + Vnt, t = 1, 2, . . . , T,

DGP2 : Ynt = λt0WnYnt +X1ntβ1t0 +X2ntβ2t0 + cn0 + αt01n + Vnt, t = 1, 2, . . . , T.

DGP3 : Ynt = λt0WnYnt +X1ntβ1t0 +X2ntβ2t0 + cn0 + Unt,

Unt = ρt0MnUnt + Vnt, t = 1, 2, . . . , T.

DGP4 : Ynt = λt0WnYnt +X1ntβ1t0 +X2ntβ2t0 + cn0 + αt01n + Unt,

Unt = ρt0MnUnt + Vnt, t = 1, 2, . . . , T.

We concentrate on the tests of temporal homogeneity. In all the Monte Carlo ex-

periments for simulating the empirical sizes of the tests, βt = (β1t, β2t)
′ = (1, 1)′, λt ∈

{0.5, 0,−0.5}, and ρt ∈ {0.5, 0,−0.5} for all t = 1, . . . , T , σ2
0 = 1, n ∈ {50, 100, 200, 500},

and T = {3, 6}. Each set of Monte Carlo results is based on 10,000 Monte Carlo samples

for the two SL models, and 5,000 for the two SLE models.

The weight matrices are generated based on three different methods: (i) Rook

Contiguity, (ii) Queen Contiguity, and (iii) Group Interaction, with

details given in Yang (2015a). In spatial layouts (i)-(ii), the degree of spatial interactions

25



(number of neighbors each unit has) is fixed, while in (iii) it may grow with the sample

size. This is attained by allowing the number of groups, G, in the sample of spatial units

to be directly related to the sample size n, e.g., G = n0.5. Hence, the average group size,

m = n/G, gives a measure of the degree of spatial dependence among the n spatial units.

The actual sizes of the groups are generated from a discrete uniform distribution from

.5m to 1.5m.

The two exogenous regressors are generated according to REG1: Xjnt
iid∼ N(0, In)

for j = 1, 2 and t = 1, . . . , T ; and REG2: the ith value of the jth regressor in the

gth group is such that Xjt,ig
iid∼ (2zg + zig)/

√
10, where (zg, zig)

iid∼ N(0, 1) when group

interaction scheme is followed; {Xjt,ig} are thus independent across j and t, but not across

i.

The errors, vit = σ0eit, are generated according to err1: {eit} are iid standard

normal; err2: {eit} are iid normal mixture with 10% of values from N(0, 4) and the

remaining from N(0, 1), standardized to have mean 0 and variance 1; and err3: {eit}

iid log-normal (i.e., log eit
iid∼ N(0, 1)) standardized to have mean 0 and variance 1.

Partial Monte Carlo results are reported in Tables 2.1 & 2.2 for the panel SL models,

and Tables 2.3 & 2.4 for the panel SLE models. The results in Tables 1 & 2 show the

following.

(i) The proposed robust test performs very well in general with empirical coverage

probabilities all very close to their nominal levels, except that in cases of heavy

spatial dependence (Group Interaction) and not-so-large n, it can be slightly

undersized. As sample size increases, the empirical sizes quickly converge to their

nominal levels.

(ii) In contrast, the naı̈ve test can perform quite badly, with empirical sizes being as

high as 35% for tests of 10% nominal level, when the erorrs are fairly non-normal

(e.g., log-normal). It is interesting to note that the size distortions for the naı̈ve tests

also drop as sample size increase.

(iii) A larger T seems lead to a worsened performance for the naı̈ve tests under Queen

Contiguity but not under Group Interaction.
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(iv) The finite sample performance of the tests for 1FE panel SL model do not seem to

differ much from those for 2FE panel SL model.

From the results for the panel SLE model, reported (in Tables 2.3 & 2.4) and unre-

ported (available from the authors upon request), similar patterns are observed for the

finite sample performance of the proposed tests. In summary, the proposed robust tests

are reliable and easy to apply, and hence are recommended for the applied researchers.

The Monte Carlo experiments for the power of the tests, and the size and power of the

other tests, e.g., tests for change points, are also carried out, and the results (available

from the authors upon request) show similar patterns.
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Table 2.1a. Empirical Sizes of Tests for Temporal Homogeneity in Panel SL Model
One-Way Fixed Effects, Queen Contiguity

T = 3 T = 6

λ n TSL1 T
(r)
SL1 TSL1 T

(r)
SL1

.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01
Normal Error

.5 50 .208 .135 .052 .096 .045 .007 .216 .138 .050 .095 .044 .008
100 .150 .086 .024 .098 .046 .009 .161 .097 .028 .103 .050 .009
200 .128 .068 .015 .103 .049 .008 .129 .069 .018 .099 .051 .010
500 .107 .054 .010 .097 .046 .007 .110 .054 .011 .098 .049 .009

0 50 .204 .135 .053 .102 .048 .008 .214 .137 .050 .095 .046 .009
100 .147 .086 .025 .099 .048 .008 .160 .096 .027 .105 .051 .009
200 .127 .069 .015 .104 .049 .009 .127 .068 .018 .100 .049 .010
500 .111 .056 .011 .100 .048 .008 .109 .056 .012 .099 .050 .010

-.5 50 .204 .133 .055 .102 .048 .008 .212 .136 .051 .097 .046 .009
100 .147 .086 .025 .099 .049 .008 .160 .097 .027 .103 .050 .009
200 .129 .068 .015 .103 .048 .009 .127 .070 .017 .100 .050 .010
500 .108 .055 .012 .101 .048 .009 .110 .056 .012 .100 .049 .010

Normal Mixture Error
.5 50 .201 .129 .053 .096 .047 .006 .229 .154 .061 .121 .070 .023

100 .149 .088 .027 .100 .048 .009 .163 .096 .029 .099 .050 .010
200 .130 .073 .019 .105 .052 .011 .133 .073 .018 .103 .054 .010
500 .112 .058 .012 .102 .051 .009 .118 .061 .012 .102 .051 .010

0 50 .197 .126 .052 .099 .047 .007 .229 .150 .061 .103 .053 .011
100 .149 .087 .028 .102 .049 .010 .161 .094 .029 .099 .048 .010
200 .129 .073 .019 .105 .052 .010 .132 .073 .018 .104 .054 .011
500 .111 .059 .012 .103 .051 .010 .120 .061 .012 .102 .053 .009

-.5 50 .193 .129 .052 .097 .048 .008 .231 .151 .062 .103 .053 .012
100 .150 .088 .028 .101 .050 .010 .162 .094 .030 .101 .050 .010
200 .130 .073 .019 .104 .052 .011 .132 .073 .018 .103 .053 .011
500 .113 .059 .013 .102 .051 .010 .118 .062 .013 .101 .052 .010

Log-normal Error
.5 50 .180 .119 .045 .089 .043 .008 .211 .145 .060 .100 .054 .017

100 .149 .087 .027 .097 .047 .009 .164 .102 .032 .101 .057 .012
200 .133 .071 .018 .097 .045 .009 .147 .087 .030 .101 .055 .014
500 .127 .071 .018 .100 .051 .011 .142 .078 .030 .101 .050 .011

0 50 .180 .118 .046 .093 .044 .008 .193 .130 .056 .099 .054 .015
100 .132 .078 .023 .094 .047 .009 .146 .086 .024 .100 .052 .010
200 .109 .057 .013 .089 .042 .008 .114 .064 .017 .094 .051 .012
500 .099 .052 .012 .010 .050 .010 .110 .058 .013 .102 .053 .011

-.5 50 .194 .128 .049 .097 .045 .008 .225 .154 .072 .106 .058 .016
100 .142 .083 .024 .096 .047 .010 .191 .118 .042 .104 .057 .013
200 .120 .067 .017 .095 .046 .009 .166 .102 .032 .102 .054 .012
500 .118 .065 .016 .098 .050 .011 .151 .102 .032 .102 .050 .010
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Table 2.1b. Empirical Sizes of Tests for Temporal Homogeneity in Panel SL Model
One-Way Fixed Effects, Group Interaction

T = 3 T = 6

λ n TSL1 T
(r)
SL1 TSL1 T

(r)
SL1

.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01
Normal Error

.5 50 .222 .144 .057 .086 .034 .004 .219 .136 .048 .085 .039 .007
100 .150 .089 .025 .088 .039 .006 .165 .094 .028 .089 .042 .007
200 .124 .067 .018 .092 .042 .008 .128 .070 .016 .094 .045 .008
500 .110 .059 .014 .097 .049 .011 .113 .057 .012 .095 .048 .009

0 50 .232 .157 .065 .087 .036 .005 .232 .151 .056 .084 .040 .007
100 .155 .091 .027 .089 .040 .006 .173 .099 .030 .091 .044 .008
200 .124 .068 .020 .090 .042 .008 .131 .071 .016 .095 .044 .008
500 .110 .060 .015 .098 .049 .010 .114 .058 .013 .096 .048 .009

-.5 50 .238 .163 .071 .086 .038 .004 .239 .159 .063 .085 .038 .007
100 .157 .092 .029 .088 .040 .005 .178 .102 .033 .089 .043 .008
200 .126 .069 .020 .091 .043 .008 .133 .072 .016 .096 .043 .008
500 .111 .061 .014 .098 .049 .010 .115 .059 .012 .096 .048 .009

Normal Mixture Error
.5 50 .230 .151 .056 .087 .033 .004 .215 .143 .051 .088 .046 .009

100 .154 .088 .025 .087 .041 .006 .165 .094 .025 .087 .041 .009
200 .131 .070 .017 .095 .043 .008 .133 .071 .018 .093 .043 .009
500 .114 .061 .013 .100 .048 .009 .116 .059 .011 .096 .048 .008

0 50 .241 .163 .068 .088 .036 .005 .231 .155 .061 .088 .046 .008
100 .157 .092 .029 .089 .041 .006 .170 .098 .029 .089 .041 .008
200 .133 .070 .018 .095 .044 .008 .133 .072 .019 .094 .042 .009
500 .114 .059 .014 .099 .048 .010 .133 .072 .019 .094 .042 .009

-.5 50 .259 .181 .081 .093 .043 .007 .270 .186 .083 .096 .050 .010
100 .168 .103 .033 .096 .046 .007 .193 .118 .040 .093 .046 .010
200 .136 .075 .020 .097 .045 .009 .142 .079 .023 .094 .045 .010
500 .116 .060 .015 .098 .048 .009 .117 .059 .012 .097 .048 .008

Log-normal Error
.5 50 .218 .143 .054 .081 .035 .005 .206 .137 .050 .079 .040 .009

100 .151 .088 .026 .084 .037 .005 .176 .107 .034 .091 .048 .012
200 .130 .069 .018 .091 .043 .006 .142 .081 .022 .095 .051 .012
500 .108 .057 .012 .094 .045 .008 .126 .066 .016 .101 .049 .010

0 50 .227 .151 .064 .084 .036 .006 .243 .166 .075 .087 .045 .010
100 .152 .091 .029 .088 .040 .006 .185 .122 .046 .097 .049 .013
200 .137 .077 .019 .096 .047 .008 .136 .078 .025 .097 .052 .011
500 .107 .059 .014 .098 .048 .009 .115 .057 .014 .098 .048 .010

-.5 50 .263 .188 .086 .093 .043 .008 .350 .259 .139 .106 .057 .015
100 .179 .114 .042 .101 .049 .010 .260 .186 .090 .105 .054 .014
200 .161 .096 .029 .107 .056 .010 .185 .114 .043 .103 .052 .013
500 .123 .067 .018 .100 .051 .010 .131 .072 .021 .101 .051 .010
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Table 2.2a. Empirical Sizes of Tests for Temporal Homogeneity in Panel SL Model
Two-Way Fixed Effects, Queen Contiguity

T = 3 T = 6

λ n TSL2 T
(r)
SL2 TSL2 T

(r)
SL2

.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01
Normal Error

.5 50 .192 .123 .047 .093 .045 .007 .228 .148 .059 .100 .050 .010
100 .140 .080 .023 .096 .048 .009 .157 .094 .029 .102 .050 .011
200 .120 .064 .015 .098 .049 .009 .128 .068 .017 .101 .052 .009
500 .103 .051 .013 .098 .048 .011 .105 .056 .012 .095 .049 .010

0 50 .194 .123 .048 .094 .046 .008 .224 .147 .059 .101 .049 .010
100 .138 .082 .023 .095 .050 .009 .126 .069 .017 .099 .051 .009
200 .115 .064 .016 .096 .049 .009 .157 .095 .027 .101 .049 .010
500 .101 .052 .012 .098 .048 .009 .126 .069 .017 .099 .051 .009

-.5 50 .192 .123 .047 .093 .045 .009 .225 .148 .058 .100 .049 .009
100 .138 .081 .023 .096 .049 .008 .157 .092 .027 .101 .048 .010
200 .116 .063 .015 .096 .049 .009 .125 .069 .016 .102 .050 .009
500 .105 .055 .011 .096 .048 .009 .108 .056 .013 .097 .051 .011

Normal Mixture Error
.5 50 .198 .131 .052 .100 .048 .008 .232 .155 .063 .106 .054 .013

100 .140 .080 .025 .096 .047 .010 .165 .100 .030 .107 .055 .012
200 .124 .067 .016 .101 .051 .009 .132 .071 .019 .104 .051 .013
500 .110 .055 .013 .100 .050 .010 .106 .056 .012 .097 .051 .010

0 50 .199 .132 .052 .102 .048 .009 .234 .154 .064 .110 .055 .013
100 .139 .080 .024 .097 .047 .009 .166 .100 .031 .109 .054 .011
200 .124 .067 .017 .102 .051 .010 .129 .072 .019 .102 .051 .013
500 .110 .055 .012 .102 .050 .010 .106 .055 .013 .096 .049 .010

-.5 50 .199 .130 .053 .101 .049 .009 .234 .157 .066 .112 .057 .013
100 .143 .084 .025 .101 .048 .009 .164 .097 .031 .107 .053 .012
200 .123 .069 .016 .103 .051 .010 .133 .073 .020 .105 .053 .012
500 .109 .056 .012 .101 .050 .009 .107 .056 .014 .096 .048 .012

Log-normal Error
.5 50 .196 .131 .055 .100 .050 .009 .242 .171 .079 .107 .067 .018

100 .139 .081 .027 .095 .050 .011 .171 .112 .041 .105 .055 .015
200 .128 .070 .018 .106 .053 .010 .141 .081 .026 .104 .052 .013
500 .109 .060 .014 .101 .052 .011 .123 .068 .019 .101 .051 .010

0 50 .196 .133 .059 .106 .055 .010 .239 .167 .081 .110 .055 .021
100 .137 .078 .024 .095 .048 .010 .166 .110 .039 .107 .054 .018
200 .126 .070 .018 .104 .052 .010 .133 .079 .025 .105 .049 .015
500 .107 .056 .013 .100 .051 .010 .116 .061 .016 .102 .051 .013

-.5 50 .205 .141 .066 .112 .062 .011 .249 .177 .083 .108 .055 .026
100 .154 .089 .028 .106 .052 .012 .172 .110 .042 .099 .048 .019
200 .129 .074 .019 .107 .056 .012 .145 .088 .030 .098 .049 .020
500 .110 .058 .014 .103 .052 .010 .122 .068 .018 .100 .049 .014

30



Table 2.2b. Empirical Sizes of Tests for Temporal Homogeneity in Panel SL Model
Two-Way Fixed Effects, Group Interaction

T = 3 T = 6

λ n TSL2 T
(r)
SL2 TSL2 T

(r)
SL2

.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01
Normal Error

.5 50 .226 .148 .059 .086 .038 .005 .223 .142 .052 .087 .040 .007
100 .155 .090 .025 .090 .036 .006 .166 .095 .029 .089 .043 .007
200 .124 .070 .018 .091 .044 .006 .131 .073 .016 .093 .045 .008
500 .112 .060 .015 .097 .050 .010 .114 .057 .013 .096 .047 .010

0 50 .240 .159 .068 .088 .039 .005 .237 .154 .059 .086 .040 .007
100 .159 .094 .025 .090 .037 .006 .174 .102 .031 .088 .042 .007
200 .127 .072 .018 .091 .044 .007 .133 .074 .016 .094 .046 .008
500 .112 .060 .014 .097 .050 .010 .116 .059 .013 .097 .046 .010

-.5 50 .244 .167 .075 .088 .039 .005 .249 .164 .065 .086 .040 .007
100 .163 .096 .028 .089 .038 .006 .179 .104 .033 .085 .043 .007
200 .127 .073 .019 .092 .045 .007 .134 .076 .017 .094 .045 .008
500 .113 .059 .014 .098 .049 .010 .117 .059 .013 .097 .046 .010

Normal Mixture Error
.5 50 .232 .150 .058 .080 .034 .005 .222 .144 .055 .082 .041 .008

100 .159 .090 .024 .088 .039 .006 .164 .095 .027 .083 .041 .008
200 .130 .072 .018 .095 .045 .007 .133 .071 .017 .089 .043 .010
500 .114 .059 .014 .097 .048 .009 .118 .060 .012 .098 .047 .009

0 50 .245 .167 .069 .085 .038 .006 .247 .165 .071 .083 .039 .007
100 .164 .098 .027 .089 .040 .006 .175 .103 .032 .080 .038 .007
200 .131 .072 .018 .094 .043 .008 .132 .072 .019 .089 .041 .009
500 .115 .059 .014 .096 .048 .009 .119 .060 .012 .096 .047 .009

-.5 50 .269 .185 .085 .097 .047 .009 .298 .209 .100 .101 .052 .012
100 .177 .110 .035 .099 .046 .007 .205 .127 .045 .094 .046 .008
200 .138 .077 .020 .096 .045 .008 .145 .082 .023 .095 .045 .010
500 .115 .059 .014 .096 .047 .009 .122 .063 .013 .099 .049 .009

Log-normal Error
.5 50 .217 .143 .057 .078 .036 .005 .215 .142 .055 .076 .036 .008

100 .152 .088 .025 .079 .034 .005 .176 .111 .036 .082 .041 .009
200 .132 .073 .018 .089 .044 .006 .141 .080 .023 .088 .046 .010
500 .113 .057 .013 .094 .047 .008 .119 .062 .014 .096 .048 .009

0 50 .240 .165 .073 .085 .040 .006 .246 .174 .079 .085 .038 .008
100 .164 .099 .034 .086 .041 .006 .191 .129 .051 .091 .040 .008
200 .135 .076 .020 .092 .043 .007 .143 .083 .027 .095 .044 .009
500 .111 .057 .014 .092 .045 .008 .113 .060 .013 .097 .045 .010

-.5 50 .287 .207 .104 .112 .060 .013 .347 .269 .151 .119 .068 .022
100 .201 .131 .054 .109 .057 .012 .270 .195 .099 .119 .065 .019
200 .156 .095 .028 .105 .054 .010 .191 .122 .049 .105 .056 .014
500 .120 .067 .017 .098 .050 .009 .141 .081 .021 .103 .052 .010
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Table 2.3a. Empirical Sizes of Tests for Temporal Homogeneity in Panel SLE Model
One-Way Fixed Effects, Queen Contiguity, λ = 0.5.

T = 3 T = 6

ρ n TSLE1 T
(r)
SLE1 TSLE1 T

(r)
SLE1

.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01
Normal Error

.5 50 .199 .142 .075 .082 .039 .005 .161 .099 .036 .090 .042 .011
100 .123 .068 .025 .094 .043 .009 .097 .050 .012 .092 .043 .006
200 .084 .044 .009 .099 .046 .007 .079 .038 .008 .102 .049 .011
500 .070 .034 .006 .104 .049 .009 .064 .030 .005 .102 .054 .009

0 50 .223 .164 .093 .090 .042 .006 .171 .104 .041 .093 .047 .010
100 .132 .076 .029 .095 .046 .012 .105 .058 .014 .097 .047 .007
200 .087 .046 .011 .103 .050 .010 .082 .039 .008 .104 .050 .011
500 .069 .036 .006 .102 .050 .011 .063 .028 .005 .103 .054 .010

-.5 50 .232 .174 .098 .093 .042 .006 .181 .120 .048 .096 .047 .010
100 .134 .083 .033 .097 .045 .011 .118 .064 .014 .098 .048 .008
200 .097 .047 .013 .105 .050 .012 .079 .039 .008 .102 .052 .011
500 .070 .035 .006 .102 .052 .009 .061 .028 .005 .102 .049 .011

Normal Mixture Error
.5 50 .196 .139 .072 .081 .037 .004 .168 .106 .044 .092 .047 .008

100 .121 .070 .025 .087 .040 .008 .107 .057 .017 .096 .053 .012
200 .084 .043 .011 .092 .046 .006 .082 .044 .010 .101 .052 .013
500 .071 .035 .008 .099 .052 .012 .070 .036 .009 .097 .046 .014

0 50 .212 .151 .080 .087 .042 .005 .167 .110 .044 .089 .045 .010
100 .131 .076 .028 .089 .041 .009 .105 .054 .015 .097 .046 .011
200 .085 .046 .011 .095 .046 .008 .078 .039 .009 .100 .047 .012
500 .071 .036 .007 .097 .050 .010 .064 .032 .006 .104 .054 .012

-.5 50 .226 .164 .090 .093 .040 .006 .197 .131 .057 .104 .056 .013
100 .140 .083 .030 .094 .043 .009 .126 .073 .023 .104 .055 .013
200 .094 .050 .013 .102 .051 .010 .086 .048 .013 .103 .055 .014
500 .073 .038 .009 .101 .051 .012 .074 .034 .005 .102 .055 .011

Log-normal Error
.5 50 .150 .102 .046 .083 .038 .006 .169 .108 .044 .092 .048 .010

100 .115 .075 .035 .091 .044 .010 .106 .058 .015 .098 .051 .010
200 .109 .067 .027 .095 .046 .009 .073 .036 .008 .090 .046 .010
500 .089 .050 .016 .100 .049 .011 .064 .032 .006 .104 .052 .012

0 50 .217 .160 .090 .082 .041 .009 .179 .118 .045 .092 .048 .011
100 .126 .077 .031 .087 .042 .009 .108 .062 .017 .100 .055 .008
200 .101 .055 .015 .103 .048 .010 .074 .035 .007 .095 .044 .008
500 .071 .035 .008 .096 .048 .010 .059 .031 .006 .099 .050 .011

-.5 50 .192 .138 .069 .090 .045 .006 .202 .136 .054 .098 .050 .011
100 .137 .087 .038 .092 .048 .010 .128 .074 .019 .108 .057 .010
200 .094 .045 .014 .101 .048 .011 .081 .041 .008 .099 .049 .009
500 .078 .040 .010 .102 .051 .010 .064 .030 .005 .105 .050 .012
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Table 2.3b. Empirical Sizes of Tests for Temporal Homogeneity in Panel SLE Model
One-Way Fixed Effects, Queen Contiguity, λ = −0.5.

T = 3 T = 6

ρ n TSLE1 T
(r)
SLE1 TSLE1 T

(r)
SLE1

.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01
Normal Error

.5 50 .190 .131 .058 .088 .037 .007 .167 .102 .036 .088 .042 .010
100 .116 .068 .022 .093 .044 .009 .098 .050 .013 .091 .044 .007
200 .079 .042 .009 .094 .046 .007 .078 .040 .010 .100 .050 .012
500 .071 .033 .007 .101 .050 .009 .060 .029 .005 .102 .053 .009

0 50 .209 .149 .073 .091 .040 .006 .169 .104 .040 .094 .043 .010
100 .125 .073 .027 .099 .050 .011 .102 .056 .013 .093 .047 .006
200 .084 .043 .010 .098 .048 .010 .079 .040 .008 .104 .051 .010
500 .072 .033 .007 .103 .050 .011 .059 .029 .005 .096 .054 .010

-.5 50 .225 .162 .085 .095 .040 .006 .172 .111 .044 .094 .043 .010
100 .131 .081 .031 .101 .050 .011 .109 .059 .013 .099 .047 .008
200 .089 .044 .013 .105 .049 .011 .082 .039 .009 .104 .052 .010
500 .069 .032 .007 .100 .049 .010 .057 .030 .005 .096 .049 .012

Normal Mixture Error
.5 50 .187 .129 .061 .079 .034 .004 .176 .111 .043 .092 .047 .008

100 .111 .068 .022 .086 .042 .008 .105 .054 .016 .097 .051 .013
200 .083 .044 .009 .091 .047 .006 .085 .046 .010 .102 .056 .012
500 .072 .033 .008 .102 .049 .011 .074 .036 .008 .099 .053 .010

0 50 .200 .140 .071 .086 .039 .006 .166 .105 .041 .090 .047 .010
100 .126 .074 .027 .092 .042 .009 .103 .056 .016 .095 .049 .011
200 .079 .045 .009 .095 .047 .008 .076 .041 .010 .098 .050 .012
500 .071 .035 .008 .100 .049 .010 .064 .031 .007 .101 .050 .012

-.5 50 .218 .156 .080 .088 .041 .007 .191 .124 .052 .100 .054 .013
100 .136 .079 .031 .096 .045 .008 .119 .068 .021 .105 .055 .013
200 .087 .048 .013 .098 .048 .009 .088 .048 .014 .106 .057 .014
500 .073 .037 .009 .103 .053 .011 .075 .034 .007 .104 .053 .011

Log-normal Error
.5 50 .175 .125 .063 .084 .036 .009 .174 .110 .043 .092 .046 .010

100 .138 .087 .038 .089 .042 .010 .099 .055 .016 .098 .050 .011
200 .096 .048 .014 .096 .045 .008 .075 .037 .008 .098 .046 .011
500 .075 .038 .009 .101 .052 .011 .066 .028 .006 .100 .053 .013

0 50 .207 .145 .081 .086 .042 .011 .173 .111 .044 .093 .046 .010
100 .122 .078 .029 .090 .044 .009 .105 .056 .013 .096 .048 .009
200 .091 .047 .010 .095 .047 .008 .076 .037 .007 .099 .046 .009
500 .071 .035 .008 .099 .049 .011 .057 .027 .006 .101 .047 .011

-.5 50 .201 .138 .072 .093 .043 .008 .191 .125 .051 .097 .049 .012
100 .141 .092 .039 .096 .048 .010 .118 .067 .017 .104 .053 .010
200 .089 .045 .012 .104 .050 .009 .084 .041 .008 .104 .051 .010
500 .072 .034 .007 .104 .049 .010 .062 .029 .006 .103 .046 .012
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Table 2.4a. Empirical Sizes of Tests for Temporal Homogeneity in Panel SLE Model
Two-Way Fixed Effects, Queen Contiguity, λ = 0.5.

T = 3 T = 6

ρ n TSLE2 T
(r)
SLE2 TSLE2 T

(r)
SLE2

.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01
Normal Error

.5 50 .235 .181 .105 .083 .038 .006 .310 .226 .115 .087 .044 .008
100 .212 .151 .086 .093 .045 .008 .190 .111 .036 .090 .041 .007
200 .182 .121 .054 .098 .044 .006 .139 .079 .021 .101 .049 .011
500 .134 .073 .022 .100 .048 .010 .121 .064 .014 .102 .055 .009

0 50 .272 .208 .117 .088 .043 .007 .314 .224 .111 .094 .045 .010
100 .217 .143 .070 .094 .046 .011 .197 .116 .036 .093 .043 .008
200 .161 .097 .032 .100 .051 .008 .142 .083 .022 .103 .050 .011
500 .125 .065 .017 .105 .049 .011 .119 .064 .014 .102 .053 .010

-.5 50 .302 .233 .136 .094 .042 .005 .321 .239 .114 .092 .045 .009
100 .209 .142 .062 .095 .046 .011 .205 .128 .042 .096 .047 .009
200 .153 .090 .029 .102 .050 .009 .151 .081 .023 .098 .052 .010
500 .119 .064 .015 .102 .054 .009 .115 .061 .014 .103 .051 .010

Normal Mixture Error
.5 50 .221 .159 .090 .083 .037 .004 .315 .242 .127 .090 .044 .008

100 .212 .154 .085 .085 .044 .008 .201 .128 .050 .097 .053 .010
200 .183 .122 .059 .092 .046 .008 .150 .090 .029 .101 .052 .009
500 .137 .082 .028 .100 .053 .012 .139 .079 .022 .100 .053 .010

0 50 .269 .201 .114 .089 .043 .005 .315 .235 .124 .092 .052 .012
100 .212 .149 .075 .089 .045 .009 .189 .118 .043 .096 .047 .010
200 .158 .098 .033 .096 .048 .008 .143 .078 .025 .099 .050 .013
500 .121 .070 .016 .099 .050 .010 .120 .063 .016 .102 .053 .012

-.5 50 .285 .225 .137 .093 .046 .008 .380 .286 .164 .103 .056 .011
100 .229 .161 .083 .100 .047 .010 .229 .152 .061 .108 .060 .012
200 .166 .102 .036 .101 .053 .009 .176 .106 .034 .104 .058 .012
500 .132 .070 .018 .106 .054 .012 .136 .075 .020 .097 .050 .010

Log-normal Error
.5 50 .239 .181 .105 .085 .039 .006 .314 .232 .123 .091 .043 .008

100 .222 .154 .086 .090 .043 .007 .196 .117 .041 .095 .047 .009
200 .185 .126 .056 .096 .047 .008 .138 .079 .020 .097 .047 .009
500 .138 .074 .024 .102 .049 .011 .123 .064 .016 .105 .052 .010

0 50 .246 .188 .108 .085 .042 .010 .319 .235 .115 .095 .047 .011
100 .204 .141 .074 .090 .045 .007 .194 .115 .040 .095 .051 .008
200 .180 .114 .047 .095 .047 .009 .142 .076 .021 .095 .048 .009
500 .129 .075 .022 .097 .048 .010 .115 .060 .014 .100 .050 .011

-.5 50 .300 .235 .146 .093 .044 .008 .344 .246 .126 .097 .050 .011
100 .214 .145 .064 .094 .045 .010 .208 .133 .050 .101 .055 .010
200 .156 .092 .028 .099 .046 .008 .154 .086 .023 .101 .049 .011
500 .123 .066 .015 .104 .051 .010 .121 .061 .014 .102 .050 .010
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Table 2.4b. Empirical Sizes of Tests for Temporal Homogeneity in Panel SLE Model
Two-Way Fixed Effects, Queen Contiguity, λ = −0.5.

T = 3 T = 6

ρ n TSLE2 T
(r)
SLE2 TSLE2 T

(r)
SLE2

.10 .05 .01 .10 .05 .01 .10 .05 .01 .10 .05 .01
Normal Error

.5 50 .235 .173 .105 .086 .039 .007 .313 .225 .117 .089 .044 .009
100 .216 .158 .086 .093 .046 .009 .189 .113 .037 .088 .044 .006
200 .180 .117 .054 .093 .047 .007 .143 .079 .023 .100 .049 .012
500 .134 .076 .021 .103 .048 .010 .118 .062 .014 .100 .053 .010

0 50 .271 .206 .116 .089 .040 .007 .315 .226 .109 .093 .044 .009
100 .220 .149 .072 .098 .048 .011 .197 .115 .038 .092 .047 .008
200 .160 .096 .032 .100 .051 .009 .146 .085 .024 .104 .052 .011
500 .127 .062 .017 .103 .049 .011 .111 .059 .015 .094 .050 .010

-.5 50 .301 .233 .130 .095 .038 .007 .325 .232 .112 .092 .044 .009
100 .214 .146 .065 .101 .048 .011 .206 .127 .039 .096 .046 .008
200 .158 .092 .029 .103 .050 .011 .152 .087 .022 .102 .053 .010
500 .117 .065 .014 .100 .050 .010 .111 .057 .013 .096 .048 .011

Normal Mixture Error
.5 50 .220 .161 .088 .080 .035 .005 .316 .243 .129 .093 .047 .009

100 .213 .153 .085 .088 .043 .009 .204 .129 .048 .103 .051 .012
200 .182 .121 .059 .096 .047 .006 .153 .089 .032 .106 .058 .013
500 .139 .083 .030 .104 .049 .010 .137 .080 .022 .101 .051 .010

0 50 .256 .194 .113 .084 .043 .006 .321 .242 .124 .093 .049 .011
100 .214 .151 .079 .091 .046 .008 .189 .121 .042 .098 .046 .011
200 .155 .100 .033 .097 .048 .009 .146 .079 .028 .095 .051 .013
500 .124 .068 .018 .099 .049 .011 .118 .064 .017 .102 .053 .012

-.5 50 .279 .219 .138 .089 .043 .007 .378 .288 .162 .111 .059 .016
100 .232 .157 .082 .097 .049 .010 .234 .151 .058 .110 .057 .013
200 .166 .103 .035 .102 .050 .010 .170 .104 .035 .106 .052 .014
500 .128 .072 .019 .103 .054 .011 .134 .078 .018 .098 .047 .010

Log-normal Error
.5 50 .230 .178 .105 .086 .039 .008 .317 .232 .125 .089 .043 .009

100 .218 .156 .087 .093 .045 .008 .197 .116 .042 .093 .049 .009
200 .184 .122 .055 .093 .044 .008 .143 .080 .022 .100 .047 .010
500 .139 .077 .024 .101 .052 .010 .119 .063 .015 .102 .053 .011

0 50 .242 .184 .107 .087 .043 .011 .315 .230 .113 .095 .046 .010
100 .202 .142 .074 .091 .043 .010 .196 .115 .039 .093 .047 .008
200 .176 .114 .046 .098 .046 .010 .141 .082 .023 .099 .049 .010
500 .128 .074 .024 .098 .050 .011 .110 .055 .013 .102 .050 .010

-.5 50 .298 .230 .138 .095 .042 .008 .332 .245 .127 .097 .050 .010
100 .220 .146 .067 .100 .045 .011 .212 .129 .048 .100 .052 .010
200 .156 .092 .029 .100 .046 .009 .154 .089 .022 .105 .051 .011
500 .123 .065 .015 .104 .051 .009 .115 .060 .015 .100 .048 .011
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2.5 Empirical Applications

The specification tests of temporal homogeneity in spatial panel data models proposed

in this chapter are demonstrated in empirical settings using two well known data sets:

Public Capital Productivity (Munnell, 1990) and Cigarette Demand (Baltagi and Levin,

1992). We endeavor to provide a detailed guidance to aid applied researchers in their

empirical studies. First, a general discussion is given on the issues of spatial interaction

and spatiotemporal heterogeneity commonly existed in economic studies.

2.5.1 Spatial interaction and spatiotemporal heterogeneity.

A wide range of empirical studies, such as urban economics, international trade, pub-

lic finance, industrial organization, real estate analyses and regional economics, deal with

spatial interaction. Values observed at one location depend on the values of neighboring

observations at nearby locations due to budget spillovers, difference in tax rates, copy-

catting, network effects, et. However, this dependence may not stay the same over time.

There are two major reasons for specifying, estimating, and testing for the time-varying

spatial effects in the regression models. One is the growing interest in using theoreti-

cal economics that include time-varying spatial effects to analyze economic phenomenon

such as externalities, group patterns and some other economic processes, for example,

housing decisions, unemployment, price decisions, crime rates, trade flows, etc., which

exhibit time heterogeneity patterns. The effects of relevant variables, including interac-

tions among agents, on economic activities are changing over time. This may be due to

the change of government policy, an unexpected accident, the change of the benefit from

the interactions. The second driver is the need from geographic research and environmen-

tal study, where researchers usually face a large set of geocoded data when analyzing the

relationships between different variables. Under this situation, due to the spatial inter-

action and the fact that everything in nature is changing over time, time-varying spatial

autoregression model is more outstanding than many other econometric models. Adding

the time-varying spatial effects in the regression model may be necessary.

One empirical problem we discuss in this paper is the U.S. cigarette demand in state

level from 1963-1992 (Baltagi and Levin, 1992). The tax policy on cigarette differs by
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states, and this leads to substantial cross-state sales. Due to the government interventions

(in 1965, 1967, 1971) and the reports about the health hazards of smoking (in 1983),

the effects of the spatial lag, spatial error and the variables (price per pack of cigarettes,

population, per capita disposable income, and etc) on the US cigarette demand might be

subject to the temporal heterogeneity. The other empirical problem we discuss is the U.S.

public capital productivity in state level from 1970-1986 (Munnell, 1990). The private

production of each state may subject to spillover effects of infrastructure improvement

from other states. Temporal homogeneity may be in question due to the change in poli-

cies and the change of economic environment such as 1973 oil crisis and the 1979 energy

crisis. These two data sets have been extensively used in Baltagi (2013) for the illustra-

tions of various standard panel data techniques.

Many other empirical studies have documented the existence of spatial interaction or

spatial spillover effects, and these naturally raise the question whether these spillover ef-

fects as well as the economic variables effects remain constant over time due to policy

change. Case (1991) studied spatial patterns in household demand. Case et al. (1993)

showed that the U.S. states’ budget expenditure depends on the spending of similar states.

Policies have changed over the years, and one might be interested in testing if the spa-

tial patterns and budget spillovers remain the same over time. Acemoglu et al. (2012)

studied the inter-sectoral input-output linkages in the U.S. Baltagi et al. (2016) studied

intra-sectoral spillovers in total factor productivity (TFP) across Chinese producers in the

chemical industry using a panel data on 12,552 firms over 2004-2006, by modeling spa-

tial spillovers in TFP through contextual effects of observable variables and the spatial

dependence of the disturbances. Test of stability/homogeneity of the covariate effects as

well as spatial effects may be interesting, perhaps based on extended data.

Therefore, it is highly desirable to have a general procedure to identify the possible

existence of temporal heterogeneity in spatial panel data models to aid the applied re-

searchers in their empirical studies. The AQS test we propose may serve the purpose.

We provide a detailed instruction, through two empirical applications, of how to con-

struct AQS-tests for testing certain null hypothesis in an SPD model allowing spatiotem-

poral heterogeneity in the intercept (fixed effects), i.e., the model specified by (2.1),
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(2.16), (2.25), or (2.34), based on the AQS function defined by (2.7), (2.22), (2.31), or

(2.37). Given a null hypothesis, the linear contrast matrix C is defined, the null model

is estimated by solving the LM-equations (defined as in (2.14) for the panel SL model

with 1FE), and the corresponding test statistic defined by (2.13), (2.23), (2.32), or (2.38)

is computed.

2.5.2 Public capital productivity

Munnell (1990) investigated the productivity of public capital in private production

based on data for 48 U.S. states observed over 17 years (1970-1986). Baltagi and Pinnoi

(1995) considered a Cobb-Douglas production function of the form:

ln(gsp) = β1 ln(pcap) + β2 ln(pc) + β3 ln(emp) + β4unemp + ε,

with state-specific fixed effects, where ‘gsp’ is the gross social product of a given state,

‘pcap’, ‘pc’ and ‘emp’ are the inputs of private capital, public capital, and labor respec-

tively. In order to capture business cycle effects, an additional variable ‘unemp’ is also

added which indicates the state unemployment rate. The model now is extended by adding

the time-specific fixed effects and the spatial effects. The latter is for capturing the possi-

ble spill over effects of public capital. The spatial weight matrix (Wn) is specified using

a contiguity form where (i, j)th element is indicated as 1 if state i and j share a common

border, otherwise 0. The final Wn is row normalized. The data file Product.csv and

the spatial weights matrix weight Product.csv, and the associated matlab files can

be found in the website: http://www.mysmu.edu/faculty/zlyang/.

It is well known that 1970-86 is the period that U.S. had experienced several social

and economic shocks such as the baby booms in the early 1970s, the oil crises in 1973

and 1979, and economic recession between 1980-82. It is therefore questionable that the

above production relationship would remain stable over time. We demonstrate how our

AQS test can answer this question, and how it may help detecting change points.

To test HTH
0 , the temporal homogeneity, assign k = 4. Based on full data, T = 17,

kp = (k + 1)(T − 1) = 80 and C = [blkdiag{Ck
T , C

1
T}, 0kp,1] for the SL models; and

(k + 2)(T − 1) = 96 and C = [blkdiag{Ck
T , C

1
T , C

1
T}, 0kp,1] for the SLE models, where
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Cm
τ is defined in (2.10) for m = 1, k. To test HTH

0 based on first four periods, T = 4,

kp = (k + 1)(T − 1) = 15 for the SL models, and (k + 2)(T − 1) = 18 for the SLE

models. The C matrices remain in the same forms. Note that kp is also the degrees

of freedom (df) of the chi-squared test statistics, based on which the asymptotic critical

values and p-values are found.

Table below summarize the values of the test statistics and their p-values, for the naı̈ve

tests and the nonnormality robust AQS tests for temporal homogeneity based on both the

full dataset and a subset of data, fitted using the four models: 1FE-SL, 2FE-SL, 1FE-SLE

and 2FE-SLE. From the table we see that all tests based on full data (t1–t17) give a clean

rejection of the temporal homogeneity hypothesis HTH
0 .

Tests for Temporal Homogeneity: Public Capital Productivity

Data TSL1 T
(r)
SL1 TSL2 T

(r)
SL2 T

(r)
SLE1 T

(r)
SLE1 TSLE2 T

(r)
SLE2

t1–t17 1621 321 3189 328 1971 289 1556 326

.000 .000 .000 .000 .000 .000 .000 .000

t1–t5 215.60 68.14 22.34 18.22 47.18 38.43 33.08 19.57

.000 .000 .322 .573 .003 .031 .102 .721

t1–t4 10.24 9.37 9.59 8.69 11.78 10.61 7.07 11.43

.804 .857 .845 .893 .858 .910 .990 .875

Note: p-values are in every second row.

As discussed in Section 2.1, a rejection of HTH
0 may be due to the existence of change

points instead of full heterogeneity. Thus, we break down the panel into sub-periods to test

whether HTH
0 holds for a smaller panel. Indeed, based on the first four periods (t1–t4), all

tests do not rejectHTH
0 , indicating that the panel consisting of the first four periods is fairly

homogeneous. Furthermore, based on t1–t5, the tests T (r)
SL1 and T (r)

SLE1 reject HTH
0 but T (r)

SL2

and T (r)
SLE2 do not, suggesting that if temporal heterogeneity in intercepts is not controlled

for, the first change point is t5 or 1974, the year after the first oil crisis. However, T (r)
SL2 and

T
(r)
SLE2 do not reject HTH

0 up to first six periods, meaning that after controlling both spatial

and temporal heterogeneity in intercepts, the panel is homogeneous in first six periods but

changes in structure from 7th period onwards.6 Applying the pair of test T (r)
SL2 and T (r)

SLE2 to
6The p-values for these two tests are .513 and .633 based on t1–t6, and .000 and .000 based on t1–t7,

suggesting that the structure has changed since year 7 (or 1977) onwards.
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test HTH
0 based on other sub-periods from 1976 onwards, all tests reject HTH

0 at 10% level,

except the tests based on the following tow sub-periods: t7–t8 and t12–t13. These suggest

that there exist multiple change points in this panel, and hence the standard applications

of homogeneous penal methods are not valid.7

Based on the above results, we recommend the pairs of tests T (r)
SL2 and T (r)

SLE2 for prac-

tical applications as they control both spatial and temporal heterogeneity in intercepts

(two-way fixed effects). We can further carry out the tests for detecting change points.

