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Querying Recurrent Convoys in a Sliding Window
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BAIHUA ZHENG, Singapore Management University, Singapore
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Moving objects equipped with location-positioning devices continuously generate a large amount of spatio-

temporal trajectory data. An interesting finding over a trajectory stream is a group of objects that are travelling

together for a certain period of time. We observe that existing studies on mining co-moving objects do not

consider an important correlation between co-moving objects, which is the reoccurrence of the co-moving

pattern. In this study, we propose the problem of finding recurrent co-moving patterns from streaming

trajectories, enabling us to discover recent co-moving patterns that are repeated within a given time period.

Experimental results on real-life trajectory data verify the efficiency and effectiveness of our method.

CCS Concepts: • Theory of computation→ Data structures and algorithms for data management; • Infor-
mation systems→ Data stream mining.
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1 INTRODUCTION
With the prevalence of location-positioning devices, a vast amount of spatio-temporal data of

moving objects is being generated. Systematically analysing trajectory data of moving objects

enables us to extract a variety of interesting patterns and knowledge that can lead to many real-life

applications such as facility deployment [31] and urban computing [34].

One interesting finding in trajectory databases is the exploration of convoys [9]. Informally, a

convoy refers to a group of spatially close-by objects moving together for a specific period of time.

In essence, a convoy of interest is defined by the number of objects (τ ) and the time duration of

moving together (k), where τ and k are user-specified parameters.

A number of variations of the convoy have been proposed in the literature, which consider

either offline [6, 7, 11, 15, 16, 28, 32] or online [2, 12, 14, 26, 33] trajectory data processing. The

definitions and techniques to mine patterns of co-moving objects vary depending on the parameters

and scenarios of consideration. However, existing literature on mining patterns of co-moving

Authors’ addresses: Munkh-Erdene Yadamjav, RMIT University, Australia, munkh-erdene.yadamjav@rmit.edu.au; Zhifeng

Bao, RMIT University, Australia, zhifeng.bao@rmit.edu.au; Baihua Zheng, Singapore Management University, Singapore,

bhzheng@smu.edu.sg; FarhanaM. Choudhury, The University of Melbourne, Australia, farhana.choudhury@unimelb.edu.au;

Hanan Samet, University of Maryland, USA, hjs@cs.umd.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

0004-5411/2018/8-ART111 $15.00

https://doi.org/10.1145/1122445.1122456

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456


111:2 ME. Yadamjav et al.

18:0518:00 17:5017:45 17:1517:10

Monday Tuesday Wednesday

Convoy 1 Convoy 2 Convoy 3

Fig. 1. A motivating example

objects usually treats each mined pattern independently while ignoring the possible correlation

between them. Taking the correlations between convoys into consideration enables us to evaluate

the importance of each convoy effectively. Moreover, in many real-life applications, an in-time

analysis is required for incoming trajectory data [33]. Thus, it is critical to mine convoys that occur

in the recent time window and take corresponding measures based on the historic occurrences

of them. Figure 1 illustrates an example in transportation management application. The scenario

shows data of traffic congestion occuring in a road segment during a weekday (i.e., occurrence of a

convoy with more than a threshold number of vehicles in close-by distance), and similar congestion

patterns being repeated during the other weekdays. These patterns are found to be instances of a

pattern that reoccurs daily in terms of timespan, group size, and spatial closeness. Our aim is to

find such recurrent convoys. A number of applications can benefit from exploring convoys with

historic occurences in a sliding window. To name a few:

• Scenario 1: Transport management system. A transportation application can distinguish

abnormal traffic congestions caused by accidents from recurrent regular traffic congestions

during rush hours.

• Scenario 2: Military surveillance. A real-time military surveillance system can detect a

co-moving pattern of suspicious groups with repeated occurrences.

• Scenario 3: Parades and protests. An occasional gathering of a larger number of people

needs to be differentiated from common crowd of commuters.

Informally, a sequence of similar convoys forms a recurrent convoy. The significance of a

recurrent convoy varies w.r.t. the parameters, such as the number of objects that form the convoy

(prominence), the duration of the convoy (timespan), and the time interval between two successive

convoy occurrences (recurrence). The values of the parameters that define the interestingness of

the convoy may change over time or domains/contexts. Therefore, the exploration of recurrent

convoys of interest is an iterative process as the distribution of the parameters’ values is not uniform

across the whole search space. Setting appropriate values as a query input gives us a new insightful

explanation about the dataset.

In this paper, given a sliding time window and thresholds for prominence, timespan, and re-

currence, we study the problem of finding the recurrent convoys in the sliding window that satisfy

the given thresholds. Our main focus is to propose a general approach to compute the similarity

between convoys and to store them in a structure that facilitates the mining effort since the mining

task that has a one-off parameter setting might not achieve the goal of extracting all interesting

convoys.

The main challenges in identifying recurrent convoys in a trajectory database are three-fold. First,

a convoy might not repeat itself at a regular pace, i.e., at the same timestamp with the same objects.

The features that form the convoy may vary from time to time. As a result, the similarity metric that

uses common objects to find the co-moving pattern in most of the related work [2, 6, 7, 11, 12, 14–

16, 26, 28, 32, 33] is not suitable to find the correlation between convoys. Second, we can find a
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number of convoys in a sliding window that satisfy the query parameters. However, the number

of times each result convoy is repeated w.r.t. the recurrence threshold is not known. Thus, the

search for previous occurrences of each convoy within the recurrence threshold varies among the

resulted convoys. An effective algorithm that only retrieves potential candidate convoys is required

to speed up the mining task. Third, users might not know the proper value for each threshold to

find the convoys of interest; it is an iterative process of exploration rather than a task of one-off

parameter settings. Thus, we need an efficient indexing structure that facilitates the mining effort

to explore the recurrent convoys of interest.

Recurrent convoy query was first proposed in a short paper [29]. In this paper, we extend it and

make the following fresh contributions.

• We propose an indexing structure that organizes clusters effectively and efficiently [29] and

develop an enhanced algorithm to mine convoys in a sliding window by using an in-memory

lookup table (Section 4.2).

• We implement two similarity metrics to measure the cluster similarity and to evaluate

their effectiveness on mining recurrent convoys (Section 5.3) and accelerate the similarity

computation between convoys using the corresponding minimum bounding rectangles

(Section 4.4.1).

• We conduct comprehensive experiments using real-life trajectory datasets to evaluate the

efficiency and the effectiveness of our method (Section 5).

2 RELATEDWORK
Anumber of approaches have been proposed tomine patterns of moving objects in a spatio-temporal

database. Depending on the definition of a pattern, these approaches fall into two categories: co-

moving pattern [6, 7, 9, 11, 15, 16, 28, 32] and periodic pattern [3, 10, 17–20, 35]. The studies of

co-moving patterns generally differ in the way they compute the relationship between clusters

of objects in a pattern. In addition, the co-moving pattern studies are not applicable to finding

recurrent co-moving patterns because they consider each pattern as independent. More details on

the co-moving pattern mining and their differences with our work are presented in Section 2.1.

In contrast, periodic pattern mining techniques define a pattern as a sequence of regions that are

visited by objects within regular time intervals (details in Section 2.2).

2.1 Co-moving pattern mining
A set of objects that move close-by for a certain period of time is considered as a co-moving pattern.

Two main parameters that define the pattern are (i) the timespan of a pattern; and (ii) the number of

objects that constitute a pattern. As we focus on both online and offline processing of the problem,

we present the literature on co-movement pattern as: (i) offline co-moving pattern mining over

historical trajectory data; and (ii) online co-moving pattern mining over steaming trajectory data.

