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Abstract

Using detailed information of establishments owned by U.S. public firms, we construct

a novel measure of geographic linkage between firms. We show that the returns

of geography-linked firms have strong predictive power for focal firm returns and

fundamentals. A long-short strategy based on this effect yields monthly value-weighted

alpha of approximately 60 basis points. This effect is distinct from other cross-firm

return predictability and is not easily attributable to risk-based explanations. It

is more pronounced for focal firms that receive lower investor attention, are more

costly to arbitrage and during high sentiment periods. In addition, we find sell-

side analysts similarly underreact, as their forecast revisions of geography-linked

firms predict their future revisions of focal firms. Our results are broadly consistent

with sluggish price adjustment to nuanced news affecting firms with geographically-

overlapped establishmens.
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1 Introduction

Economists have long recognized that location plays an important role in shaping economic

growth through generating economies of scale in production process and facilitating

knowledge spillover among neighboring firms and workers (Marshall (1920)). A growing

literature shows that geographic locations are also important for understanding firms’

fundamental performance (Dougal, Parsons, and Titman (2015); Tuzel and Zhang (2017)),

the speed of information transmission (Coval and Moskowitz (2001); Malloy (2005); Parsons,

Sabbatucci, and Titman (2018)), the level of discount rate (Garcia and Norli (2012)), stock

liquidity (Loughran and Schultz (2005)) and even financial misconduct (Parsons, Sulaeman,

and Titman (2018)). However, existing studies mostly identify a firm’s geographic location as

its headquarter, while ignoring the fact that for many firms, the more economically relevant

geographic unit should be its establishment location where sales are generated and goods

are produced (Bernile, Kumar, and Sulaeman (2015)).

In this study, we examine the implications of firms’ geographic linkage for the price

discovery and information diffusion process. In particular, we hypothesize that a firm’s

fundamental and stock performance should comove with its geography-linked peer firms,

which we identify based on firms’ disaggregated establishment location information. This

interdependence among firms that are geographically overlapped could arise for many

reasons. For example, firms with establishments in the same areas are exposed to common

local economic shocks, which will then affect demand for firms’ products and input prices

(such as labor costs and land prices). In addition, there are occasional natural disasters

occuring in certain areas that may disrupt firms’ production process (e.g, Hurricane Harvey

in Texas and Louisiana in 2017). Firms also benefit from the local agglomeration effect due to

knowledge diffusion between a city’s workers (Moretti (2004)), technology spillover between

neiboring firms (Jaffe, Trajtenberg, and Henderson (1993)), and consumption externalities

among local residents (Glaeser, Kolko, and Saiz (2001)). These common shocks and spillover
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effects can naturally lead to fundamental and return comovement between firms that have

geographically overlapped establishments.

Our empirical evidence verifies the conjecture that geographic links lead to comovement

in firms’ fundamentals, even for firms that operate in different industries and headquartered

in different regions. More strikingly, we document significant return predictability across

geography-linked firms. Specifically, we document a novel empirical relation wherein the

stock returns of focal firms exhibit a predictable lag with respect to the recent returns

of a portfolio of its geographic peers (“geo-peers”). Focal firms whose geo-peers earn

higher (lower) returns will themselves earn higher (lower) returns in subsequent months.

A trading strategy using a proxy based on lagged geo-peers’ returns yields annual Carhart

(1997) four-factor alpha of 6-7%. These results are robust to an extensive list of control

variables and cannot be easily explained by risk-based explanations. Rather, our evidence

appears most consistent with sluggish price adjustment to nuanced news affecting firms with

geographically-overlapped establishments.

To study the comovement and lead-lag effect among geography-linked firms, we obtain

establishment-level data from the NETS database. This database provides addresses, as

well information on sales and employment, for each U.S. establishment owned by a public

company over the period from 1989 to 2012. With this data, we construct a pairwise

geographic linkage between firms using their establishment location information. Specifically,

geographic linkage GEOijt is defined as the uncentered correlation of the distribution of sales

between two firms i and j across all counties in US, GEOijt =
Git∗G

′
jt√

(Git∗G
′
it)∗(Gjt∗G

′
jt)

, where

Git = (Git1, Git2, ..., Git3022) is a vector of firm i’s proportional share of sales across 3,022

U.S. counties over year t.1 With this measure, we first verify a basic premise underlying

our hypothesis, that geographic linkage constructed using establishment location capture

fundamental relationship between firms. We find that firm fundamentals (sales and profit

1The geographic linkage measure is constructed in the same way as the product similarity used in Hoberg
and Phillips (2016), text similarity used in Cohen, Malloy, and Nguyen (2020), and technological proximity
measure used in Jaffe et al. (1986) and Lee, Sun, Wang, and Zhang (2019), among others.
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growth) are strongly correlated with current fundamentals of geography-linked peer firms,

even after controlling for the corresponding correlations using other linkage proxies including

industry links, same-headquarter links, and shared analyst links.

Two companies can have geographically overlapped establishments, yet are not operating

in the same industry and not headquartered in the same region. Consider the case of

Starbucks Corporation which is a chain of coffeehouses headquartered in Seattle, Washington,

and Whole Foods Market Inc., which is a supermarket chain headquartered in Austin, Texas.

Both firms have stores across major cities in US. From 2010 to 2012, the average geographic

linkage for these two firms is high: GEOijt =
Git∗G

′
jt√

(Git∗G
′
it)∗(Gjt∗G

′
jt)

= 0.68. Yet these firms

are not in the same industry (Standard Industrial Classification (SIC) code: 5812 vs. 5411)

nor are they headquartered in the same region. Furthermore, they are not product market

peers in the sense of Hoberg and Phillips (2016), as the text-based product similarity score

for these firms is only 0.015.2 However, these two firms generally target the same type of

consumers (white-collars who buy organic food products and enjoy drinking premium coffee),

hence it is very likely that sales and profits of the two firms comove with each other as both

are exposed to the same local economic conditions. This example illustrates the potential

importance of geographic linkage, as distinct from other economic linkages explored by prior

studies. While it is natural for firms in the same industry to cluster in the same area, close

geographic proximity can often transcend industrial boundaries.

Next, we implement a portfolio approach to study the return predictability among

geography-linked firms. Specifically, for each focal firm i at month t, we calculate the

weighted return of a portfolio of firms that share similar geographic locations as the focal

firm, GEORETit =
∑
j 6=i

GEOijt ∗ RETjt/
∑
j 6=i

GEOijt, where RETjt is the return of firm j at

month t and GEOijt is the geographic linkage measure we construct using information up to

2See Hoberg and Phillips (2016) for how product similarity scores are measured.
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month t.3 We then sort focal firms into deciles using returns earned by a portfolio of their

geo-peers in the previous month. Our results show that the geo-peers’ lagged returns can

significantly predict focal firm returns. A portfolio that long the focal firms whose geo-peers

performed best in the prior month and short the focal firms whose geo-peers performed worst

in the prior month, yields a value-weighted Carhart (1997) four-factor alpha of 53 basis points

per month (t=2.62). We further confirm these return prediction results are robust to using

various factor models to adjust risk exposure. In addition, the return predictability persists

in Fama-MacBeth regressions when we include standard controls such as firm size, book-to-

market ratio, gross profitability, asset growth, short-term reversal, and medium-term price

momentum.

Prior studies have documented several lead-lag return effects among economically-related

firms, including firms operating in the same industries and product markets (Moskowitz

and Grinblatt (1999);Hoberg and Phillips (2018)), firms headquartered in the same regions

(Parsons, Sabbatucci, and Titman (2018)), firms that are linked along the supply chain

(Cohen and Frazzini (2008); Menzly and Ozbas (2010)), single- and multi-segment firms

operating in the same industries (Cohen and Lou (2012)), and firms with similar technologies

(Lee, Sun, Wang, and Zhang (2019)). We conduct several tests to ensure that our novel

return predictability among geography-linked firms is not a rediscovery of these existing

interfirm linkages. First, given the well-known geographic agglomeration of firms in a single

industry (Ellison and Glaeser (1997)), it is likely that firms will have establishments largely

overlapping with their industry peers geographically. Similarly, firms whose headquarters

located in the same region will likely have geographically overlapped business operations. To

mitigate such concerns, we control for lagged industry return and lagged return of a portfolio

of firms headquartered in the same state as the focal firm in Fama-MacBeth regressions. In

3In our portfolio test, in order to ensure our results are distinct from the industry momentum effect
(Moskowitz and Grinblatt (1999)) and same-headquarter lead-lag effect (Parsons, Sabbatucci, and Titman
(2018)), we exclude all firms from the same industry (based on Fama-French 48 industry classification) and
headquartered in the same state as the focal firm when cosntructing GEORETit.

4
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addition, we control for the focal firm’s lagged tech-peer returns (Lee, Sun, Wang, and

Zhang (2019)), focal firm’s lagged pseudo-conglomerate returns (Cohen and Lou (2012)),

focal firm’s lagged supplier and customer industry returns (Menzly and Ozbas (2010)), and

focal firm’s product market peers’ returns (Hoberg and Phillips (2018)). Lastly, a recent

paper by Ali and Hirshleifer (2020) show that all the existing cross-firm return predictability

effects are a unified phenomenon captured by shared analyst coverage, that is, firms covered

by the same set of analysts. We thus add the lagged returns of stocks that are connected

to the focal stock through common analysts. The lead-lag return relationship among geo-

peers is robust to the presence of all these controls. Taken together, these tests show that

our measure of geographic linkage is distinct from existing interfirm links including industry

links, product market links, headquarter links, customer-supplier links, techonology links,

standalone-conglomerate firm links, and shared analysts links.

After establishing the robustness of lead-lag return effect among geography-linked firms,

we conduct tests to examine the economic mechanisms underlying the return predictability

results. Our preferred explanation is that investors have limited attention and are slow to

incorporate value-relevant information contained in focal firm’s geographic peers. If this

is the case, we should observe stronger return predictability among firms that are more

likely to be overlooked by investors. Consistent with this prediction, we find the return

predictability is more pronounced for focal firms that are smaller and have lower institutional

ownership. Also consistent with the idea that common analyst coverage expedite information

flow between economically-related firms (Parsons, Sabbatucci, and Titman (2018); Ali and

Hirshleifer (2020)), we find weaker return predictability when the focal firm share a large

set of common analysts with its geo-peers. Second, the abnormal returns generated by our

trading strategy raise the question of why the profits are not quickly arbitraged away by smart

investors. Consistent with the idea that there are limits to arbitrage in real-world financial

markets, we find stronger return predictability among firms that are more costly to trade,

such as stocks with higher bid-ask spread, lower liquidity, and higher idiosyncratic volatility.

5
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In addition, using the Baker and Wurgler (2007) sentiment index, we find stronger return

predictability during high-sentiment periods. These cross-sectional and time-series tests help

confirm that we are truly capturing a mechanism of delayed updating of focal firm prices to

information important to their fundamental values.

Broadly speaking, there are two possible channels that can explain the comovement

and lead-lag relation among geographically-linked firms. First, firms with geographically-

overlapped establishments are naturally exposed to the same regional economic conditions

(the ”common exposure” channel). A second channel is that shocks originated from

geographic peers spillover to focal firm due to complementarity in investment opportunities

(the ”spillover” channel). Using natural disasters as localized shocks, we provide evidence

that the lead-lag relation we document (partially) results from shock spillover among

geographic peers in addition to their common exposure to local economy. This is a novel

channel in the context of cross-firm return predictability literature.

Although the return predictability effects we document is robust to adjustment using

various asset pricing models, one may still be concerned that other unobserved risks could

drive our results. We conduct several tests to further distinguish between mispricing and

risk explanation. First, we examine the stock price reaction around subsequent earnings

announcements. This test has been widely used in prior studies to separate mispricing from

risk explanations (e.g., Bernard and Thomas (1989); La Porta, Lakonishok, Shleifer, and

Vishny (1997); Engelberg, McLean, and Pontiff (2018)). The idea is intuitive: earnings

announcements help correct investor expectation errors about future cash flows; As a result,

if abnormal return is associated with investor biased beliefs about the firms’ fundamentals,

a disproportionate fraction of its returns should be realized around subsequent earnings

announcements. In contrast, if return predictability effect is driven by exposures to some

unknown risks, strategy returns should accrue more evenly over subsequent trading days.