However,the tests for temporal homogeneity based on sub-panels have revealed quite a

clear picture, we therefore do not pursue CP tests in this application.

2.5.3 Cigarette demand.

Second application of the proposed tests uses another well known data set, the Cigarettes

Demand for the United States (Baltagi and Levin, 1992). It contains a panel of 46 states

over 30 time periods (1963-1992). The data file cigarette.csv, spatial weight matrix

weight cigarette.csv, and the associated matlab codes can be found in the web-

site: http://www.mysmu.edu/faculty/zlyang/. Our analysis is based on the

response variable Y = Cigarette sales in packs per capita; and the covariates X1 = Price

per pack of cigarettes; X2 = Population above the age of 16; X3 = Per capita disposable

income; and X4 = Minimum price in adjoining states per pack of cigarettes. Earlier stud-

ies include Hamilton (1972), McGuiness and Cowling (1975), Baltagi and Levin (1986,

1992), Baltagi et al. (2000), and Yang et al. (2006), all under homogeneity assumption

and in log-log form except in Yang et al. (2006) who estimated the Box-Cox functional

form. The spatial weight matrix is specified using a contiguity form where (i, j)th element

is 1 if state i and j share a common border, otherwise 0, and then row normalized.

Tests for temporal homogeneity/heterogeneity is of particular interest in cigarette de-

mand, due to government’s policy interventions (in 1965, 1967, 1971) in attempting re-

ducing the consumptions of cigarettes, and the reports from medial journals as well as

Surgeon General warning (in 1983) about the health hazards of smoking (see Baltagi

7The relatively much bigger values of the usual or naı̈ve tests show that they are rather unreliable, in line

with the Monte Carlo results.
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and Levin, 1986). The table below summarize the values of the test statistics and their

p-values, for tests of homogeneity based on the full panel or sub-panels and using the

log-log form.

Tests for Temporal Homogeneity: Cigarette Demand

T
(r)
SL1 T

(r)
SL2 T

(r)
SLE1 T

(r)
SLE2 T

(r)
SL1 T

(r)
SL2 T

(r)
SLE1 T

(r)
SLE2

t1–t30 443 517 507 587 t1–t10 122 118 116 126

.000 .000 .000 .000 .000 .000 .000 .000

t11–t20 99 90 104 112 t21–t30 135 114 121 106

.000 .000 .000 .000 .000 .000 .000 .000

t1–t3 13.13 9.38 9.68 8.75 t4–t5 6.72 6.23 7.86 8.10

.217 .497 .644 .724 .242 .285 .248 .230

t1–t5 43.0 30.7 45.0 40.8 t5–t8 21.7 19.2 21.2 17.4

.002 .060 .006 .018 .116 .204 .271 .495

Note: p-values are in every second row.

From the results we see that all tests based on the full data, and the first, second and

last ten years data clearly reject HTH
0 , the hypothesis of temporal homogeneity in regres-

sion and spatial coefficients. Therefore, the Cigarette Demand panel is temporally

heterogeneous. Further breaking down the panel and repeatedly applying the set of robust

tests, we see that only the sub-panels 1963-65, 1966-67, and 1967-70 are fairly stable,

suggesting that panel structures have changed after 1965, 1967, and 1970, in line with the

policy interventions in 1965, 1967 and 1971. From the results, we also see that controlling

the temporal heterogeneity in intercepts seems increase the stability of the overall model

structure as seen from the larger p-values associated with T (r)
SL2 and T (r)

SLE2.

Furthermore, applying T (r)
SL2 to test HCP

0 based on data from t1–t5 with b0 = `0 = 3

gives a p-value of 0.632 compared with 0.06 from the test of HTH
0 given in the table above.

This confirms that 1965 is a point after which the structure has changed. Similarly, based

on data from t4–t9, the p-value is 0.231 for testing HCP
0 using T (r)

SL2 with b0 = `0 = 3,

suggesting that 1968 is another change point. The CP tests with multiple change points

can be carried out as well based on the general LM procedure we propose.

However, the matlab function fsolve that our LM-procedure depends upon may not

always perform well. This seems to be an interesting computation problem, and is beyond
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the scope of this paper. In any situation, one can always repeatedly apply our robust tests

for testing temporal homogeneity as they are based up the optimization functions such as

fminbnd and fmincon, which are numerically much more stable stable than fsolve.

In summary, our tests show that there exit multiple change points in the the Cigarette

Demand panel, and hence in real applications, one should base their analyses either on a

shorter panel so that a homogeneous SPD model can be used, or a relatively longer panel

and the corresponding SPD model with ’specified’ change points.

2.6 Conclusion and Discussion

We introduce adjusted quasi score tests for temporal homogeneity/heterogeneity in

regression and spatial coefficients in spatial panel data models allowing the existence of

spatial and temporal heterogeneity in the intercepts of the model. The proposed tests are

robust against nonnormality, they are simple and reliable as shown by the Monte Carlo

results, and can be repeatedly applied to identity a ‘parsimonious model’ instead of the

model with full temporal heterogeneity. That is, once the null hypothesis of homogeneity

is rejected (as in the two empirical applications), one may proceed with further tests of

hypotheses with known change points suggested by the data (as in Cigarette Demand

application). Thus, the proposed tests provide useful tools for the applied researchers.

The tests can be extended by (i) adding higher-order spatial terms and spatial Durbin

terms in the model, (ii) treating individual- and time-specific effects as random effects, or

correlated random effects, (iii) allowing spatial-temporal heterogeneity in error variance

(i.e., heteroskedasticity), (iv) allowing interactive fixed effects, and (v) by allowing dy-

namic effects in the model. These extensions are interesting but clearly beyond the scope

of the current chapter, which will be in our future research agenda.
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3 Adjusted Quasi-Score Estimation of Spatial Panel Data

Models with Time Varying Coefficients

In this chapter, an adjusted quasi-score (AQS) method is proposed to estimate the

fixed-effects (FE) spatial panel data models with time-varying regression and spatial coef-

ficients. Time FE is first transformed away. The AQS functions are then obtained through

adjusting the concentrated quasi scores with individual FE being concentrated out, giv-

ing a set of unbiased estimating functions and the AQS estimators that are consistent and

asymptotically normal. The AQS estimation strategy naturally allows the spatial weight

matrices to change with time as well. Monte Carlo results show that the proposed meth-

ods have an excellent finite sample performance. An empirical illustration using cigarette

demand data is provided.

3.1 Introduction

Consider the following spatial panel data model (SPD) with two-way fixed effects:

Ynt = λtWnYnt +Xntβt + cn + αt1n + Unt, Unt = ρMnUnt + Vnt, (3.1)

t = 1, 2, . . . , T , where Ynt is an n × 1 vector of observations on the dependent variable;

Xnt is an n × k matrix containing the values of k exogenous regressors; Wn is an n ×

n spatial weight matrix, and Mn is another spatial weight matrix capturing the spatial

interactions among the disturbances, which can be the same as Wn; Vnt is an n× 1 vector

of independent and identically distributed (iid) errors with mean zero and variance σ2; λt

is the spatial lag (SL) parameter in period t, ρ is the spatial error (SE) parameter, and βt

is the k× 1 vector of regression coefficients in period t; cn denotes the individual-specific

fixed effects (FE) or spatial heterogeneity in intercept, and {αt} are the time-specific fixed

effects or unobserved temporal heterogeneity in the intercept; and 1n is an n× 1 vector of

ones.

In the above model setting, both the regression coefficients and the spatial lag param-

eters are subject to temporal heterogeneity, but not the parameters in the errors. With SL
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effect, both the mean and variance of a spatial unit are directly affected by some other spa-

tial units, however, with SE effect, only the variance of a spatial unit are directly affected

by some other spatial units. Therefore, the model setting given in (3.1) with temporal

heterogeneity in SL parameter provides a way of capturing time-varying spatial effects on

both mean and variance. Furthermore, the spatial weight matrix Wn or Mn or both may

be allowed to change with time as well, making the way of capturing the time-varying

spatial effects more flexible. However, to ease the exposition, we first treat them as con-

stant matrices and then indicates the way to relax them latter at the end of the paper, to

facilitate the practical applications.8

Models with time-varying coefficients (TVC) have the following advantages over

models with time-invariant parameters: (i) it enhances the short-run forecasting in terms

of accuracy and consistency (Li et al., 2006), (ii) with estimation of time-varying pa-

rameters of interest on a period-by-period basis, it allows us to identify influential data

observations (Anselin and Florax, 1995). Temporal heterogeneity is an important feature

in economic behavior: many economic process, for example, housing decisions, welfare

participation, trade flows, etc., exhibit time heterogeneity patterns. It may occur as a result

of a credit crunch, an oil price shock, a tax policy change, a fad or fashion in society, a

discovery of a new medicine, and an enaction of new governmental program (Bai, 2010).

However, with TVC in the panel data model with individual FE, the traditional method of

estimation based on transformation cannot be applied. A lack of estimation and inference

for SPD models with TVC is thus a serious shortcoming.

In this chapter, we consider the estimation and inference for the FE-SPD model with

time-varying regression and spatial coefficients, which extends the FE-SPD models with

constant coefficients studied by Lee and Yu (2010), Baltagi and Yang (2013b) and Yang

et al. (2016). The temporal heterogeneity can occur on the regression slopes. In a spa-

tial panel data model (SPD), it may also occur on the spatial parameters (Anselin, 1988).

Literature on the estimation of models with temporal heterogeneity is expanding in recent

8Model (3.1) is fairly general, it embeds several submodels popular in the literature. Setting ρ = 0, it

reduces to an SPD model with SL only. Dropping one of the two FEs, the model is reduced to a one-way

FE model. On the other hand, the model can be further extended to include higher-order spatial terms.
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years. More and more econometricians realize that economic relationships are changing

over time, and therefore, they start to consider models with stochastic parameters, see,

e.g., Chow (1984), Nicholls and Pagan(1985), to name a few. The maximum likelihood

estimation techniques are popular in the early literature, see, e.g., Cooley and Prescott

(1976), where the parameters of the model are subject to permanent and transitory changes

over time, but there is no fixed effects in their model setting. Recent literature propose a

nonparametric estimation method to estimate models with time-varying parameters. See,

e.g., Robinson (1989) and Orbe et al. (2005), where the methods are based on the as-

sumption that the regression coefficients are smoothly varying over time index. There are

some other literature dealing with more interesting settings, such as model with seasonal

effects (Ferreira et al., 2000) or model with large time dimension (Li and Liao, 2018). Al-

though temporal heterogeneity is an important feature in panel data models, it is relatively

unexplored in the spatial panel literature.

In this chapter, an adjusted quasi score (AQS) method is proposed to estimate the FE-

SPD model with time-varying regression coefficients and time-varying spatial lag coeffi-

cients, allowing the spatial errors in the model. The AQS functions are obtained through

adjusting the concentrated quasi scores with individual-specific FE being concentrated

out, after the time-specific effects being transformed away by an orthogonal transforma-

tion, leading to a set of unbiased estimating functions and the AQS estimators that are

consistent and asymptotically normal. Monte Carlo results show that the proposed meth-

ods have an excellent finite sample performance. Empirical evidence on the temporal

heterogeneity is presented based the well-known cigarette demand data.

The rest of the chapter is organized as follows. Section 3.2 introduces the AQS-

estimation method for the general FE-SPD model with time-varying coefficients in (3.1),

then specializes the AQS-estimation method to several popular submodels. Section 3.3

presents the consistency and asymptotic properties of the proposed AQS-estimators, with

a separate treatment on the scenarios of “large n and large T ” and “large n and small T ”.

Section 3.4 presents Monte Carlo results. Section 3.5 presents an empirical illustration.

Section 3.6 concludes the chapter with some further discussion.
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3.2 AQS-Estimation of FE-SPD Models with TVC

In this section, we present a general framework for estimating the fixed effects (FE)

SPD models with time-varying coefficients. The estimation strategy is valid when n is

large, but T can be large or small. The basic idea of this approach is to first formulate the

Gaussian likelihood function, and then adjust the resulting quasi score function to lead to

a set of unbiased estimating functions. We demonstrate the exact cause of inconsistency

of the estimators based on likelihood, and to show how one can adjust the quasi scores to

give consistent estimators. We first outline the quasi maximum likelihood estimation, and

then we introduce the AQS-estimation method for the general model specified in (3.1).

Then, we give a discussion on how the general estimation method be specialized to some

popular submodels to facilitate the practical applications.

3.2.1 The QML estimation

For the FE-SPD model with TVC specified by model (3.1), when both n and T are

large we have to deal with the two sets of incidental parameters, individual FE and time

FE, in order to achieved desired asymptotic properties of the parameter estimates. When

n is large but T is small and fixed, the model becomes essentially an one-way FE model

as time FE can be merged into the time-varying regressors in the form of time dummies.

As the spatial parameters and regression coefficients in (3.1) may change with time,

one can apply transformation method to eliminate the time-specific effects only, provided

that the spatial weight matrices are row-normalized. The transformation method is widely

applied in the literature, see, e.g., Lee and Yu (2010), Baltagi and Yang (2013b) and Yang

et al. (2016). Define Jn = In − 1
n
lnl
′
n. Assume Wn and Mn are row-normalized (i.e.,

row sums are one). Then, JnWn = JnWnJn and JnMn = JnMnJn. Let (Fn,n−1,
1√
n
ln)

be the orthonormal eigenvector matrix of Jn, where Fn,n−1 is the n× (n− 1) sub-matrix

corresponding to the eigenvalues of one. By Spectral Theorem, Jn = Fn,n−1F
′
n,n−1. It fol-

lows that F ′n,n−1Wn = F ′n,n−1WnFn,n−1F
′
n,n−1 and F ′n,n−1Mn = F ′n,n−1MnFn,n−1F

′
n,n−1.

Premultiplying F ′n,n−1 on both sides of (3.1), we have the following transformed model:

Y ∗nt = λtW
∗
nY
∗
nt +X∗ntβt + c∗n + U∗nt, U∗nt = ρ0M

∗
nU
∗
nt + V ∗nt, (3.2)
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where Y ∗nt = F ′n,n−1Ynt and similarly areX∗nt, c
∗
n, U

∗
nt and V ∗nt defined,W ∗

n = F ′n,n−1WnFn,n−1

and M∗
n = F ′n,n−1MnFn,n−1. After the transformation, the effective sample size becomes

N = (n− 1)× T . Furthermore, V ∗nt ∼ (0, σ2
0In−1), which is normal if Vnt is.9

Denote β = (β′1, . . . , β
′
T )′, λ = (λ1, . . . , λT )′, and θ = (β′,λ′, ρ, σ2)′. Define

A∗n(λt) = In−1 − λtW ∗
n and B∗n(ρ) = In−1 − ρM∗

n, t = 1, . . . , T . The quasi Gaussian

loglikelihood function of θ = (β′,λ′, ρ, σ2)′ and c∗n of Model (3.2) is

`(θ, c∗n) =− (n−1)T
2

ln(2πσ2) +
∑T

t=1 ln |A∗n(λt)|+ T ln |B∗n(ρ)|

− 1
2σ2

∑T
t=1 V

∗′
nt (βt, λt, ρ, c

∗
n)V ∗nt(βt, λt, ρ, c

∗
n), (3.3)

where V ∗nt(βt, λt, ρ, c
∗
n) = B∗n(ρ)[A∗n(λt)Y

∗
nt −X∗ntβt − c∗n], t = 1, . . . , T .

As {λt} and {βt} are allowed to change with t, the usual fixed-effects estimation

methods, such as first differencing or orthogonal transformation, cannot be applied to

eliminate the individual FE. Therefore, we proceed by eliminating c∗n through direct max-

imization of the loglikelihood function. First, given θ, `(θ, c∗n) is partially maximized

at:

c̃∗n(β,λ, ρ) = 1
T

∑T
t=1

(
A∗n(λt)Y

∗
nt −X∗ntβt

)
, (3.4)

which leads to the concentrated loglikelihood function of θ upon substitution:

`c(θ) =− (n−1)T
2

ln(2πσ2) +
∑T

t=1 ln |A∗n(λt)|+ T ln |B∗n(ρ)|

− 1
2σ2

∑T
t=1 Ṽ

∗′
nt (β,λ, ρ)Ṽ ∗nt(β,λ, ρ), (3.5)

where Ṽ ∗nt(β,λ, ρ) = V ∗nt(βt, λt, ρ, c̃
∗
n(β,λ, ρ)) = B∗n(ρ)[A∗n(λt)Y

∗
nt−X∗ntβt−c̃∗n(β,λ, ρ)].

Maximizing `c(θ) gives the QML estimator θ̂QML of the vector of common parameters θ.

3.2.2 The AQS estimation

Including the fixed effects into the spatial panel data models, we are likely to encounter

the incidental parameter problems. Therefore, We propose an adjusted quasi score (AQS)

method through adjusting the resulting concentrated (quasi) score functions to give a set of

9The time-specific effects can also be eliminated by pre-multiplying Jn on both sides of (3.1). However,

the resulting disturbances JnVnt would not be linearly independent over the cross-section dimension.
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unbiased estimating functions. By eliminating the asymptotic bias in the AQS functions,

the AQS method achieves asymptotically unbiased parameter estimation.

To facilitate the subsequent derivations, denote U◦nt(βt, λt) = A∗n(λt)Y
∗
nt − X∗ntβt,

D∗n(ρ) = B∗′n (ρ)B∗n(ρ). Then, we have Ṽ ∗nt(β,λ, ρ) = B∗n(ρ)[U◦nt(βt, λt) − c̃∗n(β,λ, ρ)],

c̃∗n(β,λ, ρ) = 1
T

∑T
t=1 U

◦
nt(βt, λt), and the key term in (3.5):

∑T
t=1 Ṽ

∗′
nt (β,λ, ρ)Ṽ ∗nt(β,λ, ρ) =

∑T
t=1 U

◦′
nt(βt, λt)D

∗
n(ρ)U◦nt(βt, λt)

− 1
T

(∑T
t=1 U

◦
nt(βt, λt)

)′
D∗n(ρ)

(∑T
t=1 U

◦
nt(βt, λt)

)
.

Differentiating `c(θ) gives the CS or CQS function of θ:

Sc(θ) =



1
σ2X

∗′
ntB

∗′
n (ρ)Ṽ ∗nt(β,λ, ρ), t = 1, . . . , T,

1
σ2 (W ∗

nY
∗
nt)
′B∗′n (ρ)Ṽ ∗nt(β,λ, ρ)− tr[G∗n(λt)], t = 1, . . . , T,

1
σ2

∑T
t=1 Ṽ

∗′
nt (β,λ, ρ)H∗n(ρ)Ṽ ∗nt(β,λ, ρ)− T tr[H∗n(ρ)],

− (n−1)T
2σ2 + 1

2σ4

∑T
t=1 Ṽ

∗′
nt (β,λ, ρ)Ṽ ∗nt(β,λ, ρ),

(3.6)

where G∗n(λt) = W ∗
nA
∗−1
n (λt) and H∗n(ρ) = M∗

nB
∗−1
n (ρ), t = 1, . . . , T .

Under mild conditions, maximizing the concentrated loglikelihood `c(θ) is equivalent

to solving the estimating equation Sc(θ) = 0. Denote θ0 = (β′0,λ
′
0, ρ0, σ

2
0)′ as the

true value of the general parameter vector θ = (β′,λ′, ρ, σ2)′. It is well known that

for a regular quasi-score estimation problem, a necessary condition for the quasi-score

estimators to be consistent is that the probability limit of the estimating function (in this

case, the averaged conditional quasi score) at the true parameter value is zero, i.e.,

limn→∞
1
nT
Sc(θ0)

p−→ 0,

see, e.g., van der Vaart (1998). However, as shown below this is not the case unless T

also goes to infinity. Thus, the concentrated quasi-score estimators are not consistent

unless T → ∞. To solve this problem, we first derive E[S(θ0)], and then adjust the

quasi score Sc(θ) by centering so that the adjusted quasi score (AQS) vector, S?(θ0) =

S(θ0)− E[S(θ0)], is such that plimn→∞
1
nT
S?(θ0) = 0.

Assume Model (3.2) holds only under the true θ0 and the usual expectation and

variance operators correspond to θ0. We have, c̃∗n(β0,λ0,ρ0) = c∗n + B∗−1
n V

∗
n and
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hence Ṽ ∗nt ≡ Ṽ ∗nt(β0,λ0, ρ0) = V ∗nt − V
∗
n, where V

∗
n = 1

T

∑T
t=1 V

∗
nt. Furthermore,

W ∗
nY
∗
nt = G∗nt(X

∗
ntβ0 + c∗n + B∗−1

n V ∗nt), where B∗n0 = B∗n(ρ0) and G∗nt0 = G∗n(λt0).

Then, we obtain,

E[Sc(θ0)] =



0Tk,1,

− 1
T

tr[G∗n(λt0)], t = 1, . . . T,

−tr[H∗n(ρ0)],

−n−1
2σ2

0
.

where 0m,r denotes an m× r matrix of zeros.

The above results show that the (λ, ρ, σ2) elements of E[Sc(θ0)] are not zero. Hence,

plimn→∞
1
nT

∂
∂λ
`c(θ0), plimn→∞

1
nT

∂
∂ρ
`c(θ0), and plimn→∞

1
nT

∂
∂σ2 `

c(θ0) are all non-zero,

suggesting that the estimators based on the direct approach cannot be consistent in gen-

eral. The direct approach does not yield consistent estimators unless T goes to large.

Even if T goes to large with n, there will be an asymptotic bias of order depending on

T .10 Therefore, we adjust the concentrated (quasi) scores given in (3.6) by subtracting

the bias vector from it, so as to give a set of unbiased estimating functions, leading to the

vector of the adjusted quasi score (AQS) functions below:

S?(θ) =



1
σ2X

∗′
ntB

∗′
n (ρ)Ṽ ∗nt(β,λ, ρ), t = 1, . . . , T,

1
σ2 (W ∗

nY
∗
nt)
′B∗′n (ρ)Ṽ ∗nt(β,λ, ρ)− T−1

T
tr[G∗n(λt)], t = 1, . . . , T,

1
σ2

∑T
t=1 Ṽ

∗′
nt (β,λ, ρ)H∗n(ρ)Ṽ ∗nt(β,λ, ρ)− (T − 1)tr[H∗n(ρ)],

− (n−1)(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ

∗′
nt (β,λ, ρ)Ṽ ∗nt(β,λ, ρ),

(3.7)

It is easy to show that E[S?(θ)] = 0, and that 1
nT
S?(θ0)

p−→ 0 as n → ∞ alone, or the

finite dimensional components of 1
nT
S?(θ0) approach to 0 in probability when both n and

T go infinity. The adjusted quasi score(AQS) function above leads to an estimator of θ

that not only is consistent but also has a centered asymptotic distribution, whether T is

10To be exact, if 1
nT E[S(θ0)] = O( 1

T ), then 1√
nT

E[S(θ0)] = O(( nT )
1
2 ), implying E[

√
nT (θ̃ − θ0)] =

O(( nT )
1
2 ). The latter says that

√
nT (θ̃ − θ0) would converge to a non-centered normal if n

T → c > 0. If
n
T → 0 (large T case), the asymptotic bias vanishes.
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fixed or grows with n. The latter implies that when T grows with n, the estimation based

on the AQS functions eliminates the asymptotic bias incurred in the direct approach.

Solving S?(θ) = 0 leads to the AQS-estimator θ̂AQS of θ. This root-finding process

can be simplified by first solving the equations for β and σ2, given δ = (λ′, ρ)′, resulting

in the constrained AQS estimators of β and σ2 as

β̂(δ) = (X∗′NB
∗′
N(ρ)ΩB∗N(ρ)X∗N)−1X∗′NB

∗′
N(ρ)ΩB∗N(ρ)A∗N(λ)Y ∗N , (3.8)

σ̂2(δ) = 1
(n−1)(T−1)

V̂ ∗′N (δ)V̂ ∗N(δ), (3.9)

where Y ∗N = (Y ∗′n1, . . . , Y
∗′
nT )′, X∗N = blkdiag(X∗n1, . . . , X

∗
nT ) where blkdiag( ) forms

a block diagonal matrix, A∗N(λ) = blkdiag(A∗n(λ1), . . . , A∗n(λT )), B∗N = IT ⊗ B∗n(ρ)

where⊗ denotes Kronecker product, Ω = IN− 1
T

(1T1′T⊗In−1) and V̂ ∗N(δ) = Ṽ ∗N(β̂(δ), δ) =

ΩB∗N(ρ)[A∗N(λ)Y ∗N − X∗N β̂(δ)]. Substituting β̂(δ) and σ̂2(δ) back into the middle two

components of the AQS function in (3.7) gives the concentrated AQS function:

S?c(δ) =

{
1

σ̂2(δ)
Y ◦′N B

∗′
N V̂

∗
N(δ)− T−1

T
gN(λ),

1
σ̂2(δ)

V̂ ∗′N (δ)(δ)H∗N(ρ)V̂ ∗N(δ)− (T − 1)tr[H∗n(ρ)],
(3.10)

where Y ◦N =blkdiag(W ∗
nY
∗
n1, . . . ,W

∗
nY
∗
nT ) and gN(λ) =

(
tr[G∗n(λ1)], . . . , tr[G∗n(λT )]

)′,
and H∗N(ρ) = IT ⊗ H∗n(ρ). Solving the resulting concentrated estimating equations,

S?c(δ) = 0, we obtain the unconstrained AQS estimator δ̂AQS of δ. The unconstrained

AQS estimators of β and σ2 are thus β̂AQS ≡ β̂(δ̂AQS) and σ̂2
AQS ≡ σ̂2(δ̂AQS). Let θ̂AQS =

(β̂′AQS, λ̂
′
AQS, ρ̂, σ̂

2
AQS)

′.

Remark 3.1 Transformation for eliminating the time FE depends on the assumption that

the spatial weight matrices are ’row-normalizable’. However, in real applications, not

all spatial weight matrices are row-normalizable. In this case transformation method is

totally inapplicable, but our ‘concentration and adjustment’ strategy remains applicable.

Remark 3.2 The QML and AQS estimators of (β,λ, ρ) are equivalent. By concen-

trating out σ2 from (3.6) and (3.7), we see that the resultant concentrated versions of these

two sets of functions are identical, showing the equivalence.

Remark 3.3 Thus, in terms of point estimation, one can simply follow the QML method

and then rescale the QMLE of σ2 by multiplying the factor T
T−1

. However, in terms of
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inference, one must follow the AQS method in order to have a valid set of ‘estimating

functions’ so as to obtain joint asymptotic distribution and valid estimator of the variance-

covariance (VC) matrix of the AQS estimators.

3.2.3 A discussion on some submodels

To facilitate the practical applications, we give a brief discussion on how the general

AQS estimation strategy simplifies to some popular submodels of (3.1), namely, (i) SPD

model with both SL and SE (SLE) but one-way individual FE (1FE), (ii) SPD model with

SL only and two-way FE (2FE), and (iii) SPD model with SL only and 1FE.

SPD model with SLE and 1FE. Until now, we have considered the SPD models with

both individual-specific FE and time-specific FE, and the way to handle both sets of FEs is

to ‘eliminate’ them by transformation and concentration with adjustment. In case when n

is large and T is small and fixed, the transformation to wipe out the time FE is unnecessary

as the model fits into one-way FE model (with individual-specific FE only), which is also

popular in empirical applications. In the following, we consider the AQS-estimation for

SPD models with individual fixed effects only.

Ynt = λtWnYnt +Xntβt + cn + Unt, Unt = ρ0MnUnt + Vnt, (3.11)

Model (3.11) takes an identical form as Model (3.2).11 Hence the steps leading to the AQS

estimators are similar. Define An(λt) = In − λtWn, t = 1, . . . , T , Bn(ρ) = In − ρMn.

The overall sample size in this model is N = n× T . The AQS vector becomes:

S?(θ) =



1
σ2X

′
ntB

′
n(ρ)Ṽnt(β,λ, ρ), t = 1, . . . , T,

1
σ2 (WnYnt)

′B′n(ρ)Ṽnt(β,λ, ρ)− T−1
T

tr[(ρ)Gn(λt)], t = 1, . . . , T,

1
σ2

∑T
t=1 Ṽ

′
nt(β,λ, ρ)Hn(ρ)Ṽnt(β,λ, ρ)− (T − 1)tr[Hn(ρ)],

−n(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ

′
nt(β,λ, ρ)Ṽnt(β,λ, ρ),

(3.12)
11Now, Xt may contain the column vector 1n and βt may contain αt to incorporate the time FE when T

is small and fixed.

51



where Ṽnt(β,λ, ρ) = Vnt(βt, λt, ρ, c̃n(β,λ, ρ)) = Bn(ρ)[An(λt)Ynt−Xntβt−c̃n(β,λ, ρ)],

and c̃n(β,λ, ρ) = 1
T

∑T
t=1

(
An(λt)Ynt−Xntβt

)
. Given δ = (λ′, ρ)′, the constrained AQS

estimators of β and σ2 take the form:

β̂(δ) = (X ′NB
′
N(ρ)ΩBN(ρ)XN)−1X ′NB

′
N(ρ)ΩBN(ρ)AN(λ)YN , (3.13)

σ̂2(δ) = 1
n(T−1)

V̂ ′N(δ)V̂N(δ), (3.14)

whereXN = blkdiag(Xn1, . . . , XnT ),AN(λ) = blkdiag(An(λ1), . . . , An(λT )),BN(ρ) =

IT ⊗Bn(ρ), YN = (Y ′n1, . . . , Y
′
nT )′, Ω = IN − 1

T
(`T `

′
T ⊗ In), and V̂N(δ) = ṼN(β̂(δ), δ) =

ΩBN(ρ)[AN(λ)YN − XN β̂(δ)]. Substituting β̂(δ) and σ̂2(δ) back into the middle two

components of the AQS function in (3.12) gives the concentrated AQS function:

S?c(δ) =

{
1

σ̂2(δ)
Y ◦′N B

′
N V̂N(δ)− T−1

T
gN(λ),

1
σ̂2(δ)

V̂ ′N(δ)HN(ρ)V̂N(δ)− (T − 1)tr[Hn(ρ)],
(3.15)

where Y ◦N =blkdiag(WnYn1, . . . ,WnYnT ), gN(λ) =
(
tr[Gn(λ1)], . . . , tr[Gn(λT )]

)′,
and HN(ρ) = IT ⊗Hn(ρ). Solving S?c(δ) = 0 gives the unconstrained AQSE δ̂ of δ, and

the unconstrained AQSEs of β and σ2 as β̂ ≡ β̂(δ̂) and σ̂2 ≡ σ̂2(δ̂).

SPD model with SL and 2FE. The model takes the following form: Ynt = λtWnYnt+

Xntβt + cn + αtln + Vnt, where Wn is row-normalized. Applying the same orthonormal

transformation as that for Model (3.1), we have the following transformed model:

Y ∗nt = λtW
∗
nY
∗
nt +X∗ntβt + c∗n + V ∗nt, t = 1, . . . , T, (3.16)

where Y ∗nt, X
∗
nt, c

∗
n, W ∗

n and V ∗nt are defined as in Model (3.2). Now, θ = (β′,λ′, σ2)′.

After the transformation, the overall sample size is N = (n − 1)T as for the 2FE-SLE

model. Following the same steps as in the previous section, we obtain the AQS vector:

S?(θ) =


1
σ2X

∗′
ntṼ

∗
nt(β,λ), t = 1, . . . , T,

1
σ2 (W ∗

nY
∗
nt)
′Ṽ ∗nt(β,λ)− T−1

T
tr[G∗n(λt)], t = 1, . . . , T,

− (n−1)(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ

∗′
nt (β,λ)Ṽ ∗nt(β,λ).

(3.17)

where Ṽ ∗nt(β,λ) = A∗n(λt)Y
∗
nt − X∗ntβt − c̃∗n(β,λ), c̃∗n(β,λ) = 1

T

∑T
t=1[A∗n(λt)Y

∗
nt −

X∗ntβt]. Again, A∗n(λt) = In−1 − λtW
∗
n and G∗n(λt) = W ∗

nA
∗−1
n (λt). The constrained
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AQS estimators of β and σ2, given λ, are: β̂(λ) = (X∗′NΩX∗N)−1X∗′NΩA∗N(λ)Y ∗N and

σ̂2(λ) = 1
(n−1)(T−1)

V̂ ∗′N (λ)V̂ ∗N(λ), where X∗N , A∗N(λ) and Y ∗N are defined as in 3.8-3.9,

V̂ ∗N(λ) = Ṽ ∗N(β̂(λ),λ) = Ω[A∗N(λ)Y ∗N − X∗N β̂(δ)]. Substituting β̂(λ) and σ̂2(λ) back

into the middle component of the AQS function in (3.17) gives the concentrated AQS

function:

S?c(λ) = 1
σ̂2(λ)

Y ◦′N V̂
∗
N(λ)− T−1

T
gN(λ), (3.18)

where Y ◦N and gN(λ) are defined as in the concentrated AQS function (3.10). We obtain

the unconstrained AQS estimators λ̂ of λ by solving S?c(λ) = 0. The unconstrained AQS

estimators of β and σ2 are thus β̂ ≡ β̂(λ̂) and σ̂2 ≡ σ̂2(λ̂).

SPD model with SL and 1FE. Consider the model, Ynt = λtWnYnt+Xntβt+cn+Vnt,

which takes an identical form as Model (3.16). The AQS vector becomes:

S?(θ) =


1
σ2X

′
ntṼnt(β,λ), t = 1, . . . , T,

1
σ2 (WnYnt)

′Ṽnt(β,λ)− T−1
T

tr[Gn(λt)], t = 1, . . . , T,

−n(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ

′
nt(β,λ)Ṽnt(β,λ).

(3.19)

where Ṽnt(β,λ) = An(λt)Ynt −Xntβt − c̃n(β,λ) and c̃n(β,λ) = 1
T

∑T
t=1[An(λt)Ynt −

Xntβt]. Given λ, the constrained AQSEs of β and σ2 are: β̂(λ) = (X ′NΩXN)−1X ′NΩAN(λ)YN

and σ̂2(λ) = 1
n(T−1)

V̂ ′N(λ)V̂N(λ). Here, XN , AN(λ) and YN are defined in 3.13-3.14, and

V̂N(λ) = ṼN(β̂(λ),λ) = Ω[AN(λ)YN − XN β̂(λ)]. Substituting β̂(λ) and σ̂2(λ) back

into the middle component of the AQS function in (3.19) gives the concentrated AQS

function:

S?c(λ) = 1
σ̂2(λ)

Y ◦′N V̂N(δ)− T−1
T
gN(λ), (3.20)

where Y ◦N and gN(λ) are defined as in (3.15). Solving S?c(δ) = 0 gives the AQSE λ̂ of λ,

and the AQSEs of β and σ2 as β̂ ≡ β̂(λ̂) and σ̂2 ≡ σ̂2(λ̂).

3.3 Asymptotic properties of the AQS estimators

In this section we study the consistency and asymptotic normality of the proposed

AQS estimators for the FE-SPD model with time-varying coefficients. To facilitate the

discussions, first recall: θ0 denotes the true value of the parameter vector θ; a parametric
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vector/matrix at the true parameter value is differentiated from that at a general parameter

value by dropping its argument, e.g., B∗n ≡ B∗n(ρ0); and the usual expectation, variance

and covariance operators ‘E’ ‘Var’ and ‘Cov’ correspond to the true parameter vector θ0.

Second, some general notation and convention are as follows: (i) δ denotes the vector

of parameters in the concentrated AQS function, and ∆ the space from which δ takes

values; (ii) tr(·), | · | and ‖ · ‖ denote, respectively, the trace, determinant, and Frobenius

norm of a matrix; (iii) γmax(A) and γmin(A) denote, respectively, the largest and smallest

eigenvalues of a real symmetric matrix A; and (iv) diag(ak) forms a diagonal matrix

using the elements {ak} and blkdiag(Ak) forms a block-diagonal matrix using the

matrices {Ak}. Proofs of the lemmas and theorems are sketched in Appendices.

Assumption A: The disturbances {vit} are iid across i and t with mean zero, variance

σ2
0 , and E|vit|4+ε0 <∞ for some ε0 > 0.

Assumption B: The space ∆ is compact, and the true parameter δ0 lies in its interior.

Assumption C: The time-varying regressors {Xnt, t = 1, . . . , T} are exogenous with

respect to vit but are correlated with µ and α in an arbitrary manner, their values are

uniformly bounded in n and t, and limn→∞
1
nT
X∗′NB

∗′
NB

∗
NX

∗
N exists and is nonsingular.

Assumption D: (i) the elements wij of Wn are at most of order h−1
n , uniformly in all

i and j, and wii = 0 for all i; (ii) hn/n → 0 as n → ∞; (iii) Wn is row-normalized

and is uniformly bounded in both row and column sums in absolute value; (iv) The matrix

An(λt) is invertible for all λt ∈ Λt, A−1
n (λt0) is uniformly bounded in both row and

column sums, and A−1
n (λt) is uniformly bounded in either row or column sums, uniformly

in λt ∈ Λt, where Λt is a compact parameter space, t = 1, . . . , T .

Assumption E: (i) the elements mij of Mn are at most of order h−1
n , uniformly in all i

and j, andmii = 0 for all i; (ii) hn/n→ 0 as n→∞; (iii)Mn is row-normalized and is

uniformly bounded in both row and column sums in absolute value; (iv) The matrixBn(ρ)

is invertible for all ρ ∈ P, B−1
n (ρ0) is uniformly bounded in both row and column sums,

and B−1
n (ρ) is uniformly bounded in either row or column sums, uniformly in ρ ∈ P,

where P denotes a compact parameter space.

Assumptions A-E are standard in the spatial econometrics literature (see Lee, 2004;
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Lee and Yu, 2010; Su and Yang, 2015; and Yang et al., 2016). The existence of 4th

moment of idiosyncratic errors in Assumption A is a standard requirement in QML and

GMM estimation. The proof of consistency of the ‘nonlinear’ parameters δ requires the

compactness of the parameter space ∆ as in Assumption B. Assumptions C, D and E

together guarantee the existence and nonsingularity of limn→∞
1
nT
X∗′NB

∗′
N(ρ)ΩB∗N(ρ)X∗N ,

and with these the consistency of β̂AQS and σ̂AQS follows immediately that of δ̂. Conditions

(i), (iii) and (iv) under Assumptions D and E are standard conditions put on the spatial

weight matrices (Lee, 2004; Yang, 2018). Assumption D(ii) and E(ii) further allow the

degree of spatial dependence to grow with n (Lee, 2004; Yang, 2018).

The consistency of the AQS estimators θ̂AQS lies with the consistency of δ̂AQS, as the

consistency of β̂AQS and σ̂2
AQS follows almost immediately that of δ̂ under assumptions C-

E. The concentrated estimating function (CEF) S?c(δ) and its population counterpart play

a major role for the consistency of δ̂AQS for δ.

Define S̄?(θ) = E[S?(θ)], the population counterpart of the joint AQS function given

in (3.7). Given δ, S̄?(θ) = 0 is partially solved at:

β̄(δ) = (X∗′NB
∗′
N(ρ)ΩB∗N(ρ)X∗N)−1X∗′NB

∗′
N(ρ)ΩB∗N(ρ)A∗N(λ)E(Y ∗N), (3.21)

σ̄2(δ) = 1
(n−1)(T−1)

E[V̄ ∗′N (δ)V̄ ∗N(δ)], (3.22)

where V̄ ∗N(δ) = Ṽ ∗N |β=β̄(δ) = ΩB∗N(ρ)[A∗N(λ)Y ∗N − X∗N β̄(δ)]. Substituting β̄(δ) and

σ̄2(δ) back into the δ-component of S̄?(θ) leads to the population counterpart of the

concentrated AQS function given in (3.10) as

S̄?c(δ) =

{
1

σ̄2(δ)
E[Y ◦′N B

∗′
N(ρ)V̄ ∗N(δ)]− T−1

T
gN(λ),

1
σ̄2(δ)

E[V̄ ∗′N (δ)H∗N(ρ)V̄ ∗N(δ)]− (T − 1)tr[H∗n(ρ)].
(3.23)

Clearly, the AQS-estimator δ̂ of δ0 is a zero of S?c(δ). It is easy to see that S̄?c(δ0) = 0

through β̄(δ0) = β0 and σ̄2(δ0) = σ2
0 , i.e., δ0 is a zero of S̄?c(δ). Thus, by Theorem 5.9 of

van der Vaart (1998), δ̂AQS will be consistent for δ0 if supδ∈∆
1
N∗

∥∥S?c(δ)− S̄?c(δ)∥∥ p−→ 0,

and the following identification condition holds, where N∗ = (n− 1)(T − 1).

Assumption F: infδ: d(δ,δ0)≥ε
∥∥S̄?c(δ)∥∥ > 0 for every ε > 0, where d(δ, δ0) is a mea-

sure of distance between δ0 and δ.
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This assumption can be seen to be satisfied by some more primitive (but messier

in expressions) conditions. Let DN(δ) = B∗N(ρ)A∗N(λ) and DN ≡ DN(δ0), fN =

A∗−1
N XNβ0 = (f ′n1, . . . , f

′
nT )′, f ◦N= blkdiag(fn1, . . . , fnT ),D∗N(δ) = DN(δ)−B∗N(ρ)A∗N ,

G∗N = WNA
−1
N (λ) and WN = IT ⊗Wn. Then, it is easy to see that Assumption F holds

if:

limN→∞
1
N
FN(δ) 6= 0, ∀δ 6= δ0, where (3.24)

FN(δ) =

{
f ◦′ND

∗′
NḠNM(ρ)ΩDN(δ)fN + σ2

0(g◦N(λ)− T−1
T
gN(λ)),

f ′ND
′
N(δ)ΩM(ρ)H∗N(δ)M(ρ)ΩDN(δ)fN + σ2

0tr(H◦N − (T − 1)H∗n(δ)),

where ḠN = B∗−1′
N G∗′NB

∗′
N(ρ), g◦N(λ) =

(
tr[G◦n(λ1)], . . . , tr[G◦n(λT )]

)′ is a vector with el-

ements that capture trace of block diagonal matrices ofG◦N =D′−1
N D′N(δ)ḠNΩDN(δ)D−1

N

= blkdiag(G◦n(λ1), . . . , G◦n(λT )), H◦N = D′−1
N D′N(δ)ΩH∗NΩDN(δ)D−1

N , and M(ρ) =

IN − ΩB∗N(ρ)X∗N(X∗′NB
∗′
N(ρ)ΩB∗N(ρ)X∗N)−1X∗′NB

∗′
N(ρ)Ω.