2.1.1 Offline co-moving pattern mining. Many studies [7, 9, 15, 16, 23, 28] propose additional

constraints on top of those two parameters, such as different spatial clustering techniques, local

temporal consecutiveness, and temporal gap. Objects at each timestamp of a co-moving pattern

are contained in a circle of a pre-defined radius in [7, 28], whereas a density-based clustering is

used in other works. Timestamps in swarm [16] are not necessarily consecutive. A local temporal

consecutiveness threshold is introduced to allow a temporal gap in a co-moving pattern [6, 15, 28].

In contrast to our problem, these works require objects in a co-moving pattern to be observed at

all timestamps during database timespan. Orakzai et al. [23] proposed a sequential algorithm that

clusters only convoy members corresponding to certain timestamps by pruning objects that are

not part of the convoys. A moving cluster [11] does not often contain the same objects during its

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.
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timespan. Thereby, a threshold for the percentage of common objects of two consecutive clusters is

used to mine moving clusters. A gathering pattern is proposed in [32] where a set of objects called

dedicated members travels for at least a certain period of time to be considered as a gathering.

The similarity of these works lies in the goal of discovering a set of objects moving together

over a certain period, regardless of the parameters that have been considered. Co-moving patterns

proposed in [7, 9, 11, 23, 32] discover patterns that occur at consecutive timestamps without any

temporal gap between two consecutive clusters.

2.1.2 Online co-moving pattern mining. The streaming case of finding co-moving patterns in a

trajectory database has been considered in [2, 12, 14, 25, 26, 33]. However, all these works consider

different definitions of the co-moving patterns. Thus, each work designs its mining algorithms

based on its specific definition of a co-moving pattern. Objects are required to record their locations

at every timestamp throughout the database timespan in [26, 33]. However, we consider an object

to record its location at every timestamp during its timespan.

2.2 Periodic pattern mining
A pattern is defined as a sequence of locations that are frequently visited by moving objects (e.g.,

taxis). It is noteworthy that each location in the sequence is represented as a region rather than an

individual point. This representation is called a dense region [20], spatial region [3], or reference

spot [17, 18]. Such a relaxation helps in finding patterns in a spatio-temporal database because

an object is not likely to be at exactly the same location due to the limitations of GPS-equipped

devices and other interferences that may affect the data collection process. A periodicity parameter

is given as an input to segment the database to facilitate the mining process.

In [3, 20], the authors defined a periodic pattern as a sequence of spatial regions within T ,
where T is a time interval (e.g., day, week). The support of a pattern is defined by the number of

periodic sequences in an object trajectory. In addition, a sequence of locations is divided into T
spatial datasets and frequent patterns are mined. Finally, there is no time constraint between two

consecutive occurrences of a periodic pattern. In contrast, we mine recurrent co-moving patterns

that repeat themselves within periods of length T .
[17, 18] defined a periodic behaviour as an object visiting reference spots repeatedly. Reference

spots are generated using a kernel method. Periodicity detection for each reference spot is performed

by transforming a sequence of locations into a binary sequence. [10] defined a periodic pattern as a

set of speed camera stations that are spatially close-by and exhibit the same periodic behaviours in

terms of vehicle speed. Speed data is transformed into four discretized levels. Periodic behaviours

for each station are detected by transforming discretized speed data into a binary sequence for each

speed range. However, the occurrence of each convoy in a recurrent convoy differs, depending on

the parameters of interest. Thus, it is time-consuming to apply methods proposed in [10, 17] for

every query input over the filtered dataset to solve our problem.

Generally, a trajectory periodic pattern mines a sequence of locations that are periodically visited

by a number of trajectories. In contrast, our problem defines a convoy to be generated by a set

of objects that are spatially close-by at each of the k consecutive timestamps. Thus, our problem

considers a densely populated area over time as a convoy whereas previously mentioned studies

consider the correlation between different regions that are frequently visited by objects in the same

order.

2.3 Other related areas
In addition to the aforementioned literature, there are other research areas that are weakly related

to our work, such as distributed pattern mining [4, 6, 22, 24] and trajectory clustering [1, 13,

27]. Distributed co-moving pattern mining algorithms were proposed in [6, 22, 24] by using the
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Notation Definition
Ot

Set of objects whose locations are recorded at timestamp t
Ct

Set of clusters generated over Ot

cti Cluster with identifier i that is generated at timestamp t
WI Sliding window of length I
τ Prominence threshold

k Timespan threshold

ρ Recurrence threshold

д Convoy

G Set of convoys

SIM() Similarity measure to compare convoys

p Recurrent convoy

P Set of recurrent convoys

Table 1. Summary of notations

MapReduce framework to increase the efficiency and scalability of the mining process. Chen

et al. [4] proposed a framework to mine co-movement patterns using Apache Flink that is designed

to process data efficiently in a distributed manner. The trajectory clustering methods emphasize

the spatial closeness of moving objects [27] and hence, the result cluster might contain moving

objects that are not aligned w.r.t. the time dimension.

Remark. To the best of our knowledge, none of the existing work finds recurrent convoys since

querying recurrent convoys over a sliding window considers both online and historic convoy

generations simultaneously w.r.t. given thresholds.

3 PROBLEM FORMULATION
In this section, we first present the necessary preliminaries and then give the formal problem

definitions.

Given a set of moving objects O = {o1,o2, . . . ,o |O |} in a trajectory database with time domain

T = {t1, t2, . . . , t∞}, a trajectory of moving object o ∈ O is represented as a finite sequence of

location samples within time interval [ti , tj ] ⊆ T , i.e., o = {loci , loci+1, . . . , loc j }, where loca is a

recorded position of o in a two-dimensional space at timestamp ta . We assume that the trajectory

of object o is recorded at every timestamp during its lifetime [ti , tj ]. Trajectories of different objects
may have varying lengths.

Let C = {Ct1,Ct2, . . . ,Ct |C| } be the set of clusters generated by applying a chosen clustering

algorithm over the trajectory database at different timestamps. Here, Ct (∈ C) = {ct
1
, ct

2
, . . . , ct

|C t |
}

represents the set of clusters obtained at timestamp t , where ct ∈ Ct
is a non-empty cluster of

objects in O that satisfies the clustering conditions. Since we assume that each trajectory of an

object only corresponds to a finite time interval [ti , tj ], it is possible that there is no cluster for some

timestamps. Table 1 summarizes the frequently used symbols throughout the paper. A time-based

query sliding windowWI of length I shifts at a time. A running example shown in Figure 2 is used

to explain the definitions used in our problem formulation.

Example 1. Let the timespan of a trajectory database be [1, 11] as shown in Figure 2a. Assume we

find a total of eight clusters C = {C1{c1, c2}, C
2{c3, c4}, C

10{c5, c6}, C
11{c7, c8}} in the database at

four different timestamps {t = 1, t = 2, t = 10, t = 11} and no cluster is found from t = 3 to t = 9.
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Fig. 2. A Running Example

The goal of our approach is to find the recurrent convoys that satisfy the thresholds given by the

user. We adopt a well-recognized definition of convoy, originally defined by Jeung et al. [9], in our

work.