Our tests show that the return spread generated from geo-peers’ return signal (GEORET ) is

166% higher on a day during an earnings announcement window than on a non-announcement
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day. This evidence is difficult to square with standard risk models.4

Second, we also examine the predictability of GEORET for focal firm’s future

standardized unexpected earnings (SUE). SUEs are not return-based, so this test is not

confounded by imperfect controls for firm risks. At the same time, earnings are fundamental

drivers of firm value. If returns to the GEORET hedged portfolio are driven by predictable

changes in cash flows, rather than a compensation for risk, the GEORET signal should

also predict focal firms’ future SUEs. Our results show that geo-peers’ returns do strongly

predict focal firms’ subsequent SUEs. Consistent with a slow diffusion of earnings-related

news, focal firms with high (low) GEORET report higher (lower) future SUEs, even after

controlling for each firm’s own lagged SUEs. This result again suggests that the return

predictability associated with GEORET reflects incomplete price response to fundamental

information, rather than compensation for risks. In addition, this result, along with our

finding that the return predictability of GEORET lasts for several months and does not

reverse afterwards, strongly suggests that the predictable return based on GEORET is

driven by investor underreaction, not overreaction or liquidity effects. Lastly, we look at

analyst forecasting behavior to provide direct evidence on the limited attention channel. We

find that analysts are slow to carry information across geography-linked firms, as analyst

forecast revisions of geo-peers significantly predict future forecast revision of focal firms.

In addition to the tests reported in the main text of this study, our Internet Appendix

provides a battery of other robustness tests. First, we document the robustness of the

return predictability of GEORET to various perturbations in such as removing micro-cap

stocks and firms operating in few counties. Second, we report the robustness of return

predictability by two subperiods: 1990-2001 and 2002-2013. In both subperiods, we find

significant geographic lead-lag effect even after controlling for many other pricing anomalies.

Third, we examine the sensitivity of our result to the staleness of the geographic linkage

4Although Patton and Verardo (2012) find stock betas increase on earnings announcement days, the
increase in beta is symmetric for both positive and negative earnings surprises. As a result, time-varying
beta cannot explain the large increase in the long-short portfolio’s return spread on earnings announcement.
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measure. Our results show that the effect declines slightly with more ”stale” GEO data, but

is still significant even when we use five-year-old geographic linkage measure. Fourth, the

results are robust to alternative threshold used to define geographic peers. Finally, our result

persists if we construct geographic linkage using establishment employment data, which is

less likely to be imputed than sales in NETS data.

The remainder of this paper is organized as follows. Section 2 briefly surveys related

literature and discusses the contribution of this study. Section 3 describes the data and

presents summary statistics. Section 4 presents our main results on the lead-lag return

relationship among geography-linked firms. Section 5 explores the underlying channels

behind our results. Section 6 rules out risk-based explanations by conducting non-return-

based tests and examining analyst forecast behavior. Section 7 concludes.

2 Related Literature and Contribution

Our paper contributes to several strands of existing literature. First, this study relates to

a large literature that examines investor belief updating in response to new information.

Tversky and Kahneman (1974), Daniel, Hirshleifer, and Subrahmanyam (1998), and Hong

and Stein (1999), among others, suggest that investors may overweigh their own prior beliefs

and underweight value-relevant public information, especially when the public information

is less salient. A large set of empirical works lends support to this view.5 Studies also

document underreaction is more likely in settings where the nature of information is less

salient (DellaVigna and Pollet (2007); Giglio and Shue (2014)) or when investors are being

distracted (DellaVigna and Pollet (2009)). Our study is similar in spirit, but examines the

slow diffusion of information contained in firms’ geographic peers, an important diver of firm

value that often transcends industry boundaries.

5For example, investors underreact to public announcements of corporate events including earnings
announcements (Bernard and Thomas (1989)), and share repurchase and issuance (Ikenberry, Lakonishok,
and Vermaelen (1995)) etc.
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Our study is also related to a growing literature on the implicaton of investors’ limited

attention on information diffusion and market efficiency. Several theoretical works present a

framework for understanding market price dynamics when a subset of investors have limited

attention (e.g., Hirshleifer and Teoh (2003) and Peng and Xiong (2006)). The key message

from these models is that slow information diffusion due to investors’ limited attention

can generate return predictability patterns that are difficult to explain with rational asset

pricing models. These limited attention models have inspired a growing empirical literature.

Particularly noteworthy are recent studies that document a lead-lag return effect between

firms that have close economic links, such as industry links (Moskowitz and Grinblatt (1999);

Hoberg and Phillips (2018)), customer-supplier links (Cohen and Frazzini (2008); Menzly and

Ozbas (2010)), technology links (Lee, Sun, Wang, and Zhang (2019)) and shared analyst links

(Ali and Hirshleifer (2020)). Our paper can be framed in terms of this literature, but we

focus specifically on geographic links. We show that geographic linkage is distinct from other

well-documented interfirm linkages.

Third, our study also contributes to the growing literature on the role of geography

in information diffusion and price discovery process. For example, Coval and Moskowitz

(2001) show that fund managers who are located close to firm headquarters earn higher

returns on their local investment than distant investment. Similarly, Malloy (2005) show

that geographically proximate analysts are more accurate than other analysts. Loughran

and Schultz (2005) document firms headquartered in rural areas have poorer information

environment and are traded less frequently compared to urban-based firms. Pirinsky and

Wang (2006) document strong comovement in the stock returns of firms headquartered in the

same geographic area. Parsons, Sabbatucci, and Titman (2018) document a lead-lag return

effect among firms headquartered in the same state. Korniotis and Kumar (2013) find that

state-level economic factors (e.g., unemployment and housing collateral ratios) can predict

returns of stocks headquartered in those states. All these studies focus on firm’s headquarter

location. However, as shown by Bernile, Kumar, and Sulaeman (2015), the typical U.S.

9
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public firm has economic interests in five states beyond its corporate headquarters location.

A firm’s headquarter may be in one state, while its plants and operations are located in

other states, often far away from the headquarter. When the economic activities of a firm

are geographically segmented, value-relevant information about the firm is also likely to be

geographically dispersed.6 The innovation of this study is to infer the arrival of geographic

information for a firm from stock returns of other firms with economic activities in the

same areas. Our approach thus identifies the geographic links between firms beyond their

headquarter locations, and show the returns and fundamentals of focal firm can be predicted

by its geographic peers.

3 Data and variables

3.1 Data

To capture firms’ geographic footprints, we obtain establishment-level data from the NETS

Publicly Listed Database produced by Walls & Associates using using Dun and Bradstreet

(D&B) data. The NETS database provides annual employment and sales data for more than

63 million U.S. businesses and establishments (i.e., headquarters, subsidiaries, branches, and

plants across the United States). This database maintains an essentially complete record

of all establishments going back to 1989. Establishments are not legally required to report

to D&B; however, D&B is a leading provider of business credit information and thus those

establishments that wish to obtain lines of credit with suppliers or financial institutions have

incentives to report to D&B. Additionally, D&B attempts to develop complete business

lists by collecting information from independent sources, including phone calls, legal and

bankruptcy filings, press reports, payment and collection activities, and government and

6A notable exception in the literature is Garcia and Norli (2012) that identifies U.S. states that are
economically relevant for a company through textual analysis of annual reports.
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postal records.7 Recent studies employing NETS data include Neumark, Wall, and Zhang

(2011), Heider and Ljungqvist (2015) and Addoum, Ng, and Ortiz-Bobea (2020), among

others. We match each establishment with its parent company in Compustat by company

name. The matching procedure includes both machine-matching and manual-matching.

We obtain monthly stock returns from the Center for Research in Security Prices (CRSP),

and annual accounting data from Compustat. Our main sample consists of firms in the

intersection of the NETS Publicly Listed data, CRSP, and Compustat. We include all

common stocks (CRSP share codes 10 and 11) traded on the NYSE, Amex, and NASDAQ,

and exclude financial firms (Fama-French 48 industry code between 44 and 47). To ensure

that the relevant accounting information is publicly available to investors in the market, we

impose at least a six-month gap between fiscal-year end month and the portfolio formation

date. Specifically, we first match the NETS data in year t with Compustat accounting data

for the most recent fiscal year (i.e., the fiscal year ended in calendar year t). We then match

sample firms to CRSP stock returns from July of year t + 1 to June of year t + 2. We

require firms to have non-missing stock price and SIC classification code from CRSP, and

non-negative book equity data at the end of the previous fiscal year from Compustat. To

reduce the impact of penny stocks, we exclude stocks that are priced below one dollar a

share at the beginning of the holding period. We adjust the stock returns by delisting. If

a delisting return is missing and the delisting is performance-related, we set the delisting

return at -30% (Shumway (1997)).

We define our pairwise measure of geographic linkage, GEOijt, as the uncentered

correlation of the distributions of sales across all counties in US between all pairs of firms i

and j,

GEOijt =
Git ∗G

′
jt√

(Git ∗G
′
it) ∗ (Gjt ∗G

′
jt)

(1)

where Git = (Git1, Git2, ..., Git3022) is a vector of firm i’s proportional share of sales across

7Barnatchez, Crane, and Decker (2017) conduct a through assessment of the NETS data and conclude
that NETS data is useful and convenient for studying business activity in high detail.
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3,022 U.S. counties over year t. GEOijt has fhe following properties: it is unity for firms

whose geographic vectors are identical, and zero for firms whose vectors are orthogonal and

it is bounded between zero and one for all other pairs. It is closer to unity the greater the

degree of overlap of the two firms’ establishment locations.8 Further more, this measure is

symmetric in firm ordering (i.e., GEOijt = GEOjit) and not directly affected by the length

of the G vectors.9

We then define geography-linked return (GEORET ) as the weighted-average monthly

return of geography-linked firms, with pairwise geographic linkage as weight. Formally,

geography-linked return for firm i at month t is defined as:

GEORETit =
∑
j 6=i

GEOijτ−1 ∗RETjt/
∑
j 6=i

GEOijτ−1 (2)

where RETjt is the raw return of firm j at month t. Note that GEO naturally serves as a

weighting function in calculating the portfolio return of geography-linked firms, such that

firms more overlapped with the focal firm in geographic space receive higher weight. GEO

is calculated at the end of each calendar year τ − 1 based on NETS data in that year, and

then mapped to the monthly stock return data from July of year τ to June of year τ + 1.

We use standard control variables in our empirical analysis. Size is defined as the

natural logarithm of market capitalization at the end of June in each year. Book-to-market

ratio (BM) is the most recent fiscal year-end report of book value divided by the market

capitalization at the end of calendar year t − 1. Book value equals the value of common

8As an example, suppose there are three firms A, B, and C, with establishment sales across three US
counties, as follows: GA = (0, 0, 1), GB = (0.6, 0.2, 0, 2), GC = (1, 0, 0). In this example, GAB=0.13, GAC=0,
and GBC=0.90. Intuitively, firms A and C have no establishments in the same county and are thus assigned
a geographic linkage measure of zero. These two firms would not be geo-peers for purposes of our analysis.
Firm B has geographically overlapping establishments with both firm A and firm C. However, as shown
above, firm B is more closely connected to firm C geographically (GBC = 0.90), than it is to firm A (GAB

= 0.13). This is because a higher proportion of B’s sales are in the 1st county than in the 3rd county.
9The length of the vector depends on the degree of geographic concentration of firms’ economic activities.