Note that to show supδ∈∆
1
N∗

∥∥S?c(δ) − S̄?c(δ)∥∥ p−→ 0, the detailed expressions for

σ̄2(δ) and S̄?c(δ) are needed, which can be easily obtained through the following identity:

V̄ ∗N(δ) = M(ρ)ΩB∗N(ρ)A∗N(λ)Y ∗N + P(ρ)ΩB∗NA
∗
N(λ)Ỹ ∗N , (3.25)

where Ỹ ∗N = Y ∗N−E(Y ∗N), M(ρ) = IN−ΩB∗N(ρ)X∗N(X∗′NB
∗′
N(ρ)ΩB∗N(ρ)X∗N)−1X∗′NB

∗′
N(ρ)Ω,

and P(ρ) = IN −M(ρ). Also note that the quantities E(Ỹ ∗N) and Var(Ỹ ∗N), etc., involved

in (3.21)-(3.23) are functions of θ0, but not θ.

The identification for β and σ2
0 follows with the identification of δ by Assumption

C, D and E. The compactness of the parameter space of β and σ2
0 is not needed due to

the linearity property. We have the following theorem with the detailed proof given in

Appendix C.

Theorem 3.1 Under Assumptions A-F, θ0 is identified. Furthermore, for the AQS-estimators

θ̂AQS based on the AQS function, θ̂AQS
p−→ θ0.

To derive the asymptotic distribution of the AQS estimators θ̂AQS, we start with a

Taylor expansion of the joint AQS equations S?(θ̂AQS) = 0 at θ0, and then we verify that

the AQS function S?(θ0) is asymptotically normal and that the corresponding adjusted

Hessian ∂
∂θ′
S?(θ̄) has proper asymptotic behavior for some θ̄ lying between θ̂AQS and θ0
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elementwise. Let VN = (V ′n1, . . . , V
′
nT )′ be the vector of original errors with elements

{vit} being iid of mean 0, variance σ2. We can express Ṽ ∗nt and W ∗
nY
∗
nt in terms of VN .

Lemma 3.1 Let zt be a T ×1 vector of element 1 in the tth position and 0 elsewhere, and

define ZNt = zt ⊗ In, Z̄N = 1
T

(lT ⊗ In), and Z◦Nt = ZNt − Z̄N . We have,

Ṽ ∗nt ≡ Ṽ ∗nt(β0,λ0, ρ0) = F ′n,n−1(Vnt − V̄N) = F ′n,n−1Z
◦′
NtVN , (3.26)

W ∗
nY
∗
nt = G∗nt(X

∗
ntβ0 + c∗n +B∗−1

n V ∗nt) = η∗nt0 +G∗ntB
∗−1
n F ′n,n−1Z

′
NtVN . (3.27)

Using these representations, the AQS function at θ0 can be written as

S?(θ0) =



Π′1tVN , t = 1, . . . , T,

Π′2tVN + V′NΦ1tVN − T−1
T

tr(G∗nt0), t = 1, . . . , T,

V′NΦ2tVN − (T − 1)tr(H∗n0),

V′NΨVN − (n−1)(T−1)
2σ2 ,

(3.28)

where Π1t = 1
σ2
0
Z◦
∗
NtB

∗
n0X

∗
nt, Π2t = 1

σ2
0
Z◦
∗
NtB

∗
n0η
∗
nt0,Φ1t = 1

σ2
0
Z∗NtB

∗−1′
n0 G∗

′
nt0B

∗′
n0Z

◦∗′
Nt , Φ2 =

1
σ2
0

∑T
t=1 Z

◦∗
NtH

∗
n0Z

◦∗′
Nt , and Ψ = 1

2σ4
0

∑T
t=1 Z

◦∗
NtZ

◦∗′
Nt , with Z∗Nt = ZNtFn,n−1 and Z◦∗Nt =

Z◦NtFn,n−1. The above representation for AQS function given in (3.7) at θ0 in terms of

VN = (V ′n1, . . . , V
′
nT )′ turns out to be very useful. It leads to a simple way for establishing

the asymptotic normality and estimating the variance-covariance (VC) matrix of the AQS

vector. To further simplify the expressions, denote N∗ as the effective sample size, where

N∗ = n∗ × T ∗, n∗ = n− 1 and T ∗ = T − 1.

Theorem 3.2 Under the assumptions of Theorem 3.1, we have, as n→∞,

√
N∗
(
θ̂AQS − θ0

) D−→ N
[
0, lim

n→∞
I◦−1(θ0)Σ◦(θ0)I◦−1(θ0)

]
,

where I◦(θ0) = − 1
N∗

E[ ∂
∂θ′
S?(θ0)] and Σ◦(θ0) = 1

N∗
Var[S?(θ0)], both assumed to exist

and I◦(θ0) to be positive definite, for sufficiently large n.

The expressions for I◦(θ) and Σ◦(θ) can be found in Appendix B.2, where I◦(θ)

can be consistently estimated by − 1
N∗

∂
∂θ′
S?(θ̂AQS). The quantity Σ◦(θ) involves the 3rd

and 4th cumulants (or skewness and excess kurtosis), µ(3) and µ(4), of the original errors
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vit. However, only the estimates of the transformed errors are available. Therefore, some

details on the methods of estimating µ(3) and µ(4) are necessary. The elements of the

transformed errors V ∗nt may not be totally independent unless the original errors are normal

and their 3rd and 4th moments may not be constant. Thus, one needs to work with the

original error vector Vnt through V ∗nt = F ′n,n−1Vnt. and their estimates are obtained by

applying Lemma 4.1(a) of Yang et al. (2016).

Case of large n and large T . So far, we focus on the short panels, i.e., panels with

large n, and small and fixed T . When T increases with n, the asymptotic arguments

leading the consistency and asymptotic normality of the AQS estimator θ̂AQS are no longer

appropriate, as the dimensions of θ0, I◦(θ0) and Σ◦(θ0) grow with the increase of T . A

connected phenomenon is that the βt and λt components of I◦(θ0) will approach to zero

as n, T → ∞ . This raises a issue of convergence rates for the components of the AQS

estimator θ̂AQS. While in spatial framework a panel with large n and small T is more

popular, it is also important to allow for a panel with large n and large T (but smaller

than n). In this sense, to keep out theoretical arguments simple, one can simply apply the

so-called ‘sequential asymptotics’ arguments to extend the results of Theorems (3.1) and

(3.2) by letting n goes large first and then T .

To do so, we work on each component, βt and λt, of β and λ. From the informa-

tion matrix I(θ0) = −E[ ∂
∂θ′
S?(θ0)] given in Appendix B.2, we see that the βt block of

1
nT
I(θ0) is 1

nT

(
T−1
Tσ2

0
X∗′ntD

∗
nX
∗
nt

)
, which approaches to a zero matrix as n, T → ∞. How-

ever, the quantity with a different normalizing factor 1
n

, 1
n

(
T−1
Tσ2

0
X∗′ntD

∗
nX
∗
nt

)
will converge

to a positive definite matrix as n, T → ∞. A similar phenomenon holds for the λt com-

ponent of 1
nT
I(θ0). Furthermore, it is easy to see that the (ρ, σ2) component of 1

nT
I(θ0)

converges to a positive definite matrix as n, T → ∞. These reveal that the convergence

rate for β̂t and λ̂t are both
√
n, which the rate of convergence for ρ̂ and σ̂2 are both

√
nT .

We have the following results.
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Theorem 3.3 Under the assumptions of Theorem 3.2, we have,

(i)
√
n
(
β̂t − βt0

) D−→ N
(
0, Ωt

)
, for each t, as n→∞, and then T →∞,

(ii)
√
n
(
λ̂t − λt0

) D−→ N
(
0, τ 2

λt

)
, for each t, as n→∞, and then T →∞,

(iii)
√
nT
(
ρ̂− ρ0

) D−→ N
(
0, τ 2

ρ

)
, as n, T →∞,

(iv)
√
nT
(
σ̂2 − σ2

0

) D−→ N
(
0, τ 2

σ2

)
, as n, T →∞,

where Ωt and τ 2
λt

are the limits of the corresponding components of 1
T
I◦−1(θ0)Σ◦(θ0)I◦−1

(θ0), and τ 2
ρ and τ 2

σ2 the limits of the corresponding components of I◦−1(θ0)Σ◦(θ0)I◦−1(θ0).

From the results Theorem 3.3, it is clear the joint inference for a finite number of

components of β can be made by extending the result (i), the joint inference for a finite

number of components of λ can be made by extending the result (ii), and the joint in-

ference concerning a finite number of components of θ can be made by extending and

combining the results (i) − (iv) of Theorem 3.3. These results provide useful tools for

the practical applications in switching from the fixed T scenario to the large T scenario.

3.4 Monte Carlo Simulation

Monte Carlo experiments are carried out to investigate the finite sample performance

of (i) the proposed AQS estimators of the FE-SPD model with time-varying coefficients,

and (ii) the estimated standard errors of the AQS estimators. We use the following four

models in our Monte Carlo experiments, all having two time-varying regressors:

SL1 : Ynt = λt0WnYnt +Xntβt0 + cn0 + Vnt,

SL2 : Ynt = λt0WnYnt +Xntβt0 + cn0 + αt0`n + Vnt,

SLE1 : Ynt = λt0WnYnt +Xntβt0 + cn0 + Unt, Unt = ρ0MnUnt + Vnt,

SLE2 : Ynt = λt0WnYnt +Xntβt0 + cn0 + αt0`n + Unt, Unt = ρ0MnUnt + Vnt,

where t = 1, . . . T .

In the Monte Carlo experiments, we choose n = (50, 150, 500), and T = (3, 6).

For T = 3, we set β′10 = (1.0, 1.0), β′20 = (0.75, 1.25), β′30 = (1.25, 0.75), and λ′0 =

(0.5, 0.25, 0.75); and for T = 6, we set β′0 = (1.0, 1.0; 0.75, 1.25; 1.25, 0.75; 1.0, 1.0; 0.75,
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1.25; 1.25, 0.75), and λ′0 = (0.5, 0.25, 0.75, 0.5, 0.25, 0.75). Finally, σ0 = 1 and ρ0 = 0.5.

The details of generating idiosyncratic errors, weight matrices and regressors are as fol-

lows.

Weight matrices: We use three different methods for generating the spatial weights

matrices (i) Rook Contiguity, (ii) Queen Contiguity, and (iii) Group Inte-

raction. The degree of spatial interactions (number of neighbors each unit has) spec-

ified by layouts (i) − (ii) are all fixed while in (iii) it may grow with the sample size.

This is attained by allowing the number of groups, G, in the sample of spatial units to

be directly related to the sample size n, e.g., G = n0.5. Hence, the average group size,

m = n/G, gives a measure of the degree of spatial dependence among the n spatial units.

The actual sizes of the groups are generated from a discrete uniform distribution from

.5m to 1.5m.

Regressors: The exogenous regressors are generated according to REG1: Xknt
iid∼

N(0, σ2
τ ), which are independent across k = 1, 2, and t = 1, . . . , T . The σ2

τ is the key

parameter that controls the variability of the regressors, and thus the signal-to-noise ratio.

In case we set σ2
τ equals to 1, Xknt is generated from standard normal distribution. In

case when the spatial dependence is in the form of group interaction, the regressors can

also be generated according to REG2: the ith value of the kth regressor in the gth group

is such that Xkt,ig
iid∼ (2zg + zig)/

√
10, where (zg, zi,g)

iid∼ N(0, 1) when group interaction

scheme is followed; {Xkt,ig} are thus independent across k and t, but not across i.

Error Distribution: vit = σ0eit, are generated according to err1: {eit} are iid

standard normal; err2: {eit} are iid normal mixture with 10% of values from N(0, 4)

and the remaining from N(0, 1), standardized to have mean 0 and variance 1; and err3:

{eit} iid chi-square with 3 degrees of freedom, standardized to have mean 0 and variance

1.12

Monte Carlo (empirical) means and standard deviations (sds) are reported for the AQS

estimators and the QML-estimator of σ2 (as the AQS and QML estimators of other pa-

rameters are numerically identical). Empirical averages of the standard errors (ses): ŝe

based on I◦−1(θ̂)Σ̂◦(θ̂)I◦−1(θ̂), are also reported for the proposed AQS estimators. Due

12See Yang (2015a) for more details on generating idiosyncratic errors, weight matrices and regressors.
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to the space constraint, partial Monte Carlo results are reported in Tables 3.1 & 3.3 for the

panel SLE models with 2FE and 1FE, respectively, and Tables 3.2 & 3.4 for the panel SL

models with 2FE and 1FE, respectively. The results show the following patterns:

(i) For the case where the QMLE is inconsistent for σ2, AQSE provides an alternative

with consistency and efficiency. The ML-estimator for σ2 can be quite biased,

even if n increases, it does not show a sign of convergence. The AQSE of σ2 is

significantly less biased.

(ii) For the case where the QML and AQS estimates of the parameters are very similar,

only the AQS estimates are reported. These parameters includes the time-varying

covariate effects β, time-varying spatial lag effects λ and the spatial error effect ρ if

the model contains. Denote Sc(δ) as the concentrated score function under QMLE.

The reason of similarity is because the resulting concentrated score functions, one

is the concentrated AQS function S?c(δ), and the other is Sc(δ), are the same when

equating to zero.

(iii) The estimates of the AQSE-based standard errors perform well with the values are

on average very close to the corresponding Monte Carlo sds, except the ses of σ2

when errors are nonnormal where it is relatively smaller.

(iv) The AQS-estimators of the spatial parameters may converge slower due to: (i)the

intrinsic nature of the score-type estimation of the spatial effects, and (ii) a stronger

spatial error dependence, such as replacing the weight matrices by Group inter-

action.

(v) The results clearly show that as n and T get larger, the AQS-estimators converge

faster. To summarize, the AQS-estimation performs better than the ML-estimation,

especially when T is small.

In summary, the proposed AQS-estimation is reliable and easy to apply, and hence is

recommended for the applied researchers.
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Table 3.1a. Empirical Mean (sd) [se] of AQS-Estimator: SLE Model
Two-Way FE, Wn and Mn: Queen Contiguity, T = 3

n = 50 n = 150 n = 500

(a) Normal Error
β1 1.00 1.0000 (.010) [.010] 1.0001 (.005) [.005] 1.0000 (.003) [.003]

1.00 .9999 (.010) [.009] 1.0000 (.005) [.005] .9999 (.003) [.003]
β2 0.75 .7499 (.010) [.009] .7500 (.005) [.005] .7500 (.003) [.003]

1.25 1.2500 (.009) [.008] 1.2500 (.005) [.005] 1.2500 (.003) [.003]
β3 1.25 1.2500 (.008) [.007] 1.2500 (.006) [.006] 1.2500 (.003) [.003]

0.75 .7501 (.008) [.007] .7500 (.005) [.005] .7501 (.003) [.003]
λ 0.50 .4999 (.010) [.010] .4999 (.007) [.006] .4999 (.003) [.003]

0.25 .2498 (.016) [.015] .2499 (.007) [.007] .2500 (.004) [.004]
0.75 .7500 (.007) [.007] .7500 (.004) [.004] .7500 (.002) [.002]

ρ 0.50 .4945 (.155) [.133] .4992 (.076) [.074] .5000 (.041) [.040]
σ2 1.00 .8913 (.133) [.127] .9643 (.083) [.080] .9894 (.045) [.045]
σ2 MLE .5942 (.089) .6428 (.055) .6596 (.030)

(b) Normal Mixture Error
β1 1.00 1.0000 (.010) [.010] 1.0000 (.005) [.005] 1.0000 (.003) [.003]

1.00 .9999 (.010) [.009] .9999 (.005) [.005] .9999 (.003) [.003]
β2 0.75 .7498 (.010) [.009] .7500 (.005) [.005] .7500 (.003) [.003]

1.25 1.2500 (.008) [.008] 1.2500 (.005) [.005] 1.2500 (.003) [.003]
β3 1.25 1.2499 (.008) [.007] 1.2500 (.006) [.006] 1.2500 (.003) [.003]

0.75 .7501 (.008) [.007] .7500 (.005) [.005] .7501 (.003) [.003]
λ 0.50 .5000 (.010) [.010] .5000 (.007) [.006] .5000 (.003) [.003]

0.25 .2497 (.016) [.015] .2499 (.007) [.007] .2500 (.004) [.004]
0.75 .7499 (.007) [.007] .7499 (.004) [.004] .7500 (.002) [.002]

ρ 0.50 .4982 (.153) [.132] .5013 (.075) [.074] .5006 (.041) [.040]
σ2 1.00 .8944 (.266) [.147] .9630 (.162) [.093] .9886 (.092) [.051]
σ2 MLE .5963 (.177) .6420 (.108) .6591 (.061)

(c) Chi-Square-normal Error
β1 1.00 .9999 (.010) [.010] 1.0000 (.005) [.005] 1.0000 (.003) [.003]

1.00 .9998 (.010) [.009] 1.0001 (.005) [.005] 1.0000 (.003) [.003]
β2 0.75 .7500 (.010) [.009] .7500 (.005) [.005] .7501 (.003) [.003]

1.25 1.2502 (.008) [.008] 1.2499 (.005) [.005] 1.2500 (.003) [.003]
β3 1.25 1.2500 (.008) [.007] 1.2501 (.006) [.006] 1.2500 (.003) [.003]

0.75 .7501 (.008) [.007] .7501 (.005) [.005] .7500 (.003) [.003]
λ 0.50 .5001 (.010) [.010] .5001 (.006) [.006] .5000 (.003) [.003]

0.25 .2497 (.016) [.015] .2502 (.007) [.007] .2500 (.004) [.004]
0.75 .7499 (.007) [.007] .7499 (.004) [.004] .7500 (.002) [.002]

ρ 0.50 .4969 (.151) [.132] .5013 (.077) [.074] .4997 (.041) [.040]
σ2 1.00 .8929 (.201) [.136] .9637 (.122) [.085] .9890 (.069) [.048]

σ2 QMLE .5953 (.134) .6425 (.081) .6593 (.046)
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Table 3.1b. Empirical Mean (sd) [se] of AQS-Estimator: SLE Model
Two-Way FE, Wn and Mn: Queen Contiguity, T = 6

n = 50 n = 150 n = 500

(a) Normal Error
β1 1.00 .9998 (.009) [.009] 1.0000 (.005) [.005] 1.0000 (.002) [.002]

1.00 1.0002 (.007) [.007] 1.0000 (.004) [.004] 1.0000 (.002) [.002]
β2 0.75 .7499 (.008) [.008] .7499 (.005) [.005] .7501 (.003) [.003]

1.25 1.2498 (.008) [.007] 1.2498 (.004) [.004] 1.2500 (.002) [.002]
β3 1.25 1.2500 (.007) [.007] 1.2500 (.005) [.005] 1.2500 (.003) [.003]

0.75 .7500 (.008) [.007] .7501 (.004) [.004] .7501 (.002) [.002]
β4 1.00 1.0001 (.009) [.008] 1.0000 (.004) [.004] .9999 (.003) [.002]

1.00 .9999 (.007) [.007] .9999 (.005) [.005] 1.0001 (.002) [.002]
β5 0.75 .7502 (.008) [.007] .7500 (.004) [.004] .7500 (.002) [.002]

1.25 1.2498 (.008) [.008] 1.2500 (.005) [.005] 1.2500 (.002) [.002]
β6 1.25 1.2499 (.007) [.007] 1.2500 (.005) [.005] 1.2500 (.003) [.003]

0.75 .7500 (.007) [.007] .7500 (.004) [.004] .7500 (.002) [.002]
λ 0.50 .4997 (.011) [.010] .4999 (.005) [.005] .5000 (.003) [.003]

0.25 .2498 (.012) [.012] .2500 (.005) [.005] .2501 (.003) [.003]
0.75 .7501 (.007) [.006] .7499 (.004) [.004] .7500 (.002) [.002]
0.50 .5000 (.010) [.009] .5000 (.006) [.006] .5000 (.003) [.003]
0.25 .2500 (.009) [.008] .2500 (.006) [.006] .2500 (.003) [.004]
0.75 .7497 (.009) [.008] .7499 (.004) [.004] .7500 (.002) [.002]

ρ 0.50 .5137 (.090) [.083] .5040 (.048) [.047] .5018 (.026) [.025]
σ2 1.00 .9182 (.087) [.083] .9728 (.052) [.051] .9913 (.029) [.029]

σ2 QMLE .7651 (.073) .8106 (.044) .8261 (.024)
(b) Normal Mixture Error

β1 1.00 .9998 (.009) [.009] 1.0001 (.005) [.005] 1.0000 (.002) [.002]
1.00 1.0001 (.007) [.007] 1.0000 (.004) [.004] 1.0000 (.002) [.002]

β2 0.75 .7498 (.008) [.008] .7499 (.005) [.005] .7501 (.003) [.003]
1.25 1.2498 (.008) [.007] 1.2499 (.004) [.004] 1.2500 (.002) [.002]

β3 1.25 1.2500 (.007) [.007] 1.2499 (.005) [.005] 1.2501 (.003) [.003]
0.75 .7501 (.008) [.007] .7500 (.004) [.004] .7501 (.002) [.002]

β4 1.00 1.0002 (.009) [.008] 1.0000 (.004) [.004] .9999 (.003) [.002]
1.00 .9999 (.007) [.007] .9999 (.005) [.005] 1.0001 (.002) [.002]

β5 0.75 .7502 (.008) [.007] .7500 (.004) [.004] .7500 (.002) [.002]
1.25 1.2500 (.008) [.008] 1.2500 (.005) [.005] 1.2500 (.002) [.002]

β6 1.25 1.2500 (.007) [.007] 1.2500 (.005) [.005] 1.2500 (.003) [.003]
0.75 .7499 (.007) [.007] .7501 (.004) [.004] .7500 (.002) [.002]

λ 0.50 .4997 (.011) [.010] .4999 (.005) [.005] .5000 (.003) [.003]
0.25 .2497 (.012) [.012] .2499 (.005) [.005] .2501 (.003) [.003]
0.75 .7500 (.007) [.006] .7500 (.004) [.004] .7500 (.002) [.002]
0.50 .5000 (.010) [.009] .5000 (.006) [.005] .5001 (.003) [.003]
0.25 .2501 (.009) [.008] .2499 (.006) [.006] .2500 (.004) [.004]
0.75 .7499 (.009) [.008] .7499 (.004) [.004] .7500 (.002) [.002]

ρ 0.50 .5143 (.089) [.083] .5041 (.048) [.047] .5018 (.026) [.026]
σ2 1.00 .9194 (.184) [.109] .9730 (.113) [.066] .9929 (.064) [.035]

σ2 QMLE .7662 (.153) .8108 (.094) .8274 (.053)
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Table 3.1b (cont’d). Empirical Mean (sd) [se] of AQS-Estimator:
SLE Model Two-Way FE, Wn and Mn: Queen Contiguity, T = 6

n = 50 n = 150 n = 500

(c) Chi-Square-normal Error
β11 1.00 .9999 (.009) [.009] 1.0001 (.005) [.005] 1.0000 (.002) [.002]

1.00 1.0001 (.007) [.007] 1.0001 (.004) [.004] 1.0000 (.002) [.002]
β2 0.75 .7500 (.008) [.008] .7501 (.005) [.005] .7500 (.003) [.003]

1.25 1.2500 (.008) [.007] 1.2500 (.004) [.004] 1.2500 (.002) [.002]
β3 1.25 1.2501 (.007) [.007] 1.2499 (.005) [.005] 1.2500 (.003) [.003]

0.75 .7499 (.008) [.007] .7501 (.004) [.004] .7500 (.002) [.002]
β4 1.00 .9998 (.009) [.008] 1.0001 (.004) [.004] 1.0000 (.003) [.002]

1.00 .9999 (.007) [.007] 1.0000 (.005) [.005] 1.0000 (.002) [.002]
β5 0.75 .7502 (.008) [.007] .7500 (.004) [.004] .7500 (.002) [.002]

1.25 1.2499 (.008) [.008] 1.2500 (.005) [.005] 1.2500 (.002) [.002]
β6 1.25 1.2501 (.007) [.007] 1.2499 (.005) [.005] 1.2500 (.002) [.003]

0.75 .7498 (.007) [.007] .7500 (.004) [.004] .7500 (.002) [.002]
λ 0.50 .4998 (.011) [.010] .5000 (.005) [.005] .5000 (.003) [.003]

0.25 .2497 (.012) [.012] .2500 (.005) [.005] .2499 (.003) [.003]
0.75 .7499 (.006) [.006] .7499 (.004) [.004] .7500 (.002) [.002]
0.50 .4999 (.010) [.009] .4999 (.006) [.006] .5000 (.003) [.003]
0.25 .2500 (.009) [.008] .2500 (.006) [.006] .2500 (.004) [.004]
0.75 .7497 (.009) [.008] .7499 (.004) [.004] .7500 (.002) [.002]

ρ 0.50 .5175 (.087) [.083] .5034 (.048) [.047] .5010 (.026) [.026]
σ2 1.00 .9154 (.138) [.094] .9728 (.083) [.058] .9924 (.046) [.032]

σ2 QMLE .7628 (.115) .8106 (.069) .8270 (.038)
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Table 3.2a. Empirical Mean (sd) [se] of AQS-Estimator: SL Model
Two-Way FE, Wn: Rook Contiguity, T = 3

n = 50 n = 150 n = 500

(a) Normal Error
β1 1.00 1.0000 (.020) [.019] 1.0001 (.010) [.010] .9999 (.006) [.006]

1.00 .9997 (.017) [.016] .9999 (.012) [.012] 1.0000 (.006) [.006]
β2 0.75 .7503 (.020) [.019] .7501 (.010) [.010] .7499 (.005) [.005]

1.25 1.2500 (.021) [.020] 1.2498 (.011) [.011] 1.2499 (.006) [.006]
β3 1.25 1.2502 (.018) [.018] 1.2500 (.010) [.010] 1.2500 (.006) [.006]

0.75 .7498 (.017) [.016] .7502 (.011) [.011] .7500 (.005) [.005]
λ 0.50 .4996 (.015) [.014] .4999 (.011) [.011] .5000 (.005) [.005]

0.25 .2497 (.019) [.019] .2496 (.013) [.013] .2500 (.006) [.005]
0.75 .7491 (.020) [.019] .7499 (.006) [.006] .7500 (.003) [.003]

σ2 1.00 .9075 (.134) [.128] .9690 (.082) [.079] .9909 (.045) [.044]
σ2 QMLE .6050 (.089) .6460 (.054) .6606 (.030)

(b) Normal Mixture Error
β1 1.00 1.0002 (.020) [.019] 1.0000 (.010) [.010] .9999 (.006) [.006]

1.00 .9999 (.017) [.016] .9999 (.012) [.012] .9999 (.006) [.006]
β2 0.75 .7501 (.020) [.019] .7502 (.010) [.010] .7499 (.005) [.005]

1.25 1.2502 (.021) [.020] 1.2499 (.011) [.011] 1.2500 (.006) [.006]
β3 1.25 1.2502 (.018) [.018] 1.2499 (.010) [.010] 1.2500 (.006) [.006]

0.75 .7500 (.017) [.016] .7500 (.011) [.011] .7500 (.005) [.005]
λ 0.50 .4996 (.015) [.014] .5000 (.011) [.011] .5000 (.005) [.005]

0.25 .2498 (.019) [.019] .2498 (.013) [.012] .2499 (.006) [.005]
0.75 .7493 (.020) [.019] .7500 (.006) [.006] .7500 (.003) [.003]

σ2 1.00 .9090 (.268) [.149] .9679 (.162) [.092] .9901 (.092) [.051]
σ2 QMLE .6060 (.179) .6453 (.108) .6601 (.061)

(c) Chi-Square-normal Error
β1 1.00 1.0001 (.020) [.019] .9998 (.010) [.010] 1.0000 (.006) [.006]

1.00 .9999 (.017) [.016] .9996 (.012) [.012] 1.0000 (.005) [.006]
β2 0.75 .7505 (.020) [.019] .7499 (.010) [.010] .7500 (.005) [.005]

1.25 1.2503 (.021) [.020] 1.2499 (.011) [.011] 1.2500 (.006) [.006]
β3 1.25 1.2501 (.019) [.018] 1.2501 (.010) [.010] 1.2501 (.006) [.006]

0.75 .7495 (.017) [.016] .7501 (.011) [.011] .7501 (.005) [.005]
λ 0.50 .4999 (.015) [.014] .4999 (.011) [.011] .5000 (.005) [.005]

0.25 .2494 (.020) [.019] .2500 (.013) [.012] .2500 (.006) [.005]
0.75 .7492 (.020) [.019] .7498 (.006) [.006] .7499 (.003) [.003]

σ2 1.00 .9066 (.202) [.137] .9688 (.121) [.085] .9905 (.068) [.047]
σ2 QMLE .6044 (.135) .6459 (.080) .6603 (.046)

65



Table 3.2b. Empirical Mean (sd) [se] of AQS-Estimator: SL Model
Two-Way FE, Wn: Rook Contiguity, T = 6

n = 50 n = 150 n = 500

(a) Normal Error
β1 1.00 1.0002 (.017) [.017] 1.0001 (.009) [.009] 1.0000 (.005) [.005]

1.00 .9996 (.015) [.015] 1.0000 (.009) [.009] .9999 (.005) [.005]
β2 0.75 .7503 (.019) [.018] .7502 (.010) [.010] .7501 (.005) [.005]

1.25 1.2500 (.015) [.014] 1.2500 (.009) [.009] 1.2501 (.005) [.005]
β3 1.25 1.2509 (.017) [.017] 1.2499 (.010) [.010] 1.2499 (.005) [.005]

0.75 .7506 (.016) [.015] .7501 (.009) [.009] .7500 (.005) [.005]
β4 1.00 1.0000 (.015) [.014] .9998 (.010) [.010] 1.0002 (.005) [.005]

1.00 .9998 (.015) [.015] .9997 (.009) [.009] 1.0001 (.005) [.005]
β5 0.75 .7497 (.018) [.017] .7500 (.009) [.009] .7499 (.005) [.005]

1.25 1.2506 (.016) [.015] 1.2502 (.009) [.009] 1.2500 (.005) [.005]
β6 1.25 1.2506 (.017) [.016] 1.2503 (.009) [.009] 1.2501 (.005) [.005]

0.75 .7497 (.017) [.016] .7503 (.009) [.009] .7501 (.005) [.005]
λ 0.50 .4998 (.017) [.016] .4996 (.008) [.008] .4999 (.005) [.005]

0.25 .2497 (.014) [.014] .2497 (.012) [.011] .2498 (.005) [.005]
0.75 .7491 (.020) [.019] .7498 (.006) [.006] .7500 (.003) [.004]
0.50 .5003 (.015) [.015] .5006 (.010) [.010] .4998 (.005) [.005]
0.25 .2500 (.017) [.016] .2497 (.010) [.010] .2498 (.006) [.006]
0.75 .7496 (.010) [.009] .7498 (.007) [.007] .7500 (.003) [.003]

σ2 1.00 .9272 (.088) [.083] .9763 (.052) [.050] .9923 (.028) [.028]
σ2 QMLE .7727 (.073) .8136 (.044) .8270 (.023)

(b) Normal Mixture Error
β1 1.00 1.0001 (.018) [.016] 1.0001 (.009) [.009] 1.0001 (.005) [.005]

1.00 .9995 (.015) [.015] .9999 (.009) [.009] .9999 (.005) [.005]
β2 0.75 .7505 (.019) [.018] .7502 (.010) [.010] .7501 (.005) [.005]

1.25 1.2502 (.015) [.014] 1.2502 (.009) [.009] 1.2500 (.005) [.005]
β3 1.25 1.2507 (.017) [.017] 1.2501 (.010) [.010] 1.2500 (.005) [.005]

0.75 .7503 (.016) [.015] .7498 (.009) [.009] .7501 (.005) [.005]
β4 1.00 .9998 (.015) [.014] 1.0000 (.011) [.010] 1.0002 (.005) [.005]

1.00 .9998 (.016) [.015] .9998 (.009) [.009] 1.0000 (.005) [.005]
β5 0.75 .7495 (.018) [.017] .7500 (.009) [.009] .7499 (.005) [.005]

1.25 1.2503 (.015) [.015] 1.2501 (.009) [.009] 1.2501 (.005) [.005]
β6 1.25 1.2506 (.017) [.016] 1.2506 (.009) [.009] 1.2500 (.005) [.005]

0.75 .7498 (.017) [.016] .7501 (.009) [.009] .7500 (.005) [.005]
λ 0.50 .4996 (.017) [.016] .4998 (.008) [.008] .4999 (.005) [.005]

0.25 .2497 (.015) [.014] .2498 (.012) [.011] .2498 (.005) [.005]
0.75 .7493 (.019) [.018] .7497 (.006) [.006] .7500 (.004) [.004]
0.50 .5002 (.016) [.015] .5007 (.010) [.010] .4999 (.005) [.005]
0.25 .2498 (.017) [.016] .2497 (.010) [.010] .2498 (.006) [.006]
0.75 .7496 (.010) [.009] .7499 (.007) [.007] .7500 (.003) [.003]

σ2 1.00 .9249 (.183) [.109] .9749 (.113) [.065] .9946 (.066) [.035]
σ2 QMLE .7707 (.153) .8124 (.094) .8289 (.055)
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Table 3.2b (cont’d). Empirical Mean (sd) [se] of AQS-Estimator:
SL Model Two-Way FE, Wn: Rook Contiguity, T = 6

n = 50 n = 150 n = 500

(c) Chi-Square-normal Error
β1 1.00 .9997 (.017) [.016] .9997 (.009) [.009] 1.0002 (.005) [.005]

1.00 .9999 (.014) [.015] .9999 (.009) [.009] 1.0000 (.005) [.005]
β2 0.75 .7499 (.019) [.018] .7507 (.010) [.010] .7502 (.005) [.005]

1.25 1.2504 (.015) [.014] 1.2501 (.009) [.009] 1.2498 (.005) [.005]
β3 1.25 1.2498 (.017) [.017] 1.2499 (.010) [.010] 1.2501 (.005) [.005]

0.75 .7498 (.016) [.015] .7498 (.009) [.009] .7502 (.005) [.005]
β4 1.00 1.0001 (.015) [.014] .9997 (.010) [.010] 1.0000 (.005) [.005]

1.00 .9999 (.016) [.015] 1.0003 (.009) [.009] 1.0000 (.005) [.005]
β5 0.75 .7500 (.018) [.017] .7497 (.009) [.009] .7500 (.005) [.005]

1.25 1.2499 (.016) [.015] 1.2501 (.009) [.009] 1.2500 (.005) [.005]
β6 1.25 1.2500 (.016) [.016] 1.2496 (.009) [.009] 1.2500 (.005) [.005]

0.75 .7503 (.017) [.016] .7501 (.009) [.009] .7501 (.005) [.005]
λ 0.50 .5004 (.016) [.016] .4998 (.008) [.008] .5000 (.005) [.005]

0.25 .2498 (.014) [.014] .2496 (.011) [.011] .2499 (.005) [.005]
0.75 .7491 (.020) [.019] .7501 (.006) [.006] .7500 (.004) [.004]
0.50 .4993 (.015) [.015] .4999 (.010) [.010] .5000 (.005) [.005]
0.25 .2498 (.017) [.016] .2503 (.010) [.010] .2500 (.006) [.006]
0.75 .7498 (.010) [.009] .7501 (.007) [.007] .7501 (.003) [.003]

σ2 1.00 .9250 (.139) [.094] .9743 (.082) [.057] .9942 (.046) [.031]
σ2 QMLE .7708 (.116) .8119 (.068) .8285 (.038)
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Table 3.3a. Empirical Mean (sd) [se] of AQS-Estimator: SLE Model
One-Way FE, Wn and Mn: Group Interaction, T = 3

n = 50 n = 150 n = 500

(a) Normal Error
β1 1.00 1.0627 (.419) [.412] 1.0341 (.224) [.226] 1.0203 (.123) [.125]

1.00 0.9711 (.604) [.597] 1.0501 (.229) [.231] 1.0184 (.141) [.141]
β2 0.75 0.7662 (.388) [.378] 0.7734 (.195) [.195] 0.7632 (.116) [.116]

1.25 1.3415 (.435) [.441] 1.2659 (.259) [.260] 1.2632 (.142) [.144]
β3 1.25 1.3356 (.493) [.485] 1.2846 (.260) [.263] 1.2683 (.142) [.143]

0.75 0.8190 (.389) [.374] 0.7697 (.256) [.254] 0.7628 (.117) [.116]
λ 0.50 0.4264 (.166) [.170] 0.4657 (.090) [.092] 0.4872 (.052) [.053]

0.25 0.1470 (.220) [.231] 0.2024 (.130) [.131] 0.2340 (.073) [.073]
0.75 0.7087 (.090) [.088] 0.7303 (.051) [.051] 0.7444 (.024) [.025]

ρ 0.50 0.4436 (.199) [.193] 0.4777 (.104) [.105] 0.4883 (.065) [.064]
σ2 1.00 0.9018 (.137) [.133] 0.9688 (.082) [.080] 0.9906 (.045) [.045]

σ2 QMLE 0.6012 (.091) 0.6459 (.055) 0.6604 (.030)
(b) Normal Mixture Error

β1 1.00 1.0629 (.419) [.411] 1.0317 (.225) [.225] 1.0208 (.124) [.125]
1.00 0.9716 (.613) [.594] 1.0485 (.229) [.231] 1.0178 (.140) [.141]

β2 0.75 0.7688 (.389) [.377] 0.7737 (.198) [.195] 0.7645 (.117) [.115]
1.25 1.3357 (.439) [.440] 1.2642 (.257) [.259] 1.2650 (.143) [.144]

β3 1.25 1.3350 (.496) [.485] 1.2900 (.261) [.264] 1.2676 (.140) [.143]
0.75 0.8158 (.392) [.373] 0.7695 (.255) [.254] 0.7624 (.116) [.116]

λ 0.50 0.4263 (.168) [.173] 0.4665 (.091) [.093] 0.4877 (.052) [.053]
0.25 0.1541 (.215) [.230] 0.2037 (.129) [.130] 0.2336 (.073) [.073]
0.75 0.7056 (.092) [.090] 0.7300 (.051) [.051] 0.7447 (.024) [.025]

ρ 0.50 0.4409 (.198) [.198] 0.4772 (.105) [.106] 0.4876 (.064) [.065]
σ2 1.00 0.9037 (.269) [.188] 0.9680 (.162) [.123] 0.9899 (.092) [.071]

σ2 QMLE 0.6012 (.091) 0.6459 (.055) 0.6604 (.030)
(c) Chi-Square-normal Error

β1 1.00 1.0590 (.413) [.414] 1.0282 (.224) [.225] 1.0191 (.123) [.125]
1.00 0.9870 (.614) [.595] 1.0479 (.231) [.230] 1.0189 (.138) [.141]

β2 0.75 0.7661 (.387) [.379] 0.7761 (.200) [.195] 0.7609 (.116) [.116]
1.25 1.3276 (.430) [.440] 1.2681 (.259) [.259] 1.2644 (.142) [.144]

β3 1.25 1.3285 (.489) [.489] 1.2831 (.265) [.264] 1.2627 (.139) [.143]
0.75 0.8187 (.396) [.378] 0.7672 (.260) [.253] 0.7605 (.116) [.116]

λ 0.50 0.4214 (.168) [.175] 0.4662 (.089) [.093] 0.4874 (.051) [.053]
0.25 0.1537 (.223) [.229] 0.1985 (.132) [.131] 0.2338 (.072) [.073]
0.75 0.7056 (.091) [.089] 0.7297 (.051) [.051] 0.7451 (.024) [.025]

ρ 0.50 0.4474 (.196) [.196] 0.4767 (.104) [.106] 0.4889 (.066) [.064]
σ2 1.00 0.9044 (.205) [.159] 0.9682 (.122) [.100] 0.9904 (.069) [.057]

σ2 QMLE 0.6012 (.091) 0.6459 (.055) 0.6604 (.030)
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Table 3.3b. Empirical Mean (sd) [se] of AQS-Estimator: SLE Model
One-Way FE, Wn and Mn: Group Interaction, T = 6

n = 50 n = 150 n = 500

(a) Normal Error
β1 1.00 1.0510 (.364) [.352] 1.0244 (.191) [.192] 1.0067 (.117) [.118]

1.00 0.9941 (.526) [.513] 1.0222 (.219) [.218] 1.0133 (.116) [.116]
β2 0.75 0.7642 (.332) [.323] 0.7768 (.178) [.178] 0.7618 (.105) [.103]

1.25 1.3237 (.377) [.374] 1.2653 (.274) [.269] 1.2654 (.136) [.138]
β3 1.25 1.3165 (.438) [.426] 1.2949 (.206) [.209] 1.2663 (.119) [.121]

0.75 0.7971 (.334) [.318] 0.7753 (.166) [.166] 0.7608 (.107) [.109]
β4 1.00 1.0369 (.383) [.372] 1.0290 (.184) [.179] 1.0128 (.110) [.111]

1.00 1.0804 (.289) [.287] 1.0129 (.206) [.203] 1.0143 (.111) [.112]
β5 0.75 0.8167 (.292) [.290] 0.7854 (.170) [.173] 0.7598 (.117) [.118]

1.25 1.3655 (.308) [.316] 1.2976 (.191) [.192] 1.2597 (.118) [.120]
β6 1.25 1.3013 (.435) [.423] 1.2975 (.223) [.226] 1.2610 (.122) [.126]

0.75 0.7633 (.404) [.393] 0.7584 (.178) [.173] 0.7582 (.103) [.104]
λ 0.50 0.4331 (.144) [.138] 0.4661 (.084) [.082] 0.4895 (.047) [.047]

0.25 0.1527 (.189) [.192] 0.1992 (.129) [.125] 0.2348 (.067) [.067]
0.75 0.7130 (.074) [.069] 0.7348 (.039) [.039] 0.7441 (.023) [.024]
0.50 0.4364 (.131) [.131] 0.4701 (.082) [.079] 0.4884 (.047) [.048]
0.25 0.1663 (.165) [.174] 0.2117 (.104) [.108] 0.2344 (.068) [.069]
0.75 0.7169 (.072) [.069] 0.7347 (.041) [.041] 0.7454 (.021) [.021]

ρ 0.50 0.4939 (.093) [.096] 0.4944 (.055) [.057] 0.4942 (.039) [.039]
σ2 1.00 0.9273 (.088) [.086] 0.9768 (.052) [.051] 0.9927 (.028) [.028]