Definition 1. (Convoy). Given a set of clusters C and thresholds for prominence (τ ) and
timespan (k), a convoy д = {cti , cti+1, . . . , ctj } is defined as a sequence of clusters at consecutive

timestamps that satisfy the following constraints: (i) ∀cta ∈ д, ∃Cta ∈ C such that cta ∈ Cta
;

(ii) the number of common objects shared by all clusters, denoted as д.τ , is no less than τ , i.e.,
д.τ = |cti ∩ cti+1 ∩ · · · ∩ ctj | ≥ τ ; and (iii) the time duration, denoted as д.k , is no less than k , e.g.,
д.k = |tj − ti + 1| ≥ k , where k > 1.

Example 2. Let τ = 4 and k = 2. Assume we generate the convoys that satisfy the given

thresholds by using the clusters found in Example 1. We find four convoys as shown in Figure 2b:

G = {д1{c
1

1
, c2

3
}, д2{c

1

2
, c2

4
}, д3{c

11

5
, c12

7
}, д4{c

11

6
, c12

8
}} that satisfy the thresholds. Note, we purposely

include the timestamp t in each cluster ci in the form of cti to denote the timestamp that the cluster

was formed.

Next, we define similar convoys w.r.t. the thresholds of interest in Definition 2. The boolean

function SIM(c1, c2, δ ) returns 1 if the similarity between two object clusters c1 and c2 meets the

minimum similarity score δ . There are multiple similarity metrics available to quantify the similarity

between two object clusters and the selection of the similarity metric is application dependent.

For illustration purposes, we adopt the Hausdorff distance [21] to compute the similarity between

clusters in convoys, similar to the trajectory pattern mining work by [32]. Nonetheless, the problem

definition and our approach could be easily adjusted to other similarity metrics.

Definition 2. (Similar convoys). Given the thresholds τ , k and δ and two convoys дa = {c
ti , cti+1,

. . . , cti+u−1 } and дb = {c
tj , ctj+1, . . . , ctj+v−1 }, convoy дa is similar to convoy дb w.r.t. τ and k iff

(i) MIN(дa .τ , дb .τ ) ≥ τ ; (ii) MIN(дa .k , дb .k) ≥ k ; and (iii) ∃д′a = {c
ta , cta+1, . . . , cta+k−1} ⊆ дa ,

∃д′b = {c
tb , ctb+1, . . . , ctb+k−1} ⊆ дb such that ∀l ∈ [0,k − 1], SIM(д′a .c

ta+l
, д′b .c

tb+l , δ ) = 1.

As presented in Definition 2, two similar convoys contain at least τ objects and last at least k
timestamps. Moreover, the corresponding clusters in two k-length subsequences of similar convoys

satisfy the given similarity metrics. Nowwe are ready to introduce a recurrent convoy in Definition 3.
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Definition 3. (ρ-Recurrent Convoy ). Given a sequence of similar convoys pi , j = {дi , . . . ,дj }
where each convoy satisfies the thresholds τ , k , and δ (by Definitions 1 and 2) and a recurrence

threshold ρ, pi , j is a ρ-recurrent convoy iff ∀a ∈ [i, j − 1], two successive convoys дa,дa+1 ∈ pi , j are
similar and the difference between their starting timestamps is no larger than ρ, i.e., |дa .ts−дa+1.ts | ≤
ρ where д.ts denotes the starting timestamp of convoy д.

Example 3. Assume that we search for recurrent convoys w.r.t. τ = 5, k = 2, and ρ = 10 (shown in

Figure 2b). We found two convoys that satisfy the given thresholds, i.e., д1{c1, c3} and д3{c5, c7}. If
we assume that convoy д1 is similar to convoy д3, then they form a ρ-recurrent convoy p1 = {д1,д3},
as д1 and д3 start at timestamps t = 1 and t = 10 respectively, and д3.ts − д1.ts = 10 − 1 = 9 ≤ ρ.

Mining recurrent convoys is a one-off task from the data mining perspective. However, as we

accumulate more data, the parameters that define the interestingness (timespan, prominence,

recurrence) of the convoy might change over time. Thus, we present the recurrent convoy query

over a sliding window in Definition 4 that takes varying parameters as input and only considers

convoys in the sliding window (note, we skip parameter δ in Definition 4).

Definition 4. (Recurrent Convoy Query(RCQ)). Given a trajectory database that is continu-

ously updated and a current sliding window of length I , the RCQ ⟨k, τ , ρ⟩ finds a set of ρ-recurrent
convoys P, where ∀pi = {дa, . . . ,дb } ∈ P satisfies the recurrence constraint ρ (by Definition 3),

∀дb is within the sliding window I , and ∀дj ∈ pi is a valid convoy w.r.t. τ and k .

4 METHODOLOGY
In this section, we first outline the baseline steps to answer the recurrent convoy query and then

present three enhancements to further improve the search performance.

4.1 Baseline
A general approach to answer the recurrent convoy query consists of three phases: (i) cluster

generation that generates clusters using object locations at the current timestamp; (ii) convoy

generation that extends existing convoy candidates in a sliding window using newly identified

clusters or generates new convoy candidates from newly identified clusters; and (iii) historic convoy

generation that searches for the historical occurrences of each convoy in a sliding window that

satisfies the given thresholds. In the following, we explain these three steps in detail.

Cluster generation. Once we receive a set of objects whose locations are recorded at the current

timestamp, we apply the chosen clustering algorithm on the object set to generate the object

clusters. As we consider the streaming case of trajectory database where we need to process

location updates immediately, we could not apply the proposed methods in the literature [9, 26]

for convoy generation over historical data. However, the clustering step does not account for a

substantial amount of the total query execution time compared with other parts of the recurrent

convoy query. Thus, we leave the choice of the clustering algorithm to the user. For example, if we

use DBSCAN [5], the clustering parametersminPts and ϵ are configured differently depending on

the application requirement. Clusters that are obtained after the clustering step vary in the number

of objects. Since τ is user-specified and unknown a priori, we define a parameter τmin ≤ τ which

serves as a lower bound of τ to accelerate the query processing. Clusters with at least τmin objects

are indexed using a traditional R-tree [8] structure in a 2-dimensional space, with each cluster ci
represented as a point of (t , |ci |). Here, t refers to the timestamp of the cluster and |ci | refers to the

number of objects in the cluster (|ci | ≥ τmin ). The parameter τmin is set once for each application.
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Fig. 3. Clusters

Example 4. Given a clustering algorithm, assume we find two clustersCt1 = {c1, c2} at timestamp

t1 as shown in Figure 3. If we set the value τmin to 3 in our problem setting, both c1 and c2 are
stored in the index as the clusters contain at least τmin objects.

Convoy generation. Since the convoy clusters are consecutive in time, the incoming clusters at times-

tamp t are only compared to the candidate convoys that include clusters generated at timestamp

t − 1. We are only interested in a convoy that contains τ number of common objects throughout its

timespan. Thus, the incoming clusters are filtered by the number of objects and only the clusters

that satisfy τ threshold are checked against the candidate convoys. In this way, the candidates

are gradually refined and the ones that do not contain τ common objects are removed from the

candidate set and added to the result set if the time-consecutiveness threshold k is satisfied. Note

that all incoming clusters containing at least τmin objects are passed to the indexing step, to support

the discovery of recurrent convoys required by future queries.

Example 5. Assume we generate convoys w.r.t. thresholds τ = 4 and k = 3 using the clusters

obtained during the timespan of [t1 : t3] in Figure 3. At timestamp t1, we identify two clusters

c1 and c2 and both clusters satisfy the threshold τ . Accordingly, we form two convoy candidates

д1 = {c1} and д2 = {c2}. At the timestamp t2, we generate a new cluster c3 which could extend

the candidate convoy д1 (i.e., д1 = {c1, c3} at t2) but not д2. Accordingly, candidate convoy д2 is
removed from the candidate set. At timestamp t3, with the newly identified clusters c4 and c5, д1 is
further extended by cluster c4 (i.e., д1 = {c1, c3, c4} at t3) and satisfies the timespan threshold k = 3.