As a result, GEO will not capture the effect of geographic dispersion on stock returns as documented by
Garcia and Norli (2012).
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stockholders’ equity, plus deferred taxes and investment tax credits, and minus the book

value of preferred stock. Momentum (MOM) is defined as the cumulative holding-period

return over the last 12 months skipping the most recent month. RETt−1 is the prior month’s

return to capture short-term reversal effect. Following Cooper, Gulen, and Schill (2008),

asset growth (AG) is defined as year-over-year growth rate of total assets. Following Novy-

Marx (2013), gross profitability (GP ) is defined as sales revenue minus cost of goods sold

scaled by assets. Institutional ownership data of stocks are available from the Thomson

Reuters (formerly CDA/Spectrum) Institutional Holdings database (13F). Aanalyst forecast

data are from I/B/E/S.

3.2 Summary Statistics

The final sample consists of 668,117 firm-month observations spanning July 1990 to

December 2013. Panel A of Table 1 presents descriptive statistics for our sample firms.

The average number of firms per month is 2,320. On average our sample firms cover

around 57% of the CRSP common stock universe in terms of market capitalization. We

note that the average number of geography-linked firms per focal firm is 795. The pairwise

geographic linkage measure (GEO) has an average score of 0.09 with a standard deviation of

0.2, indicating large cross-sectional variation in geographic linkage among our sample firms.

The remaining summary statistics are well known and do not require additional discussion.

In Panel B of Table 1, we present the pairwise correlation between our variables. Several

correlation coefficients are noteworthy. Although GEORETt−1 exhibits trivial correlations

with a number of traditional return predictors (e.g., size, book-to-market, gross profitability,

and asset growth), it is considerably more correlated with industry return (INDRETt−1),

return of a portfolio of firms headquartered in the same state (HQRETt−1), and past

one-month return (RETt−1) (Pearson correlations are 0.095 for INDRETt−1, 0.316 for

HQRETt−1, and 0.062 for RETt−1). In subsequent analyses, we will control for these return
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predictors when examining the return predictability of GEORETt−1.

4 Empirical results

We next turn to the main results of the paper. We first verify that geography-linked firms

as identified by our measure are fundamentally related. We then show the lagged returns

of geography-linked firms have strong predictability power for focal firm returns and this

pattern is robust and distinct from existing cross-firm return predictability effects.

4.1 Fundamental comovement

We first verify our geographic linkage measure by examining whether our measure captures

fundamental relationship bewteen geography-linked peer firms. Specifically, we regress focal

firms’ annual sales and profitability growth measures on the average growth measures of their

geo-peers (Geo sales growth). We calculate the average growth variables of geo-peers using

the same methodology as used in calculating GEORET . Geo sales growth is calculated

as the weighted average sales growth of geo-peers using the weights in equation 3.1. All

regressions include year fixed effects and size and book-to-market ratio as controls. To

ensure that the growth variables for all firms are measured over the same horizon, we only

include firms with December fiscal year ends.

Table 2 presents the results. Column 1 shows that the coefficient on Geo sales growth is

0.311 (t=3.25), indicating that there is a strong contemporaneous correlation between focal

firm’s and geo-peers’ sales growth. In column 2, we add the average sales growth of other

economically-linked peer firms. Specifically, industry sales growth is measured as the market

capitalization-weighted average sales growth of all other firms in the same industry (based

on Fama-French 48 industry classifications) as the focal firm. Same-state sales growth is

measured as the average sales growth of all other firms headquartered in the same state as
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the focal firm. Analyst sales growth is calculated the weighted average sales growth of shared

analyst-linked peers, using the weights defined in Ali and Hirshleifer (2020). The coefficient

on Geo sales growth decreases to 0.199, but remains significant. Columns 3 and 4 show

that the same conclusions hold when fundamental performance is measured as profitability

growth instead of sales growth.

Overall, these results strongly suggest that our measure of geographic linkage captures

fundamental relatedness between firms and that geographic linkage is distinct from other

interfirm linkages identified in previous studies.

4.2 Portfolio tests

In this section, we show that stocks sorted based on their geography-linked peers’ returns

generate significant return spreads. We conduct the decile portfolio sorts as follows. At the

beginning of each month, we sort stocks into deciles by the return earned by their geography-

linked peers in the previous month (GEORETt−1). To ensure our results are distinct from the

industry momentum effect (Moskowitz and Grinblatt (1999)) and same-headquarter lead-lag

effect (Parsons, Sabbatucci, and Titman (2018)), we exclude all firms from the same industry

(based on Fama-French 48 industry classification) and headquartered in the same state as

the focal firm when cosntructing GEORETit for the portfolio tests. These decile portfolios

are then rebalanced at the beginning of each month to maintain either equal or value weights.

We use the time series of monthly portfolio returns to compute the average excess return

(and alphas) of the lowest decile (1) and the highest decile (10) portfolio over the entire

sample. As we are most interested in the return spread between the two extreme deciles, we

also report the return to a long–short portfolio, i.e., a zero-investment portfolio that longs

the stocks in the highest GEORETt−1 decile and shorts the stocks in the lowest decile (L/S).

We compute these returns by subtracting either the risk-free return (excess returns) or by

using a variety of factor models.
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Table 3 Panel A provides strong evidence that geography-linked firms’ returns predict

focal firm returns. Specifically, we find that the equal-weighted long-short GEORET

strategy (L/S), yields average monthly returns of 41 basis points (t = 2.97), or roughly 6%

per year. Unlike most anomalies, the L/S strategy generates value-weighted returns that are

even larger at 54 basis points per month (t = 2.62), or about 6.5% per year. In the next five

columns, we control for the portfolios’ exposure to standard asset-pricing factors. The same

L/S strategy delivers CAPM alphas of 0.44% (0.54%) per month in equal- (value-) weighted

portfolios. This strategy delivers Fama and French (1993) three-factor alphas of 0.44%

(0.53%) per month in equal- (value-) weighted portfolios. Augmenting this model by adding

the stock’s own price momentum (Carhart (1997)) does not significantly affect the strategy,

as the four-factor alpha remains at 0.41% (0.53%) per months in equal- (value-) weighted

portfolios. We also adjust returns using the Fama and French (2015) five-factor model

(5-Factor), and also conduct a test using the five-factor model plus the momentum factor

and a short-term reversal factor (7-Factor). We find that the strategy’s alpha only slightly

changes after controlling for these factors, with the five-factor and seven-factor strategies

earning abnormal monthly returns of 0.40% (0.57%) and 0.41% (0.60%), respectively, in

equal- (value-) weighted portfolios. Finally, we report the portfolio alpha using the Q factors

of Hou, Xue, and Zhang (2015) as the asset pricing model. The Q-factor alphas continue to

be significant, with a value-weighted monthly alpha of 0.62% (t=2.64). These results show

that focal firms with high (low) geo-peers’ returns earn high (low) subsequent returns, after

controlling for common risk factors.

In Panel B of Table 3, we report the portfolio alpha as well as the factor loadings on each

of the Fama-French three factors and the Carhart (1997) momentum factor (MOM) and a

short-term reversal factor (ST Rev). The L/S portfolio has little exposure to most factors, as

the loadings on factors are economically small and statistically insignificant. One important

exception is the significant and negative loading on the short-term reversal factor (long prior

month loser and short prior month winner), which is consistent with our observation that
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GEORETt−1 is positively correlated with prior month return RETt−1. This finding can

perhaps explain why risk-adjusted returns of the L/S strategy are not very different from

excess return.

In Figure 1, we plot the value of a hypothetical dollar invested in each of three portfolios.

The first, shown in red, shows the evolution of a dollar invested in the S&P 500 index.

Dividends are assumed to be reinvested. Against this benchmark, we also plot the 10% of

firms with the highest lagged 1-month GEORET (blue), as well as the 10% of firms with

the lowest lagged 1-month GEORET (green). While the market portfolio grows by a factor

of over 4 from 1990 to 2013, one dollar invested in the lowest decile barely exceeds $3. On

the other hand, a $1 investment in the highest decile performs almost an order of magnitude

better, growing to approximately $20 by 2013.

4.3 Fama-MacBeth Regressions

In this section, we test the return predictability of GEORET using the Fama and MacBeth

(1973) regression methodology. One advantage of this methodology is that it allows us to

examine the predictive power of GEORET while controlling for other known predictors of

cross-sectional stock returns. This is important because, as shown in Table 1, GEORET is

correlated with some of these predictors. We conduct the Fama-MacBeth regressions in the

usual way. For each month, starting in July 1990 and ending with December 2013, we run

the following cross-sectional regression:

Reti,t = β0 + β1GEORETi,t−1 + γXi,t−1 + εi,t (3)

where Reti,t is the raw return of focal firm i in month t, GEORETi,t−1 is the average

return of the focal firm i’s geo-peers in month t − 1, and Xi,t−1 is a set of control variables

known to predict returns, including the natural logarithm of the book-to-market ratio (BM),
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the natural logarithm of the market value of equity (Size), returns from the prior month

(RETt−1), returns from the prior 12-month period excluding month t − 1 (MOM), gross

profitability (GP ), and asset growth (AG).

Table 3 reports the time-series averages of the coefficients of the independent variables,

and the t-statistics are Newey-West adjusted (up to 12 lags) for heteroskedasticity and

autocorrelation. Column 1 shows the coefficient on GEORETt−1 is 8.317 with a t-statistics

of 4.81, suggesting that geography-linked firms’ return strongly predict next-month focal

firm return even after controlling for well-known return predictors. Economically, a two-

standard deviation increase in GEORETt−1 leads to approximately 50 basis points increase

in focal firm return. The result from Fama-MacBeth regression is consistent with time-series

portfolio tests. The coefficients on control variables are also consistent with prior literature:

asset growth and short-term reversal variables are significantly negatively correlated with

future returns, while book-to-market ratio and gross profitability are significantly positively

correlated with future returns.10

One of stylized facts in urban economics is that firms from the same industry tend to

cluster together geographically (Ellison and Glaeser (1997)). As a result, it is likely that firms

will have establishments largely overlap with their industry peers geographically. Similarly,

firms whose headquarters located in the same areas will have geographically overlapped

business operations by construction. To mitigate such concerns, in Column 2, we add

the lagged value-weighted industry return (INDRET ) and lagged value-weighted return

of a portfolio of firms headquartered in the same state as the focal firm (HQRET ) in

regression. Compared to Column 1, the coefficient on GEORET decreases to 5.957, but

remains highly significant with a t-statistics of 4.01. The coefficients on INDRET and

HQRET are both positive and significant, consistent with the industry momentum effect

documented by Moskowitz and Grinblatt (1999) and the same-headquarter lead-lag effect

10The coefficient of MOM is positive but insignificant, potentially due to the 2009 momentum crash
documented by Daniel and Moskowitz (2016).
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shown by Parsons, Sabbatucci, and Titman (2018).

In Columns 3 to 7, we control for other interfirm linkages as documented by prior

studies.11 In Column 3, we add the focal firm’s lagged technology-peer return (TECHRET )

following Lee, Sun, Wang, and Zhang (2019), who document a lead-lag effect among firms

overlapping in technology space. In Column 4, a portfolio of focal firm’s pseudo-conglomerate

returns (PCRET ) is added based on Compustat Segment data following Cohen and Lou

(2012), who show substantial return predictability from standalone firms to conglomerates.

In Column 5, we add the lagged returns from a portfolio of the focal firm’s supplier industry

(SUPPRET ) and customer industry (CUSTRET ). These portfolios are constructed using

Bureau of Economic Analysis (BEA) Input-Output data (at the summary industry level)

following Menzly and Ozbas (2010). In Column 6, we add the lagged returns of focal firm’s

product market peers, which are identified based on textual analysis of firms’ 10-K filings.

Following Hoberg and Phillips (2018), we use the TNIC-3 network, which is calibrated to

have a granularity to be comparable with SIC-3 code. In Column 7, we add the lagged return

from a portfolio of firms that have shared analyst coverage with the focal firm (CFRET ),

following Ali and Hirshleifer (2020).