σ2 QMLE 0.7728 (.074) 0.8140 (.044) 0.8273 (.024)
(b) Normal Mixture Error

β1 1.00 1.0566 (.360) [.353] 1.0282 (.190) [.192] 1.0059 (.117) [.118]
1.00 0.9893 (.520) [.511] 1.0270 (.219) [.218] 1.0130 (.116) [.117]

β2 0.75 0.7652 (.332) [.323] 0.7810 (.181) [.179] 0.7621 (.106) [.104]
1.25 1.3196 (.368) [.374] 1.2670 (.274) [.269] 1.2630 (.135) [.138]

β3 1.25 1.3181 (.441) [.430] 1.2988 (.208) [.211] 1.2652 (.121) [.122]
0.75 0.7959 (.334) [.318] 0.7758 (.167) [.167] 0.7605 (.108) [.109]

β4 1.00 1.0376 (.384) [.374] 1.0277 (.181) [.180] 1.0133 (.111) [.111]
1.00 1.0792 (.285) [.289] 1.0134 (.207) [.203] 1.0132 (.111) [.112]

β5 0.75 0.8127 (.291) [.291] 0.7834 (.171) [.173] 0.7614 (.118) [.118]
1.25 1.3616 (.301) [.318] 1.2963 (.190) [.193] 1.2619 (.119) [.120]

β6 1.25 1.3047 (.440) [.427] 1.2998 (.230) [.229] 1.2606 (.122) [.126]
0.75 0.7577 (.407) [.394] 0.7622 (.179) [.173] 0.7582 (.103) [.104]

λ 0.50 0.4311 (.141) [.142] 0.4653 (.084) [.083] 0.4892 (.046) [.047]
0.25 0.1601 (.185) [.195] 0.1975 (.128) [.126] 0.2362 (.066) [.067]
0.75 0.7114 (.077) [.073] 0.7345 (.039) [.039] 0.7443 (.024) [.024]
0.50 0.4354 (.134) [.135] 0.4712 (.080) [.080] 0.4882 (.047) [.049]
0.25 0.1671 (.165) [.176] 0.2123 (.105) [.108] 0.2336 (.069) [.069]
0.75 0.7159 (.073) [.073] 0.7346 (.042) [.042] 0.7455 (.021) [.022]

ρ 0.50 0.4901 (.097) [.101] 0.4949 (.057) [.058] 0.4941 (.039) [.039]
σ2 1.00 0.9292 (.187) [.151] 0.9765 (.113) [.096] 0.9943 (.064) [.055]

σ2 QMLE 0.7743 (.156) 0.8138 (.094) 0.8286 (.053)
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Table 3.3b (cont’d). Empirical Mean (sd) [se] of AQS-Estimator:
SLE Model One-Way FE, Wn and Mn: Group Interaction, T = 6

n = 50 n = 150 n = 500

(c) Chi-Square-normal Error
β1 1.00 1.0479 (.358) [.351] 1.0215 (.192) [.192] 1.0084 (.118) [.118]

1.00 1.0059 (.525) [.512] 1.0234 (.219) [.218] 1.0113 (.116) [.117]
β2 0.75 0.7685 (.336) [.323] 0.7743 (.183) [.179] 0.7578 (.104) [.103]

1.25 1.3128 (.366) [.374] 1.2645 (.272) [.269] 1.2653 (.138) [.138]
β3 1.25 1.3174 (.432) [.427] 1.2926 (.206) [.210] 1.2650 (.119) [.121]

0.75 0.7971 (.343) [.323] 0.7747 (.170) [.167] 0.7596 (.110) [.108]
β4 1.00 1.0332 (.378) [.372] 1.0385 (.179) [.179] 1.0133 (.112) [.111]

1.00 1.0735 (.293) [.290] 1.0219 (.205) [.203] 1.0149 (.112) [.112]
β5 0.75 0.8133 (.292) [.290] 0.7853 (.174) [.173] 0.7582 (.117) [.118]

1.25 1.3464 (.299) [.317] 1.2960 (.187) [.192] 1.2615 (.118) [.120]
β6 1.25 1.3150 (.427) [.418] 1.2978 (.223) [.229] 1.2587 (.126) [.125]

0.75 0.7557 (.408) [.395] 0.7592 (.178) [.174] 0.7555 (.102) [.104]
λ 0.50 0.4315 (.141) [.142] 0.4672 (.082) [.082] 0.4888 (.047) [.047]

0.25 0.1596 (.190) [.193] 0.1981 (.127) [.125] 0.2350 (.067) [.067]
0.75 0.7112 (.074) [.070] 0.7357 (.038) [.038] 0.7444 (.024) [.024]
0.50 0.4336 (.137) [.133] 0.4684 (.080) [.079] 0.4882 (.048) [.049]
0.25 0.1713 (.163) [.175] 0.2119 (.105) [.107] 0.2362 (.068) [.069]
0.75 0.7150 (.074) [.072] 0.7362 (.040) [.041] 0.7458 (.021) [.022]

ρ 0.50 0.4929 (.093) [.098] 0.4933 (.056) [.058] 0.4938 (.039) [.039]
σ2 1.00 0.9260 (.139) [.116] 0.9769 (.082) [.073] 0.9935 (.046) [.041]

σ2 QMLE 0.7717 (.116) 0.8141 (.069) 0.8279 (.038)
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Table 3.4a. Empirical Mean (sd) [se] of AQS-Estimator: SL Model
One-Way FE, Wn: Rook Contiguity, T = 3

n = 50 n = 150 n = 500

(a) Normal Error
β1 1.00 .9999 (.019) [.018] 1.0001 (.010) [.010] 1.0000 (.006) [.005]

1.00 .9998 (.017) [.016] .9999 (.012) [.012] 1.0000 (.006) [.006]
β2 0.75 .7503 (.020) [.019] .7501 (.010) [.010] .7501 (.006) [.006]

1.25 1.2500 (.021) [.020] 1.2498 (.011) [.011] 1.2500 (.005) [.005]
β3 1.25 1.2502 (.018) [.017] 1.2500 (.010) [.010] 1.2501 (.006) [.006]

0.75 .7499 (.017) [.016] .7502 (.011) [.011] .7498 (.006) [.005]
λ 0.50 .4996 (.015) [.014] .4999 (.011) [.011] .4999 (.005) [.005]

0.25 .2497 (.019) [.019] .2496 (.013) [.012] .2500 (.005) [.005]
0.75 .7491 (.020) [.019] .7499 (.006) [.006] .7500 (.003) [.003]

σ2 1.00 .9096 (.132) [.127] .9691 (.081) [.079] .9909 (.045) [.044]
σ2 QMLE .6064 (.088) .6461 (.054) .6606 (.030)

(b) Normal Mixture Error
β1 1.00 1.0000 (.019) [.018] 1.0000 (.010) [.010] .9999 (.005) [.005]

1.00 1.0000 (.017) [.016] .9999 (.012) [.012] 1.0000 (.006) [.006]
β2 0.75 .7500 (.020) [.019] .7502 (.010) [.010] .7501 (.006) [.006]

1.25 1.2502 (.021) [.020] 1.2499 (.011) [.011] 1.2500 (.005) [.005]
β3 1.25 1.2502 (.018) [.017] 1.2499 (.010) [.010] 1.2500 (.006) [.006]

0.75 .7501 (.017) [.016] .7500 (.011) [.011] .7499 (.006) [.005]
λ 0.50 .4996 (.015) [.014] .5000 (.011) [.011] .4999 (.005) [.005]

0.25 .2498 (.019) [.018] .2498 (.013) [.012] .2500 (.005) [.005]
0.75 .7493 (.019) [.019] .7500 (.006) [.006] .7500 (.003) [.003]

σ2 1.00 .9109 (.268) [.184] .9680 (.162) [.122] .9902 (.092) [.071]
σ2 QMLE .6072 (.178) .6454 (.108) .6601 (.061)

(c) Chi-Square-normal Error
β1 1.00 1.0002 (.019) [.018] .9998 (.010) [.010] .9999 (.005) [.005]

1.00 .9998 (.017) [.016] .9996 (.012) [.012] 1.0000 (.006) [.006]
β2 0.75 .7506 (.020) [.019] .7500 (.010) [.010] .7500 (.006) [.006]

1.25 1.2502 (.020) [.020] 1.2499 (.011) [.011] 1.2501 (.005) [.005]
β3 1.25 1.2501 (.018) [.017] 1.2501 (.010) [.010] 1.2500 (.006) [.006]

0.75 .7496 (.017) [.016] .7501 (.011) [.011] .7499 (.005) [.005]
λ 0.50 .4998 (.015) [.014] .4999 (.011) [.011] .5000 (.005) [.005]

0.25 .2495 (.020) [.019] .2500 (.013) [.012] .2499 (.005) [.005]
0.75 .7492 (.020) [.019] .7498 (.006) [.006] .7500 (.003) [.003]

σ2 1.00 .9085 (.201) [.154] .9690 (.121) [.099] .9906 (.068) [.057]
σ2 QMLE .6057 (.134) .6460 (.080) .6604 (.045)
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Table 3.4b. Empirical Mean (sd) [se] of AQS-Estimator: SL Model
One-Way FE, Wn: Rook Contiguity, T = 6

n = 50 n = 150 n = 500

(a) Normal Error
β1 1.00 1.0003 (.017) [.016] 1.0001 (.009) [.009] 1.0000 (.005) [.005]

1.00 .9996 (.015) [.015] 1.0000 (.009) [.009] .9999 (.005) [.005]
β2 0.75 .7503 (.019) [.018] .7502 (.010) [.010] .7501 (.005) [.005]

1.25 1.2500 (.015) [.014] 1.2500 (.009) [.009] 1.2501 (.005) [.005]
β3 1.25 1.2509 (.017) [.016] 1.2499 (.010) [.010] 1.2499 (.005) [.005]

0.75 .7506 (.016) [.015] .7501 (.009) [.009] .7501 (.005) [.005]
β4 1.00 .9999 (.014) [.014] .9998 (.010) [.010] 1.0002 (.005) [.005]

1.00 .9999 (.015) [.015] .9997 (.009) [.009] 1.0001 (.005) [.005]
β5 0.75 .7497 (.018) [.017] .7500 (.009) [.009] .7499 (.005) [.005]

1.25 1.2506 (.016) [.015] 1.2502 (.009) [.009] 1.2500 (.005) [.005]
β6 1.25 1.2507 (.017) [.016] 1.2503 (.009) [.009] 1.2501 (.005) [.005]

0.75 .7497 (.016) [.016] .7503 (.009) [.009] .7501 (.005) [.005]
λ 0.50 .4996 (.012) [.011] .4996 (.008) [.008] .4999 (.005) [.005]

0.25 .2497 (.014) [.014] .2496 (.011) [.011] .2498 (.005) [.005]
0.75 .7491 (.017) [.017] .7498 (.006) [.006] .7500 (.003) [.004]
0.50 .5002 (.015) [.015] .5007 (.009) [.009] .4998 (.005) [.005]
0.25 .2500 (.017) [.016] .2497 (.010) [.010] .2498 (.006) [.006]
0.75 .7496 (.009) [.008] .7498 (.006) [.006] .7500 (.003) [.003]

σ2 1.00 .9291 (.087) [.083] .9764 (.052) [.050] .9923 (.028) [.028]
σ2 QMLE .7743 (.073) .8136 (.043) .8269 (.023)

(b) Normal Mixture Error
β1 1.00 1.0002 (.017) [.016] 1.0001 (.009) [.009] 1.0001 (.005) [.005]

1.00 .9996 (.015) [.014] .9999 (.009) [.009] .9999 (.005) [.005]
β2 0.75 .7505 (.019) [.018] .7502 (.010) [.010] .7501 (.005) [.005]

1.25 1.2502 (.015) [.014] 1.2502 (.009) [.009] 1.2500 (.005) [.005]
β3 1.25 1.2508 (.017) [.016] 1.2501 (.010) [.010] 1.2500 (.005) [.005]

0.75 .7503 (.016) [.015] .7498 (.009) [.009] .7501 (.005) [.005]
β4 1.00 .9998 (.015) [.014] 1.0000 (.011) [.010] 1.0002 (.005) [.005]

1.00 .9998 (.016) [.015] .9998 (.009) [.009] 1.0000 (.005) [.005]
β5 0.75 .7495 (.018) [.017] .7500 (.009) [.009] .7499 (.005) [.005]

1.25 1.2503 (.015) [.015] 1.2501 (.009) [.009] 1.2501 (.005) [.005]
β6 1.25 1.2507 (.017) [.015] 1.2506 (.009) [.009] 1.2500 (.005) [.005]

0.75 .7498 (.016) [.015] .7501 (.009) [.009] .7500 (.005) [.005]
λ 0.50 .4995 (.012) [.011] .4998 (.008) [.008] .4999 (.005) [.005]

0.25 .2497 (.015) [.014] .2497 (.011) [.011] .2498 (.005) [.005]
0.75 .7493 (.017) [.017] .7497 (.006) [.006] .7500 (.004) [.004]
0.50 .5002 (.015) [.015] .5008 (.009) [.009] .4999 (.005) [.005]
0.25 .2497 (.017) [.016] .2497 (.010) [.010] .2498 (.006) [.006]
0.75 .7496 (.009) [.008] .7499 (.006) [.006] .7500 (.003) [.003]

σ2 1.00 .9267 (.183) [.148] .9749 (.113) [.096] .9946 (.066) [.055]
σ2 QMLE .7723 (.153) .8124 (.094) .8288 (.055)
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Table 3.4b (cont’d). Empirical Mean (sd) [se] of AQS-Estimator:
SL Model One-Way FE, Wn: Rook Contiguity, T = 6

n = 50 n = 150 n = 500

(c) Chi-Square-normal Error
β11 1.00 .9998 (.017) [.016] .9997 (.009) [.009] 1.0002 (.005) [.005]

1.00 1.0000 (.014) [.014] .9999 (.009) [.009] 1.0000 (.005) [.005]
β12 0.75 .7499 (.018) [.018] .7507 (.010) [.010] .7502 (.005) [.005]

1.25 1.2504 (.015) [.014] 1.2501 (.009) [.009] 1.2498 (.005) [.005]
β13 1.25 1.2497 (.016) [.016] 1.2499 (.010) [.010] 1.2501 (.005) [.005]

0.75 .7498 (.015) [.015] .7498 (.009) [.009] .7502 (.005) [.005]
β14 1.00 1.0002 (.015) [.014] .9997 (.010) [.010] 1.0000 (.005) [.005]

1.00 .9999 (.016) [.015] 1.0003 (.009) [.009] 1.0000 (.005) [.005]
β15 0.75 .7500 (.018) [.017] .7497 (.009) [.009] .7500 (.005) [.005]

1.25 1.2499 (.016) [.015] 1.2501 (.009) [.009] 1.2501 (.005) [.005]
β16 1.25 1.2500 (.016) [.016] 1.2497 (.009) [.009] 1.2500 (.005) [.005]

0.75 .7503 (.016) [.015] .7501 (.009) [.009] .7501 (.005) [.005]
λ1 0.50 .5003 (.012) [.011] .4999 (.008) [.008] .5000 (.005) [.005]

0.25 .2498 (.014) [.014] .2497 (.011) [.011] .2499 (.005) [.005]
0.75 .7494 (.017) [.016] .7501 (.006) [.006] .7500 (.004) [.004]
0.50 .4993 (.015) [.015] .4999 (.009) [.009] .5000 (.005) [.005]
0.25 .2499 (.017) [.016] .2503 (.010) [.010] .2500 (.006) [.006]
0.75 .7498 (.009) [.008] .7501 (.006) [.006] .7501 (.003) [.003]

σ2 1.00 .9266 (.139) [.113] .9744 (.081) [.072] .9942 (.046) [.041]
σ2 QMLE .7722 (.115) .8120 (.068) .8285 (.038)
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3.5 An Empirical Application

In this section, we apply the proposed AQS-estimation and inference methods for the

FE-SPD model with TVC to investigate US cigarettes demand from 1963 to 1992. During

this period, The federal government attempted to reduce the consumption of cigarettes

through (i) the imposition of warning labels in 1965, (ii) the Fairness Doctrine Act to

cigarette advertising in June 1967, (iii) the Congressional ban of broadcast advertising of

cigarettes in 1971. A lot of researches are carried out, such as Hamilton (1972), McGui-

ness and Cowling (1975), Baltagi and Levin (1986, 1992), and Baltagi et al. (2000) to

help the policy makers to evaluate the effectiveness of the above policies.

In this study, we estimate the time-varying coefficients in cigarette demand models

based on panel data from 46 American states over the period 1963 to 1992. We find (i)

significant effect of price on cigarette consumption (ii) Insignificant income effect in short

run due to the habit persistence (iii) Significant minimum neighbouring price in short run.

(iv) support for the effectiveness of warning labels, Fairness Doctrine Act and advertising

ban. The specification test proposed by Xu and Yang (2020a) is useful in supporting our

findings, temporal heterogeneity pattern is observed in parameter estimation.

We fit the data to the general model (3.1) and several sub-models. We report results of

the general model, SLE two-way FE model, and the sub-model, SLE one-way FE model

only. Final conclusions are made based on the general model (3.1). For data sources, see

Baltagi and Levin (1986). The response variable Y is Cigarette sales in packs per capita;

The spatial lag term WnY captures the demand of cigarette among states, reflecting how

demand of the neighbouring states affect the own demand of a state. The time-varying

regressors X contain a set of state level variables: X1 = Price per pack of cigarettes;

X2 = Population above the age of 16; X3 = Per capita disposable income; and X4 =

Minimum price in adjoining states per pack of cigarettes. Similar as in Baltagi and Levin

(1992), the state-specific effects can represent any state-specific characteristic and the

year-specific effects can be justified given numerous policy interventions. The spatial

weight matrix is specified using a contiguity form where (i, j)th element is 1 if state i and

j share a common border, otherwise 0, and then row normalized. Table 3.5a, 3.5b and

3.5c summarize the main empirical findings, fitted using the two models: SLE one-way
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and SLE two-way FE-SPD models, and are estimated using (a) data from the first three

years; (b) data from the first six years; and (c) the full data. The case (a) is different from

the other two cases in without the consideration of government interventions.

Table 3.5a presents the estimation results that use the data from the first three years.

First, the ML-estimators are very similar as the AQS-estimators, which shows that the

empirical results are in consistent with the theory and Monte Carlo results. Thus, it is rec-

ommended to use AQS-estimation method. Several patterns are observed: (i) the price

effect and the parameter estimate for X4, the minimum price in adjoining states, are sig-

nificant in both one-way and two-way FE models; (ii) the parameter estimates for spatial

lag effects, spatial error effect and X2, which captures the population above the age of

16, are insignificant in both one-way and two-way FE models; and (iii) the income effect

is significant in one-way FE model but insignificant in two-way FE model. One possi-

ble reason for the difference is the omission bias of ignoring time-specific effects, like

the Surgeon General report, health warnings, health report and increasing taxation which

can deter cigarette consumption. The effect of these anti-smoking policies on smoking

and income are negative. There would be income loss for not only cigarette industry, but

also related industries in the cigarette supply chain, from manufacturing, transportation,

to selling. The above policies across different states are mostly state-invariant and would

be controlled by the year dummies. Therefore, the estimators of income effects in one-

way FE model does not account for year-specific effects and captures the omission bias

of anti-smoking policies.

Table 3.5b presents the estimation results that use the data from the first six years.

Again, as the estimates of the time-varying coefficients are very similar, only the AQS

estimates are reported. Some similar patterns are observed, such as: (i) the price effect

are significant in both one-way and two-way FE models, and (ii) the income effect is

significant in one-way FE model but insignificant in two-way FE model. Some different

patterns are also observed: in one-way FE model, the neighboring price is significant in 5

out of 6 years while in two-way FE model, it is significant in only one out of the 6 years.

It indicates that with the change of observation period T , different estimation results can

be obtained. Further extension of estimation period is necessary.
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Table 3.5c presents the estimation results using the full data. Besides the significant

price effect in both models, we observe that (i) in one-way FE model, the neighboring

price is significant in 23 out of 30 years while in two-way FE model, it is significant in

only 9 out of 30 years, and (ii) the income effect is significant in one-way FE model but

is significant in only 16 out of 30 years in two-way FE model.

The following conclusions are made based on estimation results from the general

model, SLE two-way FE model. Due to the significant price effect, an effective option

to deter the cigarette consumption is to increase the cigarette taxation. Baltagi and Levin

(1992) also argue that cigarette taxation can be used as a policy to combat smoking. The

insignificant income effect in short run may be due to the habit persistence effect. It is hard

to quit smoking immediately as cigarette is an addictive product, therefore, even there are

interventions to deter cigarette consumption, people who smoke would keep smoking in

the short run without consideration of current income. However, the income effect can

be significant in the long run if people have enough time and preparation to learn how to

quit smoking. The insignificant income effect is also found in Baltagi and Levin (1986).

The effect of minimum neighbouring price is significantly positive in short run. Simply

put, higher cigarette price in state A will encourage consumers in that state to search for

cheaper cigarettes in neighbouring states. However, the minimum neighbouring price can

be insignificant in long run. Baltagi and Levin (1992) point out that individual states can

raise revenues by increasing their state tax on cigarettes. Therefore, in the long run, if the

adjoining states of state A raise their cigarette tax, state A may follow suit in raising its

state tax to increase the revenue with some reduction in consumption.

The specification test proposed by Xu and Yang(2020a) is used to test the effectiveness

of the three major policies in 1965, 1967 and 1971. This AQS-based test is denoted by

T (r) in the below table. The null hypothesis thus is:

H0 : β1 = · · · = βT , and λ1 = · · · = λT (3.29)

We test H0 based on different periods, the results are presented in the following table.
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AQS-Tests For Detection of Change Points
T

(r)
SLE1 T

(r)
SLE2 T

(r)
SLE1 T

(r)
SLE2 T

(r)
SLE1 T

(r)
SLE2

t1–t3 9.48 8.45 t4–t5 7.87 8.11 t1–t5 43.4 39.0
0.487 0.585 0.164 0.150 0.002 0.007

t1–t6 47.9 43.4 t6–t8 15.9 12.5 t1–t10 106 119
0.004 0.013 0.103 0.254 0.000 0.000

Note: p-values are in every second row.

We break down the panel and repeatedly applying the set of robust AQS-based spec-

ification test for detecting change points. In the first ten periods, we see that only the

sub-panels 1963-65, 1966-67, and 1968-70 are fairly stable, suggesting that panel struc-

tures have changed after 1965, 1967, and 1970, in line with the policy interventions in

1965, 1967 and 1971. The test indicates that parameter estimates are subject to temporal

heterogeneity, and the change points are in 1965, 1967, and 1971.

In conclusion, our empirical results finds that taxation can be used as a policy instru-

ment to deter state cigarette consumption. The effectiveness of cigarette taxation depends

upon several factors: (i) price elasticity of demand for cigarette; (ii) whether the ad-

joining states follow suit in raising their state taxes for higher revenues. A temporary

reduction of one’s money to push him to quit smoking might not be effective. The in-

significant income effect in the short run shows that income is not the first consideration

of deciding whether smoke or not due to the habit persistence effect. Finally, our results

find support for the effectiveness of subsidized anti-smoking messages and advertising

ban.
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Table 3.5a. AQS Estimator (se) based on Cigarette Demand Data, T = 3

t X1 X2 X3 X4 Spatial lag
SLE model with one-way FE.

1 −.5628 (.0083) .0855 (.0538) .2148 (.0247) .1687 (.0374) .1137 (.1440)
2 −.6169 (.0086) .0824 (.0536) .1772 (.0245) .2916 (.0319) .1267 (.1398)
3 −.5998 (.0090) .0877 (.0533) .2042 (.0271) .2604 (.0296) .0848 (.1449)

ρ̂QML = .0629 ρ̂AQS (se) = .0559 (.1668)
σ̂2
QML = .0003 σ̂2

AQS (se) = .0004 (.0000)
SLE model with two-way FE.

1 −.5544 (.0909) .0738 (.2158) .1790 (.1508) .3163 (.1774) .2903 (.2923)
2 −.6359 (.0919) .0716 (.2152) .1323 (.1512) .3625 (.1624) .2928 (.2913)
3 −.6372 (.0903) .0760 (.2147) .1494 (.1572) .3152 (.1587) .2490 (.3006)

ρ̂QML = −.1522 ρ̂AQS (se) = −.1522 (.3587)
σ̂2
QML = .0003 σ̂2

AQS (se) = .0004 (.0001)
Note: as the estimates of the time-varying coefficients are very similar,

only the AQS estimates are reported.

Table 3.5b. AQS Estimator (se) based on Cigarette Demand Data, T = 6

t X1 X2 X3 X4 Spatial lag
SLE model with one-way FE.

1 −.3142 (.0075) .3054 (.0203) .2696 (.0168) −.2868 (.0164) .0765 (.0387)
2 −.4113 (.0070) .3004 (.0203) .2269 (.0173) −.1030 (.0138) .0886 (.0369)
3 −.4263 (.0066) .3067 (.0202) .2404 (.0192) −.0706 (.0107) .0451 (.0380)
4 −.7165 (.0055) .2925 (.0200) .2731 (.0202) .0882 (.0088) .1091 (.0337)
5 −.6602 (.0067) .3008 (.0199) .2290 (.0207) .1292 (.0090) .1008 (.0348)
6 −.4363 (.0082) .2937 (.0198) .1917 (.0207) .0037 (.0095) .1012 (.0380)

ρ̂QML = −.0452 ρ̂AQS (se) = −.0457 (.0466)
σ̂2
QML = .0009 σ̂2

AQS (se) = .0011 (.0000)
SLE model with two-way FE.

1 −.2889 (.1132) .4415 (.1531) .2310 (.1372) −.3516 (.1651) .3348 (.1395)
2 −.4306 (.1124) .4329 (.1529) .2013 (.1404) −.1482 (.1461) .3480 (.1345)
3 −.4805 (.1121) .4419 (.1524) .2152 (.1455) −.0732 (.1266) .3071 (.1368)
4 −.8329 (.0911) .4229 (.1514) .2694 (.1514) .1377 (.1029) .3851 (.1265)
5 −.8005 (.0998) .4363 (.1513) .2179 (.1551) .2174 (.1105) .3869 (.1292)
6 −.5462 (.1078) .4301 (.1508) .1597 (.1583) .0828 (.1082) .3799 (.1360)

ρ̂QML = −.4407 ρ̂AQS (se) = −.4407 (.1685)
σ̂2
QML = .0011 σ̂2

AQS (se) = .0014 (.0002)
Note: as the estimates of the time-varying coefficients are very similar,

only the AQS estimates are reported.
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Table 3.5c. AQS Estimator (se) based on Cigarette Demand Data, T = 30

t X1 X2 X3 X4 Spatial lag

SLE model with one-way FE.

1 −.8240 (.0243) −.0086 (.0011) .8930 (.0090) −.8531 (.0423) −.4446 (.0069)
2 −.8985 (.0250) −.0124 (.0012) .8132 (.0088) −.6361 (.0345) −.4169 (.0068)
3 −.8605 (.0231) −.0060 (.0011) .8406 (.0096) −.6458 (.0270) −.4970 (.0073)
4 −1.2331 (.0197) −.0173 (.0011) .8646 (.0093) −.3286 (.0230) −.4717 (.0061)
5 −.9994 (.0232) −.0228 (.0011) .8673 (.0096) −.5405 (.0258) −.4863 (.0063)
6 −.8239 (.0298) −.0464 (.0012) .8619 (.0095) −.6838 (.0341) −.4597 (.0063)
7 −.7315 (.0208) −.0399 (.0011) .8008 (.0100) −.6511 (.0303) −.4648 (.0068)
8 −.8631 (.0187) −.0223 (.0011) .7326 (.0108) −.3718 (.0205) −.4779 (.0069)
9 −.8628 (.0174) −.0080 (.0011) .6922 (.0107) −.2720 (.0219) −.4954 (.0073)

10 −.9487 (.0140) −.0149 (.0011) .6445 (.0102) −.1562 (.0163) −.4159 (.0073)
11 −1.0271 (.0167) .0101 (.0011) .5638 (.0094) −.0172 (.0174) −.3681 (.0077)
12 −1.0364 (.0182) .0095 (.0011) .5645 (.0107) −.0202 (.0202) −.3536 (.0082)
13 −.9816 (.0191) −.0003 (.0012) .5703 (.0105) −.0741 (.0194) −.3417 (.0083)
14 −1.0087 (.0221) −.0093 (.0012) .5531 (.0107) −.0455 (.0189) −.2854 (.0082)
15 −1.0604 (.0240) .0004 (.0012) .5066 (.0111) .0259 (.0187) −.2360 (.0086)
16 −1.0764 (.0288) .0129 (.0012) .4512 (.0110) .1281 (.0219) −.2132 (.0090)
17 −.9065 (.0286) .0114 (.0012) .4490 (.0110) .0374 (.0227) −.2786 (.0090)
18 −.7274 (.0284) .0151 (.0012) .3321 (.0111) .0459 (.0219) −.2239 (.0100)
19 −.7621 (.0286) .0101 (.0012) .3712 (.0113) −.0326 (.0234) −.1932 (.0100)
20 −.8257 (.0289) .0122 (.0012) .3747 (.0115) .0483 (.0331) −.2078 (.0102)
21 −.5882 (.0285) .0213 (.0012) .2851 (.0124) −.0855 (.0351) −.1381 (.0110)
22 −.5188 (.0306) .0147 (.0012) .2775 (.0125) −.1523 (.0373) −.1139 (.0115)
23 −.3407 (.0293) .0263 (.0012) .1820 (.0119) −.1524 (.0329) −.1147 (.0117)
24 −.4309 (.0315) .0394 (.0012) .2228 (.0119) −.1320 (.0276) −.1471 (.0121)
25 −.2564 (.0258) .0362 (.0012) .1385 (.0106) −.1928 (.0273) −.0902 (.0127)
26 −.3477 (.0277) .0376 (.0012) .2078 (.0103) −.2378 (.0269) −.0976 (.0117)
27 −.3324 (.0284) .0405 (.0012) .2050 (.0108) −.2539 (.0308) −.0975 (.0120)
28 −.3752 (.0254) .0406 (.0012) .1243 (.0133) −.2014 (.0324) .0595 (.0130)
29 −.4202 (.0242) .0226 (.0012) .1356 (.0126) −.2525 (.0286) .1705 (.0119)
30 −.5355 (.0313) .0222 (.0012) .0432 (.0151) −.0017 (.0328) .2346 (.0115)

ρ̂QML = .6453 ρ̂AQS (se) = .6453 (.0014)
σ̂2
QML = .0057 σ̂2

AQS (se) = .0059 (.0000)

Note: as the estimates of the time-varying coefficients are very similar,
only the AQS estimates are reported.
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Table 3.5c (cont’d). AQS Estimator (se) based on Cigarette Demand Data, T = 30

t X1 X2 X3 X4 Spatial lag

SLE model with two-way FE.

1 −.4586 (.1513) −.0589 (.0284) .8208 (.0862) −.4353 (.2794) −.3097 (.0911)
2 −.5646 (.1627) −.0627 (.0286) .7518 (.0873) −.3469 (.2507) −.3347 (.0874)
3 −.5870 (.1548) −.0568 (.0286) .7628 (.0933) −.5094 (.2113) −.4187 (.0881)
4 −.9520 (.1334) −.0669 (.0285) .8453 (.0935) −.1920 (.1524) −.4218 (.0751)
5 −.7534 (.1449) −.0704 (.0285) .8464 (.0941) −.3168 (.1656) −.4491 (.0763)
6 −.4882 (.1551) −.0906 (.0289) .8404 (.0958) −.4802 (.2033) −.4072 (.0779)
7 −.6421 (.1301) −.0771 (.0286) .7979 (.0993) −.2016 (.1817) −.3694 (.0811)
8 −.6950 (.1173) −.0714 (.0285) .7655 (.1028) −.2227 (.1413) −.4012 (.0810)
9 −.7496 (.1125) −.0610 (.0286) .6364 (.1053) −.2461 (.1542) −.4642 (.0842)

10 −.9005 (.0991) −.0676 (.0286) .5782 (.1094) −.1769 (.1248) −.4185 (.0814)
11 −1.0169 (.1078) −.0448 (.0285) .4655 (.1010) −.0787 (.1237) −.4257 (.0837)
12 −1.0307 (.1125) −.0433 (.0286) .4750 (.1113) −.0565 (.1375) −.4173 (.0856)
13 −1.0022 (.1160) −.0524 (.0288) .4398 (.1110) −.1305 (.1320) −.4327 (.0846)
14 −1.0717 (.1246) −.0592 (.0289) .3885 (.1156) −.1022 (.1369) −.3734 (.0865)
15 −1.1314 (.1298) −.0489 (.0288) .2977 (.1158) −.0696 (.1332) −.3782 (.0878)
16 −1.1712 (.1429) −.0375 (.0289) .1956 (.1173) .0280 (.1510) −.3544 (.0935)
17 −1.0854 (.1434) −.0361 (.0288) .1598 (.1102) −.0767 (.1483) −.4816 (.0905)
18 −.9386 (.1434) −.0312 (.0289) .0266 (.1058) −.0896 (.1567) −.4570 (.0978)
19 −.8923 (.1429) −.0393 (.0291) .1234 (.1071) −.1141 (.1575) −.3586 (.0989)
20 −.9970 (.1433) −.0373 (.0291) .0770 (.1056) −.0673 (.1946) −.3594 (.0982)
21 −.8419 (.1435) −.0213 (.0291) .0140 (.1061) −.2699 (.1998) −.3135 (.1044)
22 −.6996 (.1480) −.0322 (.0292) .0629 (.1050) −.2255 (.2094) −.2629 (.1080)
23 −.5515 (.1474) −.0185 (.0291) −.0265 (.1006) −.2809 (.1909) −.3072 (.1127)
24 −.7725 (.1549) −.0083 (.0293) −.0116 (.1036) −.4011 (.1916) −.3548 (.1084)
25 −.5907 (.1436) −.0091 (.0292) −.0748 (.0968) −.3754 (.1842) −.2818 (.1155)
26 −.6769 (.1436) −.0120 (.0291) .0356 (.0950) −.4234 (.1859) −.2989 (.1096)
27 −.7196 (.1441) −.0103 (.0290) .0026 (.0964) −.4630 (.2002) −.2737 (.1088)
28 −.6425 (.1357) −.0075 (.0289) −.0836 (.1089) −.6648 (.1991) −.1809 (.1159)
29 −.7632 (.1326) −.0121 (.0292) −.1821 (.1107) −.4626 (.1625) −.1444 (.1130)
30 −.8968 (.1486) −.0182 (.0286) −.2586 (.1184) −.5401 (.1862) −.0855 (.1164)

ρ̂QML = .6495 ρ̂AQS (se) = .6495 (.0360)
σ̂2
QML = .0040 σ̂2

AQS (se) = .0041 (.0002)

Note: as the estimates of the time-varying coefficients are very similar,
only the AQS estimates are reported.
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3.6 Conclusion and Discussion

We introduce a general strategy (AQS-estimation) for estimating fixed effects spatial

panel data models with time-varying coefficients and two major spatial effects: the spatial

lag and spatial error. Based on the adjusted quasi score function, the proposed AQS-

estimation method is robust in the sense that it is allowing errors to be nonnormal. The

common parameter estimates from the AQS-estimation approach are consistent, and the

asymptotic distributions are properly centered. Typically, a consistent estimate requires

either n or both n and T to be large. But the convergence rates of the estimators need to

be adjusted when T is large. Monte Carlo results are provided to illustrate finite sample

properties of the various estimators. Empirical case is also provided to support further

applications.

An empirical illustration is presented to help empirical researchers to apply our meth-

ods in models with time-varying coefficients. Our methods are quite useful in prediction,

meanwhile in finding and analyzing the most influential observations from a large dataset.

When applying the AQS-estimation method to models with time-varying coefficients, our

analysis should focus on the trend of the temporal change instead of the estimator in

one certain period. Estimators that are under temporal homogeneity assumptions may

not provide this kind of information to us. The proposed methods are simple and gen-

eral, which makes them very attractive to practitioners. It would be also interesting to

extend our methods to allow for interactive fixed effects, heteroskedasticity in time and

cross-section, serial correlation, etc. However, these are clearly beyond the scope of this

chapter and will be dealt with in future works.
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4 Heteroskedasticity Robust Estimation of Spatial Panel

Data Models with Temporal Heterogeneity

In the presence of temporal heterogeneity or TH (time-varying regression and spa-

tial coefficients), the usual transformation-based methods for estimating the fixed effects

(FE) spatial panel data (SPD) models are inapplicable. The presence of cross-sectional

heteroskedasticity (CH) causes the usual methods of estimating spatial econometric mod-

els to be inconsistent. In this chapter, a new set of estimation and inference methods

is developed based on the adjusted quasi scores (AQS) that simultaneously take care of

the three major issues, FE, TH and CH, in the estimation of FE-SPD model. Consis-

tency and asymptotic normality of the robust AQS-estimators are established. The AQS

functions are decomposed into a vector martingal diferences so that the outer-product-of-

martingale-difference (OPMD) gives a consistent estimate of variance of the AQS func-

tions which in turn gives consistent estimates of variance-covariance matrix of the AQS-

estimators. Monte Carlo results show that the proposed set of estimation and inference

methods has good finite sample performance.

4.1 Introduction

Recently, spatial models are receiving substantial attentions in economic studies. The

values observed at one location depend on the values observed at the neighboring loca-

tions, giving rise to the so-called spatial dependence. However, this dependence may not

be temporally homogeneous similar to the situations where the covariate effects are tem-

porally heterogeneous. Therefore, the spatial model considered in this paper is subject to

temporal heterogeneity (TH). Models with time varying coefficients (TVC) have superi-

ority over models with fixed parameters in terms of forecasting and identifying influential

data observations. Such an allowance of TVC is important in economic study but also

complicates the estimation procedure. Therefore, specialized techniques are desired.

The quasi maximum likelihood (QML) estimation method is the most conventional

estimation method in spatial panel data (SPD) models. However, for the SPD model with
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fixed effects (FE), the direct QML estimates of some parameter is inconsistent due to the

incidental parameters problem of Neyman and Scott (1948), see also Lancaster (2000).

The usual transformation-based method is inapplicable due to the time-varying nature of

the regression and spatial coefficients, and perhaps the time-varying nature of the spatial

weight matrices. Xu an d Yang (2020a,b) developed adjusted quasi score (AQS) method

for testing and estimation of the FE-SPD model with TVC.

Cross-sectional heteroskedasticity (CH) may be another important feature of spatial

data due to the fact that the spatial units vary greatly in size. Anselin (1988) raised the

issue of heteroskedasticity in spatial models, which may occur more naturally in the pres-

ence of peer interactions. The mix of aggregate and non aggregate data in the model

may cause errors to be heteroskedastic. See, e.g., Glaeser et al. (1996), LeSage and Pace

(2009). Spatial units are often heterogeneous in important characteristics, e.g., size, and

hence the homoskedasticity assumptions may not hold in many situations, and therefore,

a lack of an estimation theory that allows for heteroskedasticity is a serious shortcoming

(Kelejian and Prucha, 2010). The presence of social interactions will inflate the variance

of aggregated level data with the extent depending on the strength and structure of the

interactions, leading to a more complicated variance structure, therefore we would ex-

pect the variances of the error terms to be different in certain applications (Lin and Lee,

2010). With spatial interactions, the homoskedasticity assumptions are quite restrictive

in the SPD models. The QML estimators and the corresponding asymptotic distributions

derived under the homoskedasticity assumptions are generally inappropriate. Therefore,

it is highly desirable to develop a set of estimation and inference methods for the FE-SPD

model with TVC that are robust against unknown CH.

Recent spatial econometrics literature has seen many attempts in providing estimation

and inference methods robust against unknown heteroskedasticity. See LeSage (1997) for

a Bayesian approach; Lin and Lee (2010), Kelejian and Prucha (2010), and Badinger and

Egger (2011, 2015) for GMM or 2SLS methods; Jin and Lee (2012), Baltagi and Yang

(2013b), Liu and Yang (2015, 2020), and Li and Yang (2020) for likelihood-based ap-

proaches. Lin and Lee (2010) provide heteroskedasticity robust GMM estimators by mod-

ifying certain moment conditions. Liu and Yang (2015) introduce a modified QML esti-
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mation method for a spatial autoregressive model robust against unknown heteroskedas-

ticity and propose an outer-product-of-gradients method to estimate the variance of the

score function which in turn leads to a consistent estimate of variance of the modified

QML estimators. Liu and Yang (2020) extend these methods to a homogeneous FE-

SPD model. Yang (2018), referring these methods as adjusted quasi score (AQS) or

M -estimation method for model estimation and outer-product-of-martingale-difference

(OPMD) method for variance-covariance (VC) matrix estimation, present AQS estima-

tors and OPMD standard errors for a fixed effects spatial dynamic panel data model with

homoskedastic errors, and Li and Yang (2020) extend these methods to allow errors to be

cross-sectionally heteroskedastic of unknown form.

Inspired by Liu and Yang (2015, 2020), Yang (2018) and Li and Yang (2020), in

this chapter we develop an AQS estimation method for the FE-SPD model with time-

varying regression and spatial coefficients by adjusting the concentrated score functions

with FE being concentrated out, so that the AQS functions obtained are robust against un-

known heteroskedasticity. For heteroskedasticity robust inferences, we develop an OPMD

method for estimating the variance of the AQS functions, which together with the ex-

pected Hessian matrix of the AQS functions give a robust estimator of the VC matrix of

the AQS estimators. Monte Carlo results show that the AQS estimators and OPMD-based

standard error estimates perform very well.

The rest of the chapter is organized as follows. Section 4.2 introduces the heteroskedas-

ticity robust AQS method for estimating the FE-SPD model with TVC, the OPMD-based

estimator of VC matrix, and their asymptotic properties. The time-varying nature of the

coefficients renders separate considerations of asymptotics under large n and small T , and

large n and large T . Section 4.3 presents the Monte Carlo results. Section 4.4 concludes

the chapter. Technical details are given in Appendix.

4.2 Robust AQS-Estimation of FE-SPD Model with TVC

The basic idea of the AQS-estimation method is to first formulate the quasi Gaus-

sian likelihood function, and then adjust the quasi score function to give a set of robust

and unbiased estimating functions. The idea behind the OPMD-based standard error es-
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timates is to decompose the AQS function into the sum of a vector martingale difference

(M.D.) sequence so that the ’average’ of the outer products of the elements of the M.D.

sequence gives a consistent estimate of variance of the AQS functions, which in turn gives

consistent estimates of variance-covariance (VC) matrix of the AQS-estimators.