Consequently, д1 becomes a result convoy. On the other hand, the newly identified cluster c5 forms

a new candidate convoy д3 = {c5}.

Historic convoy generation. Once we find the convoys of interest that fall inside the sliding window,

we search for the previous occurrences of each convoy by checking historical clusters stored in the

index w.r.t. the given thresholds. As we search for historic occurrences of each convoy within ρ
time period, we load clusters within the time interval of length ρ at each iteration. Convoys are

created using the same procedure that we described previously in the step of convoy generation

based on the clusters w.r.t. the thresholds. The similarities between historical convoys and convoys

in a sliding window are computed using the given similarity function and thresholds. Convoys in a

sliding window that are extended by historic convoys retrieved within the time interval of length ρ
are sent to the next iteration to check for another occurrence.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



Querying Recurrent Convoys in a Sliding Window 111:9

Discussion. Weuse the Coherentmoving cluster (CMC) algorithm proposed in the original definition

of the convoy [9] as a baseline algorithm. This algorithm is applicable in our problem setting, which

considers streaming trajectory data. However, further optimizations proposed in [9] to reduce the

clustering effort are not applicable in our problem setting, as the trajectory database is continuously

being updated. In addition, the effort to generate the clustering based on the location updates

reported by objects at timestamp t is not expensive as compared with the cost of the other two

steps.

The computational overhead of the baseline to generate convoys is substantially high as the

clusters at the current timestamp need to be checked against all candidate convoys that end at the

previous timestamp. The historic convoy generation takes even more time if we set the recurrence

threshold (ρ) to a higher value. To address the efficiency issue, we propose three enhancements

with corresponding index structures over the baseline to accelerate the recurrent convoy query

processing. To be more specific, we propose an in-memory lookup table to significantly accelerate

the convoy generation, and two index structures, namely intersection index and convoy index, to

speed up the historic convoy generation. These three enhancements are detailed below.

4.2 Lookup table
The computation cost of the convoy generation in a sliding window is significantly lower than

the historic convoy generation over the clusters that fall within the specified time interval w.r.t.

the given recurrence threshold. It only matches incoming clusters against the existing convoy

candidates that end at the previous timestamp. However, we can improve the performance of the

convoy generation algorithm by avoiding checking every incoming cluster against each candidate

convoy.

Objects that aremoving close-by are likely to be observed in the same cluster for a few consecutive

timestamps rather than scattered into different clusters abruptly at the next timestamp [26]. Thus,

we optimize the convoy generation algorithm by considering the overlaps between clusters at

consecutive timestamps.

We create an in-memory lookup table that stores objects as a key and the corresponding cluster

identifier as a value for incoming clusters at timestamp t as shown in Figure 4. By using the

temporary lookup table at each timestamp, we compute the number of objects from each candidate

convoy that are still observed in one cluster. If the number is no smaller than the threshold τ , the
corresponding convoy is extended by the cluster. Clusters that do not extend any candidate convoys

form new candidate convoys and hence are added into the candidate convoy set.

t1 t2 t3

o1 c3

o2 c3

o3 c3

o4 c3

o6 c3

o8 c3

o9 c3

KEY VALUE

o1 c1

o2 c1

o3 c1

o4 c1

o5 c1

o6 c2

o7 c2

o8 c2

o9 c2

KEY VALUE

o1 c4

o2 c4

o3 c4

o4 c4

o6 c4

o8 c5

o9 c5

o10 c5

o11 c5

KEY VALUE

Fig. 4. Lookup table states for different timestamps
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Example 6. Assume we generate convoys w.r.t. thresholds τ = 4 and k = 3 using the clusters

obtained during the timespan of [t1 : t3] in Figure 3. Figure 4 shows the state of the lookup table

for each timestamp. At timestamp t1, we find two convoy candidates д1{c1 : [o1,o2,o3,o4,o5]},
д2{c2 : [o6,o7,o8,o9]} in a sliding window. Note, we do not use the lookup table at timestamp t1 as
there is no convoy in its previous timestamp. At timestamp t2, we find out that four objects of c1 still
appear in the same cluster (i.e., c3) based on the lookup table. Accordingly, д1 is extended by cluster

c3 and becomes д1{c1, c3 : [o1,o2,o3,o4]}. After four objects in c3 are used to extend д1, there are
only three objects from cluster c3 left for possible extension of candidate convoy д2. However, there
is no need to perform the intersection as the number of objects is smaller than τ = 4. At timestamp

t3, д1 is further extended by cluster c4 using the lookup table. In addition, a new convoy candidate

д3{c5 : [o8,o9,o10,o11]} is created. As д1 satisfies thresholds τ and k , the historic occurrences of that
convoy are checked using the proposed index, as to be detailed next.

4.3 Intersection index
As soon as we find a convoy at the current timestamp that satisfies the thresholds τ and k , we
check for historic occurrences of that convoy in the past within the recurrence threshold ρ. We can

accelerate this process using an index on historical data.

We use a traditional R-tree [8] for the baseline algorithm to index each cluster, using its timestamp

and the number of objects inside as the dimensions of the Minimum Bounding Rectangle (MBR).

The index enables us to filter clusters within a time interval of length ρ that contain at least τ
number of objects in one operation for each query input. Retrieved clusters are fed into a convoy

generation stage. However, a cluster with at least τ objects is not guaranteed to share at least τ
common objects with any cluster at the next timestamp. To avoid checking each cluster against all

candidate convoys, we propose an intersection index that considers the object overlaps between

clusters at consecutive timestamps. To be more specific, a cluster ci in the index stores all the

clusters C ′ at the previous timestamp that share at least τmin common objects with the cluster

(shown in Figure 5 where τmin = 3) as data embedded in the node. One cluster might share τ
objects with multiple clusters at the previous timestamp. Thus, we capture the maximum number

of common objects between ci and any cluster in C ′ using column “# of objects” in the intersection

index. For our example in Figure 3, c3 has 4 common objects with c1, and 3 common objects with c2,
so 4 is captured by “# of objects” in the intersection index. This index has two advantages over the

baseline index that stores clusters independently using R-tree only. First, it eliminates the extra

check of two clusters at consecutive timestamps with τ number of objects if they do not share τ
common objects. Second, each retrieved cluster is only checked against the convoys that end with

a cluster in an embedded set of the previous timestamp. Figure 5 shows the information about

embeddings in the intersection index for clusters in Figure 3. The intersection index is essentially

c3 t2 4
c1:{4}{o1,o2,o3,o4}

c2:{3}{o6,o8,o9}

c4

Cluster Timestamp

t3

# of objects

5

Previous cluster information

c3:{5}{o1,o2,o3,o4,o6}

Fig. 5. Intersection index (τmin = 3)
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an R-tree, hence the update process and the update costs are the same as that of the R-tree. Each

cluster is inserted to the intersection index as soon as it becomes available.

Example 7. Assume five clusters (c1 to c5) observed from t1 to t3 are given in Figure 3 and τmin = 3.