There are several noteworthy patterns. First, the coefficients on these variables are

almost all siginificant and positive, consistent with prior literature. The only exception

is that coefficients on customers’ (CUSTRET ) and supplers’ returns (SUPPRET ) are

insignificantly positive, which could potentially due to difference in sample period. More

importantly, we find the coefficient on GEORETt−1 remains highly significant after

controlling for these known interfirm linkages. In particular, we continue to find significant

return predictability for GEORET after controlling for interfirm links between stocks

covered by common analysts, which as argued by Ali and Hirshleifer (2020), captures all

the existing cross-firm return predictability effects. This finding may not be surprising

11Because the data availability on these additional linkage measures greatly reduce the sample size, we
do not control for these variables in subsequent analyses.
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as even skilled analysts may not closely track news about firms’ geo-peers and quickly

impound relevant information into focal firm’s prices. We provide more evidence supporting

underreaction on the part of analysts in subsequent sections.

While most of the previous cross-firm return predictability studies have focused on one-

month lagged returns as predictors, some studies also examine longer horizon lags. Appendix

Table A2 shows that returns of geographic peers over the past 6 and 12 months are still

significant predictors of future focal firm return, while geo-peers’ returns over past 24 months

lose its predictive power. However, both the statistical significance and economic magnitude

of the long-horizon effects are rather modest. This is consistent with prior studies that

most of the cross-firm return predictability effects are strongest at the one-month horizon

(Moskowitz and Grinblatt (1999); Ali and Hirshleifer (2020)). It suggests that although the

market is not perfectly efficient, it reacts quickly enough to start incorporating value-relevant

news into stock prices within a month.

We also examine the long-run return pattern of the lead-lag effect between geography-

linked firms. If investors overreact to the news contained in lagged geo-peers’ returns, we

should observe some return reversal over longer holding periods. On the other hand, if

the effect we document is primarily an underreaction to the news that affects focal firms’

fundamental value, we should see no return reversal in the future. In Figure 2, we evaluate

these two alternative hypotheses by plotting the cumulative return to the GEORET hedged

portfolio in the six months after portfolio formation. Consistent with slow diffusion of

geographic information, we continue to observe a modest upward drift in portfolio returns

through month six. In fact, we find no sign of a return reversal over the next 12 to 24

months. These findings are similar to the results from other cross-firm return predictability

studies (Cohen and Frazzini (2008); Cohen and Lou (2012); Lee, Sun, Wang, and Zhang

(2019)). Overall, the evidence seems to be most consistent with delayed response of focal firm

prices to fundamental information contained in returns of geo-peers, and not an overreaction

phenomenon.

20

Electronic copy available at: https://ssrn.com/abstract=3617417



4.4 Robustness tests

In this section, we conduct a battery of robustness tests on geography-linked return

predictability, and report the results in Appendix Table A3.

4.4.1 Excluding micro-cap stocks

First, to alleviate the concern that our results are driven by micro-cap stocks, we exclude

stocks with price less than $5 or market capitalization below the 10th NYSE percentile.

Columns 1 and 2 of Table A3 shows that the coefficients of GEORETt−1 are still positive

and highly significant in both settings, suggesting that our result is not driven by micro-cap

stocks. Given that small firms are more likely to operate in a single area, another way to

remove micro-cap stocks is to restrict our sample to focal firms with establishments in at

least two counties. Column 3 shows the predictive power of GEORETt−1 is robust to this

sample selection criteria.

4.4.2 Geography-linked return predictability across time

In Columns 4 and 5 of Table A3, we examine whether the return predictability of geography-

linked firms varies over time. We divide our full sample period into two subperiods: 1990-2001

and 2002–2013. We then repeat our baseline Fama-MacBeth regression for each subperiod.

Our results hold up well in both periods, after controlling for various return predictors. The

coefficients of GEORETt−1 are similar in two subperiods, being 6.406 (t=2.75) during 1990-

2001 and 5.426 (t=3.24) during 2002-2013. This remarkable persistence in the coefficient

of GEORETt−1 is in sharp constrast with that of some other return predictors, which

declines substantially in the recent period. Consistent with prior studies, we find the effect of

industry momentum reduce by more than half and the own price momentum effect becomes

insignificant over the 2002-2013 period (Parsons, Sabbatucci, and Titman (2018)). What is

more noteworthy from our perspective is that the return predictability of geography-linked
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firms is robust in both subperiods.

4.4.3 Persistence of the geographic linkage measure

We also examine the sensitivity of our main result to the age of the geographic linkage

measure. Untabulated analysis shows the correlations between GEOi,j,t and its corre-

sponding one-year lagged measures is 0.95, suggesting that firms’ geographic footprints are

relatively persistent over time. Columns 6-8 of table A3 shows GEORETt−1 constructed

using lagged values of GEO also predict focal firm returns. While predictability decreases

with the number of lagged years, even five-year-old geographic linkage measures work quite

well. One implication is that investors do not need extremely timely information on firms’

establishments location information to implement this strategy. Even relatively ”stale”

geographic information have some predictive power for focal firm returns.

4.4.4 Using alternative geographic peers

In our main tests, a geographic peer is defined as a firm with any geographic overlap with the

focal firm (i.e. any firm whose GEO value is greater than zero). To evaluate the sensitivity of

our results to this cut-off value, we conduct a test where the peer sample is limited to just the

top 50 geo-peers of the focal firm. Finally, we also construct alternative geographic linkage

measure using establishment employment data, as the number of employees at establishments

are less likely to be imputed than sales in NETS data. Column 9 and 10 of Table A3 show

that the predictive power of GEORET is still robust using these alternative proxies of

geographic peers.
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5 Mechanism

The results so far suggest that the lead-lag effects between geography-linked firms we

document may be driven by slow dissemination of geographic news. In this section, we

further explore the cross-sectional heterogeneity of our main results to various firm and

stock characteristics associated with: (a) the extent to which investors might be attentive to

such news, and (b) the costs that investors face if they attempt to profit from the mispricing.

In addition, we examine whether the return predictability of GEORET varies with aggregate

investor sentiment.

5.1 Limited attention

If investors are fully rational and have unlimited capacity to analyze all value-relevant

information, the news contained in geo-peers’ returns should be reflected in focal firm’s prices

in a timely fashion. However, a large set of theorectical and empirical studies show that due

to limited attention, investors tend to underweight public information, especially when the

information is less visible (DellaVigna and Pollet (2009); Giglio and Shue (2014)) or more

complicated to analyze (Cohen and Lou (2012)). If this is the case, the return predictability

of GEORET should be stronger among firms that receive less investor attention. Prior

literature proposes several measures of investor attention including firm size, institutional

ownership, and analyst common coverage.12 We posit that smaller firms, and firms that have

lower institutional ownership, and have fewer common analysts with their geographic peers,

receive less attention from investors and, therefore, will exhibit a more sluggish stock price

reaction to the information contained in GEORET .

To test this prediction, we define a size-based dummy variable that equals one if a focal

firm is above the sample median in terms of the log value of market capitalization at the end

12See, for example, Bali, Peng, Shen, and Tang (2014), Parsons, Sabbatucci, and Titman (2018), and Ali
and Hirshleifer (2020).
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of the previous fiscal year, and zero otherwise. Similarly, we define a dummy variable that

equals one if the institutional ownership (IO) at the end of the previous year is above the

sample median. Finally, we define a dummy CANALY ST equals one if the average number

of analysts covering the focal firm and its geo-peers at the previous year-end is above sample

median, and zero otherwise. The results of these tests are reported in columns 1 to 3 of Table

5. Consistent with the prediction of limited attention channel, the coefficient estimates

on the three interaction terms between the investor attention dummies and GEORETt−1

are all negative, and in the case of firm size and institutional ownership, the interaction

term is statistically significant. This result lends support to our hypothesis that the return

predictability of GEORET is driven by investors’ inattention to the geographic linkage

information.

5.2 Costs of arbitrage

In addition to attention proxies, we consider how the return predictability varies across our

sample with different degrees of arbitrage costs. The evidence indicates that sophisticated

investors, such as arbitrageurs, also fail to incorporate the information embedded in

GEORET and bring stock prices to full-information value. We thus expect that our

results to be more pronounced among firms subject to greater limits to arbitrage. To test

this conjecture, we use three measures to proxy for the cost of arbitrage: idiosyncratic

volatility (IDV OL), bid-ask spread (Spread), and Amihud illiquidity (Illiquidity). Wurgler

and Zhuravskaya (2002) and Pontiff (2006) argue that arbitrageurs’ demand for a stock is

inversely related to its arbitrage risk, which is reflected in its idiosyncratic volatility.13 In

addition, prior research suggests that information diffusion into price is slower when trading

costs are higher and stocks are less liquid (Bali, Peng, Shen, and Tang (2014)). Therefore,

we expect the return predictability of GEORET will be more pronounced for less liquid

13Evidence supporting idiosyncratic return volatility as one of the most significant limits to arbitrage is
documented in Stambaugh, Yu, and Yuan (2015), for instance.
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stocks with higher bid-ask spread.

To test this prediction, we calculate idiosyncratic volatility (IDV OL) as the standard

deviation of the residuals from a regression of daily excess stock returns on Fama and French

(1993) factors within a month (at least ten daily returns required) following Ang, Hodrick,

Xing, and Zhang (2006). Following Amihud (2002), ILLIQUIDITY is the average daily

ratio of absolute stock return to the dollar trading volume within each month. Following

Corwin and Schultz (2012), we calculate the bid-ask spread (SPREAD) from daily high

and low prices.14 For all three variables, we create a dummy variable equals one if the

corresponding proxy is above sample median in a month, and zero otherwise.

The results are reported in Columns 4 to 6 of Table 5. Column 4 shows that the

coefficient estimate on the interaction term between the idiosyncratic volatility dummy and

GEORETt−1 is positive and statistically significant, 5.318 (t=2.61). Column 5 and 6 shows

that the interaction term between an indicator of high bid-ask spread and higher Amihud

illiquidity and lagged geo-peers’ return (GEORETt−1) is also positive and statistically

significant. These findings lend support to our prediction that the return predictability

effect is stronger for more difficult-to-arbitrage stocks.

5.3 Investor Sentiment

Recent studies show that stock market mispricings are typically more pronounced when

the overall sentiment is high (Stambaugh, Yu, and Yuan (2012); Antoniou, Doukas, and

Subrahmanyam (2016)), potentially due to amplification of investors’ behavioral biases

during high-sentiment periods. In our setting, this suggests that investors may pay less

14The Corwin and Schultz (2012) spread estimate is based on two reasonable assumptions. First, daily
high-prices are almost always buyer-initiated trades and daily low-prices are almost always seller-initiated
trades. The ratio of high and low prices for a day therefore reflects both the fundamental volatility of the
asset and its bid-ask spread. Second, the component of the high-to-low price ratio that is due to volatility
increases proportionately with the length of the trading interval while the component due to bid-ask spreads
do not. Corwin and Schultz (2012) show via simulations that, under realistic conditions, the correlation
between their spread estimates and true spreads is about 0.9 and their estimates are substantially more
precise than other spread estimators.
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attention to the performance of focal firm’s geographic peers, which are value-relevant but

less salient fundamental information. In addition, any level of mispricing would be more

difficult to be arbitraged away due to increased noise trader risks and short-sale constraints

(De Long, Shleifer, Summers, and Waldmann (1990)). As a result, we should expect the lead-

lag return effect among geography-linked firms to be stronger during high sentiment periods.

To test this idea, we use the Baker and Wurgler (2007) sentiment index (SENTIMENT )

to proxy for aggregate investor sentiment. We create a dummy variable equals one if

SENTIMENT is above sample median, and zero otherwise. Column 7 of Table 5 shows

that the coefficient estimate on the interaction term between SENTIMENT dummy and

GEORETt−1 is indeed positive and significant. This finding provides further evidence

that return predictability of GEORET is likely a result of mispricing due to investors’

underreaction to geographic information, especially during high-sentiment periods.

5.4 Common exposure to regional economy or spillover effect?

Broadly speaking, there are two possible channels that can explain the comovement and lead-

lag relation among geographically-linked firms. First, firms with geographically-overlapped

establishments are naturally exposed to the same regional economic fundamentals (”common

exposure” channel). A second channel is that shocks originated from geographic peers

”spillover” to focal firm due to complementarity in investment opportunities or technology

spillover between neiboring firms (”spillover” channel). A key challenge in empirical tests is

to differentiate between these two channels.