We first outline a general framework for estimating the FE-SPD model with TVC al-

lowing cross-sectional heteroskedasticity of unknown form. Then, we present the asymp-

totic properties of the robust AQS estimators. Finally, we introduce the OPMD-based

standard error estimators and their consistency is studied. Lemmas and the proofs of the

theorems are sketched in Appendices.

4.2.1 Robust Estimation

The model. Consider the following spatial panel data (SPD) model with time-varying

coefficients (TVC) and individual-specific FE:

Ynt = λtWnYnt +Xntβt + cn + Vnt, (4.1)

for t = 1, 2, . . . , T , where, for a given t, Ynt = (y1t, y2t, . . . , ynt)
′ is an n × 1 vector of

observations on the response variable, Xnt is an n × k matrix containing the values of k

nonstochastic, individually and time varying regressors, Vnt = (v1t, v2t, . . . , vnt)
′ is an n×

1 vector of errors where {vit} are independent and identically distributed (iid) across t for

each i, and independent but not (necessarily) identically distributed (inid) across i for each

t, with mean 0 and variance σ2
0rn,i, i = 1, . . . , n where rn,i > 0 and 1

n

∑n
i=1 rn,i = 1.13 cn

is an n×1 vector of unobserved spatial heterogeneity in the intercept or simply unobserved

individual-specific effects that may be correlated with time-varying regressors, Wn is an

n×n spatial weight matrix, λt is the spatial lag parameter for period t and βt is the k×1

vector of regression coefficients for period t.

As λt and βt are allowed to change with t, the usual fixed-effects estimation methods,

such as first differencing or orthogonal transformation, cannot be applied. For an FE-SPD

13Note that σ0 is the average of Var(vit). Under homoskedasticity, rn,i = 1, ∀i. For generality, we allow

rn,i to depend on n, for each i. This parameterization gives a nonparametric version of Breusch and Pagan

(1979) and is useful as it allows the estimation of the average scale parameter.
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model with TVC and homoskedastic errors, Xu and Yang (2020a) propose specification

tests for testing the temporal homogeneity in regression and spatial coefficients. When the

‘temporal homogeneity’ is rejected, one may need to proceed to estimate the full model

with TVC, which is considered in Xu and Yang (2020b). However, when the model errors

are heteroskedastic, these testing and estimating strategies are invalid. In this paper, we

extend the adjusted quasi score (AQS) estimation method of Xu and Yang (2020b) to give

AQS estimators that are robust against unknown and cross-sectional heteroskedasticity

(CH). For inference, the method given in Xu and Yang (2020b) based on Hessian and

variance of the AQS functions is again invalid. We develop an OPMD estimator of the

VC matrix of the robust AQS estimators.

Denote β = (β′1, . . . , β
′
T )′, λ = (λ1, . . . , λT )′, and θ = (β′,λ′, σ2)′. The joint quasi

Gaussian loglikelihood function of θ = (β′,λ′, σ2)′ and cn is

`(θ, cn) =− nT
2

ln(2πσ2) +
∑T

t=1 ln |An(λt)| − 1
2σ2

∑T
t=1 V

′
nt(βt, λt, cn)Vnt(βt, λt, cn),

where Vnt(βt, λt, cn) = An(λt)Ynt−Xntβt−cn andAn(λt) = In−λtWn, for t = 1, . . . , T .

We eliminate cn through a direct maximization of the above loglikelihood function.

Given θ, `(θ, cn) is partially maximized at: c̃n(β,λ) = 1
T

∑T
t=1

(
An(λt)Ynt − Xntβt

)
,

leading to the concentrated loglikelihood function of θ upon substitution:

`c(θ) = −nT
2

ln(2πσ2) +
∑T

t=1 ln |An(λt)| − 1
2σ2

∑T
t=1 Ṽ

′
nt(β,λ)Ṽnt(β,λ), (4.2)

where Ṽnt(β,λ) = Vnt(βt, λt, c̃n(β,λ)) = An(λt)Ynt − Xntβt − c̃n(β,λ). Maximizing

`c(θ) gives the quasi maximum likelihood estimator of the common parameter vector θ.

However, due to the estimation/elimination of the fixed effects cn, and due to the

existence of unknown CH, the QML estimator cannot be consistent. This can be seen as

follows. Differentiating `c(θ) gives concentrated quasi score (CQS) function of θ:

Sc(θ) =


1
σ2X

′
ntṼnt(β,λ), t = 1, . . . , T,

1
σ2 η̃
′
nt(β,λ)Ṽnt(β,λ) + 1

σ2 Ṽ
′
nt(β,λ)Gn(λt)Ṽnt(β,λ)− tr[Gn(λt)], t = 1, . . . , T,

− nT
2σ2 + 1

2σ4

∑T
t=1 Ṽ

′
nt(β,λ)Ṽnt(β,λ),

(4.3)

where Gn(λt) = WnA
−1
n (λt) and η̃nt = Gn(λt)(Xntβt + c̃n(β,λ)), for t = 1, . . . , T .
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Denote θ0 as the true values of the parameters, where θ0 = (β′0,λ
′
0, σ

2
0)′. A necessary

condition to ensure the consistency of the quasi-score estimators θ̂ is that the probability

limit of the estimating function at the true parameter value is zero, i.e.,

limn→∞
1
nT
Sc(θ0)

p−→ 0,

see van der Vaart (1998). The condition is generally not true even when the errors are

homoskedastic as shown in Xu and Yang (2020a, b), and with unknown heteroskedasticity

this necessary condition is violated even more seriously.

Assume Model (4.1) holds only under θ0, and the usual expectation and variance

operators correspond to θ0. At the true values of the parameters, we have, c̃n(β0,λ0) =

cn +B−1
n V n and hence Ṽnt ≡ Ṽnt(β0,λ0) = Vnt− V n, where V n = 1

T

∑T
t=1 Vnt. Denote

Gnt = Gn(λt0). Let Rn = diag(rn) and rn = (rn,1, . . . , rn,n)′. It is easy to show that,

E(η̃′nt0Ṽnt + Ṽ ′ntGnt0Ṽnt) = T−1
T
σ2

0tr(RnGnt), (4.4)

E
(∑T

t=1 Ṽ
′
ntṼnt

)
= σ2

0n(T − 1). (4.5)

These results show that the (λ, σ2) elements of the 1
nT

E[Sc(θ0)], and hence the same

elements of plimn→∞
1
nT
Sc(θ0), are not zero so that the QML estimator or quasi-score

estimators, cannot be consistent in general.

Our idea is to modify the quasi-score functions of (4.3) so that its expectation at the

true parameters θ0 is zero even under unknown heteroskedasticity.14 No adjustment for β

elements in Sc(θ) is needed, since it has zero expectation and zero probability limit under

unknown heteroskedasticity. The modification is trivial for the σ2 component, we directly

subtract the result in (4.5) from the σ2 component of (4.3) to obtain the adjusted quasi

score function for σ2 component. Instead of using the result in (4.4) directly to adjust the

λ component in Sc(θ), we find modification term in Ṽnt with expectation being the same

14Making the expectation of an estimating function to be zero leads potentially to a finite sample bias

corrected estimation. This is in line with Baltagi and Yang (2013a,b) in constructing standardized or het-

eroskedasticity robust LM tests with finite sample improvements. See also Kelejian and Prucha (2001,

2010) and Lin and Lee (2010) for some useful methods in handling the linear-quadratic forms of het-

eroskedastic random vectors.
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as the term inside the expectation of (4.4). We have the following:

E(Ṽ ′ntdiag(Gnt)Ṽnt) = T−1
T
σ2

0tr(RnGnt). (4.6)

Subtracting the term inside the expectation of (4.6) from the term inside the expectation

of (4.4) gives an adjusted quasi score function for λ component.

Through the above adjustments, we obtain the desired AQS function S?(θ) for θ,

which upon dividing by nT has zero expectation and zero probability limit under un-

known CH. It provides a set of unbiased and heteroskedasticity robust estimating func-

tions:

S?(θ) =


1
σ2X

′
ntṼnt(β,λ, ρ), t = 1, . . . , T,

1
σ2 η̃
′
ntṼnt(β,λ) + 1

σ2 Ṽ
′
nt(β,λ)G◦n(λt)Ṽnt(β,λ), t = 1, . . . , T,

−n(T−1)
2σ2 + 1

2σ4

∑T
t=1 Ṽ

′
nt(β,λ)Ṽnt(β,λ),

(4.7)

where G◦n(λt) = Gn(λt)− diag(Gn(λt)). It is easy to show that E[S?(θ0)] = 0, and that
1
nT
S?(θ0)

p−→ 0 as n → ∞ alone, or the finite dimensional components of 1
nT
S?(θ0)

approach to 0 in probability when both n and T go infinity. Solving S?(θ) = 0 leads

to the robust AQS-estimator θ̂ of θ that not only is consistent but also has a centered

asymptotic distribution, whether T is fixed or grows with n.

The root-finding process can be further simplified by first solving the equations for β

and σ2, given λ, resulting in the constrained AQS-estimators of β and σ2 as

β̂(λ) = (X ′NΩXN)−1X ′NΩAN(λ)YN , (4.8)

σ̂2(λ) = 1
n(T−1)

V̂ ′N(λ)V̂N(λ), (4.9)

where XN = blkdiag(Xn1, . . . , XnT ), YN = (Y ′n1, . . . , Y
′
nT )′, Ω = IN − 1

T
(1T1′T ⊗

In), AN(λ) = blkdiag(An(λ1), . . . , An(λT )), V̂N(λ) = ṼN(β̂(λ),λ) = Ω[AN(λ)YN −

XN β̂(λ)] = (V̂ ′n1(λ), . . . , V̂ ′nT (λ))′. Substituting β̂(λ) and σ̂2(λ) back into the middle

component of the AQS function in (4.7) gives the concentrated AQS function:

S?c(λ) = 1
σ̂2(λ)

η̂′N(λ)V̂N(λ) + 1
σ̂2(λ)

V̂ ◦′N (λ)G◦N(λ)V̂N(λ), (4.10)

where η̂N(λ) = blkdiag(η̂n1(λ), . . . , η̂nT (λ)), V̂ ◦N(λ) = blkdiag(V̂n1(λ), . . . , V̂nT (λ)),

G◦N(λ) = blkdiag
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(G◦n1(λ), . . . , G◦nT (λ)), η̂nt(λ) = η̃nt(β̂(λ),λ), and V̂nt(λ) = Ṽnt(β̂(λ),λ)). Solving

the resulting concentrated estimating equation, S?c(λ) = 0, we obtain the unconstrained

AQS-estimator λ̂ of λ. The unconstrained AQS-estimators of β and σ2 are thus β̂ ≡ β̂(λ̂)

and σ̂2 ≡ σ̂2(λ̂). Denote θ̂ = (β̂′, σ̂2, λ̂′)′.

4.2.2 Asymptotic Properties of Robust AQS-estimators

We now study the consistency and asymptotic normality of the heteroskedasticity ro-

bust AQS-estimators for the FE-SPD model with time varying parameters. We focus on

the short panels first, i.e., panels with large n and small T . Then we present the consis-

tency and asymptotic normality of the robust AQS-estimators when T is large. Lemmas

and proofs of the theorems are sketched in Appendices.

To facilitate the discussions, some notation and convention are reviewed and new ones

are introduced: a parametric function at the true parameter value is differentiated from that

at a general parameter value by dropping its argument, e.g., Ant ≡ An(λt0) and Gnt ≡

Gn(λt0); the common expectation, variance and covariance operators ‘E’ ‘Var’ and ‘Cov’

correspond to the true parameter vector θ0; Λt denotes the parameter space from which λt

takes values, and Λ is the product space formed by {Λt} from which λ takes values; tr(·),

| · | and ‖ · ‖ denote, respectively, the trace, determinant, and Frobenius norm of a matrix;

γmax(A) and γmin(A) denote, respectively, the largest and smallest eigenvalues of a real

symmetric matrix A; and diag(ak) forms a diagonal matrix using the elements {ak} and

blkdiag(Ak) forms a block-diagonal matrix using the matrices {Ak}. Furthermore,

{Ats} forms a new matrix using the sub-matrices Ats for t, s = 1, . . . , T .

There are two factors that cause the inconsistency of QML estimators based on the

concentrated loglikelihood function given in (4.2) or equivalently the quasi score func-

tion given in (4.3). One is the incidental parameters problem (Neyman and Scott, 1948)

induced by direct estimation of the fixed effects cn. The other is that the existence of

cross-sectional heteroskedasticity of completely unknown form induces another set of in-

cidental parameters that further bias the quasi score function.

To see this, let gnt = (gnt,1, . . . ,gnt,n)′ = diagv(Gnt), ḡnt = 1
n

∑n
i=1 gnt,i, for

t = 1, . . . , T . Let Cov(gnt, rn) denote the sample covariance between the two vectors
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gnt and rn. We have, similarly to Lin and Lee (2010), for t = 1, . . . , T ,

1
n
tr(RnGnt −Gnt) + op(1) = 1

n

∑n
i=1(rn,i − 1)(gnt,i − ḡnt) + op(1)

= Cov(gnt , rn) + op(1) (4.11)

Therefore, for θ̂ to be consistent, it is necessary that as n → ∞, Cov(gnt , rn) → 0.

In other words, when limn→∞Cov(gnt , rn) 6= 0, θ̂ cannot be consistent. By Cauchy-

Schwartz inequality, this condition is satisfied if Var(gnt) → 0, which is equivalent to

Var(kn)→ 0, where kn is the vector of number of neighbours for each unit.15

Assumption A: The disturbances {vit} are such that (i) iid across t but inid across i

with E(vit) = 0, (ii) Var(vit) = σ2
0rn,i, where 0 < rn,i 6 c < ∞ and 1

n

∑n
i=1 rn,i = 1.

(iii) E|vit|4+ε0 <∞ for some ε0 > 0.

Assumption B: The space Λ is compact, and the true parameter λ0 lies in its interior.

Assumption C: The time-varying regressors {Xnt, t = 1, . . . , T} are exogenous

with respect to {vit} and are correlated with cn in an arbitrary manner; their values are

uniformly bounded in n and t, and limN→∞
1
N
X ′NXN exists and is nonsingular.

Assumption D: (i) the elements wij of Wn are at most of order h−1
n , uniformly in all

i and j, and wii = 0 for all i; (ii) hn/n → 0 as n → ∞; (iii) {Wn} is row-normalized

and is uniformly bounded in both row and column sums in absolute value; (iv) The matrix

An(λt) is invertible for all λt ∈ Λt, A−1
n (λt0) is uniformly bounded in both row and

column sums, and A−1
n (λt) is uniformly bounded in either row or column sums, uniformly

in λt ∈ Λ, t = 1, . . . , T .

Assumption A extends Xu and Yang (2020b) to allow for unknown CH. Consistent

estimation of λ requires the compactness of Λ in Assumption B. Under Assumptions C

and D, the consistency of β̂ and σ̂2 follows almost immediately that of λ̂. Conditions

15According to Lin and Lee (2010), this condition is satisfied if almost all the diagonal elements of the

matrix Gnt are equal. For each period, Gnt = Wn + λtW
2
n + λ2tW

3
n + . . . , if |λt| < 1 and wn,ij < 1.

Anselin (2003) noted that the diagonal elements of W ι
n, ι > 2 are inversely related to kn. When Wn is

row-normalized and symmetric, diag(W 2
n) = k−1n,i . In many spatial layouts such as Rook, Queen, group

interactions where the variation in groups sizes becomes small when n gets large, etc, we can find the

vanishing Var(kn), that is Var(kn) = o(1). See Yang (2010), and Liu and Yang (2015).
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(i), (iii) and (iv) under Assumptions D are standard conditions put on the spatial weight

matrices (Lee, 2004; Yang, 2018). Assumption D(ii) further allow the degree of spatial

dependence to grow with n (Lee, 2004; Yang, 2018). Therefore, the concentrated estimat-

ing function (CEF) S?c(λ) and its population counterpart play the key role in establishing

the consistency of the AQS estimator θ̂ of θ.

Define the population counterpart of the AQS functions given in (4.7) as S̄?(θ), where

S̄?(θ) = E[S?(θ)]. Given λ, S̄?(θ) = 0 is partially solved at:

β̄(λ) = (X ′NΩXN)−1X ′NΩAN(λ)E(YN), (4.12)

σ̄2(λ) = 1
n(T−1)

E[V̄ ′N(λ)V̄N(λ)], (4.13)

where V̄N(λ) = ṼN |β=β̄(λ) = Ω[AN(λ)YN−XN β̄(λ)], which can be expressed as another

useful form to obtain detailed expressions for σ̄2(λ) and thus S̄?c(λ):

V̄N(λ) = MΩAN(λ)YN + PΩAN(λ)ỸN , (4.14)

where ỸN = YN − E(YN), M = IN − ΩXN(X ′NΩXN)−1X ′NΩ, and P = IN −M.

Substituting β̄(λ) and σ̄2(λ) back into the λ-component of S̄?(θ) leads to the popula-

tion counterpart of the CEF given in (4.10), as

S̄?c(λ) = 1
σ̄2(λ)

E[η̄′N(λ)V̄N(λ)] + 1
σ̄2(λ)

E[V̄ ◦′N (λ)G◦N(λ)V̄N(λ)] (4.15)

where η̄N(λ) = blkdiag(η̄n1(λ), . . . , η̄nT (λ)), V̄ ◦N(λ) = blkdiag(V̄n1(λ), . . . , V̄nT (λ)),

η̄nt(λ) = η̃nt(β̄(λ),λ), and V̄nt(λ) = Ṽnt(β̄(λ),λ), t = 1 . . . T .

Clearly, the AQS-estimator λ̂ of λ0 is a zero of S?c(λ), and λ0 is a zero of S̄?c(λ) as

β̄(λ0) = β0 and σ̄2(λ0) = σ2
0 , i.e., λ0 is a zero of S̄?c(λ). Denote the overall sample

size as N = nT and the effective sample size as N∗ = n(T − 1). Thus, by Theorem

5.9 of van der Vaart (1998), consistency of λ̂ follows from (a) the uniform convergence:

supλ∈Λ
1
N∗

∥∥S?c(λ) − S̄?c(λ)
∥∥ p−→ 0, and (b) the following identification uniqueness

condition:

Assumption E: infλ: d(λ,λ0)≥ε
∥∥S̄?c(λ)

∥∥ > 0 for every ε > 0, where d(λ,λ0) is a

measure of distance between λ0 and λ.

Theorem 4.1 Under Assumptions A-E, θ0 is identified. Furthermore, for the AQS-estimators

θ̂ based on the AQS function, θ̂
p−→ θ0.
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The derivation of the asymptotic distribution of the AQS-estimators θ̂ starts with a

Taylor expansion of the joint AQS function S?(θ̂) = 0 at θ0, and then we verify that

the AQS functions S?(θ0) is asymptotically normal and that the corresponding adjusted

Hessian ∂
∂θ′
S?(θ̄) has proper asymptotic behavior for some θ̄ lying between θ̂ and θ0

elementwise. The central limit theorem (CLT) for linear-quadratic forms by Kelejian and

Prucha (2001) would be sufficient to establish the asymptotic properties. Detained proof

can be found in the Appendix. Let ṼN = (Ṽ ′n1, . . . , Ṽ
′
nT )′ be the vector of elements {Ṽit},

where the representation for the AQS functions given in (4.7) in terms of ṼN is crucial in

developing an OPMD method for estimating the robust VC matrix. More details will be

discussed in Sec. 4.2.3.

Lemma 4.1 Let zt be a T ×1 vector of element 1 in the tth position and 0 elsewhere, and

define ZNt = zt ⊗ In.

Ṽnt ≡ Ṽnt(β0,λ0) = Z ′NtṼN (4.16)

Using the representation given in Lemma 4.1, the AQS function at θ0 can be written

as

S?(θ0) =


Π′1tṼN , t = 1, . . . , T,

Π′2tṼN + Ṽ ′NΦ1tṼN , t = 1, . . . , T,

Ṽ ′NΦ2ṼN − n(T−1)

2σ2
0
,

(4.17)

where Π1t = 1
σ2
0
ZNtXnt, Π2t = 1

σ2
0
ZNtη̃nt0, Φ1t = 1

σ2
0
ZNtG

◦
nt0Z

′
Nt, and Φ2 = 1

2σ4
0

∑T
t=1 ZNtZ

′
Nt.

The above representation for AQS functions given in (4.7) at θ0 in terms of ṼN =

(Ṽ ′n1, . . . , Ṽ
′
nT )′ turns out to be very useful in establishing the asymptotic normality and

estimating the variance-covariance (VC) matrix of the AQS vector.

Case of large n and small T . When T is small and fixed, the number of parameters,

i.e., the munber of elements in the vector θ is fixed. Therefore, standard asymptotic

results hold. We have the following theorem.

Theorem 4.2 Under the assumptions of Theorem 4.1, we have, as n→∞, T is fixed,

√
N∗
(
θ̂− θ0

) D−→ N
[
0, lim

n→∞
I◦−1(θ0)Σ◦(θ0)I◦−1(θ0)

]
,
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where I◦(θ0) = − 1
N∗

E[ ∂
∂θ′
S?(θ0)] and Σ◦(θ0) = 1

N∗
Var[S?(θ0)], both assumed to exist

and I?(θ0) to be positive definite, for sufficiently large n.

Case of large n and large T . Although the short panels are more popular in the

spatial empirical applications, the large panels, i.e., panels with large n and large T , are

also important. Now, we focus on the large panels. As the dimensions of θ0, I◦(θ0) and

Σ◦(θ0) grow with the increase of T , the asymptotic arguments of the AQS estimator under

small T case are no longer appropriate. Reflecting on the βt and λt components of I◦(θ0),

where they will approach to zero as n, T → ∞ . This raises a issue of convergence rates

for the components of the AQS estimator θ̂. To keep out theoretical arguments simple,

we simply extend the results of Theorems (4.1) and (4.2) by letting n goes large first and

then T , but T is smaller than n.

Adjustments are made on each component, βt and λt, of β and λ. From the infor-

mation matrix I(θ0) = −E[ ∂
∂θ′
S?(θ0)] given in Appendix B, we see that the βt block of

1
nT
I(θ0) is 1

nT

(
T−1
Tσ2

0
X ′ntXnt

)
, which approaches to a zero matrix as n, T →∞. However,

the quantity with a different normalizing factor 1
n

, 1
n

(
T−1
Tσ2

0
X ′ntXnt

)
will converge to a pos-

itive definite matrix as n, T → ∞. A similar phenomenon holds for the λt component

of 1
nT
I(θ0). As for the σ2 component of 1

nT
I(θ0), it is easy to see that it converges to a

positive definite matrix as n, T → ∞. These reveal that the convergence rate for β̂t and

λ̂t are both
√
n, but the rate of convergence for σ̂2 is

√
nT .

We have the following results.

Theorem 4.3 Under the assumptions of Theorem 4.2, we have,

(i)
√
n
(
β̂t − βt0

) D−→ N
(
0, Ωt

)
, for each t, as n→∞, and then T →∞,

(ii)
√
n
(
λ̂t − λt0

) D−→ N
(
0, τ 2

λt

)
, for each t, as n→∞, and then T →∞,

(iii)
√
nT
(
σ̂2 − σ2

0

) D−→ N
(
0, τ 2

σ2

)
, as n, T →∞,

where Ωt and τ 2
λt

are the limits of the corresponding components of 1
T
I◦−1(θ0)Σ◦(θ0)I◦−1(θ0),

and τ 2
σ2 the limits of the corresponding components of I◦−1(θ0)Σ◦(θ0)I◦−1(θ0).

From the results Theorem 4.3, it is clear the joint inference for a finite number of

components of β can be made by extending the result (i), the joint inference for a finite
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number of components of λ can be made by extending the result (ii), and the joint in-

ference concerning a finite number of components of θ can be made by extending and

combining the results (i) − (iii) of Theorem 4.3. These results provide useful tools for

the practical applications in switching from the fixed T scenario to the large T scenario.

4.2.3 OPMD estimation of robust VC matrix

Valid inference requires consistent estimators of I◦(θ0) and Σ◦(θ0). Clearly, Î◦ =

− 1
N∗
E[ ∂

∂θ′
S?(θ0)|θ0=θ̂] or I◦(θ̂) gives a consistent estimate of I◦(θ0) where the analyti-

cal expression of I◦(θ0) is given in Appendix C.2; However, the estimation of Σ◦(θ0) run

into difficulties. The analytical expression of this quantity cannot be used as it contains

2nd, 3rd and 4th moments of idiosyncratic errors vit that all change with i and hence the

usual plug-in method does not apply. For the case of large n and small T , we may use the

idea of Yang (2018) to give an OPMD estimate of Σ◦(θ0), taking the advantage that ṼN

can be estimated and are independent across i for each t. However, for the case of large

n and large T , this method is invalid, as when T is large, the dependence over t in the

transformed errors ṼN cannot be ignored, and a new method is desired for the estimation

of Σ�(θ0).

Case if large n and small T . From (4.17) we see that the AQS function S?(θ0)

contains two types of elements:

Π′ṼN , and Ṽ ′NΦṼN ,

where Π and Φ are nonstochastic matrices (depending on θ0) with Π being nT × p or

nT × 1, and Φ being nT × nT . Partition Π according to t = 1, . . . , T , and denote

the partitioned matrices by Πt. Partition Φ according to t, s = 1, . . . , T , and denote the

partitioned matrices by Φts. Define Φt+ =
∑T

s=1 Φts, t = 1, . . . , T . For a square matrix

A, let Au, Al and Ad be, respectively, its upper-triangular, lower-triangular, and diagonal

matrix such that A = Au + Al + Ad. Let {Fn,i} be the increasing sequence of σ-fields

generated by (vj1, . . . , vjT , j = 1, . . . , i), i = 1, . . . , n, n > 1. Clearly, Fn,i−1 ⊆ Fn,i.

Following lemma shows that (Π′ṼN , Ṽ
′
NΦṼN − E(Ṽ ′NΦṼN) can be written as a sum of

n uncorrelated terms, which turn out to be a vector martingale difference (M.D.) arrays.
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Hence, the average of outer-product-of-martingale-differences (OPMD) give a consistent

estimator of the variance of 1√
N∗

(Π′ṼN , Ṽ
′
NΦṼN).

Lemma 4.2 Consider Model (4.1), the general Π is nT × p, and denote Πit as the ith

row of Πt. Define

gπi =
∑T

t=1 Π′itṼit, (4.18)

gΦi =
∑T

t=1(Ṽitξit + ṼitṼ
∗
it − dit), (4.19)

where {ξit} = ξt =
∑T

s=1(Φu′
st + Φl

ts)Ṽs, Ṽ
∗
t =

∑T
s=1 Φd

tsṼs, dit = T−1
T
σ2
v0rn,iΦii,tt. Then,

Π′ṼN =
∑n

i=1 gπi,

Ṽ ′NΦṼN − E(Ṽ ′NΦṼN) =
∑n

i=1 gΦi,

and {(g′πi, gΦi)
′,Fn,i}ni=1 form a vector M.D. sequence.

Now, following Lemma 4.2, for each Πr, r = 1, 2, defined in (4.17), define gπrti

according to (4.18); and for each Φr, r = 1, 2, define gΦ1ti and gΦ2i according to (4.19),

respectively. For t = 1, ..., T , define

gi = (g′π1ti, gπ2ti + gΦ1ti, gΦ2i)
′.

Then, S?(θ0) =
∑n

i=1 gi, and {gi,Fn,i} form a vector M.D. sequence. Let Σ(θ0) =

Var[S?(θ0)], it follows that Σ(θ0) =
∑n

i=1 E(gig
′
i). The ‘average’ of the outer products

of the estimated g′is, i.e.,

Σ̂◦ = 1
N∗

∑n
i=1 ĝiĝ

′
i, (4.20)

which gives a consistent estimator of Σ◦(θ0), where ĝi is obtained by replacing θ0 in gi

by θ̂ and ṼN in gi by its observed counterpart V̂N .

Theorem 4.4 Under the assumptions of Theorem 4.2, we have, as n→∞ (T fixed),

Σ̂◦ − Σ◦(θ0) = 1
N∗

∑n
i=1

[
ĝiĝ
′
i − E(gig

′
i)
] p−→ 0,

and hence, I◦−1(θ̂)Σ̂◦I◦−1(θ̂)− I◦−1(θ0)Σ◦(θ0)I◦−1(θ0)
p−→ 0.
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Case of large n and large T . Summing over time dimension in Π′ṼN and Ṽ ′NΦṼN

ignores the dependence of the elements of ṼN over time. This is fine if T is fixed and the

asymptotics depend only on n. However, when T is also large, the asymptotics depend on

both n and T , and hence the dependence of the elements of ṼN over t cannot be ignored.

Let j = 1, . . . , N be the combined index for i = 1, . . . , n and t = 1, . . . , T . In the

following, we decompose Π′ṼN and Ṽ ′NΦṼN in a different way:

Lemma 4.3 Let Π, ξt and Ṽ ∗t be defined in Lemma 4.2. Define

g�πj = Π′N,jṼN,j, (4.21)

g�Φj = ṼN,jξN,j + ṼN,jṼ
∗
N,j − dN,j, (4.22)

where ΠN,j is the jth row of Π; ξN,j is the jth element of ξN = (ξ′1, . . . , ξ
′
T ); Ṽ ∗N,j is the

jth element of Ṽ ∗N = (Ṽ ∗′1 , . . . , Ṽ
∗′
T ); and dN,j is the jth element of {dit}. We freely switch

between the single index j and the double indices (i, t). Thus, notations in (4.21)-(4.22)

are interchangeable with the notations in (4.18)-(4.19). Then,

Π′ṼN =
∑N

j=1 g
�
πj,

Ṽ ′NΦṼN − E(Ṽ ′NΦṼN) =
∑N

j=1 g
�
Φj.

Now, following Lemma 4.3, for each Πr, r = 1, 2, defined in (4.17), define g�πrtj

according to (4.21); and for each Φr, r = 1, 2, define g�Φ1tj and g�Φ2j according to (4.22),

respectively. The AQS function can be written as S?(θ0) =
∑N

j=1 sN,j , where

sN,j =


g�π1tj,

g�π2tj + g�Φ1tj, t = 1, . . . , T,

g�Φ2j,

(4.23)

Dependence among the elements of ṼN across t may exist, implying that SN,it and SN,is

may be correlated and that the OPMD estimate of Σ(θ0) = V ar[S?(θ0)] under the small

T case may not be strictly valid. As SN,j are uncorrelated across i for each t, we have:

Σ(θ0) = Var(
∑n

i=1

∑T
t=1 sN,it) =

∑n
i=1 Var(

∑T
t=1 sN,it),

=
∑N

j=1 E(sN,js
′
N,j) + 2

∑n
i=1

∑T
t=2

∑t−1
s=1 E(sN,its

′
N,is).
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This provides the following estimation of the robust VC matrix when T is large.

Σ̂(θ) =
∑N

j=1 ŝN,j ŝ
′
N,j +

∑n
i=1 r̂N,i,

where r̂N,i = 2
∑T

t=2

∑t−1
s=1(ŝN,itŝ

′
N,is), which provides a correction on the cross-t corre-

lations of the elements {sN,j} of the AQS function.

Theorem 4.5 Under Assumption A-E, we have, as n, T →∞,

1

N
[Σ̂− Σ(θ0)]

p−→ 0,

and hence, I�−1(θ̂)Σ̂�I�−1(θ̂)− I�−1(θ0)Σ�(θ0)I�−1(θ0)
p−→ 0.

4.3 Monte Carlo Study

Monte Carlo experiments are carried out to investigate the finite sample performance

of (i) the proposed AQS-estimators of the FE-SPD model with TVC and unknown het-

eroskedasticity and (ii) the OPMD-based standard errors estimates of the AQS-estimators.

The model we use in our Monte Carlo experiment is the SL-1FE SPD model, having two

time-varying regressors:

Ynt = λt0WnYnt +Xntβt0 + cn0 + Vnt,

where t = 1, . . . , T .

In the Monte Carlo experiments, we choose n = (50, 100, 200, 500), and T is initially

set to be 3. We set β′10 = (1.0, 1.0), β′20 = (0.75, 1.25), β′30 = (1.25, 0.75). As for

the setting of λ0, we consider several cases and set (i) λ′0 = (−0.5,−0.25,−0.75); (ii)

λ′0 = (0.5,−0.25,−0.75); (iii) λ′0 = (0.5, 0.25,−0.75); (iv) λ′0 = (0.5, 0.25, 0.75).

Finally, σ0 = 1. The details of generating idiosyncratic errors, weight matrices, cross-

sectional heteroskedasticity and regressors are as follows. Each set of Monte Carlo results

is based on 2,000 Monte Carlo samples.

Spatial Weight matrices: The spatial weight matrices are generated according to

group interaction schemes, neighbors occur in groups where each group member is spa-

tially related to one another resulting in a symmetric Wn matrix. To ensure the het-

eroskedasticity effect does not fade as n increases (so that the regular QML-estimators

97



are inconsistent), the degree of spatial dependence is fixed with respect to n. This is

attained by fixing the possible group sizes in the Group Interaction scheme.

Heteroskedasticity: Similar to Lin and Lee (2010), the heteroskedasticity Rn is gen-

erated in two different ways, both emphasizes a nonlinear variance structure. {R1}: if the

group size is smaller than the average group size, then rn,i is constructed to be the same

as group size, otherwise, it is the square of the inverse of the group size. In this case,

the variance function is increasing and then decreasing with the group size. {R2}: if the

group size is larger than the average group size, then rn,i is constructed to be the same as

group size, otherwise, it is the square of the inverse of the group size. In this second case,

the variance function is decreasing and then increasing with the group size.

Regressors: The exogenous regressors are generated according to REG1: Xknt
iid∼

N(0, 1), which are independent across k = 1, 2, and t = 1, . . . , T . In case when the

spatial dependence is in the form of group interaction, the regressors can also be generated

according to REG2: the ith value of the kth regressor in the gth group is such thatXkt,ig
iid∼

(2zg + zig)/
√

10, where (zg, zi,g)
iid∼ N(0, 1) when group interaction scheme is followed;

{Xkt,ig} are thus independent across k and t, but not across i.

Error Distribution: vit = σ0rnieit, are generated according to err1: {eit} are iid

standard normal; err2: {eit} are iid normal mixture with 10% of values from N(0, 4)

and the remaining from N(0, 1), standardized to have mean 0 and variance 1; and err3:

{eit} iid chi-square with 3 degrees of freedom, standardized to have mean 0 and variance

1.16

Monte Carlo (empirical) means and standard deviations (sds) are reported for the

QML-estimators and the AQS-estimators. Empirical averages of the standard errors (ses)

are also reported. Due to the space constraint, partial Monte Carlo results are reported.

The main results observed from the Monte Carlo experiments are summarized as follows:

(i) The QML-estimators (QMLEs) are inconsistent from Table 4.1-4.4, the AQS esti-

mators (AQSEs) provide a useful consistent alternative with significantly less bias,

and the OPMD-based standard error estimates for AQSEs are also consistent.
16See Yang (2015a) for more details on generating idiosyncratic errors, weight matrices and regressors.
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(ii) The QMLEs for the spatial parameters are inconsistent in Table 4.1-4.3 and are

likely to be consistent in Table 4.4. In both cases, AQSEs perform better than the

QMLEs. The consistency (robustness) of the AQSE is clearly demonstrated by the

Monte Carlo results and the corresponding values of the OPMD-based standard

error estimates are very close to their Monte Carlo counterparts in general.

(iii) The QMLEs for the covariate effects are less affected by the unknown heteroskedas-

ticity. The AQSEs for the covariate effects perform well as well.

(iv) The cases with larger T (unreported for brevity) were also investigated. Monte

Carlo results show that the the pattern of inconsistency still remains for the QMLEs,

but the proposed AQSEs and the OPMD-based estimate for the standard errors are

still consistent and continue to perform well with significantly less bias, irrespective

of whether the errors are normal or non-normal.
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Table 4.1. Empirical Mean(sd)[se]∗ of CQS-Estimator, AQS-Estimator
SL One-Way Model, T = 3

θ Normal Error Normal Mixture Chi-Square
QMLE AQS-Est QMLE AQS-Est QMLE AQS-Est

n = 50

β11 1.00 .9927 (.170) .9967 (.170) [.151] .9948 (.170) .9987 (.170) [.146] .9953 (.170) .9996 (.170) [.150]
β21 1.00 1.0268 (.178) 1.0363 (.175) [.156] 1.0219 (.180) 1.0321 (.175) [.149] 1.0328 (.175) 1.0413 (.168) [.150]
β12 0.75 .7385 (.137) .7433 (.137) [.124] .7408 (.143) .7453 (.142) [.119] .7357 (.148) .7406 (.146) [.123]
β22 1.25 1.2940 (.102) 1.2839 (.099) [.098] 1.2922 (.106) 1.2828 (.102) [.094] 1.2915 (.102) 1.2819 (.098) [.095]
β13 1.25 1.2972 (.170) 1.2761 (.168) [.138] 1.2943 (.170) 1.2748 (.165) [.131] 1.2994 (.176) 1.2787 (.171) [.139]
β23 0.75 .7772 (.142) .7672 (.140) [.120] .7763 (.144) .7672 (.141) [.115] .7778 (.133) .7691 (.133) [.115]
λ1 0.50 .4836 (.076) .4818 (.075) [.066] .4861 (.077) .4839 (.074) [.063] .4810 (.076) .4795 (.073) [.064]
λ2 -0.25 -.2980 (.133) -.2872 (.129) [.119] -.2965 (.139) -.2865 (.132) [.114] -.2952 (.125) -.2850 (.121) [.113]
λ3 -0.75 -.8292 (.211) -.7982 (.206) [.178] -.8246 (.218) -.7959 (.206) [.170] -.8319 (.203) -.8023 (.198) [.170]
σ2

2 1.00 .5821 (.160) .8762 (.241) [.270] .5842 (.314) .8801 (.475) [.380] .5908 (.251) .8894 (.378) [.333]
n = 100

β11 1.00 1.0159 (.095) 1.0133 (.093) [.090] 1.0147 (.094) 1.0125 (.091) [.086] 1.0128 (.095) 1.0101 (.093) [.088]
β21 1.00 .9996 (.102) 1.0098 (.100) [.096] 1.0003 (.101) 1.0105 (.098) [.092] .9993 (.101) 1.0092 (.100) [.094]
β12 0.75 .7612 (.088) .7555 (.087) [.082] .7589 (.088) .7535 (.088) [.080] .7614 (.088) .7558 (.088) [.081]
β22 1.25 1.2577 (.100) 1.2558 (.099) [.094] 1.2604 (.099) 1.2585 (.098) [.090] 1.2597 (.097) 1.2578 (.097) [.092]
β13 1.25 1.2808 (.105) 1.2599 (.103) [.097] 1.2788 (.104) 1.2594 (.100) [.093] 1.2790 (.109) 1.2580 (.105) [.098]
β23 0.75 .7706 (.086) .7564 (.085) [.077] .7667 (.084) .7535 (.082) [.074] .7683 (.081) .7542 (.081) [.075]
λ1 0.50 .5013 (.051) .4933 (.050) [.050] .5004 (.052) .4924 (.050) [.047] .5012 (.052) .4933 (.051) [.049]
λ2 -0.25 -.2816 (.100) -.2672 (.097) [.094] -.2802 (.098) -.2664 (.094) [.090] -.2804 (.101) -.2659 (.096) [.093]
λ3 -0.75 -.8141 (.127) -.7742 (.122) [.123] -.8108 (.133) -.7734 (.121) [.117] -.8105 (.141) -.7701 (.130) [.125]
σ2

2 1.00 .6266 (.121) .9441 (.183) [.219] .6219 (.241) .9376 (.364) [.326] .6274 (.187) .9457 (.283) [.274]
Note: [se]∗: Empirical averages of the standard errors, only for robust AQS-estimators

Wn are generated from Group Interaction scheme, replication number = 2000.
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Table 4.1 (cont’d). Empirical Mean(sd)[se]∗ of CQS-Estimator, AQS-Estimator
SL One-Way Model, T = 3

θ Normal Error Normal Mixture Chi-Square
QMLE AQS-Est QMLE AQS-Est QMLE AQS-Est

n = 200

β11 1.00 .9982 (.061) 1.0050 (.061) [.060] .9980 (.062) 1.0049 (.061) [.058] .9986 (.062) 1.0054 (.061) [.059]
β21 1.00 .9932 (.067) 1.0039 (.066) [.065] .9933 (.068) 1.0040 (.066) [.064] .9959 (.066) 1.0067 (.065) [.064]
β12 0.75 .7553 (.072) .7506 (.071) [.070] .7550 (.072) .7504 (.071) [.068] .7548 (.075) .7501 (.074) [.070]
β22 1.25 1.2583 (.070) 1.2518 (.070) [.069] 1.2602 (.070) 1.2538 (.069) [.067] 1.2614 (.071) 1.2548 (.070) [.068]
β13 1.25 1.2695 (.068) 1.2525 (.067) [.065] 1.2673 (.069) 1.2503 (.067) [.064] 1.2701 (.068) 1.2530 (.066) [.064]
β23 0.75 .7605 (.049) .7492 (.048) [.046] .7611 (.049) .7499 (.047) [.045] .7634 (.047) .7522 (.046) [.045]
λ1 0.50 .5005 (.029) .4969 (.029) [.028] .5003 (.030) .4967 (.029) [.027] .5003 (.029) .4967 (.028) [.028]
λ2 -0.25 -.2616 (.064) -.2538 (.063) [.062] -.2620 (.064) -.2543 (.063) [.060] -.2625 (.064) -.2547 (.062) [.061]
λ3 -0.75 -.7800 (.089) -.7524 (.086) [.084] -.7798 (.091) -.7523 (.086) [.082] -.7850 (.088) -.7573 (.084) [.082]
σ2

2 1.00 .6475 (.087) .9738 (.131) [.165] .6482 (.177) .9751 (.266) [.262] .6470 (.132) .9731 (.198) [.212]
n = 500