The intersection index contains two entries for clusters c3 and c4. Clusters c1 and c2 are not indexed
as they correspond to t1 without any previous timestamp, and cluster c5, identified at timestamp t3,
is not indexed as it does not share at least τmin = 3 objects with any cluster identified at timestamp

t2 (e.g., it only shares two common objects with c3, which is less than τmin ). For index entry of c3,
clusters c1 and c2 are embedded as each of them shares at least τmin = 3 objects with cluster c3; for
index entry of c4, cluster c3 is embedded as it shares 5 common objects with c4, as shown in Figure 5.

Assume we search for convoys w.r.t. τ = 4 and k = 3. At timestamp t2, we find a candidate convoy

д1 = {c1, c3}; at timestamp t3, incoming cluster c4 further extends д1 to {c1, c3, c4} that satisfies the
given thresholds.

4.4 Convoy index
The embedding in the intersection index structure that we proposed previously avoids certain

checking between the candidate convoys at timestamp t − 1 and clusters identified at timestamp

t . However, we still need to intersect the clusters k − 2 times to generate a convoy with a length

of k . If we search for convoys that contain a large number of objects, the intersection of clusters

at consecutive timestamps still leads to poor performance. Moreover, the number of historical

convoys that satisfy the query thresholds is likely to increase substantially when the recurrence

threshold is set to a larger value. Thus, we propose another index structure to tackle this problem

and to improve the efficiency of the historic convoy generation.

The two common scenarios of convoys are converge and diverge. As shown in Figure 3, objects

in clusters c1 and c2 converge into cluster c3 from t1 to t2 whereas objects in cluster c3 diverge into
two clusters from t2 to t3.
Based on this observation, we propose a convoy index, which groups incoming clusters into a

set of distinctive convoys where each cluster is only assigned to one convoy. For each convoy, we

compute and capture the number of consecutive appearances of each object in a cluster that belongs

to the convoy. Each cluster is indexed with the embedded information about the corresponding

convoy identifier and object timespans that appear in the convoy. The index convoys are generated

w.r.t. the parameter τmin . Thus, the convoys, generated for indexing purposes, contain at least τmin
objects. The timespan value for each object in a convoy indicates the consecutive time duration

the object is observed in the convoy clusters. Splitting convoys at the diverging and converging

timestamps enables us to assign a cluster to only one convoy, which leads to less information

storage.

The convoy index enables a retrieval of clusters that satisfy both the time interval and number of

common objects requirements similar to the intersection index. A sequence of retrieved clusters

c3 t2 4
c1:{4}{o1:2,o2:2,o3,:2,o4:2}

c2:{3}{o6,:2,o8:1,o9:1}

c4

Cluster Timestamp

t3

# of objects

5

Previous cluster information

c3:{5}{o1,o2,o3,o4,o6}

g1

g1

Convoy

Fig. 6. Convoy Index (τmin = 3)
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with the same convoy identifier is merged without performing actual intersections between clusters

based on the objects’ timespan information. The candidate convoy length is determined by the

pre-computed timespan of objects w.r.t. the τ threshold, as shown in Figure 6.

Example 8. Let us generate convoys to be indexed that contain at least τmin = 3 common objects

during their timespans using the clusters shown in Figure 3. Timestamp t1 is a splitting point as
clusters c1 and c2 converge into a cluster c3. However, there is no previous timestamp for timestamp

t1 in the example. Thus, clusters c1 and c2 are embedded into the index entry of cluster c3 w.r.t.
τmin , same as the intersection index. Although cluster c3 diverges into two clusters c4 and c5 at
the next timestamp, we only generate one convoy that contains at least τmin = 3 objects, that’s

д1[o1,o2,o3,o4,o6] = {c3, c4}. This is because clusters c3 and c5 only share two common objects,

which is smaller than τmin = 3.

Once a convoy could not be extended by any incoming clusters, we compute the objects’ consec-

utive appearances in the corresponding cluster and embed that information in the index as shown

in Figure 6. We store objects in a cluster without timespan information if the cluster does not share

enough common objects with any subsequent clusters w.r.t. the threshold τmin .

Example 9. Assume we search for convoys w.r.t. τ = 4 and k = 3. At timestamp t2, we find a

candidate convoy д = {c1, c3} with objects o1,o2,o3, and o4. At timestamp t3, we check the timespan

value for each object and find out that the candidate convoy can be extended by one more cluster

(i.e., c4) that has the same convoy identifier in the index. We then add c4 to the current candidate

convoy д = {c1, c3, c4} satisfying the given thresholds without actually performing the intersection

between convoy д and cluster c4.

4.4.1 Similarity Computation. In case a threshold-based similarity metric is used for recurrent

convoy query, we can accelerate the process of checking the similarity between two convoys by

using the minimum bounding rectangles (MBRs) of the convoys. If the distance between the MBRs

of two convoys that are being compared is greater than the given threshold δ , we can safely skip

the similarity computation between the corresponding clusters in the convoys. No cluster in one

convoy is within the distance threshold from any cluster in another convoy.

4.4.2 Index update. The convoy index is updated continuously with convoys generated by incoming

clusters w.r.t. the threshold τmin for indexing purpose. Here, the threshold τmin represents the

minimum number of objects that can be given as a query parameter. These convoys, namely index

convoys, are different from the convoys generated w.r.t. the query parameters. At every timestamp,

a set of index convoys stored in the main memory is checked against the newly generated clusters

at the current timestamp w.r.t. τmin . In order to assign a cluster to only one index convoy, we check

the following conditions: (i) If a cluster ci extends more than one convoy, we do not extend the

corresponding index convoys by cluster ci and generate a new index convoy with that cluster ci ; (ii)
If an index convoy is extended by multiple clustersC ′, we do not extend that convoy by any cluster

in C ′ as well and generate new index convoys with the corresponding clusters in C ′. The index
convoys that are not extended by any cluster at the current timestamp are inserted to the convoy

index with the necessary timespan information for each object inside any cluster of the convoys.

The extended or newly generated convoys at the current timestamp are stored in the main memory

to check for possible extensions using the incoming clusters at the next timestamp. That means we

run two different convoy generation algorithms, with one being query convoy generation w.r.t. the

given threshold and the other for indexing purpose w.r.t. τmin . The convoy index is only updated

when we find an index convoy that is not extended at the current timestamp.
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4.5 Algorithm
In the following, we present the RCQ processing algorithm over the streaming trajectory data using

the convoy index. The query processing (i.e. Algorithm 3) includes two stages: (i) Existing convoy

candidates that satisfy the prominence threshold are checked against the clusters generated at the

current timestamp. Convoys that are extended and satisfy the timespan threshold (i.e. Algorithm 1)

are passed to the second stage. (ii) Each result convoy received from the first stage is checked for its

historic occurrences w.r.t. given time interval and thresholds using the convoy index (i.e. Algorithm

2). Thus, the historic convoy generation is executed only if we find convoys that satisfy τ and k in

the sliding window.