We conduct two tests to examine whether common exposure to regional economy can

fully explain the return predictability of GEORET . Our first test is a subsample test that

groups firms into manufacturing and non-manufacturing firms. The idea is that because

manufacturing firms rely on national or even global demand for their products, common

exposure to local economic fundamentals is unlikely to explain the lead-lag return effects
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among manufacturing firms that are geographically linked. Appendix Table A4 reports the

Fama-MacBeth regression results for manufacturing and non-manufacturing firms separately.

We find the coefficients on GEORETt−1 are significant and have similar economic magnitude

for both manufacturing and non-manufacturing firms, suggesting that our result is not fully

explained by the ”common exposure” channel. Second, we directly capture firms’ exposure

to regional economic condition by constructing a firm-specific predicted regional economic

activity proxy (PREA) following Smajlbegovic (2019). Specifically, PREA is the sales-

weighted average of economic activity growth rate across all states that the firm operates:

PREAit =
50∑
s=1

SALE SHAREi,s,τ−1 ∗
̂∆SCIs,t+6

SCIs,t
(4)

where
̂∆SCIs,t+6

SCIs,t
is the predicted growth rate of the State Coincident Index of state s in

month t for the next 6 months and SALE SHAREi,s,τ−1 is firm’s fraction of sales in state

s in last year. PREA can be interpreted as the average forecast of the economic activity

growth rate over all firm-relevant U.S. states. The orthogonalized proxy PREA⊥ is the sum

of a constant and the residuals of cross-sectional regressions of PREA on return sensitivities

to national economic activity and the Fama and French (1993) risk factors.

If the return predictability of GEORET is derived solely from a firm’s exposure to the

economic conditions of all regions where it operates, we should find the effect of GEORET

to be absorbed by PREA⊥ when predicting future returns. We report the corresponding

Fama-MacBeth regression result in column (1) of Table 6. Consistent with Smajlbegovic

(2019), the predicted regional economic activity meausre PREA⊥ significantly and positively

predict future stock return, indicating a slow diffusion of local macroeconomic information

into stock prices. More importantly, the coefficient of GEORET is still significantly positive,

suggesting the cross-firm return predictability is not fully explained by common exposure to

local economy.

To test any spillover effect among geographic peers, we examine whether a focal firm

27

Electronic copy available at: https://ssrn.com/abstract=3617417



is negatively affected if its geographic peers are exposed to some negative shocks, even if

the focal firm itself have no establishments in the areas affected by the shock. Our test

is motivated by Giroud and Mueller (2019), who argue that when a firm’s establishment

experiences a negative shock to its cash flow, the firm will optimally ”spreads” the shock

across multiple establishments in an effort to equate their marginal productivity. As a result,

local shocks not only lead to sales declines at local business units but also at business units

in distant regions. Giroud and Mueller (2019) show that local shocks indeed propagate

across US regions through firms’ internal networks of establishments. To operationalize

the idea, we construct a measure GEO HAZARD as the weighted average of dummies

indicating geo-peers headquartered in states affected by any natural disaster in a month,

using geographic linkage (GEO) as weights. The advantage of using natural disaster is that

natural disasters are exogenous events that occurred throughout our sample period, and their

impacts are highly localized.15 In untabulated analysis, we find that GEO HAZARD leads

to lower sales growth over the next year for focal firms that themselves are not exposed to

any disasters. Column 2 of Table 6 reports the Fama-MacBeth regression results. The

coefficient of GEO HAZARD is -1.227 with a t-statistics of -2.71. This novel finding

provides support to the ”spillover” channel that local shocks to geographic peers transmit

to the focal firm through geographic linkage. Overall, we provide evidence that the lead-lag

relation between geographically-connected firms can result from a spillover effect in addition

to their common exposure to local economy, which has not been explored by previous studies

including Parsons, Sabbatucci, and Titman (2018).

15We obtain the natural hazards (including flooding, hurricane/Tropical Storm, Severe
Storm/Thunderstorm, Tornado, Wildfire) records at county-year level from SHELDUS (Spatial Hazard
Events and Losses Database for the United States).
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6 Risk explanations

In Section 4, we find that the return predictability of GEORET cannot be explained by

well-known risk factors, such as the Fama-French five-factors and the momentum factor.

Nevertheless, it is still possible that other unknown risks could drive our results. This would

be the case, for example, if geo-peers’ returns can somehow proxy for regional macroeconomic

risks, which would then lead to changes in focal firms’ discount rates. We conduct several

tests in this section to examine this possibility.

6.1 Returns around earnings announcements

First, we examine stock price reactions around subsequent earnings announcements. This

approach is widely used in the literature (see, for example, Bernard and Thomas (1989);

La Porta, Lakonishok, Shleifer, and Vishny (1997); Engelberg, McLean, and Pontiff (2018)).

The idea is intuitive: if an anomaly is associated with mispricing, then it will be stronger in

the earnings announcement window, as the announcement of these earnings helps to correct

investor expectation errors about firms’ future cash flows. In contrast, if abnormal return

is driven by exposure to unobserved risks, then the subsequent returns should accrue more

evenly over subsequent periods. To conduct this test, we conduct panel regression analysis

following the methdology of Engelberg, McLean, and Pontiff (2018). Our unit of observation

is firm-day rather than firm-month in this test. Specifically, we regress the daily return of a

stock (DRET ) on the last month geo-peers’ return (GEORET ), an earnings announcement

window dummy (EDAY ), and the interaction between the two variables. We also control

for day fixed effects and a set of control variables, including the lagged values for each of the

past ten days for stock returns, stock returns squared, and trading volume.

We present our results in Table 7. The earnings announcement window is defined as either

the one-day window (Columns 1 to 2) or a three-day window (Columns 3 to 4), centered
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on the earnings announcement date. The significantly positive coefficient on GEORET

suggest that returns of geographic peers can predict focal firm’s return on non-earnings

announcement days. Also consistent with the earnings announcement premium literature

(Frazzini and Lamont (2007)), the coefficient on earnings announcement date dummy is

positive and highly significant. More importantly, we find the coefficient on the interaction

term is positive and significant under all specifications. Consistent with the mispricing

explanation, returns to the GEORET strategy are much larger when earnings news are

released. For example, in Column 1, the coefficient on GEORET is 0.347 (t=2.82), while

the interaction coefficient on GEORET ∗EDAY 1 is 0.578 (t=2.04). The coefficients indicate

that for a GEORET value of 0.06 (two standard deviation change), expected returns are

higher by 2.08 basis points on non-earnings announcement days, and by an additional 3.47

basis points on earnings announcement days. In other words, the return spread generated

by the GEORET hedged strategy is 166% higher during an earnings announcement window

than that on non-announcement days. These results are extremely difficult to square with

standard risk-based explanations.

6.2 Evidence from non-return-based outcomes

6.2.1 Forecasting earnings surprises

Our preferred explanation for the return predictability results is that investors have limited

attention and are slow to incorporate information contained in returns of focal firm’s geo-

peers, and evidence so far support this mispricing explanation. However, disagreements

about whether return predictability reflects risk versus mispricing are often difficult to

resolve using only realized returns and risk proxies. This is because return predictability

can be attributed to risk, even if the source of risk is not directly observable or measurable.

As an alternative approach, we also examine whether GEORET has predictive power for

focal firm’s non-return-based outcomes. Our first non-return-based metric is focal firms’
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standardized unexpected earnings (SUE). SUEs capture unanticipated changes in firm’s

earnings and are not return-based, so this test would not be confounded by imperfect risk

controls. At the same time, unexpected earnings are fundamental drivers of firm value, so

results on earnings predictability could further confirm that the return predictability is due

to changes in unexpected firm cash flows, rather than compensation for some unobservable

risk.

To that end, we test whether the stock return of the geography-linked firms predicts future

unexpected earnings of the focal firm. The dependent variable is standardized unexpected

earnings (SUE), defined as the difference between the actual quarterly earnings per share

(EPS) and analyst consensus forecast of quarterly EPS scaled by stock prices in the month

before quarterly earnings announcement. The main explanatory variable of interest is lagged

GEORET , computed using the past three month returns of focal firm’s geo-peers. Control

variables include the focal firm’s own lagged SUEs, up to four quarters.

Table 8 contains regression results under various model specifications. Column 1 presents

a simple regression of SUE on lagged GEORET , with firm and year-quarter fixed effects.

The estimated coefficient on GEORETt−1 is 0.0019 (t = 2.12). In Columns 2 and 3, we add

the focal firms’ own lagged SUEs as control variables, while Column 3 includes industry and

year-quarter fixed effects. The results show that GEORET continues to positively predict

future SUEs. These results further confirm that the short-window announcement returns

we documented in Section 6.1 are driven by GEORET ’s ability to anticipate the directional

changes in focal firm’s future earnings.

6.2.2 Forecasting short interests

Because returns of geo-peers contain value-relevant information about focal firm, sophisti-

cated investors may exploit such information in their trading decisions. Short sellers appear

to fit the profile of informed traders in the equity market. A large literature shows that short
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sellers’ positions can predict future stock returns and short sellers are particularly skilled at

analyzing public information (see, among others, Boehmer, Huszar, and Jordan (2010) and

Engelberg, Reed, and Ringgenberg (2012)). If short sellers exploit information contained in

GEORET , they should trade in the direction indicated by GEORET .

To examine whether GEORET predict short sellers’ trades, we run Fama–MacBeth

regressions of change in short interest ratio on lagged GEORET . Specifically, the dependent

variable is the change in short interest ratio from the previous month, where short interest

ratio is defined as number of shares shorted over total number of shares outstanding.16 The

main explanatory variable of interest is lagged GEORET . Controls include firm size, book-

to-market ratio, gross profitability, asset growth, the stock’s own lagged monthly return.

If short sellers make use of information contained in stock performance of geo-peers, the

coefficient on GEORETt−1 should be negative.

Table 9 reports the time series averages of the cross-sectional regression coefficients.

Column 1 shows the coefficient on GEORETt−1 is -0.19 (t=-3.0). In column 2, we add the

lagged industry return (INDRETt−1) and lagged return of a portfolio of firms headquartered

in the same state as the focal firm (HQRETt−1) in regression. Compared to Column 1, the

coefficient on GEORET barely changes and remains highly significant with a t-statistics of

-2.84. These results suggest that short sellers increase their short positions on focal firm

when the recent stock performance of its geography-linked peers are poor. To sum up, the

tests based on earnings surprises and short interests (both are non-return-based metrics)

lend further support to the mispricing explanation.

6.3 Evidence from analyst information updating

In this section, we examine analyst forecasting behavior to provide direct evidence on the

limited attention channel. This setting is particularly useful because analyst earnings forecast

16We get the month-end short interests data from Compustat.
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revisions directly measure investors’ belief updating process. If analysts are slow to carry

information across geography-linked firms due to limited processing capacity, we should

observe past forecast revisions of geographic peers predict future forecast revisions of focal

firms. To test this hypothesis, we conduct a test similar to the return predictability test

except that we use analyst forecast revisions of annual EPS instead of stock returns.

Table 10 presents the results. All of the regressions include lagged forecast revision,

past 1-month and past 12-month (skipping the most recent month) return, log of market

capitalization, and log of book-to-market ratio as control variables. The dependent variables,

FRP and FRB, are the one-month-ahead revision in consensus annual EPS forecast of the

focal firm scaled by lagged stock price (Columns 1 and 2) and book value of equity per share

(Columns 3 and 4), respectively. Our variable of interest is GEOFRPt−1 (GEOFRBt−1),

defined as the average forecast revisions of the focal firm’s geo-peers in the previous month,

using the geographic linkage measure (GEO) constructed in Section 3 as weights. Consistent

with our hypothesis, column 1 shows that the coefficient on GEOFRPt−1 is 0.0528 (t=4.20),

suggesting that the average forecast revision of geography-linked firms is a strong predictor

of future revisions of focal firm.

In column 2, we add average forecast revisions of other economically related firms.