β11 1.00 .9977 (.038) 1.0011 (.037) [.038] .9985 (.038) 1.0019 (.037) [.038] .9972 (.040) 1.0004 (.039) [.038]
β21 1.00 .9943 (.044) 1.0008 (.043) [.044] .9953 (.044) 1.0018 (.043) [.043] .9933 (.045) .9998 (.044) [.044]
β12 0.75 .7580 (.037) .7528 (.036) [.036] .7569 (.037) .7519 (.036) [.035] .7559 (.038) .7508 (.037) [.036]
β22 1.25 1.2616 (.046) 1.2538 (.045) [.046] 1.2608 (.046) 1.2531 (.045) [.045] 1.2593 (.046) 1.2515 (.045) [.046]
β13 1.25 1.2698 (.043) 1.2513 (.043) [.044] 1.2693 (.045) 1.2511 (.044) [.043] 1.2689 (.044) 1.2501 (.043) [.044]
β23 0.75 .7592 (.030) .7495 (.029) [.030] .7590 (.031) .7495 (.030) [.030] .7607 (.030) .7509 (.030) [.030]
λ1 0.50 .5010 (.018) .4989 (.018) [.018] .5006 (.019) .4985 (.018) [.018] .5017 (.019) .4996 (.019) [.018]
λ2 -0.25 -.2642 (.043) -.2544 (.042) [.043] -.2630 (.043) -.2534 (.042) [.042] -.2616 (.043) -.2520 (.042) [.043]
λ3 -0.75 -.7808 (.053) -.7530 (.051) [.053] -.7805 (.056) -.7531 (.052) [.053] -.7805 (.054) -.7523 (.051) [.053]
σ2

2 1.00 .6576 (.055) .9888 (.083) [.108] .6547 (.108) .9845 (.163) [.177] .6567 (.084) .9876 (.127) [.141]
Note: [se]∗: Empirical averages of the standard errors, only for robust AQS-estimators

Wn are generated from Group Interaction scheme, replication number = 2000.
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Table 4.2. Empirical Mean(sd)[se]∗ of CQS-Estimator, AQS-Estimator
SL One-Way Model, T = 3

θ Normal Error Normal Mixture Chi-Square
QMLE AQS-Est QMLE AQS-Est QMLE AQS-Est

n = 50

β11 1.00 .9906 (.170) .9920 (.170) [.150] .9934 (.171) .9947 (.171) [.145] .9931 (.171) .9943 (.171) [.149]
β21 1.00 1.0425 (.153) 1.0237 (.148) [.133] 1.0405 (.153) 1.0221 (.148) [.125] 1.0453 (.143) 1.0283 (.141) [.125]
β12 0.75 .7370 (.137) .7441 (.136) [.124] .7390 (.143) .7458 (.142) [.118] .7346 (.147) .7416 (.146) [.123]
β22 1.25 1.3001 (.101) 1.2833 (.099) [.098] 1.2987 (.105) 1.2826 (.101) [.094] 1.2970 (.100) 1.2813 (.097) [.095]
β13 1.25 1.3002 (.170) 1.2757 (.168) [.138] 1.2978 (.170) 1.2747 (.165) [.131] 1.3018 (.176) 1.2782 (.171) [.139]
β23 0.75 .7818 (.143) .7666 (.140) [.120] .7814 (.145) .7670 (.141) [.115] .7829 (.135) .7688 (.134) [.115]
λ1 -0.50 -.5693 (.194) -.5394 (.187) [.167] -.5653 (.193) -.5363 (.185) [.157] -.5728 (.181) -.5455 (.178) [.157]
λ2 -0.25 -.3050 (.133) -.2865 (.129) [.118] -.3041 (.137) -.2863 (.132) [.113] -.3018 (.125) -.2843 (.121) [.113]
λ3 -0.75 -.8381 (.211) -.7967 (.206) [.179] -.8344 (.215) -.7952 (.206) [.170] -.8400 (.201) -.8008 (.198) [.170]
σ2

2 1.00 .5775 (.158) .8714 (.239) [.269] .5800 (.311) .8759 (.472) [.378] .5876 (.249) .8865 (.376) [.333]
n = 100

β11 1.00 1.0294 (.090) 1.0116 (.089) [.085] 1.0275 (.089) 1.0104 (.087) [.081] 1.0262 (.092) 1.0083 (.090) [.083]
β21 1.00 1.0231 (.093) 1.0073 (.091) [.086] 1.0229 (.092) 1.0073 (.090) [.082] 1.0218 (.092) 1.0060 (.090) [.084]
β12 0.75 .7609 (.088) .7557 (.087) [.082] .7586 (.089) .7537 (.088) [.080] .7612 (.088) .7561 (.088) [.081]
β22 1.25 1.2631 (.100) 1.2560 (.099) [.094] 1.2656 (.099) 1.2586 (.098) [.090] 1.2651 (.097) 1.2579 (.097) [.092]
β13 1.25 1.2848 (.105) 1.2602 (.103) [.097] 1.2828 (.104) 1.2597 (.100) [.093] 1.2828 (.109) 1.2582 (.105) [.098]
β23 0.75 .7703 (.086) .7565 (.085) [.077] .7665 (.085) .7536 (.082) [.074] .7684 (.081) .7545 (.081) [.075]
λ1 -0.50 -.5483 (.141) -.5166 (.134) [.133] -.5491 (.144) -.5178 (.133) [.125] -.5464 (.144) -.5150 (.135) [.128]
λ2 -0.25 -.2841 (.100) -.2672 (.097) [.094] -.2826 (.097) -.2663 (.094) [.089] -.2827 (.100) -.2658 (.096) [.093]
λ3 -0.75 -.8167 (.127) -.7742 (.122) [.124] -.8134 (.133) -.7733 (.121) [.117] -.8127 (.141) -.7700 (.130) [.125]
σ2

2 1.00 .6240 (.121) .9411 (.182) [.218] .6190 (.239) .9342 (.362) [.324] .6248 (.187) .9428 (.283) [.273]
Note: [se]∗: Empirical averages of the standard errors, only for robust AQS-estimators

Wn are generated from Group Interaction scheme, replication number = 2000.
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Table 4.2(cont’d). Empirical Mean(sd)[se]∗ of CQS-Estimator, AQS-Estimator
SL One-Way Model, T = 3

θ Normal Error Normal Mixture Chi-Square
QMLE AQS-Est QMLE AQS-Est QMLE AQS-Est

n = 200

β11 1.00 1.0164 (.057) 1.0040 (.056) [.055] 1.0160 (.058) 1.0037 (.056) [.053] 1.0167 (.058) 1.0043 (.057) [.055]
β21 1.00 1.0161 (.063) 1.0029 (.062) [.061] 1.0157 (.063) 1.0026 (.062) [.060] 1.0187 (.064) 1.0055 (.063) [.061]
β12 0.75 .7542 (.072) .7508 (.071) [.070] .7539 (.072) .7506 (.071) [.068] .7536 (.075) .7503 (.074) [.069]
β22 1.25 1.2609 (.071) 1.2519 (.070) [.069] 1.2628 (.070) 1.2539 (.069) [.067] 1.2640 (.071) 1.2549 (.070) [.068]
β13 1.25 1.2704 (.068) 1.2524 (.067) [.065] 1.2682 (.069) 1.2502 (.067) [.064] 1.2709 (.068) 1.2529 (.066) [.064]
β23 0.75 .7623 (.049) .7492 (.048) [.047] .7628 (.049) .7498 (.047) [.045] .7652 (.047) .7522 (.047) [.045]
λ1 -0.50 -.5342 (.081) -.5082 (.079) [.077] -.5341 (.081) -.5083 (.077) [.074] -.5344 (.080) -.5084 (.077) [.076]
λ2 -0.25 -.2658 (.064) -.2539 (.063) [.062] -.2661 (.064) -.2544 (.063) [.060] -.2667 (.063) -.2547 (.062) [.061]
λ3 -0.75 -.7860 (.089) -.7523 (.086) [.084] -.7858 (.090) -.7521 (.086) [.082] -.7911 (.087) -.7572 (.083) [.082]
σ2

2 1.00 .6457 (.087) .9724 (.131) [.165] .6465 (.176) .9740 (.266) [.262] .6452 (.131) .9718 (.198) [.211]
n = 500

β11 1.00 1.0151 (.035) 1.0005 (.035) [.035] 1.0158 (.035) 1.0013 (.034) [.035] 1.0148 (.036) 1.0002 (.036) [.035]
β21 1.00 1.0155 (.040) 1.0002 (.039) [.039] 1.0164 (.040) 1.0011 (.039) [.039] 1.0149 (.040) .9995 (.040) [.039]
β12 0.75 .7600 (.037) .7528 (.036) [.036] .7590 (.037) .7519 (.036) [.035] .7580 (.038) .7508 (.037) [.036]
β22 1.25 1.2661 (.046) 1.2538 (.045) [.046] 1.2654 (.046) 1.2532 (.045) [.045] 1.2638 (.046) 1.2515 (.046) [.046]
β13 1.25 1.2723 (.044) 1.2513 (.043) [.044] 1.2719 (.045) 1.2512 (.044) [.043] 1.2714 (.044) 1.2502 (.043) [.044]
β23 0.75 .7616 (.030) .7495 (.030) [.030] .7615 (.031) .7496 (.030) [.030] .7631 (.030) .7509 (.030) [.030]
λ1 -0.50 -.5302 (.051) -.5025 (.049) [.050] -.5312 (.051) -.5037 (.048) [.050] -.5286 (.052) -.5009 (.051) [.050]
λ2 -0.25 -.2712 (.043) -.2544 (.042) [.043] -.2700 (.043) -.2534 (.041) [.042] -.2687 (.043) -.2520 (.042) [.043]
λ3 -0.75 -.7899 (.053) -.7530 (.052) [.053] -.7895 (.056) -.7531 (.052) [.053] -.7896 (.054) -.7523 (.051) [.053]
σ2

2 1.00 .6560 (.055) .9883 (.083) [.108] .6530 (.108) .9839 (.162) [.177] .6552 (.084) .9872 (.127) [.141]
Note: [se]∗: Empirical averages of the standard errors, only for robust AQS-estimators

Wn are generated from Group Interaction scheme, replication number = 2000.
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Table 4.3. Empirical Mean(sd)[se]∗ of CQS-Estimator, AQS-Estimator
SL One-Way Model, T = 3

θ Normal Error Normal Mixture Chi-Square
QMLE AQS-Est QMLE AQS-Est QMLE AQS-Est

n = 50

β11 1.00 .9946 (.170) .9969 (.170) [.151] .9965 (.170) .9988 (.170) [.146] .9973 (.169) .9998 (.170) [.149]
β21 1.00 1.0240 (.178) 1.0362 (.175) [.157] 1.0193 (.179) 1.0320 (.175) [.149] 1.0297 (.174) 1.0412 (.168) [.150]
β12 0.75 .7390 (.134) .7465 (.134) [.122] .7415 (.140) .7485 (.140) [.117] .7359 (.144) .7435 (.143) [.122]
β22 1.25 1.2857 (.107) 1.2876 (.104) [.103] 1.2849 (.110) 1.2869 (.106) [.100] 1.2838 (.106) 1.2857 (.102) [.100]
β13 1.25 1.2951 (.171) 1.2761 (.168) [.138] 1.2923 (.171) 1.2747 (.165) [.131] 1.2977 (.177) 1.2789 (.171) [.139]
β23 0.75 .7744 (.142) .7676 (.140) [.120] .7738 (.144) .7677 (.141) [.115] .7751 (.132) .7695 (.133) [.115]
λ1 0.50 .4854 (.076) .4817 (.075) [.066] .4877 (.077) .4838 (.074) [.063] .4828 (.076) .4795 (.073) [.064]
λ2 0.25 .2266 (.084) .2255 (.083) [.076] .2268 (.087) .2257 (.084) [.073] .2276 (.082) .2266 (.079) [.073]
λ3 -0.75 -.8237 (.212) -.7984 (.205) [.178] -.8194 (.219) -.7962 (.207) [.170] -.8267 (.203) -.8027 (.197) [.170]
σ2

2 1.00 .5843 (.161) .8791 (.242) [.271] .5869 (.317) .8837 (.478) [.382] .5924 (.252) .8913 (.379) [.334]
n = 100

β11 1.00 1.0112 (.096) 1.0135 (.094) [.091] 1.0101 (.095) 1.0127 (.092) [.087] 1.0084 (.095) 1.0104 (.094) [.089]
β21 1.00 .9977 (.102) 1.0098 (.100) [.096] .9984 (.101) 1.0104 (.098) [.092] .9975 (.101) 1.0092 (.100) [.094]
β12 0.75 .7557 (.089) .7567 (.089) [.084] .7536 (.089) .7547 (.089) [.082] .7562 (.089) .7570 (.089) [.082]
β22 1.25 1.2524 (.102) 1.2575 (.101) [.096] 1.2552 (.100) 1.2602 (.100) [.092] 1.2548 (.100) 1.2595 (.099) [.094]
β13 1.25 1.2800 (.105) 1.2597 (.103) [.097] 1.2780 (.104) 1.2592 (.100) [.093] 1.2783 (.110) 1.2578 (.105) [.098]
β23 0.75 .7689 (.086) .7565 (.085) [.078] .7650 (.085) .7536 (.083) [.074] .7664 (.080) .7542 (.081) [.075]
λ1 0.50 .5018 (.051) .4932 (.050) [.050] .5009 (.052) .4924 (.050) [.047] .5017 (.052) .4933 (.051) [.049]
λ2 0.25 .2386 (.063) .2388 (.061) [.060] .2393 (.061) .2392 (.059) [.057] .2391 (.061) .2396 (.060) [.059]
λ3 -0.75 -.8087 (.127) -.7741 (.122) [.123] -.8054 (.134) -.7733 (.121) [.118] -.8053 (.142) -.7701 (.130) [.125]
σ2

2 1.00 .6281 (.121) .9456 (.183) [.219] .6234 (.241) .9391 (.365) [.326] .6292 (.188) .9476 (.284) [.275]
Note: [se]∗: Empirical averages of the standard errors, only for robust AQS-estimators

Wn are generated from Group Interaction scheme, replication number = 2000.
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Table 4.3(cont’d). Empirical Mean(sd)[se]∗ of CQS-Estimator, AQS-Estimator
SL One-Way Model, T = 3

θ Normal Error Normal Mixture Chi-Square
QMLE AQS-Est QMLE AQS-Est QMLE AQS-Est

n = 200

β11 1.00 .9971 (.061) 1.0050 (.061) [.060] .9970 (.062) 1.0050 (.061) [.058] .9976 (.062) 1.0055 (.061) [.059]
β21 1.00 .9929 (.067) 1.0039 (.066) [.065] .9929 (.068) 1.0040 (.066) [.064] .9956 (.066) 1.0067 (.065) [.064]
β12 0.75 .7474 (.074) .7513 (.074) [.073] .7472 (.075) .7512 (.074) [.071] .7469 (.076) .7509 (.076) [.072]
β22 1.25 1.2482 (.074) 1.2526 (.073) [.072] 1.2503 (.073) 1.2547 (.072) [.070] 1.2515 (.074) 1.2558 (.073) [.071]
β13 1.25 1.2689 (.068) 1.2525 (.067) [.065] 1.2666 (.069) 1.2503 (.067) [.064] 1.2694 (.068) 1.2531 (.066) [.064]
β23 0.75 .7596 (.049) .7493 (.048) [.047] .7602 (.049) .7499 (.047) [.045] .7625 (.047) .7522 (.046) [.045]
λ1 0.50 .5013 (.029) .4968 (.029) [.028] .5011 (.030) .4966 (.029) [.027] .5011 (.029) .4967 (.028) [.028]
λ2 0.25 .2498 (.041) .2472 (.040) [.040] .2494 (.041) .2468 (.040) [.039] .2491 (.041) .2466 (.040) [.039]
λ3 -0.75 -.7777 (.089) -.7525 (.086) [.084] -.7775 (.092) -.7524 (.086) [.082] -.7827 (.088) -.7575 (.084) [.083]
σ2

2 1.00 .6479 (.087) .9742 (.131) [.165] .6487 (.177) .9756 (.266) [.262] .6474 (.132) .9737 (.198) [.212]
n = 500

β11 1.00 .9950 (.038) 1.0010 (.037) [.038] .9958 (.038) 1.0019 (.037) [.038] .9944 (.040) 1.0005 (.039) [.038]
β21 1.00 .9924 (.044) 1.0008 (.043) [.044] .9934 (.044) 1.0018 (.043) [.043] .9914 (.045) .9998 (.044) [.043]
β12 0.75 .7492 (.038) .7530 (.037) [.037] .7484 (.038) .7522 (.037) [.037] .7473 (.039) .7510 (.038) [.037]
β22 1.25 1.2485 (.048) 1.2541 (.047) [.048] 1.2481 (.047) 1.2536 (.046) [.047] 1.2463 (.048) 1.2518 (.047) [.047]
β13 1.25 1.2693 (.043) 1.2513 (.043) [.044] 1.2689 (.045) 1.2511 (.044) [.043] 1.2685 (.044) 1.2501 (.043) [.044]
β23 0.75 .7581 (.030) .7495 (.029) [.030] .7580 (.031) .7496 (.030) [.030] .7596 (.030) .7509 (.030) [.030]
λ1 0.50 .5026 (.018) .4989 (.018) [.019] .5022 (.019) .4985 (.018) [.018] .5033 (.019) .4996 (.019) [.018]
λ2 0.25 .2502 (.027) .2472 (.027) [.027] .2507 (.027) .2477 (.026) [.027] .2516 (.027) .2487 (.026) [.027]
λ3 -0.75 -.7770 (.053) -.7530 (.051) [.053] -.7767 (.057) -.7531 (.052) [.053] -.7768 (.054) -.7524 (.051) [.053]
σ2

2 1.00 .6580 (.055) .9892 (.083) [.108] .6550 (.108) .9848 (.163) [.177] .6570 (.084) .9878 (.127) [.141]
Note: [se]∗: Empirical averages of the standard errors, only for robust AQS-estimators

Wn are generated from Group Interaction scheme, replication number = 2000.
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Table 4.4. Empirical Mean(sd)[se]∗ of CQS-Estimator, AQS-Estimator
SL One-Way Model, T = 3

θ Normal Error Normal Mixture Chi-Square
QMLE AQS-Est QMLE AQS-Est QMLE AQS-Est

n = 50

β11 1.00 .9992 (.166) .9981 (.166) [.153] .9995 (.167) .9984 (.167) [.149] .9988 (.163) .9977 (.163) [.151]
β21 1.00 1.0418 (.137) 1.0293 (.138) [.131] 1.0438 (.140) 1.0314 (.141) [.128] 1.0470 (.138) 1.0348 (.139) [.128]
β12 0.75 .7335 (.145) .7382 (.144) [.138] .7317 (.146) .7364 (.146) [.136] .7345 (.142) .7392 (.142) [.136]
β22 1.25 1.2872 (.140) 1.2768 (.141) [.129] 1.2880 (.138) 1.2778 (.139) [.125] 1.2893 (.138) 1.2790 (.139) [.128]
β13 1.25 1.3092 (.152) 1.2906 (.154) [.150] 1.3149 (.153) 1.2964 (.154) [.147] 1.3019 (.153) 1.2835 (.154) [.146]
β23 0.75 .7861 (.109) .7752 (.109) [.103] .7893 (.107) .7785 (.107) [.101] .7827 (.109) .7719 (.110) [.101]
λ1 0.50 .4777 (.048) .4844 (.049) [.048] .4768 (.049) .4834 (.050) [.047] .4768 (.050) .4833 (.050) [.047]
λ2 0.25 .2239 (.072) .2310 (.073) [.068] .2229 (.071) .2299 (.071) [.066] .2234 (.071) .2304 (.072) [.067]
λ3 0.75 .7364 (.028) .7406 (.028) [.027] .7353 (.028) .7395 (.028) [.027] .7368 (.028) .7410 (.028) [.027]
σ2

2 1.00 .6130 (.108) .9181 (.162) [.170] .6123 (.219) .9170 (.328) [.277] .6075 (.160) .9098 (.240) [.217]
n = 100

β11 1.00 1.0254 (.093) 1.0139 (.093) [.088] 1.0259 (.093) 1.0144 (.093) [.087] 1.0261 (.091) 1.0147 (.091) [.088]
β21 1.00 1.0265 (.089) 1.0157 (.090) [.088] 1.0275 (.091) 1.0167 (.092) [.086] 1.0255 (.088) 1.0148 (.089) [.087]
β12 0.75 .7594 (.081) .7564 (.081) [.079] .7601 (.082) .7570 (.082) [.078] .7584 (.083) .7554 (.083) [.078]
β22 1.25 1.2596 (.114) 1.2549 (.114) [.109] 1.2622 (.117) 1.2576 (.117) [.107] 1.2627 (.112) 1.2581 (.113) [.107]
β13 1.25 1.2781 (.114) 1.2622 (.115) [.110] 1.2777 (.112) 1.2617 (.113) [.107] 1.2798 (.110) 1.2640 (.111) [.109]
β23 0.75 .7660 (.078) .7572 (.078) [.075] .7642 (.078) .7553 (.078) [.073] .7675 (.076) .7588 (.076) [.075]
λ1 0.50 .4829 (.046) .4898 (.047) [.046] .4827 (.047) .4896 (.048) [.045] .4835 (.046) .4903 (.046) [.045]
λ2 0.25 .2355 (.050) .2417 (.050) [.049] .2351 (.050) .2413 (.050) [.048] .2345 (.051) .2406 (.052) [.049]
λ3 0.75 .7430 (.021) .7467 (.021) [.020] .7433 (.020) .7471 (.020) [.020] .7426 (.020) .7463 (.021) [.020]
σ2

2 1.00 .6408 (.080) .9598 (.120) [.130] .6410 (.161) .9602 (.241) [.225] .6389 (.120) .9569 (.179) [.174]
Note: [se]∗: Empirical averages of the standard errors, only for robust AQS-estimators

Wn are generated from Group Interaction scheme, replication number = 2000.
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Table 4.4 (cont’d). Empirical Mean(sd)[se]∗ of CQS-Estimator, AQS-Estimator
SL One-Way Model, T = 3

θ Normal Error Normal Mixture Chi-Square
QMLE AQS-Est QMLE AQS-Est QMLE AQS-Est

n = 200

β11 1.00 1.0149 (.056) 1.0060 (.056) [.056] 1.0164 (.057) 1.0075 (.057) [.056] 1.0136 (.057) 1.0047 (.057) [.056]
β21 1.00 1.0133 (.071) 1.0042 (.071) [.071] 1.0145 (.070) 1.0055 (.070) [.071] 1.0159 (.071) 1.0068 (.071) [.071]
β12 0.75 .7546 (.051) .7522 (.051) [.049] .7551 (.051) .7527 (.051) [.049] .7566 (.050) .7543 (.050) [.049]
β22 1.25 1.2611 (.062) 1.2551 (.062) [.061] 1.2611 (.061) 1.2552 (.062) [.060] 1.2612 (.062) 1.2553 (.062) [.061]
β13 1.25 1.2687 (.072) 1.2553 (.073) [.072] 1.2686 (.073) 1.2553 (.073) [.072] 1.2693 (.073) 1.2559 (.073) [.072]
β23 0.75 .7628 (.047) .7537 (.047) [.048] .7635 (.048) .7544 (.047) [.047] .7625 (.047) .7534 (.047) [.048]
λ1 0.50 .4907 (.025) .4965 (.026) [.027] .4898 (.026) .4956 (.026) [.026] .4903 (.026) .4961 (.026) [.026]
λ2 0.25 .2413 (.032) .2461 (.033) [.032] .2409 (.032) .2457 (.032) [.032] .2408 (.033) .2455 (.034) [.032]
λ3 0.75 .7450 (.012) .7483 (.012) [.013] .7450 (.013) .7483 (.013) [.013] .7451 (.013) .7483 (.013) [.013]
σ2

2 1.00 .6537 (.058) .9794 (.086) [.095] .6513 (.118) .9758 (.176) [.169] .6534 (.085) .9789 (.127) [.132]
n = 500

β11 1.00 1.0127 (.038) 1.0027 (.038) [.037] 1.0135 (.037) 1.0035 (.037) [.037] 1.0135 (.039) 1.0036 (.039) [.037]
β21 1.00 1.0131 (.039) 1.0026 (.039) [.039] 1.0133 (.038) 1.0029 (.039) [.039] 1.0147 (.039) 1.0043 (.040) [.039]
β12 0.75 .7581 (.035) .7535 (.035) [.035] .7573 (.036) .7527 (.036) [.035] .7567 (.035) .7521 (.035) [.035]
β22 1.25 1.2639 (.045) 1.2560 (.046) [.045] 1.2634 (.044) 1.2555 (.045) [.045] 1.2607 (.043) 1.2528 (.043) [.045]
β13 1.25 1.2688 (.048) 1.2542 (.048) [.047] 1.2687 (.048) 1.2540 (.048) [.047] 1.2678 (.047) 1.2530 (.047) [.047]
β23 0.75 .7596 (.032) .7512 (.032) [.032] .7598 (.032) .7513 (.032) [.032] .7598 (.033) .7513 (.032) [.032]
λ1 0.50 .4924 (.016) .4984 (.016) [.017] .4922 (.016) .4982 (.016) [.016] .4917 (.017) .4977 (.017) [.017]
λ2 0.25 .2403 (.023) .2467 (.024) [.024] .2404 (.024) .2469 (.024) [.024] .2415 (.023) .2479 (.024) [.024]
λ3 0.75 .7457 (.008) .7491 (.008) [.008] .7456 (.008) .7490 (.008) [.008] .7459 (.008) .7494 (.008) [.008]
σ2

2 1.00 .6620 (.037) .9918 (.055) [.062] .6624 (.074) .9922 (.110) [.112] .6615 (.054) .9909 (.081) [.086]
Note: [se]∗: Empirical averages of the standard errors, only for robust AQS-estimators

Wn are generated from Group Interaction scheme, replication number = 2000.
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4.4 Conclusion

In this paper, we propose a new estimation and inference method for the fixed ef-

fects spatial panel data (FE-SPD) model with time varying coefficients and unknown

heteroskedasticity and non-normality of the disturbances. Traditional QML estimators

are inconsistent in general when allowing for the unkown heteroskedasiticy, therefore we

propose robust adjusted quasi score (AQS) methods, which leads to a set of unbiased

and robust estimating equations. For the robust statistic inferences, we propose an outer-

product-of-martingale-differences (OPMD) method to estimate the variance of the AQS

functions, which together with the expected negative Hessian matrices, leading to robust

estimator of the variance-covariance (VC) matrix of the AQS estimators. The Monte Carlo

results show that both the AQS-estimators and the OPMD-based standard error estimators

perform very well, both are robust against unknown heteroskedasticity and non-normality.

The studies in this paper provide a useful tool for applied researchers who are in-

vestigating economic process, for example, housing decisions, unemployment, price de-

cisions, crime rates, trade flows, etc., exhibit time heterogeneity patterns and unknown

heteroskedasticity. In case of FE-SPD model with temporal heterogeneity, this paper pro-

poses an AQS strategy for robust estimation and inferences. For future studies on more

general models, where the two-way fixed effects, can be interactive or additive, are added,

the AQS method may be able to provide an alternative to estimate. It would also be in-

teresting that the studies can be extended by including (i) higher-order spatial terms, (ii)

serial correlation (iii) dynamic effects in the model. These extensions are interesting but

clearly beyond the scope of the current paper, which will be in our future research agenda.
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5 Conclusion and Further Research

This dissertation studies the fixed effects spatial panel data (FE-SPD) models with

temporal heterogeneity. Generally, we firstly propose an AQS-test to detect the exsitence

of temporal heterogeneity, and then we propose a set of AQS-based estimation and infer-

ence methods for FE-SPD models with time-varying coefficients (TVC), with extension

to allow for unknown heteroskedasticity and non-normality.

The robust AQS-tests have excellent performance and allow researchers to control

unobserved temporal heterogeneity in regression slope and spatial parameters. In a spatial

panel data model, the temporal heterogeneity may occur only in certain spatial units, not

all the spatial units. However, the AQS-tests proposed in this dissertation cannot identify

which spatial units are subject to temporal heterogeneity and which are not. Therefore, a

more efficient specification test can be developed in the future.

The AQS-estimators are consistent under both homoscedastic and heteroskedastic er-

rors, therefore it provides useful tools for the applied researchers. In an empirical applica-

tion, when the observation period T is very large, estimating parameters on a period-by-

period basis would lead to a large set of results. It is better to apply the AQS-test to detect

the break points firstly, therefore the estimations between the two neighbouring break

points are based on the assumption of temporal homogeneity. Under this way, we can

avoid a big table containing too much results and it also allows us to learn the temporal

pattern easily since we can see the structure breaks directly.

Researchers who want to learn the temporal pattern of an empirical application can

start from the AQS-based specification test, once it rejects the hypothesis of temporal ho-

mogeneity, they can apply the AQS-based estimation and inference methods. As most of

the previous literature are based on the assumption of temporal homogeneity, therefore it

would be more interesting and meaningful to compare the results under different temporal

assumptions.

Time heterogeneity pattern is an important feature in cunrrent economic process, for

example, housing decisions, unemployment, crime rates and trade flows. The study pro-

vides a useful tool for applied researchers who are investigating these economic activities.
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The dissertation can be extended in several directions. For future research, we can allow

for (i) higher-order spatial terms (ii) interactive fixed effects (iii) dynamic effects (iv)

serial correlation in the model to apply our methods in more practical applications.
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A Appendix to Chapter 2

A.1 Some Basic Lemmas

Lemma A.1.1 (Kelejian and Prucha, 1999; Lee, 2002): Let {An} and {Bn} be two

sequences of n × n matrices that are uniformly bounded in both row and column sums.

Let Cn be a sequence of conformable matrices whose elements are uniformly bounded.

Then

(i) the sequence {AnBn} are uniformly bounded in both row and column sums,

(ii) the elements of An are uniformly bounded and tr(An) = O(n), and

(iii) the elements of AnCn and CnAn are uniformly bounded.

Lemma A.1.2 (Yang, 2015b, Lemma A.1, extended). For t = 1, 2, let Ant be n × n

matrices and cnt be n × 1 vectors. Let εn be an n × 1 random vector of iid elements

with mean zero, variance σ2, and finite 3rd and 4th cumulants µ3 and µ4. Let ant be the

vector of diagonal elements of Ant. Define Qnt = c′ntεn + ε′nAntεn, t = 1, 2. Then, for

t, s = 1, 2,

Cov(Qnt, Qns) ≡ f(Ant, cnt;Ans, cns)

= σ4tr[(A′nt + Ant)Ans)] + µ3a
′
ntcns + µ3c

′
ntans + µ4a

′
ntans + σ2c′ntcns.

Lemma A.1.3 (CLT for Linear-Quadratic Forms, Kelejian and Prucha, 2001). Let

An, an, cn and εn be as in Lemma A.2. Assume (i) An is bounded uniformly in row and

column sums, (ii) n−1
∑n

i=1 |c
2+η1
n,i | <∞, η1 > 0, and (iii) E|ε4+η2

n,i | <∞, η2 > 0. Then,

ε′nAnεn + c′nεn − σ2tr(An)

{σ4tr(A′nAn + A2
n) + µ4a′nan + σ2c′ncn + 2µ3a′ncn}

1
2

D−→ N(0, 1).

A.2 Hessian, Expected Hessian and VC Matrices

Notation. For t, s = 1, . . . , T , blkdiag{At} forms a block-diagonal matrix by plac-

ing At diagonally, {At} forms a matrix by stacking At horizontally, and {Bts} forms a

matrix by the component matricesBts. The expected negative Hessian I$(θ0) and the VC

117



matrix Σ$(θ0) of the AQS function, $=SL1, SL2, SLE1, SLE2, are both partitioned ac-

cording to the slope parameters β, the spatial lag parameters λ, spatial error parameters

ρ (if existing in the model), and the error variance σ2, with the sub-matrices denoted by,

e.g., Iββ, Iβλ, Σββ, Σβλ. Furthermore, diag(·) forms a diagonal matrix and diagv(·) a

column vector, based on the diagonal elements of a square matrix.

Parametric quantities, e.g., An(λt0) and Bn(ρt0), evaluated at the true parameters are

denoted as Ant and Bnt. For a matrix An, denote Asn = An + A′n. The bold 0 represents

generically a vector or a matrix of zeros, to distinguish from the scalar 0.

Let VN = (V ′n1, . . . , V
′
nT )′ be the vector of original errors with elements {vit} being iid

of mean 0, variance σ2, skewness γ and excess kurtosis κ. We present here results suffi-

cient for the implementation of the tests introduced in the paper. More details can be found

in a Supplementary Appendix available at: http://www.mysmu.edu/facu-

lty/zlyang/.

A.2.1. Panel SL model with one-way FE. The negative Hessian matrix JSL1(θ0)

is given in the Supplementary Appendix. Its expectation ISL1(θ0) has the compo-

nents:

Iββ = blkdiag
{

1
σ2
0
X ′ntXnt

}
−
{

1
Tσ2

0
X ′ntXns

}
, Iλβ = blkdiag

{
1
σ2
0
η′ntXnt

}
−
{

1
Tσ2

0
η′ntXns

}
,

Iλλ = blkdiag
{

1
σ2
0
η′ntηnt+

T−1
T

tr(Gs
ntGnt)

}
−
{

1
Tσ2

0
η′ntηns

}
, Iσ2λ =

{
T−1
Tσ2

0
tr(Gnt)

}
,

Iσ2β = 0, Iσ2σ2 = n(T−1)

2σ4
0

, where ηnt = Gnt(Xntβt0 + cn) and Gs
nt = Gnt +G′nt.

The VC matrix ΣSL1(θ0) is obtained by applying Lemma A.1.2 with ε replaced by

VN , cnt by Π1t and Π2t, and Ant by Φt and Ψ:

ΣSL1(θ0) =


{
f(0,Π1t; 0,Π1s)

}
,
{
f(0,Π1t; Φs,Π2s)

}
,
{
f(0,Π1t; Ψ,0)

}
∼,

{
f(Φt,Π2t; Φs,Π2s)

}
,
{
f(Φt,Π2t; Ψ,0)

}
∼, ∼, f(Ψ,0; Ψ,0)

 ,

where Π1t = 1
σ2
0
Z◦NtXnt, Π2t = 1

σ2
0
Z◦Ntηnt, Φt = 1

σ2
0
ZNtG

′
ntZ

◦′
Nt, and Ψ = 1

2σ4

∑T
t=1 Z

◦
NtZ

◦′
Nt;

Z◦Nt = ZNt − Z̄N , ZNt = zt ⊗ In, Z̄N = 1
T

(lT ⊗ In), and zt be a T × 1 vector of element

1 in the tth position and 0 elsewhere.

A.2.2. Panel SL model with two-way FE. The negative Hessian matrix JSL2(θ0)
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is given in the Supplementary Appendix. Its expectation ISL2(θ0) has the compo-

nents:

Iββ = blkdiag
{

1
σ2
0
X∗′ntX

∗
nt

}
−
{

1
Tσ2

0
X∗′ntX

∗
ns

}
, Iλβ = blkdiag

{
1
σ2
0
η∗′ntX

∗
nt

}
−
{

1
Tσ2

0
η∗′ntX

∗
ns

}
,

Iλλ = blkdiag
{

1
σ2
0
η∗′ntη

∗
nt + T−1

T
tr(G∗sntG

∗
nt)
}
−
{

1
Tσ2

0
η∗′ntη

∗
ns

}
, Iσ2λ =

{
T−1
Tσ2

0
tr(G∗nt)

}
,

Iσ2β = 0, Iσ2σ2 = (n−1)(T−1)

2σ4
0

, where η∗nt = G∗nt(X
∗
ntβt0 + c∗n) and G∗snt = G∗nt +G∗′nt.

ΣSL2(θ0) has an identical form as ΣSL1(θ0) with the relevant quantities replaced by

Π1t = 1
σ2
0
Z◦∗NtX

∗
nt, Π2t = 1

σ2
0
Z◦NtFn,n−1η

∗
nt, Φt = 1

σ2
0
Z∗NtG

∗′
ntZ

◦∗′
Nt , and Ψ = 1

2σ4

∑T
t=1 Z

◦∗
NtZ

◦∗′
Nt ,

where Z∗Nt = ZNtFn,n−1 and Z◦∗Nt = Z◦NtFn,n−1.

A.2.3. Panel SLE model with one-way FE. The negative Hessian matrix JSEL1(θ0)

is in the Supplementary Appendix. Its expectation ISEL1(θ0) has the components:

Iββ = blkdiag
{

1
σ2
0
X ′ntDntXnt

}
−
{

1
σ2
0
X ′ntDntD−1

n DnsXns

}
;

Iλβ = blkdiag
{

1
σ2
0
η′tDntXnt

}
−
{

1
σ2
0
η′tDntD−1

n DnsXns

}
, Iρβ = 0Tk

Iλλ = blkdiag
{

1
σ2
0
η′ntDntηnt + tr(SntḠ

s
ntḠnt)

}
−
{

1
σ2
0
η′ntDntD−1

n Dnsηns
}
,

Iλρ = blkdiag
{

tr(Ḡ′ntSntH
s
nt)
}

; Iσ2σ2 = −n(T−1)

2σ4
0

+ 1
σ4
0

∑T
t=1 tr(Snt)

Iρλ = blkdiag
{

tr(Ḡ′ntSntH
s
ntSnt)} −

{
tr(G′nsDnsD−1

n ḊntD−1
n )
}

Iρρ = blkdiag
{

tr(Hs
ntSntHnt −BntD−1

n ḊntB
−1
nt Hnt)

}
+
{

tr(BntD−1
n ḊnsD−1

n B′ntHnt)
}

Iσ2β = 0, Iσ2λ =
{

1
σ2
0
tr(RntGnt)

}
, Iσ2ρ = 1

σ2
0
tr(SntHnt).

where Ḋnt = − d
dρt0

Dnt = M ′
nBnt +B′ntMn, and Ḡnt = BntGntB

−1
nt .

The VC matrix ΣSL1(θ0) is obtained by applying Lemma A.1.2 with ε replaced by

VN , cnt by Π1t, or Π2t, and Ant by Φ1t, Φ2t, or Ψ:

ΣSLE1(θ0) =

{
f(0,Π1t; 0,Π1s)

}
,
{
f(0,Π1t; Φ1s,Π2s)

}
,
{
f(0,Π1t; Φ2s,0)

}
,
{
f(0,Π1t; Ψ,0)

}
∼,

{
f(Φ1t,Π2t; Φ1s,Π2s)

}
,
{
f(Φ1t,Π2t; Φ2s,0)

}
,
{
f(Φ1t,Π2t; Ψ,0)

}
∼, ∼,

{
f(Φ2t,0; Φ2s,0)

}
,
{
f(Φ2t,0; Ψ,0)

}
∼, ∼, ∼, f(Ψ,0; Ψ,0)


,
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where Π1t = 1
σ2
0
Z�NtBntXnt, Π2t = 1

σ2
0
Z�NtBntηnt, Φ1t = 1

σ2
0
ZNtB

−1′
nt G

′
ntB

′
ntZ

�′
Nt, Φ2t =

1
σ2
0
Z�NtHntZ

�′
Nt, Ψ = 1

2σ4
0

∑T
t=1 Z

�
NtZ

�′
Nt, with Z�′Nt = [Z ′Nt − BntD−1

n (l′T ⊗ In)BN ] and

BN = blkdiag(Bn1, . . . , BnT ).

A.2.4. Panel SLE model with two-way FE. The negative Hessian matrix JSEL2(θ0)

is in the Supplementary Appendix. Its expectation ISEL2(θ0) has the components:

Iββ = blkdiag
{

1
σ2
0
X∗′ntD

∗
ntX

∗
nt

}
−
{

1
σ2
0
X∗′ntD∗ntD∗−1

n D∗nsX
∗
ns

}
;

Iλβ = blkdiag
{

1
σ2
0
η∗′t D

∗
ntX

∗
nt

}
−
{

1
σ2
0
η∗′t D

∗
ntD∗−1

n D∗nsX
∗
ns

}
; Iρβ = 0;

Iλλ = blkdiag
{

1
σ2
0
η∗′ntD

∗
ntη
∗
nt + tr(S∗ntḠ

∗s
ntḠ

∗
nt)
}
−
{

1
σ2
0
η∗′ntD

∗
ntD∗−1

n D∗nsη
∗
ns

}
;

Iλρ = blkdiag
{

tr(Ḡ∗′ntS
∗
ntH

∗s
nt )
}

; Iσ2σ2 = − (n−1)(T−1)

2σ4
0

+ 1
σ4
0

∑T
t=1 tr(S∗nt);

Iρλ = blkdiag
{

tr(Ḡ∗′ntS
∗
ntH

∗s
ntS

∗
nt)
}
−
{

tr(G∗′nsD
∗
nsD∗−1

n Ḋ∗ntD∗−1
n )

}
;

Iρρ = blkdiag
{

tr(H∗sntS
∗
ntH

∗
nt −B∗ntD∗−1

n Ḋ∗ntB
∗−1
nt H∗nt)

}
+
{

tr(B∗ntD∗−1
n Ḋ∗nsD∗−1

n B∗′ntH
∗
nt)
}

;

Iσ2β = 0; Iσ2λ =
{

1
σ2
0
tr(R∗ntG

∗
nt)
}

; Iσ2ρ =
{

1
σ2
0
tr(S∗ntH

∗
nt)
}
,

where Ḋ∗nt = − d
dρt0

D∗nt = M∗′
n B

∗
nt +B∗′ntM

∗
n, and Ḡ∗nt = B∗ntG

∗
ntB

∗−1
nt .

The VC matrix ΣSLE2(θ0) takes an identical form as ΣSLE1(θ0), but with Π1t = 1
σ2
0
Z�∗NtB

∗
ntX

∗
nt,

Π2t = 1
σ2
0
Z�∗NtB

∗
ntη
∗
nt, Φ1t = 1

σ2
0
Z∗NtB

∗−1′
nt G∗′ntB

∗′
ntZ

�∗′
Nt , Φ2t = 1

σ2
0
Z�∗NtH

∗
ntZ

�∗′
Nt , and Ψ =

1
2σ4

0

∑T
t=1 Z

�∗
NtZ

�∗′
Nt , where Z∗Nt = ZNtFn,n−1 and Z�∗Nt = Z�NtFn,n−1.

A.2.5. Panel SLE model with two-way FE and homogeneous ρ. The expected

negative Hessian corresponding to the AQS function given in (2.40) has components:

Iββ = blkdiag
{

1
σ2
0
X∗′ntD

∗
nX
∗
nt

}
−
{

1
Tσ2

0
X∗′ntD

∗
nX
∗
ns

}
, ,

Iλβ = blkdiag
{

1
σ2
0
η∗′ntD

∗
nX
∗
nt

}
−
{

1
Tσ2

0
η∗′ntD

∗
nX
∗
ns

}
, Iρβ = 0

Iλλ = blkdiag
{

1
σ2
0
η∗′ntD

∗
nη
∗
nt + T−1

T
tr(Ḡ∗sntḠ

∗
nt)
}
−
{

1
Tσ2

0
η∗′ntD

∗
nη
∗
ns

}
,

Iλρ =
{
T−1
T

tr(Ḡ∗′ntH
∗s
n )
}
, Iρρ = (T − 1)tr(H∗sn H

∗
n),

Iσ2β = 0′tk, Iσ2λ =
{
T−1
Tσ2

0
tr(G∗nt)

}
, Iσ2ρ = T−1

σ2
0

tr(H∗n), Iσ2σ2 = n(T−1)

2σ4
0
.