Algorithm 1: Online convoy generation using a lookup table

Input: set of convoys Gt−1
at timestamp t − 1, clusters Ct

identified at timestamp t , and prominence

threshold τ
Output: set of convoys Gt

extended at time t
1.1 Gt ← ∅, Cext ← ∅

1.2 lookupTable ← mapObjectsToCluster(Ct
)

1.3 foreach д ∈ Gt−1 do
1.4 clusterMap ← ∅

1.5 O ← дetConvoyObjects(д)

1.6 foreach object o ∈ O do
1.7 c ← getObjectCluster(lookupTable)

1.8 clusterMap.push(c, clusterMap.дet(c) + 1)

1.9 foreach pair (c, count) ∈ clusterMap do
1.10 if count ≥ τ then
1.11 Update objects of д with O ∩Ct .дet(c)

1.12 Add c to Cext
1.13 Push pair (д, c) to Gt

1.14 Add Ct \Cext to G
t
as new convoys

1.15 return Gt

Algorithm 1 outlines the process of the convoy generation in a sliding window using the lookup

table w.r.t. the given thresholds of τ and k .Cext is declared to store the clusters fromCt
that extend

the candidate convoys in Gt−1
(Line 1.1). First, a lookup table is created to store objects as a key

and the corresponding cluster identifier as a value using clusters obtained at timestamp t (Line 1.2).
Objects in each candidate convoy are grouped by the cluster identifiers obtained at timestamp t
and stored in clusterMap. Note that, there is no cluster identifier for the object that is not recorded

at the current timestamp t (Lines 1.3 - 1.8). clusterMap for each candidate convoy contains the

cluster information of its objects at the timestamp t . As the convoy can be diverged into multiple

convoys, we exam each cluster c in the clusterMap that satisfies the threshold τ , and add a pair of

the candidate convoy д and the cluster c to Gt
(Lines 1.9 - 1.13). Clusters that do not extend any

candidate convoy are added as new convoys in the candidate set (Line 1.14).

Algorithm 2 presents the pseudo-code to generate historic convoys w.r.t. the given thresholds

within the time interval [tend − ρ + 1, tend ], using the convoy index. Lookup table skip in Line 2.1

keeps track of convoy timespans that are currently under evaluation. The key in the lookup table

indicates the convoy identifier while the value denotes the number of timestamps that convoy lasts.

We retrieve sets of clusters ordered by the timestamp within the given time interval in Line 2.2. Each

cluster set for a specific timestamp retrieved from the index contains a set of preceding clusters,
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Algorithm 2: Historic convoy generation using the convoy index

Input: R-tree index tree , prominence threshold τ , timespan threshold k , periodicity threshold ρ, time

interval offset tend
Output: set of historic convoys S

2.1 skip ← ∅, G ← ∅

2.2 ∪(Ct , t) ← retrieveClusters(tree, ρ, tend , τ )

2.3 foreach Ct ← cluster set are accessed in ascending order of timestamp t do
2.4 newSkip ← ∅, Gt ← ∅

2.5 foreach ct ∈ Ct do
2.6 foreach convoy д ∈ G that intersects ct do
2.7 if skip contains д then
2.8 push ct to д, push д to Gt

2.9 newSkip.put(д, skip.дet(д) − 1)

2.10 if ct extends nothing then
2.11 foreach previous cluster c of ct do
2.12 дnew ← generate a convoy using clusters c and ct if τ

2.13 push дnew to Gt

2.14 count ← derive the value using the embedding of ct

2.15 newSkip.put(дnew , count)

2.16 S ← S ∪ {д ∈ (G \Gt )|timespan(д) ≥ k}

2.17 G ← Gt
, skip ← newSkip

2.18 return S

objects in common, and timespans of objects. We then generate the convoys from the clusters

by evaluating the clusters according to ascending order of their timestamp t (Line 2.3). Assume

we are currently evaluating cluster set Ct
corresponding to timestamp t . For each cluster ct ∈ Ct

,

we evaluate whether ct could extend any candidate convoy д (preserved byG) under evaluation
(Lines 2.5 - 2.6). For each retrieved convoy д that intersects ct , if it is indexed by the lookup table

skip, we know the common objects of д and their timespans with the help of convoy index and

hence we can skip the detailed intersection operation between ct and д. Without performing the

intersection, we can expand the convoy д by ct and preserve the expanded convoy д as one of

the candidate convoys for the next iteration at t + 1 in Gt
(Lines 2.7 - 2.8). In addition, we insert

expanded convoy д as a new entry in newSkip, the lookup table to be used in the next iteration

at timestamp t + 1 (Line 2.9). Note, the count value of д is decreased by one, to reflect the fact

that д has been expanded by a cluster ct corresponding to timestamp t and hence the remaining

timespan of un-retrieved clusters is reduced. If cluster ct does not expand any of the candidate

convoys, we add that cluster with its previous clusters as new candidate convoys if they satisfy the

threshold τ (Lines 2.10-2.15). Note that count value denotes the number of timestamps where at

least τ objects of cluster ct are observed in same cluster during subsequent timestamps (Lines 2.14).

Those convoys not extended at timestamp t are added to the result set if satisfying k (Line 2.16),

while convoys extended/generated by any cluster at timestamp t are passed to the next iteration at

timestamp t + 1 (Line 2.17).
Algorithm 3 outlines the full process of the recurrent convoy query as the sliding window shifts at

a time and a set of objects’ location updates arrives. Location updates of the objects at the current

timestamp t are clustered by a chosen clustering algorithm (Line 3.1). The generated clusters are

filtered by the threshold τ . Existing candidate convoys Gt−1
that end at the timestamp t − 1 are

checked against the filtered cluster set Ct
for a possible extension using the idea proposed in
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Algorithm 3: Recurrent convoy query in a sliding window

Input: sliding windowWI of length I , R-tree index tree , convoys Gt−1
at timestamp t − 1, objects Ot

recorded at timestamp t , prominence threshold τ , timespan threshold k , periodicity threshold ρ
Output: set of recurrent convoys P

3.1 Ct ← дetClusters(Ot , τ )

3.2 Gt ← дenerateConvoys(Gt−1,Ct , τ ) using Algorithm 1

3.3 G ← f ilterConvoys(Gt ,k)

3.4 tend ← t − k , P ← ∅

3.5 while G is not empty do
3.6 Gr emove ← ∅

3.7 Gpast ← дetHistoricConvoys(tree, ρ, tend , τ ,k) using Algorithm 2

3.8 foreach д ∈ G do
3.9 boolean found← f alse

3.10 foreach дpast ∈ Gpast do
3.11 if isSimilar (д,дpast , τ ,k) then
3.12 push (д,дpast ) to P , f ound ← true

3.13 if found = f alse then
3.14 push д to Gr emove
3.15 G ← G \Gr emove
3.16 tend ← tend − ρ

3.17 return P

Section 4.2 (Line 3.2). Candidate convoys that satisfy the threshold k are added to a result convoy

setG (Line 3.3). The variable tend in Line 3.4 defines the upper bound of the time interval to search

for historic convoys. Thereafter, we evaluate whether any convoy in the result convoy set G is

actually a recurrent convoy satisfying the requirements specified (Lines 3.6 - 3.16). To be more

specific, it initializesGr emove , a temporal set that stores the result convoys that no longer require

any searching for reoccurrences in the next time interval (Line 3.6). It next retrieves historic convoys

within the time interval [tend − ρ + 1, tend ] using Algorithm 2 over the convoy index (Line 3.7). It

then evaluates the similarity between historic convoys and the result convoys in G (Lines 3.8-3.11)

and adds historic occurences of each result convoy to the corresponding list (Line 3.12). If a result

convoy is not extended by any historic convoys within the time interval of search, it is added to

Gr emove so it will not be evaluated in the next iteration (Lines 3.13-3.14). Thereafter, the result

convoy set G is updated by removing those in Gr emove , and the next time interval for historic

convoy search is also updated by shifting another ρ timestamps (Lines 3.15-3.16). The process

repeats until the result convoy set G becomes empty. Finally, P is returned to terminate the query

(Line 3.17).

5 EXPERIMENTS
In this section, we compare our proposed algorithm with the baseline approach (presented in

Section 4.1) through an experimental evaluation using real datasets. Further, we conduct a case

study to show the effectiveness of our approach.