Specifically, INDFRPt−1 is the market capitalization-weighted average forecast revisions

of all other firms in the same Fama-French 48 industry as the focal firm. STATEFRPt−1

is the average forecast revisions of all other firms headquartered in the same state as the

focal firm. ANALY STFRPt−1 is calculated as the weighted average forecast revisions of

shared analyst-linked peers, using the weights defined in Ali and Hirshleifer (2020). The

coefficient on GEOFRPt−1 decreases to 0.0313 but remains highly significant (t=2.73). The

coefficients on INDFRPt−1, STATEFRPt−1 and ANALY STFRPt−1 are also significantly

positive, consistent with the results in Ali and Hirshleifer (2020). In columns 3 and 4, we

show the same pattern holds using GEOFRBt−1 (forecast revision scaled by book value of

equity per share) as the measure. These results suggest that the return lead-lag effects that
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we show may at least partially be driven by analyst sluggish information updating. This

is consistent with studies documenting inefficient forecast behaviors by analysts (Bouchaud,

Krueger, Landier, and Thesmar (2019)). In addition, we find that the coefficients on lagged

forecast revisions (FRPt−1 and FRBt−1) are highly significant, consistent with prior studies

that past forecast revisions of a stock are strong predictors of subsequent forecast revisions

of the same stock. Given that analysts underreact to news about the same firm, it is very

plausible that they might also underreact to information from other firms that are merely

geographically linked to the focal firm.

7 Conclusion

Using detailed information of establishments owned by U.S. public firms from 1990 to 2012,

we construct a novel measure of geographic linkage between firms that are from different

industries and headquartered in different regions. We show that the returns of geography-

linked firms have strong predictive power for focal firm returns and fundamentals. A long-

short strategy based on this effect yields annual value-weighted alpha of approximately 6.5%.

This effect is distinct from other cross-firm return predictability and is not easily attributable

to risk-based explanations. It is more pronounced for focal firms that receive lower investor

attention and are more costly to arbitrage. In addition, we find sell-side analysts similarly

underreact, as their forecast revisions of geography-linked firms predict their future revisions

of focal firms. Our results are broadly consistent with sluggish price adjustment to more

nuanced geographic information.
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Table 1 Summary Statistics 

This table presents summary statistics for the key variables used in the cross-sectional regressions. The sample includes all NYSE/Amex/Nasdaq-listed securities 
with share codes 10 or 11 that are contained in the CRSP/Compustat merged data file. Financial firms (Fama-French 48 industry code between 44 and 47) and 

stocks with prices less than $1 at portfolio formation are excluded. All variables except for future stock returns are winsorized within each cross-section at 1% 

and 99% levels. All statistics is computed cross-sectionally (for each calendar month) and then averaged across all months. % Value of CRSP is the total market 

capitalization of our sample firms as a percentage of the total market capitalization of the CRSP universe, computed each month and averaged across all months. 

Panel A reports the sample coverage statistics and descriptive statistics for the key variables. Panel B reports pairwise correlations, with 5% statistical 
significance indicated in bold. All variable definitions are in Appendix Table A1. The sample consists of 668,117 firm-month observations spanning 1990 to 

2013. 

 

 

Panel A: Descriptive statistics                 

  Mean Std Min 25PC Median 75PC Max 

# of Firms  2320 347 1618 2082 2355 2556 2977 

% Value of CRSP  0.57 0.07 0.46 0.50 0.58 0.63 0.70 

Average # of geo-peers per focal firm  795 651 1.70 307 594 1098 3022 

GEO  0.09 0.20 0.00 0.00 0.02 0.07 1.00 

GEORET  0.01 0.03 -0.06 0.00 0.01 0.03 0.10 

RET  0.01 0.15 -0.67 -0.07 0.00 0.08 1.72 

INDRET  0.02 0.03 -0.04 0.00 0.02 0.03 0.08 

HQRET  0.01 0.03 -0.06 0.00 0.01 0.03 0.09 

RET(t-1)  0.01 0.14 -0.33 -0.07 0.00 0.08 0.54 

SIZE  12.40 1.96 8.43 10.98 12.30 13.68 17.44 

BM  0.68 0.59 0.04 0.29 0.52 0.87 3.36 

GP  0.39 0.29 -0.55 0.22 0.36 0.53 1.32 

AG  0.25 0.73 -0.46 -0.02 0.08 0.24 6.08 

MOM   0.16 0.58 -0.71 -0.19 0.05 0.36 2.78 
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Panel B: Pearson (Spearman) correlations below (above) the diagonal 

 
 

                

  1 2 3 4 5 6 7 8 9 10 

GEORET(t-1) 1  0.014 0.078 0.324 0.058 0.006 0.005 0.006 -0.005 0.016 

RET 2 0.014  0.018 0.012 -0.023 0.040 0.011 0.024 -0.005 0.045 

INDRET(t-1) 3 0.095 0.021  0.079 0.115 -0.011 0.000 0.020 -0.002 0.003 

HQRET(t-1) 4 0.316 0.012 0.104  0.158 -0.002 0.009 0.002 -0.010 0.015 

RET(t-1) 5 0.062 -0.018 0.118 0.174  0.017 0.020 0.022 -0.016 0.016 

SIZE 6 -0.003 -0.009 -0.012 -0.004 -0.030  -0.370 -0.026 0.204 0.109 

BM 7 0.005 0.020 0.003 0.009 0.035 -0.387  -0.173 -0.269 -0.142 

GP 8 0.001 0.016 0.017 0.001 0.014 -0.016 -0.105  0.015 0.069 

AG 9 -0.004 -0.022 -0.004 -0.008 -0.027 0.074 -0.159 -0.096  0.021 

MOM 10 0.014 0.024 0.006 0.013 0.003 0.030 -0.115 0.058 0.008   
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Table 2 Fundamental Linkages 

This table reports the panel regression results of fundamental linkages between focal firm and its geography-linked peers. Sales growth(t) is calculated as Sales 
per share(t) /Sales per share(t-1) −1. Profit growth is calculated as (Profit(t) – Profit(t-1))/average (Assets(t), Assets(t-1)), where Profit is measured as operating 

income before depreciation (Compustat data item OIBDP). Geo sales growth is the weighted average sales growth of focal firm’s geography-linked peers, using 

the geographic linkage measure defined in section 3. Industry sales growth is measured as the market capitalization-weighted average sales growth of all other 

firms in the same Fama-French 48 industry as the focal firm. Same-state sales growth is measured as the equal-weighted average sales growth of all other firms 

headquartered in the same state as the focal firm. Analyst sales growth is calculated the weighted average sales growth of analyst-linked peers, using the weights 
defined in Ali and Hirshleifer (2019). The profit growth of peer firms is defined similarly. The sample is limited to firms with December fiscal year ends. All 

variables are measured at the end of each calendar year and are winsorized at the 1% and 99% levels. All regressions include year fixed effect and size and 

book-to-market ratio as control variables. T-statistics based on standard errors clustered by year are shown below coefficient estimates. The sample period is 

from 1990 to 2013.  
  sales_growth(t) sales_growth(t)   profit_growth(t) profit_growth(t) 

Geo sales growth(t) 0.311*** 0.199*    
 (3.25) (1.90)    

Same-state sales growth(t)  0.112***    
  (3.00)    

Industry sales growth(t)  0.186***    

  (4.23)    
Analyst sales growth(t)  0.802***    

  (6.50)    
Geo profit growth(t)    0.526*** 0.124** 

    (6.26) (2.26) 
Same-state profit growth(t)     0.0550*** 

     (2.83) 
Industry profit growth(t)     0.308*** 

     (8.28) 

Analyst profit growth(t)     0.887*** 

     (7.95) 

Size(t) -0.0292*** -0.0156***  0.00371** 0.00208 

 (-7.37) (-6.05)  (2.72) (1.62) 
BM(t) -0.0351*** -0.0186*  -0.00625*** -0.00839*** 

 (-3.91) (-2.06)  (-3.54) (-4.21) 
Constant 0.528*** 0.253***  -0.0353* -0.0207 

 (9.76) (6.78)  (-1.98) (-1.21) 

Year FE YES YES  YES YES 
adj. R-sq 0.015 0.038  0.020 0.061 

N 36553 30070   40185 30277 
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Table 3 Geographic momentum strategy, abnormal returns 1990–2013.  

This table reports abnormal returns and factor loadings for a geographic momentum strategy. Firms are ranked and assigned into decile portfolios at the 
beginning of every calendar month, based on the prior-month return to a portfolio of their geography-linked peer firms (GEORET). We exclude geographic 

peers from the same industry (based on Fama-French 48 industry groups) and headquartered in the same state as the focal firm when constructing GEORET. 

All stocks are equal- (value-) weighted within a given portfolio, and the portfolios are rebalanced every calendar month to maintain equal- (value-) weights. All 

non-financial stocks with stock price greater than $1 at portfolio formation are included. Excess return is the raw return of the portfolio over the risk-free rate. 

Alpha is the intercept from a regression of monthly excess return on factor returns. Factor returns are from the Kenneth French Data Library, and factor models 
include: CAPM model; the Fama-French (1993) three-factor model; a four-factor model including Fama-French three-factor and Carhart’s (1997) momentum 

factor, Fama-French (2015) five-factor model, seven-factor model (Fama-French five-factor plus the momentum and short-term reversal factor) and Q-factors 

model of Hou, Xue and Zhang (2015). L/S is the alpha of a zero-cost portfolio that holds the top 10% stocks ranked by GEORET and sells short the bottom 

10%. Panel B reports the alpha and the risk factor loadings, where the benchmark is a five-factor model (Fama-French three-factor plus the momentum and 

short-term reversal factor). Returns and alphas are in monthly percent, t-statistics are shown below the coefficient estimates, with 5% statistical significance 

indicated in bold. 
 

Panel A: Portfolio returns             
Decile Excess returns (%) CAPM alpha (%) 3-Factor alpha (%) 4-Factor alpha (%) 5-Factor alpha (%) 7-Factor alpha (%) Q-Factor alpha (%) 

1 0.40 -0.28 -0.21 -0.28 -0.17 -0.24 -0.15 
(low) (1.24) (-1.77) (-1.45) (-1.92) (-1.07) (-1.50) (-0.86) 

10 0.94 0.25 0.32 0.26 0.40 0.36 0.47 
(high) (2.79) (1.35) (1.81) (1.41) (2.14) (2.07) (2.26) 
L/S 0.41 0.44 0.44 0.41 0.40 0.41 0.38 

(Equal-weights) (2.97) (3.19) (3.24) (3.08) (2.73) (3.09) (2.59) 
L/S 0.54 0.54 0.53 0.53 0.57 0.60 0.62 
(value-weights) (2.62) (2.50) (2.45) (2.40) (2.37) (2.65) (2.64) 

Panel B: Risk factor loadings           

  Alpha (%) MKT SMB HML MOM ST_Rev 

1 -0.30 1.03 0.01 -0.21 0.09 0.002 

(low) (-2.04) (24.52) (0.20) (-3.18) (2.28) (2.40) 

10 0.27 1.08 0.22 -0.25 0.06 -0.001 

(high) (1.55) (18.19) (2.74) (-2.64) (1.27) (-0.94) 

L/S 0.44 0.02 0.06 0.01 0.01 -0.003 

(Equal-weights) (3.46) (0.64) (1.13) (0.14) (0.22) (-5.14) 

L/S 0.57 -0.04 0.21 -0.04 -0.03 -0.003 

(value-weights) (2.72) (0.79) (2.00) (-0.44) (-0.60) (-2.99) 
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Table 4 Fama-MacBeth regressions, 1990-2013 

This table reports the result for Fama-MacBeth return forecasting regressions. The sample period is 
from 1990 to 2013. The dependent variable is the focal firm’s monthly return (in percentage) RET and 

the key explanatory variable of interest is lagged geography-linked firms’ return (GEORET). In Column 

2, we add focal firm’s lagged value-weighted industry return (INDRET) and the lagged value-weighted 

return of a portfolio of firms headquartered in the same state as the focal firm (HQRET). In Column 3, 

we add the focal firm’s lagged tech-peer return (TECHRET) constructed following Lee et al. (2019). In 
Column 4, a portfolio of focal firm’s pseudo-conglomerate returns (PCRET) is added based on 

Compustat Segment data following Cohen and Lou (2012). In Column 5, we add the lagged returns 

from a portfolio of the focal firm’s supplier (SUPPRET) and customer (CUSTRET) industries. These 

portfolios are constructed using Bureau of Economic Analysis (BEA) Input-Output data (at the 

summary industry level) following Menzly and Ozbas (2010). In Column 6, we add the lagged returns 

of focal firms’ product market peers (TNICRET) following Hoberg and Phillips (2018).  In Column 7, 
we add the lagged returns of stocks are connected through shared analyst coverage (CFRET) following 

Ali and Hirshleifer (2019). We also control for firm size (SIZE), book-to-market ratio (BM), gross 

profitability (GP), asset growth (AG), the firm’s own lagged monthly return (RET(t-1)), and medium-

term price momentum (MOM). Other variables are defined in Appendix Table A1. The sample excludes 

financial firms (Fama-French 48 industry code between 44 and 47) and stocks with a price less than $1 
at portfolio formation. Cross-sectional regressions are run every calendar month, and the standard errors 
are Newey-West adjusted (up to 12 lags) for heteroskedasticity and autocorrelation. Fama-MacBeth t-statistics 

are reported below the coefficient estimates. Coefficients marked with ∗, ∗∗, and ∗∗∗ are significant at 10%, 5%, 

and 1%, respectively.  