The VC matrix of the AQS function given in (2.40) is obtained by applying Lemma A.1.2

with εn replaced by VN , cnt by Π1t = 1
σ2
0
Z◦∗NtB

∗
nX
∗
nt, or Π2t = 1

σ2
0
Z◦∗NtB

∗
nη
∗
nt, and Ant by

Φ1t = 1
σ2
0
Z∗NtB

∗−1′
n G∗′ntB

∗′
n Z
◦∗′
Nt , or Φ2 = 1

σ2
0

∑T
t=1 Z

◦∗
NtH

∗
nZ
◦∗′
Nt , or Ψ = 1

2σ4
0

∑T
t=1 Z

◦∗
NtZ

◦∗′
Nt ,

where Z∗Nt = ZNtFn,n−1, and Z◦∗Nt = Z◦NtFn,n−1:
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{
f(0,Π1t; 0,Π1s)

}
,
{
f(0,Π1t; Φ1s,Π2s)

}
,
{
f(0,Π1t; Φ2,0)

}
,
{
f(0,Π1t; Ψ,0)

}
∼,

{
f(Φ1t,Π2t; Φ1s,Π2s)

}
,
{
f(Φ1t,Π2t; Φ2,0)

}
,
{
f(Φ1t,Π2t; Ψ,0)

}
∼, ∼, f(Φ2,0; Φ2,0), f(Φ2,0; Ψ,0)

∼, ∼, ∼, f(Ψ,0; Ψ,0)


.

A.2.6. Panel SE model with two-way FE The expected negative Hessian matrix

corresponding to the AQS function given in (2.41) has the components:

Iββ = blkdiag
{

1
σ2
0
X∗′ntD

∗
ntX

∗
nt

}
−
{

1
σ2
0
X∗′ntD

∗
ntD∗−1

n D∗nsX
∗
ns

}
, Iρβ = 0;

Iρρ = blkdiag
{

tr(H∗sntS
∗
ntH

∗
nt −B∗ntD∗−1

n ḊntB
∗−1
nt H∗nt)

}
+
{

tr(B∗ntD∗−1
n ḊnsD∗−1

n B∗
′
ntH

∗
nt)
}

;

Iσ2β = 0; Iσ2ρ =
{

1
σ2
0
tr(S∗ntH

∗
nt)
}

; Iσ2σ2 = − (n−1)(T−1)

2σ4
0

+ 1
σ4
0

∑T
t=1 tr(S∗nt).

Applying Lemma A.1.2 with εn being replaced by VN , cnt by Πt = 1
σ2
0
Z�∗NtB

∗
ntX

∗
nt, and

Ant by Φt or Ψ, we obtain the corresponding VC matrix of the AQS function (2.41):
{
f(0,Πt; 0,Πs)

}
,
{
f(0,Πt; Φs,0)

}
,
{
f(0,Πt; Ψ,0)

}
∼,

{
f(Φt,0; Φs,0)

}
,
{
f(Φt,0; Ψ,0)

}
∼, ∼, f(Ψ,0; Ψ,0)

 ,

where Φt = 1
σ2
0
Z�∗NtH

∗
ntZ

�∗′
Nt , Ψ = 1

2σ4

∑T
t=1 Z

�∗
NtZ

�∗′
Nt , and Z�∗Nt = Z�NtFn,n−1.

A.3 Proof of the Theorems

The four theorems share some similar features. We provide here only the proof of

the most general Theorem 2.4. The detailed proofs of all theorems can be found in the

Supplementary Appendix, available at: http://www.mysmu.edu/faculty

/zlyang/.

Proof of Theorem 2.4: Consider the AQS function S?SLE2(θ) given in (2.37). We need

to show that 1√
N0
S?SLE2(θ0)

D−→ N
(
0, limN0→∞

1
N0

ΣSLE2(θ0)
)
, as N0 →∞. We have

Ṽ ∗nt ≡ Ṽ ∗nt(β0,λ0,ρ0) = V ∗nt −B∗ntD∗−1
n

∑T
s=1B

∗′
nsV

∗
ns = F ′n,n−1Z

�′
NtVN , and

W ∗
nY
∗
nt = G∗nt(X

∗
ntβt0 + c∗n +B−∗1nt V ∗nt) = η∗nt +G∗ntB

∗−1
nt F ′n,n−1Z

′
NtVN .
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Hence, the AQS function at true θ0 can be written as

S∗SLE2(θ0) =



Π′1tVN , t = 1, . . . , T,

Π′2tVN + V′NΦ1tVN − tr(R∗ntG
∗
nt), t = 1, . . . , T,

V′NΦ2tVN − tr(S∗ntH
∗
nt), t = 1, . . . , T,

V′NΨVN − (n−1)(T−1)
2σ2 ,

(A.3.1)

where Π1t = 1
σ2
0
Z�∗NtB

∗
ntX

∗
nt, Π2t = 1

σ2
0
Z�∗NtB

∗
ntη
∗
nt, Φ1t = 1

σ2
0
Z∗NtB

∗−1′
nt G∗′ntB

∗′
ntZ

�∗′
Nt , Φ2t =

1
σ2
0
Z�∗NtH

∗
ntZ

�∗′
Nt , and Ψ = 1

2σ4
0

∑T
t=1 Z

�∗
NtZ

�∗′
Nt , withZ∗Nt = ZNtFn,n−1 andZ�∗Nt = Z�NtFn,n−1;

ZNt = zt⊗ In and zt is a T × 1 vector with tth element being 1 and other elements being

zero; and Z�′Nt = [Z ′Nt −BntD−1
n (l′T ⊗ In)BN ] and BN = blkdiag(Bn1, . . . , BnT ).

First, as the elements of Xnt are non-stochastic and uniformly bounded (by Assump-

tion 3), the row and column sums of B∗nt are uniformly bounded in absolute values by As-

sumption 5 and Lemma A.1.1. It follows that the elements of Π1t are uniformly bounded.

By Assumption 4 and Lemma A.1.1(i),Gnt is uniformly bounded in both row and column

sums. By Lemma A.2 of Lee and Yu (2010),

(In − λF ′n,n−1WnFn,n−1)−1 = F ′n,n−1(In − λWn)−1Fn,n−1. (A.3.2)

We have A∗−1
nt = F ′n,n−1A

−1
nt Fn,n−1. Thus, G∗nt is uniformly bounded in both row and

column sums by Lemma A.1.1(iii), and the elements of η∗nt = G∗nt(X
∗
ntβt0 + c∗n) are

uniformly bounded by Assumption 3. It follows that the elements of Π2t are uniformly

bounded. Similarly, B∗−1
nt = F ′n,n−1B

−1
nt Fn,n−1, and therefore the elements of H∗nt is

uniformly bounded in both row and column sums. With these and the definitions of ZNt

and Z�Nt, it is easy to show that Φ1t, Φ2t and Ψ are uniformly bounded in both row and

column sums. Thus, under Assumptions 1-5, the central limit theorem (CLT) of linear-

quadratic (LQ) form of Kelejian and Prucha (2001) or its simplified version (under iid

errors) given in Lemma A.1.3 can be applied to each element of S?SLE2(θ0) to establish

its asymptotic normality. Then, an application of Cramér-Wold device under a finite T

gives, 1√
N0
S?SLE2(θ0)

D−→ N
(
0, limN0→∞

1
N0

ΣSLE2(θ0)
)
, as N0 → ∞. Then, by (2.11)

and (2.12),

C[ 1
N0
ISLE2(θ0)]−1 1√

N0
S?SLE2(θ̃SLE2)

D−→ N
(
0, limN0→∞ΞSLE2(θ0)

)
.
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It left to show that, as N0 →∞,

(a) 1
N0

[ISLE2(θ̃SLE2)− ISLE2(θ0)]
p−→ 0,

(b) 1
N0

[ΣSLE2(θ̃SLE2)− ΣSLE2(θ0)]
p−→ 0.

Under the
√
N0-consistency of θ̃SLE2 and with the analytical expressions of ISLE2(θ0)

and ΣSLE2(θ0) given in Appendix A.2.4, the proofs of these results are repeated applica-

tions of the mean value theorem (MVT) to each component of 1
N0

[ISLE2(θ̃SLE2)−ISLE2(θ0)]

and each component of 1
N0

[ΣSLE2(θ̃SLE2)− ΣSLE2(θ0)].

To show (a), we pick a typical element of ISLE2(θ0) given in Appendix A.2.4,

Iλλ = blkdiag
{

1
σ2
0
η∗′ntD

∗
ntη
∗
nt + tr(S∗ntḠ

∗s
ntḠ

∗
nt)
}
−
{

1
σ2
0
η∗′ntD

∗
ntD∗−1

n D∗nsη
∗
ns

}
to show that 1

N0
(Ĩλλ − Iλλ)

p−→ 0. The proofs for the other components follow simi-

larly. Recall: η∗nt = G∗nt(X
∗
ntβt0 + c∗n), D∗n(ρ) =

∑T
t=1D

∗
n(ρt), D∗n(ρt) = B∗′n (ρt)B

∗
n(ρt),

B∗n(ρt) = In−1−ρtM∗
n, S∗nt(ρ) = In−1−B∗nt(ρt)D∗−1

n (ρ)B∗′nt(ρt), and Ḡ∗nt = B∗ntG
∗
ntB

∗−1
nt .

By Assumptions 4 and 5 and Lemma A.1.1(i), it is straightforward to show the two

matrices, D∗n(ρt) and Ḡ∗nt(λt, ρt), are uniformly bounded in both row and column sums

in a neighborhood of (λt0, ρt0) for each t, and so are their derivatives. Clearly with the

properties of D∗n(ρt) and a finite T , D∗n(ρ) is uniformly bounded in both row and column

sums in a neighborhood of ρ0, and so are its derivatives.

By Assumption 5 and Lemma A.1.1(i), D∗−1
n (ρt) is uniformly bounded in both row

and column sums in a neighborhood of ρt0 for each t, and so are its derivatives. By

a matrix result that for two invertible matrices An and Bn, (An + Bn)−1 = A−1
n +

1
1+c

A−1
n BnA

−1
n , where c = tr(BnA

−1
n ), we infer that for a finite T , D∗n(ρ) is uniformly

bounded in both row and column sums in a neighborhood of ρ0, and so are its derivatives.

It follows that S∗nt(ρ) is uniformly bounded in both row and column sums in a neighbor-

hood of ρ0, and so are its derivatives. Noting that Ĩλλ = Iλλ(θ̃SLE2) and Iλλ = Iλλ(θ0),

we have by MVT, for each component of Iλλ(θ) denoted as Iλλ,ts(θ), t, s = 1, . . . , T ,

1
N0
Iλλ,ts(θ̃SLE2) = 1

N0
Iλλ,ts(θ0) + [ 1

N0

∂
∂θ′
Iλλ,ts(θ̄)](θ̃SLE2 − θ0),

where θ̄ lies elementwise between θ̃SLE2 and θ0, with θ̄ being
√
N0-consistent as θ̃SLE2

is. With the above argument and Lemma A.1(ii), we have 1
N0

∂
∂θ′
Iλλ,ts(θ̄) = Op(1).
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Therefore, 1
N0

[Iλλ,ts(θ̃SLE2) − Iλλ,ts(θ0)] = op(1) for each (t, s), and 1
N0

[Iλλ(θ̃SLE2) −

Iλλ(θ0)] = op(1). Note that the easily proved results such as 1
N0

(c̃nG̃ntc̃n− cnGntcn)
p−→

0, has been used. The proofs of the other components of 1
N0

[ISLE2(θ̃SLE2)− ISLE2(θ0)]
p−→

0 proceeds similarly.

To show (b), we again choose the most complicated term, f(Φ1t,Π2t; Φ1s,Π2s) that

corresponds to λ, to show in details where the quantities involved are given at the end of

Appendix A.2.4: Π1t = 1
σ2
0
Z�∗NtB

∗
ntX

∗
nt, Π2t = 1

σ2
0
Z�∗NtB

∗
ntη
∗
nt, Φ1t = 1

σ2
0
Z∗NtB

∗−1′
nt G∗′ntB

∗′
ntZ

�∗′
Nt ,

and Φ2t = 1
σ2
0
Z�∗NtH

∗
ntZ

�∗′
Nt , where Z∗Nt = ZNtFn,n−1 and Z�∗Nt = Z�NtFn,n−1.

Applying Lemma A.1.2 with Ant replaced by Φ1t, ant by φ1t = diagv(Φ1t), and cnt

by Π2t (similarly for the quantities with subscript s), and noting that µ3 = γ and µ4 = κ,

we obtain the covariance between the λt- and λs-components of the AQS function:

f(Φ1t,Π2t; Φ1s,Π2s) = σ4
0tr[(Φ′1t+Φ1t)Φ1s]+γφ′1tΠ2s+γΠ′2tφ1s+κφ′1tφ1s+σ2

0Π′2tΠ2s.

Applying MVT and following the similar arguments as in (a), the convergence of the

relevant terms can easily be proved, e.g., 1
N0
{tr[(Φ̃′1t + Φ̃1t)Φ̃1s]− tr[(Φ′1t + Φ1t)Φ1s]} =

op(1), 1
N0

[φ′1tΠ2s − φ′1tΠ2s] = op(1), etc. Furthermore, σ̃2
SLE2 − σ2

0 = op(1), and hence

σ̃4
SLE2 − σ4

0 = op(1); for the estimates obtained from Lemma 4.1(a) of Yang et al. (2016),

it is easy to show that γ̃ − γ p−→ 0 and κ̃− κ p−→ 0. It follows that

[f̃(Φ̃1t, Π̃2t; Φ̃1s, Π̃2s)− f(Φ1t,Π2t; Φ1s,Π2s)] = op(1).

Similarly, the convergence of the other elements of 1
N0

[ΣSLE2(θ̃SLE2)−ΣSLE2(θ0)] is proved.
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B Appendix to Chapter 3

B.1 Some Basic Lemmas

The following lemmas are essential for the derivations and proofs of theoretical re-

sults, given in the subsequent appendices.

Lemma B.1.1 (Kelejian and Prucha, 1999; Lee, 2002): Let {An} and {Bn} be two

sequences of n × n matrices that are uniformly bounded in both row and column sums.

Let Cn be a sequence of conformable matrices whose elements are uniformly bounded.

Then

(i) the sequence {AnBn} are uniformly bounded in both row and column sums,

(ii) the elements of An are uniformly bounded and tr(An) = O(n), and

(iii) the elements of AnCn and CnAn are uniformly bounded.

Lemma B.1.2 (Lee, 2004, p.1918): For Wn and Ant defined in Model (3.1), if ‖Wn‖ and

‖A−1
nt0‖ are uniformly bounded, where ‖ · ‖ is a matrix norm, then ‖A−1

nt ‖ is uniformly

bounded in a neighborhood of λt0.

Lemma B.1.3 (Lee, 2004, p.1918): LetXn be an n×pmatrix. If the elementsXn are uni-

formly bounded and limn→∞
1
n
X ′nXn exists and is nonsingular, then Pn = Xn(X ′nXn)−1X ′n

and Mn = In − Pn are uniformly bounded in both row and column sums.

Lemma B.1.4 (Lee and Yu, 2010): For W ∗
n = F ′n,n−1WnFn,n−1, when Wn is row nor-

malized, |In−1 − λtW
∗
n | = 1

1−λt |In − λtWn| and (In−1 − λtW
∗
n)−1 = F ′n,n−1(In −

λtWn)−1Fn,n−1.

Lemma B.1.5 (Lemma B.4, Yang, 2015a, extended): Let {An} be a sequence of n × n

matrices that are uniformly bounded in either row or column sums. Suppose that the

elements an,ij of An are O(h−1
n ) uniformly in all i and j. Let vn be a random n-vector

of iid elements with mean zero, variance σ2 and finite 4th moment, and bn a constant

n-vector of elements of uniform order O(h
−1/2
n ). Then
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(i) E(v′nAnvn) = O( n
hn

), (ii) Var(v′nAnvn) = O( n
hn

),

(iii) Var(v′nAnvn + b′nvn) = O( n
hn

), (iv) v′nAnvn = Op(
n
hn

),

(v) v′nAnvn − E(v′nAnvn) = Op((
n
hn

)
1
2 ), (vi) v′nAnbn = Op((

n
hn

)
1
2 ),

the results (iii) and (vi) remain valid if bn is a random n-vector independent of vn such

that {E(b2
ni)} are of uniform order O(h−1

n ).

Lemma B.1.6 (Yang, 2015b, Lemma A.1, extended). For t = 1, 2, let Ant be n × n

matrices and cnt be n× 1 vectors. Let εn be an n× 1 random vector of iid elements with

mean zero, variance σ2, and finite 3rd and 4th cumulants µ(3) and µ(4). Let ant be the

vector of diagonal elements of Ant. Define Qnt = c′ntεn + ε′nAntεn, t = 1, 2. Then, for

t, s = 1, 2,

Cov(Qnt, Qns) ≡ f(Ant, cnt;Ans, cns)

= σ4tr[(A′nt + Ant)Ans)] + µ3a
′
ntcns + µ3c

′
ntans + µ4a

′
ntans + σ2c′ntcns. (B.1.1)

Various useful special cases of (B.1.1) are as follows:

(i) Cov(c′n1εn, Qn2) = f(0, cn1;An2, cn2) = µ3c
′
n1an2 + σ2c′n1cn2,

where cn1 can be an n× k matrix with k > 1;

(ii) Var(Qn1) = f(An1, cn1;An1, cn1) = σ4tr[(A′n1 + An1)An1)] + 2µ3a
′
n1cn1

+µ4a
′
n1an1 + σ2c′n1cn1;

(iii) Var(ε′nAn1εn) = f(An1,0;An1,0) = σ4tr[(A′n1 + An1)An1)] + µ4a
′
n1an1.

Lemma B.1.7 (CLT for Linear-Quadratic Forms, Kelejian and Prucha, 2001). LetAn, an, cn

and εn be as in Lemma A.6. Assume (i)An is bounded uniformly in row and column sums,

(ii) n−1
∑n

i=1 |c
2+η1
n,i | <∞, η1 > 0, and (iii) E|ε4+η2

n,i | <∞, η2 > 0. Then,

ε′nAnεn + c′nεn − σ2tr(An)

{σ4tr(A′nAn + A2
n) + µ4a′nan + σ2c′ncn + 2µ3a′ncn}

1
2

D−→ N(0, 1).
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B.2 Hessian, Expected Hessian and VC Matrices

Notation. For t, s = 1, . . . , T , blkdiag{At} forms a block-diagonal matrix by plac-

ing At diagonally, {At} forms a matrix by stacking At horizontally, and {Bts} forms a

matrix by the component matricesBts. The expected negative Hessian I$(θ0) and the VC

matrix Σ$(θ0) of the AQS function, $=SL1, SL2, SLE1, SLE2, are both partitioned ac-

cording to the slope parameters β, the spatial lag parameters λ, spatial error parameters

ρ (if existing in the model), and the error variance σ2, with the sub-matrices denoted by,

e.g., Iββ, Iβλ, Σββ, Σβλ. Furthermore, diag(·) forms a diagonal matrix and diagv(·) a

column vector, based on the diagonal elements of a square matrix.

Parametric quantities, e.g., An(λt0) and Bn(ρ0), evaluated at the true parameters are

denoted as Ant and Bn. For a matrix An, denote Asn = An + A′n. The bold 0 represents

generically a vector or a matrix of zeros, to distinguish from the scalar 0.

Let VN = (V ′n1, . . . , V
′
nT )′ be the vector of original errors with elements {vit} being

iid of mean 0, variance σ2, skewness γ and excess kurtosis κ. We present here results

sufficient for the implementation of the estimation introduced in the paper. To estimate

the VC matrices, we follow the method proposed by Xu and Yang (2020a).

B.2.1 Panel SLE model with two-way FE. The negative Hessian matrix JSLE2(θ0)

has the components:

Jββ = blkdiag
{

1
σ2
0
X∗′ntD

∗
nX
∗
nt

}
−
{

1
Tσ2

0
X∗′ntD

∗
nX
∗
ns

}
,

Jβλ = blkdiag
{

1
σ2
0
X∗′ntD

∗
nW

∗
nY
∗
nt

}
−
{

1
Tσ2

0
X∗′ntD

∗
nW

∗
nY
∗
ns

}
,

Jβρ =
{

1
σ2
0
X∗′ntB

∗′
nH

∗′
n Ṽ

∗
nt + 1

σ2
0
X∗′ntB

∗′
nH

∗
nṼ
∗
nt

}
Jλλ = blkdiag

{
1
σ2
0
(W ∗

nY
∗
nt)
′D∗n(W ∗

nY
∗
nt) + T−1

T
tr(G∗2nt)

}
−
{

1
Tσ2

0
(W ∗

nY
∗
nt)
′D∗n(W ∗

nY
∗
ns)
}
,

Jλρ =
{

1
σ2
0
(W ∗

nY
∗
nt)
′B∗′nH

∗′
n Ṽ

∗
nt + 1

σ2
0
(W ∗

nY
∗
nt)
′B
∗′
nH

∗
nṼ
∗
nt

}
Jρρ =

{
1
σ2

∑T
t=1 Ṽ

∗′
ntH

∗′
nH

∗
nṼ
∗
nt + (T − 1)tr(H∗2n )

}
Jσ2β =

{
1
σ4
0
X∗′ntB

∗′
n Ṽ

∗
nt

}
, Jσ2λ =

{
1
σ4
0
(W ∗

nY
∗
nt)
′B∗′n Ṽ

∗
nt

}
,

Jσ2ρ =
{

1
σ4
0

∑T
t=1 Ṽ

∗′
ntH

∗
nṼ
∗
nt

}
, Jσ2σ2 = −n(T−1)

2σ4 + 1
σ6

∑T
t=1 Ṽ

∗′
nt Ṽ

∗
nt.
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Its expectation, ISLE2(θ0), has the components:

Iββ = blkdiag
{

1
σ2
0
X∗′ntD

∗
nX
∗
nt

}
−
{

1
Tσ2

0
X∗′ntD

∗
nX
∗
ns

}
;

Iβλ = blkdiag
{

1
σ2
0
X∗′ntD

∗
nη
∗
nt

}
−
{

1
Tσ2

0
X∗′ntD

∗
nη
∗
ns

}
, Iρρ =

{
(T − 1)tr[H∗sn H

∗
n]
}

Iλλ = blkdiag
{

1
σ2
0
η∗′ntD

∗
nη
∗
nt + T−1

T
tr[Ḡ∗sntḠ

∗
nt]
}
−
{

1
Tσ2

0
η∗′ntD

∗
nη
∗
ns

}
, Iρβ = 0Tk, Iσ2β = 0,

Iλρ =
{
T−1
T

tr[Ḡ∗′ntH
∗s
n ]
}
, Iσ2λ =

{
T−1
Tσ2

0
tr[G∗nt]

}
, Iσ2ρ = T−1

σ2
0

tr[H∗n], Iσ2σ2 = n(T−1)

2σ4
0

where η∗nt = G∗nt(X
∗
ntβt0 + c∗n) and Ḡ∗nt = B∗nG

∗
ntB

∗−1
n .

The VC matrix ΣSLE2(θ0) is obtained by applying Lemma B.1.6 with ε replaced by

VN , cnt by Π1t or Π2t, and Ant by Φ1t, Φ2 or Ψ:

ΣSLE2(θ0) =


{
f(0,Π1t; 0,Π1s)

}
,
{
f(0,Π1t; Φ1s,Π2s)

}
,
{
f(0,Π1t; Φ2,0)

}
,
{
f(0,Π1t; Ψ,0)

}
∼,

{
f(Φ1t,Π2t; Φ1s,Π2s)

}
,
{
f(Φ1t,Π2t; Φ2,0)

}
,
{
f(Φ1t,Π2t; Ψ,0)

}
∼, ∼,

{
f(Φ2,0; Φ2,0)

}
,
{
f(Φ2,0; Ψ,0)

}
∼, ∼, ∼,

{
f(Ψ,0; Ψ,0)

}

 .

where Π1t, Π2t, Φ1t, Φ2 and Ψ are already defined in (3.28).

B.2.2. Panel SL model with two-way FE. The negative Hessian matrix JSL2(θ0)

takes the following form:

Jββ = blkdiag
{

1
σ2
0
X∗′ntX

∗
nt

}
−
{

1
Tσ2

0
X∗′ntX

∗
ns

}
,

Jλβ = blkdiag
{

1
σ2
0
(W ∗

nY
∗
nt)
′X∗nt

}
−
{

1
Tσ2

0
(W ∗

nY
∗
nt)
′X∗ns

}
,

Jλλ = blkdiag
{

1
σ2
0
(W ∗

nY
∗
nt)
′(W ∗

nY
∗
nt) + T−1

T
tr(G∗2nt)

}
−
{

1
Tσ2

0
(W ∗

nY
∗
nt)
′(W ∗

nY
∗
ns)
}
,

Jσ2β =
{

1
σ4
0
Ṽ ∗′ntX

∗
nt

}
, Jσ2λ =

{
1
σ4
0
(W ∗

nY
∗
nt)
′Ṽ ∗nt
}
, Jσ2σ2 = − (n−1)(T−1)

2σ4
0

+ 1
σ6
0

∑T
t=1 Ṽ

∗′
nt Ṽ

∗
nt.

Its expectation ISL2(θ0) contains the components:

Iββ = blkdiag
{

1
σ2
0
X∗′ntX

∗
nt

}
−
{

1
Tσ2

0
X∗′ntX

∗
ns

}
, Iλβ = blkdiag

{
1
σ2
0
η∗′ntX

∗
nt

}
−
{

1
Tσ2

0
η∗′ntX

∗
ns

}
,

Iλλ = blkdiag
{

1
σ2
0
η∗′ntη

∗
nt + T−1

T
tr(G∗sntG

∗
nt)
}
−
{

1
Tσ2

0
η∗′ntη

∗
ns

}
, Iσ2λ =

{
T−1
Tσ2

0
tr(G∗nt)

}
,

Iσ2β = 0, Iσ2σ2 = (n−1)(T−1)

2σ4
0

,

where η∗nt = G∗nt(X
∗
ntβt0 + c∗n) and G∗snt = G∗nt +G∗′nt.

The VC matrix ΣSL2(θ0) is obtained by applying Lemma B.1.6 with ε replaced by

128



VN , cnt by Π1t and Π2t, and Ant by Φt and Ψ:

ΣSL2(θ0) =


{
f(0,Π1t; 0,Π1s)

}
,
{
f(0,Π1t; Φs,Π2s)

}
,
{
f(0,Π1t; Ψ,0)

}
∼,

{
f(Φt,Π2t; Φs,Π2s)

}
,
{
f(Φt,Π2t; Ψ,0)

}
∼, ∼, f(Ψ,0; Ψ,0)

 .

where Π1t = 1
σ2
0
Z◦∗NtX

∗
nt, Π2t = 1

σ2
0
Z◦∗Ntη

∗
nt0, Φt = 1

σ2
0
Z∗NtG

∗′
nt0Z

◦∗′
Nt , and Ψ = 1

2σ4

∑T
t=1 Z

◦∗
NtZ

◦∗′
Nt ,

with Z∗Nt = ZNtFn,n−1 and Z◦∗Nt = Z◦NtFn,n−1. Z◦Nt = ZNt − Z̄N , ZNt = zt ⊗ In,

Z̄N = 1
T

(lT ⊗ In), and zt is a T × 1 vector of element 1 in the tth position and 0 else-

where.

B.2.3. Panel SLE model with one-way FE. The negative Hessian matrix JSLE1(θ0)

has the components:

Jββ = blkdiag
{

1
σ2
0
X ′ntDnXnt

}
−
{

1
Tσ2

0
X ′ntDnXns

}
,

Jβλ = blkdiag
{

1
σ2
0
X ′ntDnWnYnt

}
−
{

1
Tσ2

0
X ′ntDnWnYns

}
,

Jβρ =
{

1
σ2
0
X ′ntB

′
nH
′
nṼnt + 1

σ2
0
X ′ntB

′
nHnṼnt

}
Jλλ = blkdiag

{
1
σ2
0
(WnYnt)

′Dn(WnYnt) + T−1
T

tr(G2
nt)
}
−
{

1
Tσ2

0
(WnYnt)

′Dn(WnYns)
}
,

Jλρ =
{

1
σ2
0
(WnYnt)

′B′nH
′
nṼnt + 1

σ2
0
(WnYnt)

′B′nHnṼnt
}

Jρρ =
{

1
σ2

∑T
t=1 Ṽ

′
ntH

′
nHnṼnt + (T − 1)tr(H2

n)
}

Jσ2β =
{

1
σ4
0
X ′ntB

′
nṼnt

}
, Jσ2λ =

{
1
σ4
0
(WnYnt)

′B′nṼnt
}
,

Jσ2ρ =
{

1
σ4
0

∑T
t=1 Ṽ

′
ntHnṼnt

}
, Jσ2σ2 = −n(T−1)

2σ4 + 1
σ6

∑T
t=1 Ṽ

′
ntṼnt.

Its expectation ISLE1(θ0) has the components:

Iββ = blkdiag
{

1
σ2
0
X ′ntDnXnt

}
−
{

1
Tσ2

0
X ′ntDnXns

}
,

Iβλ = blkdiag
{

1
σ2
0
X ′ntDnηnt

}
−
{

1
Tσ2

0
X ′ntDnηs

}
, Iρρ =

{
(T − 1)tr[Hs

nHn]
}

Iλλ = blkdiag
{

1
σ2
0
η′ntDnηnt + T−1

T
tr[Ḡs

ntḠnt]
}
−
{

1
Tσ2

0
η′ntDnηns

}
, Iρβ = 0Tk, Iσ2β = 0,

Iλρ = T−1
T

tr[Ḡ′ntH
s
n], Iσ2λ =

{
T−1
Tσ2

0
tr[Gnt]

}
, Iσ2ρ = T−1

σ2
0

tr[Hn], Iσ2σ2 = n(T−1)

2σ4
0

where ηnt = Gnt(Xntβt0 + cn) and Ḡnt = BnGntB
−1
n .

The VC matrix ΣSLE1(θ0) takes an identical form as ΣSLE2(θ0) but with Π1t = 1
σ2
0
Z◦NtBn0Xnt,

Π2t = 1
σ2
0
Z◦NtBn0ηnt0, Φ1t = 1

σ2
0
ZNtB

−1′
n0 G

′
nt0B

′
n0Z

◦′
Nt, Φ2 = 1

σ2
0

∑T
t=1 Z

◦
NtHn0Z

◦′
Nt, and

Ψ = 1
2σ4

0

∑T
t=1 Z

◦
NtZ

◦′
Nt.
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B.2.4. Panel SL model with one-way FE. The negative Hessian matrix JSL1(θ0) has

the components:

Jββ = blkdiag
{

1
σ2
0
X ′ntXnt

}
−
{

1
Tσ2

0
X ′ntXns

}
,

Jλβ = blkdiag
{

1
σ2
0
(WnYnt)

′Xnt

}
−
{

1
Tσ2

0
(WnYnt)

′Xns

}
,

Jλλ = blkdiag
{

1
σ2
0
(WnYnt)

′(WnYnt) + T−1
T

tr(G2
nt)
}
−
{

1
Tσ2

0
(WnYnt)

′(WnYns)
}
,

Jσ2β =
{

1
σ4
0
Ṽ ′ntXnt

}
, Jσ2λ =

{
1
σ4
0
(WnYnt)

′Ṽnt
}
, Jσ2σ2 = −n(T−1)

2σ4
0

+ 1
σ6
0

∑T
t=1 Ṽ

′
ntṼnt.

Its expectation ISL1(θ0) has the components:

Iββ = blkdiag
{

1
σ2
0
X ′ntXnt

}
−
{

1
Tσ2

0
X ′ntXns

}
, Iλβ = blkdiag

{
1
σ2
0
η′ntXnt

}
−
{

1
Tσ2

0
η′ntXns

}
,

Iλλ = blkdiag
{

1
σ2
0
η′ntηnt+

T−1
T

tr(Gs
ntGnt)

}
−
{

1
Tσ2

0
η′ntηns

}
, Iσ2λ =

{
T−1
Tσ2

0
tr(Gnt)

}
,

Iσ2β = 0, Iσ2σ2 = n(T−1)

2σ4
0

, where ηnt = Gnt(Xntβt0 + cn) and Gs
nt = Gnt +G′nt.

The VC matrix ΣSL1(θ0) takes an identical form as ΣSL2(θ0) but with Π1t = 1
σ2
0
Z◦NtXnt,

Π2t = 1
σ2
0
Z◦Ntηnt0, Φt = 1

σ2
0
ZNtG

′
nt0Z

◦′
Nt, and Ψ = 1

2σ4

∑T
t=1 Z

◦
NtZ

◦′
Nt.
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B.3 Proofs of Theorems

The following matrix results are used in the proof: (i) the eigenvalues of a projection

matrix are either 0 or 1; (ii) the eigenvalues of a positive definite (p.d.) matrix are strictly

positive; (iii) γmin(A)tr(B) 6 tr(AB) 6 γmax(A)tr(B) for symmetric matrix A and

positive semidefinite (p.s.d.) matrix B; (iv) γmax(A + B) 6 γmax(A) + γmax(B) for

symmetric matrices A and B; and (v) γmax(AB) 6 γmax(A)γmax(B) for p.s.d. matrices

A and B. See, e.g, Bernstein (2009).

Proof of Theorem 3.1: From (3.10) and (3.23), we have

S?c(δ)− S̄?c(δ) =

 1
σ̂2(δ)

Y ◦′N B
∗′
N V̂

∗
N(δ)− 1

σ̄2(δ)
E[Y ◦′N B

∗′
N V̄

∗
N(δ)],

1
σ̂2(δ)

V̂ ∗′N (δ)H∗N(ρ)V̂ ∗N(δ)− 1
σ̄2(δ)

E[V̄ ∗′N (δ)H∗N(ρ)V̄ ∗N(δ)],

With Assumption F , consistency of δ̂ follows from:

(a) infδ∈∆σ̄
2(δ) is bounded away from zero,

(b) supδ∈∆
∣∣σ̂2(δ)− σ̄2(δ)

∣∣ = op(1),

(c) supδ∈∆
1

(n−1)(T−1)

∣∣Y ◦′N B∗′N V̂ ∗N(δ)− E[Y ◦′N B
∗′
N V̄

∗
N(δ)]

∣∣ = op(1),

(d) supδ∈∆
1

(n−1)(T−1)

∣∣V̂ ∗′N (δ)H∗N(ρ)V̂ ∗N(δ)− E[V̄ ∗′N (δ)H∗N(ρ)V̄ ∗N(δ)]
∣∣ = op(1),

Proof of (a). By V̄ ∗N(δ) = MΩB∗NA
∗
NY

∗
N + PΩB∗NA

∗
N Ỹ

∗
N given in (3.25), and the

orthogonality between the two projection matrices M and P, we have,

σ̄2(δ) = 1
(n−1)(T−1)

E[V̄ ∗′N (δ)V̄ ∗N(δ)] = 1
(n−1)(T−1)

tr[Var(ΩB∗NA
∗
NY

∗
N)

+ 1
(n−1)(T−1)

E(ΩB∗NA
∗
NY

∗
N)′ME(ΩB∗NA

∗
NY

∗
N).

As M is p.s.d., the second term is nonnegative uniformly in δ ∈ ∆. The first term is
1

(n−1)(T−1)
tr[Var(ΩB∗NA

∗
NY

∗
N)] = σ2

0 > c > 0, uniformly in δ ∈ ∆ by the assumption

given in the theorem. It follows that infδ∈∆σ̄
2(δ) > c > 0.

Proof of (b). Noting that V̂ ∗N(δ) = MΩB∗NA
∗
NY

∗
N , we have,

σ̂2(δ) = 1
(n−1)(T−1)

V̂ ∗′N (δ)V̂ ∗N(δ) = 1
(n−1)(T−1)

(ΩB∗NA
∗
NY

∗
N)′M(ΩB∗NA

∗
NY

∗
N).

It follows that, by denoting Q1 = 1
(n−1)(T−1)

(ΩB∗NA
∗
NY

∗
N)′M(ΩB∗NA

∗
NY

∗
N) and

Q2 = 1
(n−1)(T−1)

(ΩB∗NA
∗
N Ỹ

∗
N)′P(ΩB∗NA

∗
N Ỹ

∗
N),

σ̂2(δ)− σ̄2(δ) = Q1 − EQ1 − EQ2. (B.3.1)
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The results follows if Q1 − EQ1
p−→ 0, and EQ2−→0, uniformly in δ ∈∆.

The uniform convergence of Q1 − EQ1 to zero in probability follows from the point-

wise convergence for each δ ∈ ∆ and the stochastic equicontinuity of Q1, according to

Theorem 1 of Andrews (1992). By Lemma 3.1,

Q1 = 1
(n−1)(T−1)

(
η∗′NMη∗N + V′NF ′NΩMΩFNVN + 2η∗′NMΩFNVN

)
,

where η∗N = ΩB∗N(X∗Nβ + C∗N), where C∗N = lT ⊗ c∗n and FN = IT ⊗ F ′n,n−1. It gives

Q1 − EQ1 =
∑2

`=1(Q1,` − EQ1,`), where Q1,`, ` = 1 and 2, denote the two stochastic

terms of Q1, and EQ1,2 = 0;

Thus, Q1 is decomposed into terms: 1
(n−1)(T−1)

V′NZVN and 1
(n−1)(T−1)

ξ′VN , where

the matrix Z and the vector ξ are defined in terms of FN ,Ω, M and η∗N . Note that η∗N

depend on true parameter values, whereas M depends on ρ.

To show Q1,`(δ)−EQ1,`(δ)
p−→ 0, for each δ ∈∆, and all `, the following results are

used: (i) For the terms quadratic in VN , they can be written as 1
(n−1)(T−1)

∑T
t=1

∑T
s=1 V

′
ntZts

Vns. The pointwise convergence of 1
n−1

[V ′ntZtsVns − E(V ′ntZtsVns)] follows from Lemma

B.1.5 (v), for each t, s = 1, . . . , T ; (ii) The pointwise convergence of 1
(n−1)(T−1)

ξ′VN

follows from Chebyshev inequality.

Let δ1 and δ2 be in ∆, We have by the mean value theorem that for all the Q1,`(δ)

terms:

Q1,`(δ2)−Q1,`(δ1) = ∂
∂δ′
Q1,`(δ̄)(δ2 − δ1),

where δ̄ lies between δ1 and δ2 elementwise. The partial derivatives takes simple form,

for Q1,`(δ) that is linear or quadratic in λt, it is easy to show that supδ∈∆ | ∂∂λtQ1,`(δ)| =

Op(1), for t=1,...,T. As for ∂
∂ρ
Q1,`(δ), note that only the matrix M involves ρ. Some

algebra is used for derivative:

d
dρ

M = MΩMNΓB∗′NΩ + ΩB∗NΓ′M′NΩM

where MN = IT⊗M∗
n and Γ = X∗N(X∗′NB

∗′
NΩB∗NX

∗
N)−1X∗′N . The results supδ∈∆ | ∂∂ρQ1,`(δ)| =

Op(1) can be easily proved for all the Q1,`(δ) quantities. For example, for Q1,1(δ), noting
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that γmax(M) = 1,

supδ∈∆ | ∂∂ρQ1,1(δ)| = supδ∈∆ | 1
(n−1)(T−1)

∂
∂ρ
V′NF ′NΩMΩFNVN |

= supδ∈∆
1

(n−1)(T−1)
|V′NF ′NΩMΩMNΓB∗′NΩFNVN

+ V′NF ′NΩB∗NΓ′M′NΩMΩFNVN |

6 supδ∈∆
1

(n−1)(T−1)
|V′NF ′NMNΓB∗′NFNVN + V′NF ′NB∗NΓ′M′NFNVN |

6 2γmax(MN)γmax(Γ)γmax(B∗′N) 1
(n−1)(T−1)

|V′NF ′NFNVN | = Op(1),

It follows that Q1,`(δ) are stochastically equicontinuous. Hence, by Theorem 1 of An-

drews (1992), Q1,`(δ) − EQ1,`(δ)
p−→ 0, uniformly in δ ∈ ∆ for all `. It follows that

Q1(δ)− EQ1(δ)
p−→ 0, uniformly in δ ∈∆.

It left to show that EQ2(δ)→ 0, uniformly in δ ∈∆:

EQ2 = 1
(n−1)(T−1)

tr[ΩB∗NX
∗
N(X∗′NB

∗′
NΩB∗NX

∗
N)−1X∗′NB

∗′
NΩVar(B∗NA

∗
NY

∗
N)]

6 1
(n−1)(T−1)

γ−1
min(X∗′NB

∗′
NΩB∗NX

∗
N)tr[X∗′NB

∗′
NVar(B∗NA

∗
NY

∗
N)B∗NX

∗
N ]

= 1
(n−1)(T−1)

γ−1
min

(X∗′NB∗′NΩB∗NX
∗
N

(n−1)(T−1)

)
1

(n−1)(T−1)
tr[X∗′NB

∗′
NVar(B∗NA

∗
NY

∗
N)B∗NX

∗
N ].

By Assumption C, we have, 0 < cx 6 γmin

(X∗′NB∗′NΩB∗NX
∗
N

(n−1)(T−1)

)
. It follows that

EQ2 6 1
(n−1)(T−1)

c−1
x

1
(n−1)(T−1)

tr[X∗′NB
∗′
NVar(B∗NA

∗
NY

∗
N)B∗NX

∗
N ]

6 1
(n−1)(T−1)

c−1
x c̄y

1
(n−1)(T−1)

tr[X∗′NB
∗′
NB

∗
NX

∗
N ], by the assumption in Theorem 3.1

= O(n−1), by Assumption C.

Hence, σ̂2(δ)− σ̄2(δ)
p−→ 0, uniformly in δ ∈∆, completing the proof of (b).

Proofs of (c)-(d). By the expressions of V̂ ∗N(δ), V̄ ∗N(δ) and the Lemma 3.1, all the

quantities inside | · | in (c)-(d) can all be expressed in the forms similar to (B.3.1). Thus,

the proofs of (c)-(d) follow the proof of (b).