5.1 Experimental Settings
All algorithms are implemented in JAVA. Experiments were run on a 24 core Intel Xeon E5-2630

2.3 GHz using 256GB RAM, and 1TB 6G SAS 7.2K rpm SFF (2.5-inch) SC Midline disk drives

running Red Hat Enterprise Linux Server release 7.5. We test the following methods to answer
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the recurrent convoy queries on real-life datasets: (1) CMC: The baseline RCQ algorithm consists

two Coherent Moving Cluster [9] algorithms, where CMC-S and CMC-H are used to generate

convoys in a sliding window and historic convoys on top of an R-tree index, respectively; (2) CLT:
Convoy generation algorithm over a sliding window using a in-memory lookup table; (3) RCI:
RCQ algorithm based on the intersection index; (4) RCC: RCQ algorithm based on the convoy index;

and (5) RCC+: RCQ algorithm based on the convoy index with the optimized convoy similarity

computation proposed in Section 4.4.1. Note that RCI, RCC, and RCC++ algorithms use CLT to

discover convoys in a sliding window.

Datasets. All experiments were conducted using two real datasets, (i) T-drive dataset [30] and

(ii) Beijing dataset. The T-drive dataset contains the raw trajectories of 10,357 taxis in Beijing,

China, collected for a week in Feb 2008. The Beijing dataset contains 28,162 raw trajectories in

Beijing, collected for a month in March 2009. Each trajectory in the dataset is a sequence of GPS

locations (latitude and longitude) and the corresponding timestamps. We obtained clusters by

running DBSCAN with the parameter settings listed in Table 2.

T-drive Beijing
Cluster densityminPts 4 4

Cluster radius ϵ 100m 100m

# of cluster points 2,048,088 25,882,012

# of clusters 455,891 2,788,174

τmin 4 5

Hausdorff distance threshold (δHD ) 100m 100m

Table 2. Dataset statistics

Query Generation. To ensure that at least one recurrent convoy is obtained as a result of the query,
we generate all recurrent convoys that satisfy the maximum values of τ and k and the minimum

value of ρ defined in Table 3. As we find multiple convoys that satisfy the query parameters, we

randomly choose 100 of such queries for each dataset.

Evaluation and Parameterization.We compared the performance of the baseline and our pro-

posed approaches by varying the query input parameters as shown in Table 3, where the values in

bold represent the default values. The fanout of the R-tree index is set to 100. For all experiments, a

single parameter is varied while other parameters are set to their default values.

Parameter Description Dataset Values

τ # of objects

T-drive 4, 5, 6, 7
Beijing 6, 7, 8, 9

k Timespan (sec)

T-drive 2 4, 6, 8
Beijing 6, 7, 8, 9

ρ Periodicity (hr) Both 1, 2, 4, 12, 24
Table 3. Experimental parameters

5.2 Efficiency Study
In this section, we conducted an experiment to evaluate the efficiency of our proposed algorithms

against the baseline. We study the impact of each parameter by running 100 queries and report the

average query execution time and the average number of intersections between convoy candidates

and clusters evaluated, denoted as texe and nint respectively. The performance for multiple runs is

shown in boxplots, where the bounding box shows the first and third quartiles; the whiskers show
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Fig. 7. Effect of Varying Parameters on the T-drive Dataset

the range, up to 1.5 times of the interquartile range; and the outliers beyond this value are shown

as separate points. The average values are shown as connecting lines.

Effect of τ . The effect of the parameter τ that controls the number of objects in a convoy on the

query performance is presented in Figure 7a and Figure 8a, for the T-drive dataset and the Beijing

dataset respectively. As we search for larger convoys by increasing the threshold τ , the overall
query execution time decreases due to the distribution of objects in the clusters. Both RCI and RCC

perform up to three times faster than the baseline. The performance gap between RCI and RCC

shows a small margin, as shown in Figures 7d and 8d. RCC computes up to one order of magnitude

fewer intersections than RCI. However, there is no substantial difference in the query performance,

which is likely due to the distribution of the convoy sizes and lengths. RCC+ computes the similarity

between convoys faster than other algorithms, resulting in shorter query execution time. However,

they share the same number of intersections, so we use one line when reporting the number of

intersections for RCC and RCC+.

Effect of k . The effect of the parameter k that controls the duration of the convoys on the query

performance is presented in Figures 7b and 8b. As we increase the threshold k for the convoy, the

number of historic convoys that satisfy the threshold declines, resulting in a smaller number of

clusters to be retrieved from the convoy index. RCI and RCC perform up to five times faster than the

baseline when varying timespan thresholds. The margin between RCI and RCC increases with the

increase of k , leading to fewer intersections as shown in Figures 7e and 8e. Longer convoys have a

higher chance of using information in the convoy index instead of performing intersections. This

confirms that the convoy index works better for searching convoys that last for longer timespans.
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Fig. 8. Effect of Varying Parameters on the Beijing Dataset

Effect of ρ. The effect of the parameter ρ that controls the recurrence of the convoys on the

query performance is presented in Figures 7c and 8c. As we increase the threshold ρ, the number

of clusters that fall in the time interval of search increases, leading to longer time to generate

convoys based on retrieved clusters. The number of historical convoys that satisfy the thresholds

also increases, leading to longer query execution time. RCC performs up to four times faster than

the baseline for varying settings of ρ threshold. The increase in the number of historical clusters

leads to more intersections to be performed for historic convoy generation, as shown in Figures 7f

and 8f.

 0

 10

 20

 30

 40

 50

6 7 8 9

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

τ

CMC−S
CLT

Fig. 9. Convoy generation in a sliding window on the Beijing Dataset

Online convoy generation. We report the query performance of CMC and CLT aglorithms for

online convoy generations using the Beijing dataset in Figure 9. The Beijing dataset has more

clusters per timestamp than the T-drive dataset and the clusters are dense in terms of the number

of points inside. Thus, it clearly shows the efficiency of our proposed algorithms over the baseline.
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Fig. 10. Query Performance Breakdown on the T-drive Dataset

Performance breakdown. We further present the performance breakdown of algorithms for

varying τ and ρ on the T-drive dataset in Figures 10a and 10b. Each group of bars reports the

performance of one algorithm (i.e., CMC, RCI, and RCC+) when answering recurrent convoy queries.

Each bar is split into three parts, namely IO, ALG, and SIM that represents I/O time to retrieve the

clusters from the index, the execution time of the recurrent convoy search algorithm, and similarity

computation between historic and online convoys in a sliding window, respectively. As soon as

we find convoys that satisfy the given query threshold, we search for historic occurrences of each

convoy within ρ time interval. This historic convoy search occupies most of the query execution

time compared to the cluster and convoy generations of objects at the current timestamp. As shown

in Figures 10a, our approach uses less time in all stages of the algorithm (i.e., retrieve clusters from

the index, generate historic convoys, and compute similarity between convoys).

Index. The sizes of the indexes built on top of R-tree structure are reported in Table 4. The baseline

index uses the timestamp of the cluster and the number of objects in a cluster as two dimensions of

the MBR. Objects in a cluster are embedded as data into the node. Thus, the index size is directly

proportional to the number of clusters to be indexed.