  (1) (2) (3) (4) (5) (6) (7) 

  RET (%) RET (%) RET (%) RET (%) RET (%) RET (%) RET (%) 

GEORET 8.317*** 5.957*** 5.489*** 4.198** 9.463** 6.281*** 3.086** 

 (4.81) (4.01) (2.60) (2.26) (2.58) (4.09) (2.35) 

INDRET  12.08*** 5.818*** 7.569*** -2.130 8.432*** 5.140*** 

  (5.48) (2.67) (4.37) (-0.25) (3.45) (2.78) 

HQRET  5.849*** 4.755*** 6.381*** 6.273** 4.635*** 3.050*** 

  (5.64) (3.11) (4.19) (2.05) (3.64) (2.80) 

TECHRET   8.583***     

   (3.95)     

PCRET    5.800***    

    (3.61)    

SUPPRET     3.442   

     (0.42)   

CUSTRET     4.725   

     (0.54)   

TNICRET      0.891**  

      (2.10)  

CFRET       14.30*** 

       (7.13) 

RET(t-1) -2.760*** -3.173*** -4.485*** -4.704*** -4.451*** -2.630*** -4.007*** 

 (-5.50) (-6.16) (-7.23) (-7.96) (-3.84) (-3.96) (-7.33) 

SIZE -0.0425 -0.0392 -0.0687 0.000813 -0.0485 -0.0735 -0.0560 

 (-0.81) (-0.75) (-1.01) (0.02) (-0.53) (-1.07) (-1.10) 

BM 0.421** 0.444*** 0.438* 0.622*** 0.779*** 0.317 0.367** 

 (2.50) (2.74) (1.90) (3.71) (2.98) (1.54) (2.53) 

GP 0.681*** 0.649*** 0.771** 0.833*** 1.287** 0.578* 0.611*** 

 (2.89) (2.85) (2.38) (3.47) (2.53) (1.78) (2.73) 

AG -0.429*** -0.420*** -0.430*** -0.383** -0.482 -0.544*** -0.422*** 

 (-6.23) (-6.00) (-4.39) (-2.45) (-0.88) (-5.39) (-6.00) 

MOM 0.465 0.460 0.274 0.262 -0.108 -0.0546 0.472 

 (1.43) (1.38) (0.87) (0.63) (-0.24) (-0.13) (1.36) 

Constant 0.951 0.711 1.070 -0.189 0.705 0.936 1.000 

 (0.99) (0.75) (0.87) (-0.21) (0.46) (0.73) (1.02) 

Average R-sq 0.0357 0.039 0.0536 0.0493 0.0894 0.0489 0.0518 

N 723764 668117 257213 147494 171365 399911 532062 
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Table 5 Arbitrage costs and limited attention 

This table reports the results of a set of cross-sectional (time-series) analyses to evaluate the sensitivity 
of geographic momentum to proxies for limited attention, arbitrage costs and investor sentiment. The 

tests are Fama-MacBeth return forecasting regressions where the dependent variable RET is the monthly 

focal firm stock return (in percentage). The explanatory variables are the lagged geography-linked firms’ 

return (GEORET), lagged industry return (INDRET), lagged value-weighted return of a portfolio of 

firms headquartered in the same state as the focal firm (HQRET), plus a number of interaction terms. 
SIZE is the natural log of market capitalization at the end of the previous fiscal year. IO is the percentage 

of institutional ownership at the end of the previous fiscal-year end. CANALYST is the average number 

of analysts covering the focal firm and geography-linked firms at the previous year end following Ali 

and Hirshleifer (2019). IDVOL is the standard deviation of the residuals from a regression of daily stock 

excess returns in the pre-30 days on the Fama and French (1993) factors (at least ten daily returns 

required). ILLIQUIDITY and SPREAD are the Amihud illiquidity and bid-ask spread of the firm at the end 
of the previous month, respectively. SENTIMENT is the Baker and Wurgler (2007) sentiment index 

based on first principal component of five sentiment proxies. All variables are defined in Appendix 

Table A1. All the interaction terms except for the SENTIMENT are based on indicator variables that 

take the value of one if the underlying variable is above the cross-sectional median, and zero otherwise. 

For investor sentiment, we create a dummy variable equals one if SENTIMENT is above sample media, 
and zero otherwise. The usual firm-level controls are also included. The sample excludes financial firms 

(Fama-French 48 industry code between 44 and 47) and stocks with a price less than $1 at portfolio 

formation. Cross-sectional regressions are run every calendar month, and the standard errors are Newey-
West adjusted (up to 12 lags) for heteroskedasticity and autocorrelation. Fama-MacBeth t-statistics are reported 

below the coefficient estimates. Coefficients marked with ∗, ∗∗, and ∗∗∗ are significant at 10%, 5%, and 1%, 

respectively. The sample period is from 1990 to 2013.  
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(1) (2) (3) (4) (5) (6) (7) 

 
RET (%) RET (%) RET (%) RET (%) RET (%) RET (%) RET (%) 

GEORET 8.319*** 7.879*** 5.882*** 2.621** 3.044** 3.339* 4.838*** 

 (4.36) (4.40) (3.62) (1.98) (2.11) (1.71) (4.00) 

INDRET 12.18*** 11.80*** 11.15*** 12.11*** 12.04*** 11.94*** 12.080*** 

 (5.51) (5.50) (5.09) (5.55) (5.51) (5.33) (5.48) 

HQRET 5.991*** 5.894*** 4.983*** 5.498*** 5.480*** 5.468*** 5.849*** 

 (5.76) (5.72) (4.28) (5.50) (5.42) (5.01) (5.64) 

GEORET*SIZE>Median -5.463**       

 (-2.48)       

GEORET*IO>Median 
 -4.146**      

  (-2.02)      

GEORET*CANALYST>Median 
  -1.316     

   (-0.70)     

GEORET*IDVOL>Median 
   5.318***    

    (2.61)    

GEORET*ILLIQUIDITY>Median 
    4.595**   

     (2.54)   

GEORET*SPREAD>Median 
     5.753**  

      (2.41)  

GEORET*SENTIMENT>Median      
 

1.119* 

      
 

(1.87) 

RET(t-1) -3.172*** -3.220*** -3.368*** -3.278*** -3.242*** -3.172*** -3.173*** 

 (-6.15) (-6.24) (-6.18) (-6.43) (-6.34) (-6.15) (-6.16) 

SIZE -0.0556 -0.0516 -0.0980 -0.0660 -0.0393 -0.0556 -0.039 

 (-1.14) (-1.02) (-1.51) (-1.58) (-0.88) (-1.14) (-0.75) 

BM 0.446*** 0.410*** 0.302* 0.413*** 0.437*** 0.446*** 0.444*** 

 (2.76) (2.64) (1.83) (2.70) (2.84) (2.76) (2.74) 

GP 0.653*** 0.638*** 0.631*** 0.635*** 0.648*** 0.653*** 0.649*** 

 (2.89) (2.83) (2.62) (2.90) (2.98) (2.89) (2.85) 

AG -0.419*** -0.419*** -0.429*** -0.408*** -0.411*** -0.419*** -0.420*** 

 (-6.07) (-6.14) (-6.10) (-5.79) (-6.03) (-6.07) (-6.00) 

MOM 0.463 0.464 0.549 0.500 0.483 0.463 0.460 

 (1.39) (1.41) (1.58) (1.56) (1.47) (1.39) (1.38) 

CONSTANT 0.768 0.867 1.477 1.176 0.782 0.768 0.879 

 (0.84) (0.92) (1.32) (1.53) (0.95) (0.84) (1.21) 

Average R-sq 0.04 0.041 0.047 0.043 0.043 0.04 0.0424 

N 668117 661189 546712 668116 667847 668117 668117 
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Table 6 Testing the Common Exposure Channel and the Spillover Channel 
This table reports the Fama-MacBeth regressions of returns on GEORET, predicted regional economic activity 

(PREA
⊥
) and natural hazards experienced by focal firm’s geographic peers (GEO_HAZARD). The sample period 

is from 1990 to 2013. The dependent variable is the focal firm’s monthly return (in percentage) RET. Following 
Smajlbegovic (2019), the predicted regional economic activity proxy, PREA, is constructed from a linear 

combination of predicted state economic activity growth rates weighted by firm’s fraction of sales in all states it 

operates. The orthogonalized proxy PREA
⊥
 is the sum of a constant and the residuals of cross-sectional regressions 

of PREA on return sensitivities to national economic activity and the Fama and French (1993) risk factors. 

GEO_HAZARD is the weighted average of dummies indicating geo-peers that are headquartered in states affected 
by any natural disaster at month t-1. In column (2), we restrict the sample to firms that do not have establishments 
in the areas affected by natural disasters at month t and month t-1. The natural disaster data is from  SHELDUS 

(Spatial Hazard Events and Losses Database for the United States). We also include focal firm’s lagged value-
weighted industry return (INDRET) and the lagged value-weighted return of a portfolio of firms headquartered in 
the same state as the focal firm (HQRET), focal firm’s firm size (SIZE), book-to-market ratio (BM), gross 

profitability (GP), asset growth (AG), the firm’s own lagged monthly return (RET(t-1)), and medium-term price 
momentum (MOM). All variables are described in Appendix Table A1. All variables are winsorized at 1% and 

99% in the cross-section. The sample excludes financial firms (Fama-French 48 industry code between 44 and 47) 
and stocks with a price less than $1 at portfolio formation. Cross-sectional regressions are run every calendar 
month, and the standard errors are Newey-West adjusted (up to 12 lags) for heteroskedasticity and autocorrelation. 

T-statistics are in parentheses. Coefficients marked with ∗, ∗∗, and ∗∗∗ are significant at 10%, 5%, and 1%, 
respectively.  