Proof of Theorem 3.2: By the mean value theorem, we have:

0 = 1√
(n−1)(T−1)

S?(θ̂) = 1√
(n−1)(T−1)

S?(θ0)+
[

1
(n−1)(T−1)

∂
∂θ′
S?(θ̄)

]√
(n− 1)(T − 1)(θ̂−θ0),

where θ̄ lies elementwise between θ̂ and θ0. The result of the theorem follows if

(a) 1√
(n−1)(T−1)

S?(θ0)
D−→ N

[
0, limn→∞Σ◦(θ0)

]
,
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(b) 1
(n−1)(T−1)

[
∂
∂θ′
S?(θ̄)− ∂

∂θ′
S?(θ0)

] p−→ 0, and

(c) 1
(n−1)(T−1)

[
∂
∂θ′
S?(θ0)− E

(
∂
∂θ′
S?(θ0)

)] p−→ 0.

Proof of (a). Recall the representation of S?(θ0) given in (3.28):

S∗(θ0) =



Π′1tVN , t = 1, . . . , T,

Π′2tVN + V′NΦ1tVN − T−1
T

tr(G∗nt0), t = 1, . . . , T,

V′NΦ2VN − (T − 1)tr(H∗n0),

V′NΨVN − (n−1)(T−1)

2σ2
0

,

(B.3.2)

As the elements of Xnt are non-stochastic and uniformly bounded (by Assumption C),

and the row and column sums ofB∗n are also uniformly bounded in absolute values by As-

sumption E and Lemma B.1.1. It follows that the elements of Π1t are uniformly bounded.

By Assumption D and Lemma B.1.1(i),Gnt is uniformly bounded in both row and column

sums. Then by Lemma A.4 of Lee and Yu (2010), we have A∗−1
nt = F ′n,n−1A

−1
nt Fn,n−1.

Thus, G∗nt is uniformly bounded in both row and column sums by Lemma B.1.1(iii),

and the elements of η∗nt = G∗nt(X
∗
ntβt0 + c∗n) are also uniformly bounded by Assump-

tion C. It follows that the elements of Π2t are uniformly bounded. Similarly, B∗−1
n =

F ′n,n−1B
−1
n Fn,n−1, and therefore the elements of H∗n is uniformly bounded in both row

and column sums. With these and the definitions of ZNt and Z�Nt, it is easy to show

that Φ1t, Φ2 and Ψ are uniformly bounded in both row and column sums. Thus, under

Assumptions A-F, the central limit theorem (CLT) of linear-quadratic (LQ) form of Kele-

jian and Prucha (2001) or its simplified version (under iid errors) given in Lemma B.1.7

can be applied to each element of S?(θ0) to establish its asymptotic normality. Then, an

application of Cramér-Wold device gives, 1√
N∗
S?(θ0)

D−→ N
(
0, limN∗→∞Σ◦(θ0)

)
, as

N∗ →∞.

Proof of (b). Denote J(θ) = − ∂
∂θ′
S?(θ), the negative Hessian matrix of S?(θ).

It is easy to show that 1
(n−1)(T−1)

J(θ0) = Op(1) by Lemma B.1.1 and the model as-

sumptions. θ̂
p−→ θ0 implies θ̄ − θ0 = op(1), thus 1

(n−1)(T−1)
J(θ̄) = Op(1). As

σ̄2 p−→ σ2
0 , σ̄−r = σ−r0 + op(1), r = 2, 4, 6. Noting that σr appears in J(θ) multiplica-

tively, 1
(n−1)(T−1)

J(θ̄) = 1
(n−1)(T−1)

J(β̄, σ2
0, ρ̄, λ̄) + op(1), i.e., replacing σ̄2 by σ2

0 results

in an asymptotically negligible error. The results of (b) follows if
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1
(n−1)(T−1)

[
J(β̄, σ2

0, ρ̄, λ̄)− J(θ0)
] p−→ 0.

All the random elements of J(θ) are linear, bilinear, or quadratic in Y ∗nt or Ṽ ∗nt, and

linear or quadratic in β, ρ, and λ. This means that all the corresponding elements in
1

(n−1)(T−1)

[
J(β̄, σ2

0, ρ̄, λ̄) − J(θ0)
]

are linear, bilinear, or quadratic in Y ∗nt or Ṽ ∗nt, and

linear, bilinear or quadratic in β̄ − β0, ρ̄ − ρ0, and λ̄ − λ0, and thus are all op(1) by the

consistency of θ̂, Lemma 3.1, Lemma B.1.1.

Besides the random elements, it also needs to show that all the ‘trace’ terms in 1
(n−1)(T−1)[

J(β̄, σ2
0, ρ̄, λ̄) − J(θ0)

]
are op(1), e.g., 1

(n−1)(T−1)
[tr(G∗2nt(λ̄t)) − tr(G∗2nt(λt0))] = op(1),

for Jλtλt . Let λ∗t be between λ̄t and λt0. By the mean value theorem,

1
(n−1)(T−1)

[tr(G∗2nt(λ̄t))− tr(G∗2nt(λt0))] = λ̄t−λt0
(n−1)(T−1)

tr(G∗2 λ
∗
t

nt ),

whereG∗2 λ
∗
t

nt are the partial derivatives ofG∗2nt evaluated at λ∗t . The elements inG∗2nt are the

multiplications of the matrices W ∗
n and A∗−1

nt (λt). Therefore, G∗2 λ
∗
t

nt have elements being

the multiplications of the matrices W ∗
n and A∗−1

nt (λt), and hence are uniformly bounded

in a matrix norm, in the neighborhood of λt0 by Lemmas B.1.1 and B.1.2. Therefore,
1

(n−1)(T−1)
tr(G∗2 λ

∗
t

nt ) = Op(1), leading to (b).

Proof of (c). For the terms involving only Ṽ ∗nt, the results follows Lemma B.1.5(v)-

(vi), noticing Ṽ ∗nt = F ′n,n−1Z
◦′
NtVN . For example,

Jσ2σ2(θ0)− E[Jσ2σ2(θ0)] = 1
σ6
0
[
∑T

t=1 Ṽ
∗′
nt Ṽ

∗
nt − E(

∑T
t=1 Ṽ

∗′
nt Ṽ

∗
nt)]

= 1
σ6
0
[
∑T

t=1 V′NZ◦NtFn,n−1F
′
n,n−1Z

◦′
NtVN − E(

∑T
t=1 V′NZ◦NtFn,n−1F

′
n,n−1Z

◦′
NtVN)]

which is easily seen that Z◦NtFn,n−1F
′
n,n−1Z

◦′
Nt is uniformly bounded in both row and

column sums. Thus, Lemma B.1.5(v) leads to 1
(n−1)(T−1)

{Jσ2σ2(θ0) − E[Jσ2σ2(θ0)]} =

op(1). By Lemma 3.1 all the terms involving Y ∗nt can be written as sums of the terms linear

in VN . Thus, the results follow by repeatedly applying Lemma B.1.1, Lemma B.1.5.

Proof of Theorem 3.3: In the large panels, as n and T goes to infinity, n−1 is asymp-

totically equivalent to n, T−1 is asymptotically equivalent to T , andN∗ is asymptotically

equivalent to N . Therefore, the results of Theorem 3.3 is simply proceed by applying the

Cramér-Wold device. Brief discussions are as followings.

The asymptotic normality of each element of θ when T goes to infinity follows from

the results of Theorem 3.2, with one more consideration of the adjusted normalizing fac-
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tor. In Sec. 2.2, we have discussed that the normalizing factor should be adjusted to reflect

the different rates of convergence of β, λ and σ2. It is obvious that βt and λt components

of S?(θ) are Op(
√
n) , but ρ and σ2 component of S?(θ) is Op(

√
N), when both n and

T approaches to infinity. Therefore, the results of Theorem 3.3 follows from results of

Theorem 3.2 and Cramér-Wold device.
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C Appendix to Chapter 4

C.1 Some Basic Lemmas

The following lemmas are essential for the derivations and proofs of theoretical re-

sults.

Lemma C.1.1 (Kelejian and Prucha, 1999; Lee, 2002): Let {An} and {Bn} be two

sequences of n × n matrices that are uniformly bounded in both row and column sums.

Let Cn be a sequence of conformable matrices whose elements are uniformly bounded.

Then

(i) the sequence {AnBn} are uniformly bounded in both row and column sums,

(ii) the elements of An are uniformly bounded and tr(An) = O(n), and

(iii) the elements of AnCn and CnAn are uniformly bounded.

Lemma C.1.2 (Lee, 2004, p.1918): For Wn and Ant defined in Model (4.1), if ‖Wn‖ and

‖A−1
nt0‖ are uniformly bounded, where ‖ · ‖ is a matrix norm, then ‖A−1

nt ‖ is uniformly

bounded in a neighborhood of λt0.

Lemma C.1.3 (Lee, 2004, p.1918): LetXn be an n×pmatrix. If the elementsXn are uni-

formly bounded and limn→∞
1
n
X ′nXn exists and is nonsingular, then Pn = Xn(X ′nXn)−1X ′n

and Mn = In − Pn are uniformly bounded in both row and column sums.

Lemma C.1.4 (Lemma B.4, Yang, 2015a, extended): Let {An} be a sequence of n × n

matrices that are uniformly bounded in either row or column sums. Suppose that the

elements an,ij of An are O(h−1
n ) uniformly in all i and j. Let vn be a random n-vector of

inid elements satisfying Assumption A, and bn a constant n-vector of elements of uniform

order O(h
−1/2
n ). Then

(i) E(v′nAnvn) = O( n
hn

), (ii) Var(v′nAnvn) = O( n
hn

),

(iii) Var(v′nAnvn + b′nvn) = O( n
hn

), (iv) v′nAnvn = Op(
n
hn

),

(v) v′nAnvn − E(v′nAnvn) = Op((
n
hn

)
1
2 ), (vi) v′nAnbn = Op((

n
hn

)
1
2 ),

the results (iii) and (vi) remain valid if bn is a random n-vector independent of vn such

that {E(b2
ni)} are of uniform order O(h−1

n ).
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Lemma C.1.5 (CLT for Linear-Quadratic Forms, Kelejian and Prucha, 2001). Let An

be n × n matrices and an be the vector of diagonal elements of An, Let vn be an n × 1

ramdom vector satisfying Assumption A. Let cn be an n×1 random vector, independent of

vn. Assume (i) An is bounded uniformly in row and column sums, (ii) n−1
∑n

i=1 |c
2+ι1
n,i | <

∞, ι1 > 0 and (iii) E|v4+ι2
n,i | < ∞, ι2 > 0. Let Rn = diag(rn,1, . . . , rn,n). Define the

bilinear-quadratic form:

Qn = v′nAnvn + c′nvn − σ2tr(RnAn),

and let σ2
Qn

be the variance of Qn. Then Qn/σQn

d−→ N(0, 1).
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C.2 Hessian and Expected Hessian Matrices

Notation. For t, s = 1, . . . , T , blkdiag{At} forms a block-diagonal matrix by plac-

ing At diagonally, {At} forms a matrix by stacking At horizontally, and {Bts} forms a

matrix by the component matricesBts. The negative Hessian J(θ0) and expected negative

Hessian I(θ0) of the AQS function, are both partitioned according to the slope parameters

β, the spatial lag parameters λ, and the error variance σ2, with the sub-matrices denoted

by, e.g., Iββ, Iβλ, Jββ, Jβλ. Furthermore, diag(·) forms a diagonal matrix and diagv(·)

a column vector, based on the diagonal elements of a square matrix.

Parametric quantities, e.g., An(λt0) and Bn(ρ0), evaluated at the true parameters are

denoted as Ant and Bn. For a matrix An, denote Asn = An + A′n. The bold 0 represents

generically a vector or a matrix of zeros, to distinguish from the scalar 0.

Letting ηnt = Gnt(Xntβt + cn) and gnt = diagv(Gnt), the negative Hessian matrix,

JSL1(θ0), has the components:

Jββ = blkdiag
{

1
σ2
0
X ′ntXnt

}
−
{

1
Tσ2

0
X ′ntXns

}
,

Jβλ = blkdiag
{

1
σ2
0
X ′nt(WnYnt)

}
−
{

1
Tσ2

0
X ′nt(WnYns)

}
,

Jλβ = blkdiag
{

1
σ2
0
[(WnYnt)− 2diag(Gnt)Ṽnt]

′Xnt

}
−
{

1
Tσ2

0
[(WnYnt)− 2diag(Gnt)Ṽnt]

′Xns

}
,

Jλλ = blkdiag
{

1
σ2
0
(WnYnt)

′[(WnYnt)− 2diag(Gnt)Ṽnt] + 1
σ2
0
Ṽ ′ntdiag(G2

nt)Ṽnt
}

−
{

1
Tσ2

0
(WnYns)

′[(WnYnt)− 2diag(Gnt)Ṽnt]
}
,

Jσ2β =
{

1
σ4
0
Ṽ ′ntXnt

}
,

Jσ2λ =
{

1
σ4
0
(WnYnt)

′Ṽnt
}
,

Jλσ2 =
{

1
σ4
0
Ṽ ′nt[(WnYnt)− diag(Gnt)Ṽnt]

}
,

Jσ2σ2 = − n(T−1)

2σ4
0

+ 1
σ6
0

∑T
t=1 Ṽ

′
ntṼnt.
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The expected negative Hessian matrix, ISL1(θ0), has the components:

Iββ = blkdiag
{

1
σ2
0
X ′ntXnt

}
−
{

1
Tσ2

0
X ′ntXns

}
,

Iλβ = blkdiag
{

1
σ2
0
η′ntXnt

}
−
{

1
Tσ2

0
η′ntXns

}
,

Iλλ = blkdiag
{

1
σ2
0
η′ntηnt + T−1

T
tr[RnG

′
ntGnt +Rndiag(G2

nt)]−
2(T−2)
T

tr[Rndiag(Gnt)Gnt]
}

−
{

1
Tσ2

0
η′ntηns + 2

T 2 tr[Rndiag(Gnt)Gns]
}
,

Iσ2λ =
{
T−1
Tσ2

0
tr(RnGnt)

}
,

Iλσ2 =
{
T−1
Tσ2

0
tr(RnG

◦
nt)
}

Iσ2β = 0,

Iσ2σ2 = n(T−1)

2σ4
0
.
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C.3 Proofs of Theorems

In the proofs, the following matrix results are useful: (i) the eigenvalues of a projec-

tion matrix are either 0 or 1; (ii) the eigenvalues of a positive definite (p.d.) matrix are

strictly positive; (iii) γmin(A)tr(B) 6 tr(AB) 6 γmax(A)tr(B) for symmetric matrix A

and positive semidefinite (p.s.d.) matrix B; (iv) γmax(A+ B) 6 γmax(A) + γmax(B) for

symmetric matrices A and B; and (v) γmax(AB) 6 γmax(A)γmax(B) for p.s.d. matrices

A and B. See, e.g, Bernstein (2009).

proof of Theorem 4.1: From (4.10) and (4.15), we have S?c(λ)− S̄?c(λ) equals to

1
σ̂2(λ)

η̂′N V̂N(λ)− 1
σ̄2(λ)

E[η̄′N V̄N(λ)]+ 1
σ̂2(λ)

V̂ ◦′N (λ)G◦N(λ)V̂N(λ)− 1
σ̄2(λ)

E[V̄ ◦′N (λ)G◦N(λ)V̄N(λ)]

With Assumption E, consistency of λ̂ follows from:

(a) infλ∈λσ̄
2(λ) is bounded away from zero,

(b) supλ∈Λ
∣∣σ̂2(λ)− σ̄2(λ)

∣∣ = op(1),

(c) supλ∈Λ
1

n(T−1)

∣∣η̂′N V̂N(λ)− E[η̄′N V̄N(λ)]
∣∣ = op(1),

(d) supλ∈Λ
1

n(T−1)

∣∣V̂ ◦′N (λ)G◦N(λ)V̂N(λ)− E[V̄ ◦′N (λ)G◦N(λ)V̄N(λ)]
∣∣ = op(1),

Proof of (a). The identity (4.14), V̄N(λ) = MΩANYN + PΩAN ỸN , is useful in

obtaining the expressions for σ̄2(λ). By the orthogonality between the two projection

matrices M and P, we have,

σ̄2(λ) = 1
n(T−1)

E[V̄ ′N(λ)V̄N(λ)] = 1
n(T−1)

tr[Var(ΩANYN)]

+ 1
n(T−1)

E(ΩANYN)′ME(ΩANYN).

As M is p.s.d., the second term is nonnegative uniformly in λ ∈ Λ. The first term is
1

n(T−1)
tr[Var(ΩANYN)] = σ2

0 > c > 0, uniformly in λ ∈ Λ by the assumption in the

theorem. It follows that infλ∈Λσ̄
2(λ) > c > 0.

Proof of (b). Noting that V̂N(λ) = MΩANYN , we have,

σ̂2(λ) = 1
n(T−1)

V̂ ′N(λ)V̂N(λ) = 1
n(T−1)

(ΩANYN)′M(ΩANYN).
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By denotingQ1 = 1
n(T−1)

(ΩANYN)′M(ΩANYN) andQ2 = 1
n(T−1)

(ΩAN ỸN)′P(ΩAN ỸN),

σ̂2(λ)− σ̄2(λ) = Q1 − EQ1 − EQ2. (C.3.1)

The results follows if Q1 − EQ1
p−→ 0, and EQ2−→0, uniformly in λ ∈ Λ.

According to Theorem 1 of Andrews (1992), the uniform convergence of Q1 − EQ1

to zero in probability follows from the pointwise convergence for each λ ∈ Λ and the

stochastic equicontinuity of Q1. Q1 can be written in the form of VN , where VN =

(V ′n1, . . . , V
′
nT )′ is the vector of original errors with elements {vit} satisfying Assumption

A.

Q1 = 1
n(T−1)

(
η∗′NMη∗N + V′NΩMΩVN + 2η∗′NMΩVN

)
,

where η∗N = Ω(XNβ+CN) and CN = lT⊗cn. DenoteQ1−EQ1 =
∑2

`=1(Q1,`−EQ1,`),

where Q1,`, ` = 1 and 2 are the two stochastic terms of Q1, and EQ1,2 = 0.

The above decomposition contains terms in the form: 1
n(T−1)

V′NZVN and 1
n(T−1)

ξ′VN ,

where the matrix Z and the vector ξ are defined in terms of Ω, M and η∗N . Note that η∗N

depends on true parameter values.

For the term quadratic in VN , it can be written as 1
n(T−1)

∑T
t=1

∑T
s=1 V

′
ntZtsVns. The

pointwise convergence of 1
n
[V ′ntZtsVns−E(V ′ntZtsVns)] follows from Lemma C.1.4(v), for

each t, s = 1, . . . , T . The pointwise convergence of 1
n(T−1)

ξ′VN follows from Chebyshev

inequality. Thus, it follows that Q1,`(λ)− EQ1,`(λ)
p−→ 0, for each λ ∈ Λ, and all `.

Let λ1 and λ2 be in Λ, We have by the mean value theorem that for all the Q1,`(λ)

terms:

Q1,`(λ2)−Q1,`(λ1) = ∂
∂λ′
Q1,`(λ̄)(λ2 − λ1),

where λ̄ lies between λ1 and λ2 elementwise. The partial derivatives take simple form,

for Q1,`(λ) that is linear or quadratic in λt, it is easy to show that supλ∈Λ | ∂∂λtQ1,`(λ)| =

Op(1), for t=1,. . . ,T. Therefore, it follows that Q1,`(λ) are stochastically equicontinuous.

Hence, by Theorem 1 of Andrews (1992), Q1,`(λ)−EQ1,`(λ)
p−→ 0, uniformly in λ ∈ Λ

for all `. It follows that Q1(λ)− EQ1(λ)
p−→ 0, uniformly in λ ∈ Λ.

To show that EQ2(λ)→ 0, uniformly in λ ∈ Λ. We have,
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EQ2 = 1
n(T−1)

tr[ΩXN(X ′NΩXN)−1X ′NΩVar(ANYN)]

6 1
n(T−1)

γ−1
min(X ′NΩXN)tr[X ′NVar(ANYN)XN ]

= 1
n(T−1)

γ−1
min

(X′NΩXN

n(T−1)

)
1

n(T−1)
tr[X ′NVar(ANYN)XN ].

By Assumption C, we have, 0 < cx 6 γmin

(X′NΩXN

n(T−1)

)
. It follows that

EQ2 6 1
n(T−1)

c−1
x

1
n(T−1)

tr[X ′NVar(ANYN)XN ]

6 1
n(T−1)

c−1
x c̄y

1
n(T−1)

tr[X ′NXN ], by the assumption in Theorem 4.1

= O(n−1), by the assumption C

Hence, σ̂2(λ)− σ̄2(λ)
p−→ 0, uniformly in λ ∈ Λ, completing the proof of (b).

Proof of (c)-(d). By the expressions of V̂N(λ), V̄N(λ) and Lemma 4.1, all the quan-

tities inside | · | in (c)-(d) can all be expressed in the forms similar to (C.3.1). Thus, the

proofs of (c)-(d) follow the proof of (b).

Proof of Theorem 4.2: By the mean value theorem,

0 = 1√
n(T−1)

S?(θ̂) = 1√
n(T−1)

S?(θ0) +
[

1
n(T−1)

∂
∂θ′
S?(θ̄)

]√
n(T − 1)(θ̂− θ0),

where θ̄ lies elementwise between θ̂ and θ0. The theorem follows if

(a) 1√
n(T−1)

S?(θ0)
D−→ N

[
0, limn→∞Σ◦(θ0)

]
,

(b) 1
n(T−1)

[
∂
∂θ′
S?(θ̄)− ∂

∂θ′
S?(θ0)

] p−→ 0, and

(c) 1
n(T−1)

[
∂
∂θ′
S?(θ0)− E

(
∂
∂θ′
S?(θ0)

)] p−→ 0.

Proof of (a). Elements in the AQS function that are in the form of ṼN can be written

in terms of the original error VN . Thus, We represent S?(θ0) in terms of VN . Let zt be a

T × 1 vector of element 1 in the tth position and 0 elsewhere, and define ZNt = zt ⊗ In,

Z̄N = 1
T

(lT ⊗ In), and Z◦Nt = ZNt − Z̄N . Thus, Vnt = Z ′NtVN and Ṽnt = Vnt − V n =

Z◦′NtVN . The AQS function S?(θ) at θ0 takes the form:

S?(θ0) =


Π�′1tVN , t = 1, . . . , T,

Π�′2tVN + V′NΦ�1tVN − T−1
T

tr(Gnt0), t = 1, . . . , T,

V′NΦ�2VN − n(T−1)

2σ2
0
,

(C.3.2)
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where Π�1t = 1
σ2
0
Z◦NtXnt, Π�2t = 1

σ2
0
Z◦Ntη̃nt0, Φ�1t = 1

σ2
0
Z◦NtGnt0Z

◦′
Nt, and Φ�2 = 1

2σ4
0

∑T
t=1

Z◦NtZ
◦′
Nt.

As the elements of Xnt are non-stochastic and uniformly bounded (by Assumption

C), it is easy to see that the elements of Π1t are uniformly bounded. By Assumption

D and Lemma C.1.1(i), Gnt is uniformly bounded in both row and column sums. The

elements of η̃nt = Gnt(Xntβt0 + c̃n) are uniformly bounded by Assumption C. It follows

that the elements of Π2t are uniformly bounded. With these and the definition of ZNt

and Z◦Nt, it is easy to see that Φ1t and Φ2 are uniformly bounded in both row and column

sums. Thus, under Assumptions A-E, the central limit theorem (CLT) of linear-quadratic

(LQ) form of Kelejian and Prucha (2001) or its simplified version given in Lemma C.1.5

can be applied to the elements of S?(θ0) to establish the asymptotic normality. Then, an

application of Cramér-Wold device under a finit T gives, as N∗ → ∞, 1√
N∗
S?(θ0)

D−→

N
(
0, limN∗→∞Σ◦(θ0)

)
.

Proof of (b). Denote J(θ) as the negative Hessian matrix of S?(θ), that is J(θ) =

− ∂
∂θ′
S?(θ). It is easy to show that 1

n(T−1)
J(θ0) = Op(1) by Lemma C.1.1 and the

model assumptions. θ̂
p−→ θ0 by the consistency, which implies θ̄ − θ0 = op(1), thus

1
n(T−1)

J(θ̄) = Op(1). As σ̄2 p−→ σ2
0 , σ̄−r = σ−r0 + op(1), r = 2, 4, 6. Noting that σr

appears in J(θ) multiplicatively, 1
n(T−1)

J(θ̄) = 1
n(T−1)

J(β̄, σ2
0, λ̄) + op(1), i.e., replacing

σ̄2 by σ2
0 results in an asymptotically negligible error. The results of (b) follows if

1
n(T−1)

[
J(β̄, σ2

0, λ̄)− J(θ0)
] p−→ 0. (C.3.3)

As all the random elements of J(θ) are linear, bilinear, or quadratic in Ynt or Ṽnt, and lin-

ear or quadratic in β and λ. This means that all the corresponding elements in 1
n(T−1)

[
J(β̄,

σ2
0, λ̄) − J(θ0)

]
are linear, bilinear, or quadratic in Ynt or Ṽnt, and linear, bilinear or

quadratic in β̄−β0 and λ̄−λ0, and thus are all op(1) by the consistency of θ̂ and Lemma

C.1.1.

Proof of (c). For the terms involving Ṽnt, it can be written in the form of VN , where

VN = (V ′n1, . . . , V
′
nT )′ is the vector of original errors satisfying Assumption A. the results

follows Lemma C.1.4(v)-(vi). Let Z̄N = 1
T

(lT ⊗ In), and Z◦Nt = ZNt − Z̄N , noticing
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Ṽnt = Z◦′NtVN . For example,

Jσ2σ2(θ0)− E[Jσ2σ2(θ0)] = 1
σ6
0
[
∑T

t=1 Ṽ
′
ntṼnt − E(

∑T
t=1 Ṽ

′
ntṼnt)]

= 1
σ6
0
[
∑T

t=1 V′NZ◦NtZ◦′NtVN − E(
∑T

t=1 V′NZ◦NtZ◦′NtVN)]

which is easily seen that Z◦NtZ
◦′
Nt is uniformly bounded in both row and column sums.

Thus, 1
n(T−1)

{Jσ2σ2(θ0)− E[Jσ2σ2(θ0)]} = op(1) by Lemma C.1.4.

Similarly, all the terms involving Ynt can be written as sums of the terms linear in

terms of VN . Thus, the results follow by repeatedly applying Lemma C.1.1 and Lemma

C.1.4.

Proof of Theorem 4.3: In the large panels, as n and T goes to infinity, n−1 is asymp-

totically equivalent to n, T−1 is asymptotically equivalent to T , andN∗ is asymptotically

equivalent to N . Therefore, the results of Theorem 4.3 is simply proceed by applying the

Cramér-Wold device. Brief discussions are as followings.

The asymptotic normality of each element of θ when T goes to infinity follows from

the results of Theorem 4.2, with one more consideration of the adjusted normalizing fac-

tor. In Sec. 4.2, we have discussed that the normalizing factor should be adjusted to

reflect the different rates of convergence of β, λ and σ2. It is obvious that βt and λt com-

ponents of S?(θ) are Op(
√
n) , but σ2 component of S?(θ) is Op(

√
N) , when both n

and T approaches to infinity. Therefore, the results of Theorem 4.3 follows from results

of Theorem 4.2 and Cramér-Wold device.

Proof of Theorem 4.4: The following dot notation is introduced in the proof: (a)

for an nT × 1 vector ṼN with elements {Ṽit} double indexed by i = 1, . . . , n for each

t = 1, . . . , T , {Ṽ·t} is the subvector that contains all the elements with the same t, and

{Ṽi·} is the subvector that picks up the elements with the same i; (b) for an nT × nT

matrix Φ with elements {Φit,ls, i, l = 1, . . . , n; t, s = 1, . . . , T}, where it is the double

index for the rows and ls the double index for the columns, Φ·t,·s is the n × n submatrix

corresponding to the (t, s) periods, Φi·,l· the T × T submatrix corresponding to the (i, l)

units, Φit,l· the T × 1 subvector that picks up the element from the itth row corresponding

to s = 1, . . . , T .

145



Firstly, the result I◦(θ̂) − I◦(θ0)
p−→ 0 is implied by the result (b) in the proof of

Theorem 4.2. Secondly, the result 1
n(T−1)

∑n
i=1[ĝiĝ

′
i − E(gig

′
i)]

p−→ 0 follows if

(a) 1
n(T−1)

∑n
i=1(ĝiĝ

′
i − gig′i)

p−→ 0

(b) 1
n(T−1)

∑n
i=1[gig

′
i − E(gig

′
i)]

p−→ 0.

Proof of (a). By applying the mean value theorem, the proof is straightforward.

Proof of (b). As in Lemma 4.2, the elements of S?(θ0) are mixtures of terms of the

forms Π′ṼN =
∑n

i=1 gπi and Ṽ ′NΦṼN − E(Ṽ ′NΦṼN) =
∑n

i=1 gΦi, it suffices to show that

1
n(T−1)

∑n
i=1[gkig

′
ri − E(gkig

′
ri)] = op(1), k, r = Π,Φ.

Notations defined in Lemma 4.2 can be written in the form of vector dot. gΠi = Π′i·Ṽi·

and gΦi = Ṽ ′i·ξi· + Ṽ ′i·Ṽ
∗
i· − 1′Tdi·. Note that by Assumptions C, D and Lemma C.1.1 that

the elements of all the Π’s and Φ’s, defined in (4.17), are uniformly bounded. The proofs

proceed by applying the weak law of large numbers (WLLN) for M.D. arrays, see, e.g.,

Davidson (1994, p. 299).

As gπi = Π′i·Ṽi·, we have 1
n(T−1)

∑n
i=1[gπig

′
πi−E(gπig

′
πi)] = 1

n(T−1)

∑n
i=1 Π′i·(Ṽi·Ṽ

′
i·−

T−1
T
σ2

0rn,iIT )Πi·

≡ 1
n(T−1)

∑n
i=1 Un,i. Without loss of generality, assume Uni is a scalar, it is easy to see that

{Un,i} are independent, thus form a M.D. array. By Assumption A and the property that

the elements of Πi· are uniformly bounded, it is easy to show that E|Un,i|1+ε 6 Ku <∞,

for ε > 0. Thus, {Un,i} are uniformly integrable and 1
n(T−1)

∑n
i=1 Un,i

p−→ 0 by applying

the WLLN for M.D. arrays of Davidson.

As gΦi = Ṽ ′i·ξi· + Ṽ ′i·Ṽ
∗
i· − 1′Tdi·, the expression of 1

n(T−1)

∑n
i=1[g2

Φi − E(g2
Φi)] is more

complicated as more terms are involved in, we simplify it to five terms, that is:

1
n(T−1)

∑n
i=1[g2

Φi − E(g2
Φi)] ≡

∑5
r=1Hr

= 1
n(T−1)

∑n
i=1[(Ṽ ′i·ξi·)

2 − E((Ṽ ′i·ξi·)
2)]

+ 1
n(T−1)

∑n
i=1[(Ṽ ′i·Ṽ

∗
i· )

2 − E((Ṽ ′i·Ṽ
∗
i· )

2)]

+ 2
n(T−1)

∑n
i=1(Ṽ ′i·ξi·)(Ṽ

′
i·Ṽ
∗
i· )− 2

n(T−1)

∑n
i=1(1′Tdi·)(Ṽ

′
i·ξi·)

− 2
n(T−1)

∑n
i=1[(1′Tdi·)(Ṽ

′
i·Ṽ
∗
i· − E(Ṽ ′i·Ṽ

∗
i· ))]

146



Now, we haveH1 = 1
n(T−1)

∑n
i=1[ξ′i·(Ṽi·Ṽ

′
i·−T−1

T
σ2

0rn,iIT )ξi·]+
σ2
0

n(T−1)

∑n
i=1[ξ′i·

T−1
T
rn,iIT ξi·−

E(ξ′i·
T−1
T

rn,iIT ξi·)]. For the first term, let Vn,i = ξ′i·(Ṽi·Ṽ
′
i· − T−1

T
σ2

0rniIT )ξi·. As ξi· is Fn,i−1-

measurable, E(Vn,i|Fn,i−1) = 0. Thus, {Vn,i,Fn,i} form a M.D. array. It is easy to see that

E|V 1+ε
n,i | 6 Kv <∞, for some ε > 0. Thus, {Vn,i} is uniformly integrable. Again, condi-

tions of the WLLN for M.D. arrays of Davidson are satisfied, thus, 1
n(T−1)

∑n
i=1 Vn,i

p−→

0.

For the second term of H1, note that ξ′i·
T−1
T
rniIT ξi· =

∑
t

∑
s ξ
′
it
T−1
T
rniItsξis, where

{Its} = IT . In Lemma 4.2, ξt =
∑T

s=1(Φu′
st + Φ`

ts)Ṽs. We have,

ξit =
∑T

s=1

∑i−1
l=1(Φls,it + Φit,ls)Ṽls =

∑i−1
l=1

∑T
s=1(Φls,it + Φit,ls)Ṽls =

∑i−1
l=1 φ

′
iltṼl·,

where φilt = (Φl·,it+Φit,l·). Thus, (ξit)
2−E[(ξit)

2] =
∑i−1

l=1[φ′ilt(Ṽl·Ṽ
′
l·−T−1

T
σ2

0rn,iJT )φilt]+

2
∑i−1

l=1

∑l−1
k=1 Ṽ

′
l·φiltφ

′
iktṼk·, where JT = IT − 1

T
1T1′T . It follows that

1
n(T−1)

∑n
i=1{(ξit)2 − E[(ξit)

2]}

= 1
n(T−1)

∑n−1
l=1

{∑n
i=l+1[φ′ilt(Ṽl·Ṽ

′
l· − T−1

T
σ2

0rn,iJT )φilt]
}

+2 1
n(T−1)

∑n−1
l=1 Ṽ

′
l·
{∑n

i=l+1

∑l−1
k=1 φiltφ

′
iktṼk·

}
.

Clearly, the first term is the ‘average’ of n − 1 independent terms, as the second term

in the curling brackets is Fn,j−1-measurable, therefore it is the ‘average’ of a M.D. ar-

ray. Conditions of Theorem 19.7 of Davidson (1994) are easily verified, and hence
1

n(T−1)

∑n
i=1{(ξit)2−E[(ξit)

2]} = op(1). Similarly, we can show that 1
n(T−1)

∑n
i=1{ξitξis−

E[(ξitξis)]} = op(1) for s 6= t. Since rn,i is uniformly bounded, therefore

σ2
v0

n(T−1)

∑n
i=1[ξ′i·

T−1
T
rniIT ξi· − E(ξ′i·

T−1
T
rniIT ξi·)] = op(1), and H1 = op(1).

The proofs for H3 and H4 are similar as the proof for the second term of H1. The

proofs for H2 and H5 are similar to the proof of the first part of H1, as they each involves

a sum of n independent terms.

Subsequently, the cross-product term 1
n(T−1)

∑n
i=1[gπigΦi−E(gπigΦi)] can be decom-

posed in a similar manner, and the convergence of each of the decomposed terms can be

proved in a similar way.
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Proof of Theorem 4.5: Comparing with the proof of theorem 4.4, the proof of show-

ing Σ̂ − Σ(θ0)
p−→ 0 when T is large is more complicated due to the involvement of a

new term that capture the dependence among the elements of ṼN across t. It follows if

(a) 1
N

∑N
j=1[ŝN,j ŝ

′
N,j − E(sN,js

′
N,j)]

p−→ 0,

(b) 2
N

∑n
i=1

∑T
t=2

∑t−1
s=1[ŝN,itŝ

′
N,is − E(sN,its

′
N,is)]

p−→ 0,

Proof of (a). The proof is similar as the proof of Theorem 4.4. Without loss of

generality, we express the terms on the scalar level and work on it. See the proof of

Theorem 4.4 for details.

Proof of (b). We prove it by showing 2
N

∑n
i=1

∑T
t=2

∑t−1
s=1[ŝN,itŝ

′
N,is− sN,its′N,is]

p−→

0, and 2
N

∑n
i=1

∑T
t=2

∑t−1
s=1[sN,its

′
N,is − E(sN,its

′
N,is)]

p−→ 0. Due to the consistency of

the parameter estimates, the proof of the former is straightforward by applying the mean

value theorem. We focus on the proof of the later result. There is a free switch between

the index j for the combined unit i and time t for convenience. It suffices to show that

2
N

∑n
i=1

∑T
t=2

∑t−1
s=1[g�kitg

�′
ris − E(g�kitg

�′
ris)] = op(1), k, r = Π,Φ.

The proofs proceed similarly as the proof of Theorem 4.4, the weak law of large numbers

(WLLN) for M.D. arrays, see, e.g., Davidson(1994, p.299) are widely applied.

First, with g�πit = Π′N,jṼN,j , we have

2
N

∑n
i=1

∑T
t=2

∑t−1
s=1[g�πitg

�′
πis − E(g�πitg

�′
πis)]

= 2
N

∑n
i=1

∑T
t=2

∑t−1
s=1[ΠN,itΠ

′
N,is(ṼN,itṼN,is − E(ṼN,itṼN,is))]

= 1
n

∑n
i=1{

2
T

∑T
t=2

∑t−1
s=1[ΠN,itΠ

′
N,is(ṼN,itṼN,is − E(ṼN,itṼN,is))]} ≡ 1

n

∑n
i=1 Pn,i.

For each t and s, ṼN,it and ṼN,is are independent over i, and thus {Pn,i} form an M.D.

array. Applying the weak law of large number (WLLN) for MD arrays of Davidson (1994

p.299) leads to 1
n

∑n
i=1 Pn,i

p−→ 0, as n→∞ and then T →∞.
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Second, with g�Φit = ṼN,jξN,j + ṼN,jṼ
∗
N,j − dN,j , we have

2
N

∑n
i=1

∑T
t=2

∑t−1
s=1[g�Φitg

�
Φis − E(g�Φitg

�
Φis)] ≡

∑5
r=1 Hr

= 1
n

∑n
i=1{

2
T

∑T
t=2

∑t−1
s=1[(ṼN,itξN,it)(ṼN,isξN,is)− E((ṼN,itξN,it)(ṼN,isξN,is))]}

+ 1
n

∑n
i=1{

2
T

∑T
t=2

∑t−1
s=1[(ṼN,itṼ

∗
N,it)(ṼN,isṼ

∗
N,is)− E((ṼN,itṼ

∗
N,it)(ṼN,isṼ

∗
N,is))]}

+ 1
n

∑n
i=1{

4
T

∑T
t=2

∑t−1
s=1[(ṼN,itξN,it)(ṼN,isṼ

∗
N,is)]

− 1
n

∑n
i=1{

4
T

∑T
t=2

∑t−1
s=1 dN,it(ṼN,isṼ

∗
N,is − E(ṼN,isṼ

∗
N,is)}

− 1
n

∑n
i=1{

4
T

∑T
t=2

∑t−1
s=1 dN,it(ṼN,isξN,is)}

We haveH1 = 1
n

∑n
i=1{

2
T

∑T
t=2

∑t−1
s=1[(ṼN,itξN,it)(ṼN,isξN,is)−E((ṼN,itξN,it)(ṼN,isξN,is))]} =

1
n

∑n
i=1Dni. Thus, the result follows if Dni form a M.D. array.

First, we haveDni = { 2
T

∑T
t=2

∑t−1
s=1[(ṼN,itξN,it)(ṼN,isξN,is)−E((ṼN,itξN,it)(ṼN,isξN,is))]}

= { 2
T

∑T
t=2

∑t−1
s=1[(ṼN,itṼN,is− −1

T
σ2

0rni)ξN,itξN,is] +
−σ2

0

T
{ 2
T

∑T
t=2

∑t−1
s=1[rni(ξN,itξN,is−

E(ξN,itξN,is))]} = Dn1,i +Dn2,i. As ξi· is Fn,i−1-measurable, E(Dn1,i|Fn,i−1) = 0. Thus,

{Dn1,i,Fn,i} form a M.D. array. It is easy to see that E|D1+ε
n1,i| 6 KD < ∞, for some

ε > 0. Thus, {Dn1,i} is uniformly integrable. Again, conditions of the WLLN for M.D.

arrays of Davidson are satisfied, thus, 1
n

∑n
i=1 Dn1,i

p−→ 0.

For the second term Dn2,i, note that in Lemma 4.2, ξt =
∑T

s=1(Φu′
st + Φ`

ts)Ṽs. We

have,

ξit =
∑T

s=1

∑i−1
l=1(Φls,it + Φit,ls)Ṽls =

∑i−1
l=1

∑T
s=1(Φls,it + Φit,ls)Ṽls =

∑i−1
l=1 φ

′
iltṼl·,

where φilt = (Φl·,it + Φit,l·). Thus, ξitξis − E[ξitξis] =
∑i−1

l=1[φ′ilt(Ṽl·Ṽ
′
l· − σ2

0rniJT )φils] +∑i−1
l=1

∑l−1
k=1

Ṽ ′l·φiltφ
′
iksṼk· +

∑i−1
l=1

∑l−1
k=1 Ṽ

′
l·φiktφ

′
ilsṼk·, where JT = IT − 1

T
1T1′T It follows that

1
n

∑n
i=1[{ξitξis − E[ξitξis]}

= 1
n

∑n−1
l=1

{∑n
i=l+1[φ′ilt(Ṽl·Ṽ

′
l· − T−1

T
σ2

0rniJT )φilt]
}

+ 1
n

∑n−1
l=1 Ṽ

′
l·
{∑n

i=l+1

∑l−1
k=1(φiltφ

′
iksṼk· + φiktφ

′
ilsṼk·)

}
.

Clearly, the first term is the ‘average’ of n − 1 independent terms, as the second term

in the curling brackets is Fn,j−1-measurable, therefore it is the ‘average’ of a M.D. ar-

ray. Conditions of Theorem 19.7 of Davidson (1994) are easily verified, and hence
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1
n

∑n
i=1{ξitξis − E[(ξitξis)]} = op(1) for s 6= t. Since rni is uniformly bounded, therefore

2σ2
0

N

∑n
i=1{

−1
T

∑T
t=2

∑t−1
s=1[rni(ξN,itξN,is − E(ξN,itξN,is))]} = op(1), and H1 = op(1).

The proofs for H3 and H5 are similar as the proof for the second term of H1. The

proofs for H2 and H4 are similar to the proof of the first part of H1, as they each involves

a sum of n independent terms.

Subsequently, the cross-product term 2
N

∑n
i=1

∑T
t=2

∑t−1
s=1[g�Πitg

�′
Φis−E(g�Πitg

�′
Φis)] can

be decomposed in a similar manner, and the proofs of convergence of each of the decom-

posed terms are similar.
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