Dataset Baseline index Intersection index Convoy index
T-drive 55 41 42

Beijing 339 342 339

Table 4. Index size of our method (unit: MB)

The intersection index contains clusters that have at least τmin number of common objects with

preceding clusters. Thus, the objects not observed in the previous clusters are not stored in the

node. However, we embed extra information about the preceding clusters that share common

objects with the current cluster. The size of the intersection index is smaller than the baseline index

(as shown in Table 4) for T-drive dataset. This could be because there are some single clusters,

which cannot form convoys. In contrast, the size of the intersection index is larger than that of the

baseline index for the Beijing dataset, which indicates that the clusters in this dataset are highly

inter-related w.r.t. the common objects.

The convoy index contains clusters with embedded information about the timespan of each

object in the corresponding convoy. It can be seen from Table 4 that the sizes of intersection index

and convoy index are almost similar for the T-drive dataset. This implies that most of the convoys

have a length of two timestamps. In contrast, intersection index accounts for 342MB in the Beijing

dataset; whereas convoy index accounts for 339MB. Longer convoys require more information about

timespans of the objects in the convoys, which accelerates the intersection in the query processing.

Next, we study the convoy index update time for convoys of varying timespans of occurrence.

Figure 11a shows the length distribution of indexed convoys’ timespans in the T-drive dataset. A
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Fig. 11. Convoy index update performance on the T-drive dataset

majority of convoys generated for indexing purpose last less than five timestamps as shown in

Figure 11a. One of the reasons to find index convoys that last shorter timespans is the common

occurrence of convergence and divergence between clusters at consecutive timestamps. Convoys

occuring for longer timespans take more time to be inserted in the convoy index as the number of

clusters grows. Nonetheless, the update time is still much faster as compared to the execution of

the recurrent convoy query.

5.3 Effectiveness study
We choose the T-drive dataset to study the effectiveness of our method for mining recurrent

convoys. DBSCAN [5] with parameter settings shown in Table 2 is applied to generate clusters at

each timestamp. The generated clusters have their sizes varied from 4 to 18 objects. However, almost

70% of the clusters contain only 4 objects. We generate convoys based on different parameters

settings listed in Table 3 over the T-drive dataset. "Total convoys" row in Table 5 shows the number

of convoys mined for each pair of (τ ,k). For example, we find 109,818 convoys that contain at least

τ = 4 common objects and last at least k = 2 timestamps. In contrast, the number of convoys for

the thresholds τ = 7 and k = 4 is the smallest.

Parameters Metric τ=4 τ=5 τ=6 τ=7 τ=4
k=4 k=2 k=6 k=8

Total convoys 18,216 5,703 2,095 778 109,818 5,181 2,941

Recurrent convoys

HD

2,265 869 365 138 4,205 926 589

Historic occurrences 14,185 3,992 1,253 343 103,773 3,031 1,390

Unique convoys 1,766 842 477 297 1,840 1,224 962

Recurrent convoys

τ -HD
1,772 612 272 130 3,694 818 543

Historic occurrences 15,202 4,579 1,583 501 104,481 3,520 1,783

Unique convoys 1,242 512 240 147 1,643 843 615

Table 5. Convoys in the T-drive dataset on varying parameter settings

Cluster similarity metric. As mentioned in Section 3, the similarity between convoys depends

on the similarity between matching clusters. Thus, a proper choice of the metric to evaluate the

similarity between clusters is crucial for mining recurrent convoys of interest. However, the choice

of metric highly depends on the application scenario, which is out of the scope of this paper. In this

paper, we adopt the commonly used similarity metrics that could be applied to point sets: Hausdorff

distance (HD) [21]. HD measures the distance of two clusters by computing the max-min distance of

containing points. Clusters are considered similar if the computed distance is within the threshold

δ . Further, we use a tailored HD measure, namely τ -HD, that considers the query threshold τ to

compute the cluster similarity. The original HD considers all points in two clusters while τ -HD
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computes the similarity between τ points from two clusters. The clusters are considered similar

if τ points from each cluster are within δ Euclidean distance. Both δHD and δτ−HD are set to 100

meters.

Recurrent convoys. Next, we search for recurrent convoys over the mined convoys from T-drive

dataset without specifying the recurrence threshold ρ. Table 5 shows the number of recurrent

convoys and the number of unique convoys w.r.t. two cluster similarity metrics and different convoy

thresholds. Here, historic occurrences represent the set of convoys that are similar to recurrent

convoys w.r.t. the thresholds τ and k . In contrast, a unique convoy does not have any previous

occurrence w.r.t. the thresholds. As can be seen from the table, we find a small number of unique

or recurrent convoys. The majority of the convoys in the dataset are historic occurrences of the

recurrent convoys. For example, we find 5,181 total convoys w.r.t. the thresholds τ = 4 and k = 6.

However, 58% and 67% of the mined convoys are historic occurrences of other convoys for HD and

τ -HD, respectively. As we increase the prominence and timespan thresholds, the total number of

convoys also decreases by eliminating convoys with less objects or shorter timespans. We observe

that we find more similar clusters by using the tailored τ -HD than HD. The reason is that HD

considers all points to compute the similarity whereas the tailored τ -HD only considers τ similar

points from each cluster.

Case study. The effectiveness of mined recurrent convoys can be demonstrated from the sample

query result visualized using Google Maps API
1
. We run a recurrent convoy query with the following

parameters: τ = 6,k = 25, ρ = 24hr and a sliding window of 30-minute length. Two recurrent

convoys that satisfy the thresholds τ = 6 and k = 25 are found at timestamp 04 Feb 2008 18:08:55,

1
http://maps.googleapis.com

(a) Two query results (b) Convoy 2

(c) 1st historic occurrence of
Convoy 2

(d) 2nd historic occurrence of
Convoy 2

Fig. 12. Recurrent convoy query result in a sliding window (04 Feb 2008 18:00:00-18:30:00)
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as shown in Figure 12a. We then search for historic occurrences of those two convoys w.r.t. the

recurrence threshold ρ.
Convoy #2, which occurs at the timestamp 04 Feb 2008 18:08:30 lasting 25 seconds as shown in

Figure 12b, has two historic occurrences. The first one started at 03 Feb 2008 18:09:15 lasting 35

seconds (as shown in Figure 12c), and the second one started at 02 Feb 2008 19:48:55 lasting 50

seconds (as shown in Figure 12d). Convoy #2 and its previous occurrences are observed in Sanlitun

area that is located in Chaoyang District, Beijing as shown in Figure 12. This area is a popular

destination for locals and foreigners containing many bars, restaurants and shopping malls
2
. Thus,

Convoy #2 is likely to be a convoy of taxis picking up or dropping off passengers along the street

based on the location and time interval of occurrences. Since we use the Hausdorff distance to

compute the similarity between convoys, it can be seen that the shapes of convoys are similar w.r.t.

the given similarity threshold.

In case we do not find any result for certain values of thresholds, it is possible to further search for

convoys by changing the threshold (incrementally). That is why we need efficient index structures

that can facilitate the mining effort to query recurrent convoys, as we expect the users to frequently

tune the parameters in order to explore convoys of interest.

6 CONCLUSION
In this paper, we studied the problem of finding a pattern of co-moving objects that repeats itself

within given time interval. We formally defined the problem of finding recurrent convoy query

in a sliding window and proposed algorithms and data structures that improve the efficiency in

the mining process. Experimental study on real-life dataset shows the efficiency and effectiveness

of our approach. Considering the correlations between convoys enables us to distinguish unique

patterns from recurring patterns. In the future, we plan to extend this work by giving safe ranges

of values (τ ,k, ρ) where the current query result does not change. This facilitates the mining effort

by guiding the user to the next value of interest to find different results.
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