 

  (1) (2) 

  RET(%) RET(%) 

GEORET 5.828***  

 (3.97)  

GEO_HAZARD  -1.227*** 

  (-2.71) 

INDRET 11.900*** 17.490*** 

 (5.31) (5.63) 

HQRET 5.659*** 5.427* 

 (5.94) (1.82) 

PREA
⊥ 

0.153***  

 (2.77)  

RET(t-1) -3.290*** -3.764*** 

 (-6.82) (-6.16) 

SIZE -0.040 -0.068 

 (-0.76) (-0.91) 

BM 0.476*** 0.606*** 

 (2.98) (2.80) 

GP 0.669*** 0.069 

 (2.95) (0.17) 

AG -0.426*** -0.382*** 

 (-6.15) (-4.14) 

MOM 0.452 0.476 

 (1.34) (1.57) 

Constant 0.537 1.758 

 (0.58) (1.38) 

Average R-sq 0.039 0.044 

N 662,877 107,111 
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Table 7 Returns on Earnings Announcement Days 

This table reports regressions of announcement window daily returns DRET (in percentage) on the 
geography-linked firms’ return (GEORET), earnings announcement date dummy variable (EDAY), and 

the interaction term between earnings announcement date dummy and GEORET. Geography-linked 

firms’ return (GEORET) of a focal firm is calculated as the average monthly return of geographic peers 

weighted by pairwise geographic linkage measure defined in section 3. EDAY is a dummy variable 

which equals one if the daily observation is during an earnings announcement window, and zero 
otherwise. An earnings announcement window is defined as the one-day (Column 1 and 2) or three-day 

window (Column 3 and 4) centered on an earnings announcement date. Following Engelberg et al. 

(2018), we obtain earnings announcement dates from the Compustat quarterly database, examine the 

firm’s trading volume scaled by market trading volume for the day before, the day of, and the day after 

the reported earnings announcement date, and define the day with the highest volume as the earnings 

announcement day. We control for day-fixed effect and other lagged control variables including lagged 
values for each of the past ten days for stock returns, stock returns squared, and trading volume.  Key 
variables are described in Appendix Table A1. Standard errors are clustered on time. T-statistics are in parentheses, 

coefficients marked with ∗, ∗∗, and ∗∗∗ are significant at 10%, 5%, and 1%, respectively. The sample period is 
from 1990 to 2013. 

 

 

  (1) (2) (3) (4) 

 One-day window Three-day window 

  DRET (%) DRET (%) DRET (%) DRET (%) 

GEORET 0.347*** 0.443*** 0.339*** 0.434*** 

 (2.82) (3.44) (2.76) (3.38) 

GEORET * EDAY 0.578** 0.623** 0.423** 0.458** 

 (2.04) (2.23) (2.09) (2.26) 

EDAY 0.227*** 0.264*** 0.0823*** 0.119*** 

 (13.50) (15.66) (7.37) (10.55) 

Lagged controls No Yes No Yes 

Day FE Yes Yes Yes Yes 

adj. R-sq 0.048 0.069 0.048 0.069 

N 17953058 17875817 17953058 17875817 
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Table 8 Future Earnings Surprise 

This table reports forecasting regressions of next-quarter’s standardized unexpected earnings (SUE) on 
GEORET. SUE is defined as the difference between the actual quarterly earnings per share (EPS) and 

analyst consensus forecast of quarterly EPS scaled by stock prices in the month before quarterly 

earnings announcement. GEORET is calculated based on past three-month returns of geography-linked 

peers of the focal firm. We include firm fixed effect, year-quarter fixed effect in columns 1 and 2. In 

column 3, we include industry fixed effect and year-quarter fixed effect. We add one-quarter to four-
quarter lags of the firm’s own SUEs as control variables. Key variables are described in Appendix Table 

A1. All variables are winsorized at 1% and 99% in the cross-section. In parentheses below the coefficient 
estimates, t-statistics are reported using standard errors clustered in firm and time dimensions. Coefficients 

marked with ∗, ∗∗, and ∗∗∗ are significant at 10%, 5%, and 1%, respectively. The sample period is from 1990 to 
2013.  

 

  (1) (2) (3) 

  SUE(t) SUE(t) SUE(t) 

GEORET(t-1) 0.00191** 0.00239* 0.00257* 

 (2.12) (2.02) (1.98) 

SUE(t-1)  0.0667* 0.134*** 

  (1.97) (3.25) 

SUE(t-2)  0.0306 0.0812*** 

  (1.45) (3.44) 

SUE(t-3)  -0.00743 0.0362** 

  (-0.54) (2.73) 

SUE(t-4)  0.0129 0.0543 

  (0.45) (1.51) 

Constant -0.000798*** -0.000386*** -0.000394*** 

 (-28.04) (-8.90) (-5.85) 

Firm FE YES YES NO 

Industry FE NO NO YES 

Year-quarter FE YES YES YES 

adj. R-sq 0.065 0.069 0.043 

N 163169 90493 90000 
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Table 9 Change in Short Interest Ratios 

This table reports the Fama-MacBeth regressions of change in short interest ratios (SR_change) on 
GEORET. The dependent variable is the focal firm’s monthly change in short interest ratios (SR_change) 

and the key explanatory variable of interest is one-month lagged geography-linked firms’ return 

(GEORET). We also include focal firm’s firm size (SIZE), book-to-market ratio (BM), gross 

profitability (GP), asset growth (AG), the firm’s own lagged monthly return (RET(t-1)), and medium-

term price momentum (MOM). Key variables are described in Appendix Table A1. All variables are 
winsorized at 1% and 99% in the cross-section. The sample excludes financial firms (Fama-French 48 

industry code between 44 and 47) and stocks with a price less than $1 at portfolio formation. Cross-

sectional regressions are run every calendar month, and the standard errors are Newey-West adjusted 
(up to 12 lags) for heteroskedasticity and autocorrelation. T-statistics are in parentheses. Coefficients marked with 

∗, ∗∗, and ∗∗∗ are significant at 10%, 5%, and 1%, respectively. The sample period is from 1990 to 2013. 

 

  (1) (2) 

  SR_change (%) (t) SR_change (%) (t) 

GEORET(t-1) -0.190*** -0.196*** 

 (-3.00) (-2.84) 

INDRET(t-1)  0.010 

  (0.20) 

HQRET(t-1)  0.142*** 

  (3.14) 

RET(t-1) 0.176*** 0.174*** 

 (3.89) (3.70) 

SIZE 0.002 0.002 

 (1.31) (1.24) 

BM -0.010*** -0.010*** 

 (-3.89) (-4.43) 

GP -0.017*** -0.018*** 

 (-3.12) (-3.23) 

AG 0.021*** 0.022*** 

 (3.66) (3.66) 

MOM 0.052*** 0.052*** 

 (5.35) (5.43) 

Constant -0.010 -0.009 

 (-0.44) (-0.37) 

Average R-sq 0.013 0.014 

N 630,026 581,907 
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Table 10 Lead-lag Effects in Analyst Forecast Revisions 

This table reports the results of Fama-MacBeth regressions in which the dependent variable is the 
analyst forecast revision. FRP and FRB are the monthly change in analyst consensus forecast of annual 

EPS scaled by lagged stock price and book value of equity per share, respectively. GEOFRP(t-1) is the 

weighted average analyst forecast revisions of a focal firm’s geography-linked peers in the previous 

month, using the geographic linkage measure defined in section 3 as weights. INDFRP(t-1) is measured 

as the market capitalization-weighted average forecast revisions of all other firms in the same Fama-
French 48 industry as the focal firm. STATEFRP(t-1) is measured as the equal-weighted average forecast 

revisions of all other firms headquartered in the same state as the focal firm. ANALYSTFRP(t-1) is 

calculated as the weighted average forecast revisions of analyst-linked peers, using the weights defined 

in Ali and Hirshleifer (2019).  GEOFRB, STATEFRB, INDFRB, and ANALYSTFRB are constructed in 

a similar way based on FRB. Control variables include the 1-month lagged forecast revisions, past 1-

month return, past 12-month return (excluding the most recent month), log of market capitalization, and 
log of book-to-market ratio. Key variables are described in Appendix Table A1. The sample excludes 

financial firms (Fama-French 48 industry group between 44 and 47) and stocks with a price less than 
$1 at portfolio formation. Fama-MacBeth t-statistics are reported below the coefficient estimates. Coefficients 

marked with ∗, ∗∗, and ∗∗∗ are significant at 10%, 5%, and 1%, respectively. The sample period is from 1990 to 

2013.  

 

 
 

 

 

 

 FRP(t) FRP(t) FRB(t) FRB(t) 
GEOFRP(t-1) 0.0528*** 0.0313***   

 (4.20) (2.73)   
STATEFRP(t-1)  0.0155**   

  (2.18)   
INDFRP(t-1)  0.134***   

  (7.31)   
ANALYSTFRP(t-1)  0.0920***   

  (8.84)   
GEOFRB(t-1)   0.0370*** 0.0248* 

   (2.83) (1.94) 
STATEFRB(t-1)    0.00777 

    (1.39) 

INDFRB(t-1)    0.0448*** 

    (5.10) 

ANALYSTFRB(t-1)    0.0231*** 

    (4.38) 
FRP(t-1) 0.0472*** 0.0407***   

 (9.36) (8.50)   
FRB(t-1)   0.0503*** 0.0484*** 
   (7.59) (7.40) 

RET(t-1) 0.00905*** 0.00905*** 0.0204*** 0.0204*** 

 (14.49) (14.51) (19.60) (19.65) 

RET(t-13, t-2) 0.00113*** 0.00110*** 0.00264*** 0.00261*** 

 (8.52) (8.51) (9.34) (9.35) 
SIZE 0.000273*** 0.000271*** 0.000662*** 0.000668*** 

 (15.24) (15.22) (14.73) (15.51) 
BM -0.000488*** -0.000475*** 0.00200*** 0.00201*** 

 (-5.59) (-5.98) (6.87) (6.95) 

Constant -0.00573*** -0.00551*** -0.0156*** -0.0154*** 

 (-16.21) (-15.72) (-17.10) (-17.33) 

Average R-sq 0.0383 0.0428 0.0341 0.0363 
N 456785 454719 443155 441177 
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Figure 1. Cumulative performance of the trading strategy.  

This graph shows the time series evolution of a $1 investment in each of three portfolios. The red line 
is a market (S&P500) portfolio, where dividends are reinvested in the market. The blue (green) line 

represents a long-only strategy that value-weights the top (bottom) 10% of firms ranked by the return 

of its geography-linked peers (GEORET) at the end of the previous month. The portfolios are monthly 

rebalanced and sample period is from 1990 to 2013.  
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Figure 2. Long-Short Portfolio Performance Persistence 

This figure plots the cumulative returns of the long-short portfolio in the six months after portfolio 
formation. At the beginning of every calendar month, all firms are ranked in ascending order on the 

basis of the return of a portfolio of its geography-linked peers (GEORET) at the end of the previous 

month. The ranked stocks are assigned to one of ten decile portfolios. All stocks are value- (equal-) 

weighted within each portfolio, and the portfolios are rebalanced every calendar month to maintain 

value- (equal-) weights. The long-short portfolio is a zero-cost portfolio that buys the top decile and 
sells short the bottom decile. The graph depicts the cumulative returns to both an equal-weighted 

(dashed line) and a value-weighted (dotted line) long-short portfolio. The sample excludes financial 

firms and stocks with a price of less than $1 at portfolio formation. The sample period is from 1990 to 

2013.  
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Appendix Table A1: Variable Definitions 

 
Variables Definition   

GEO Geographic linkage measure 𝐺𝐸𝑂𝑖𝑗𝑡 is defined the uncentered correlation of the 

distribution of establishment sales between two firms i and j across all counties in 
US. Establishment-level sales data is from NETS publicly listed database.  

GEORET Geography-linked return is defined as the weighted average return of a focal firm’s 

geography-linked firms, using the geographic linkage GEO as weights.  
RET Stock monthly raw return adjusted for delisting bias following Shumway (1997).  

INDRET Industry return, defined as value-weighted average return of Fama-French 48 
industries.  

HQRET Value-weighted return of a portfolio of firms headquartered in the same state as the 

focal firm.  
SIZE The natural logarithm of market capitalization at the end of June in each year. 

BM Book-to-market ratio is the most recent fiscal year-end report of book value divided 

by the market capitalization at the end of calendar year t-1. Book value equals the 
value of common stockholders’ equity, plus deferred taxes and investment tax 
credits, and minus the book value of preferred stock. 

GP Gross profitability is defined as sales revenue minus cost of goods sold scaled by 
assets, following Novy-Marx (2013). 

AG Asset growth is defined as year-over-year growth rate of total asset, following 
Cooper, Gulen, and Schill (2008).  

MOM Medium-term price momentum variable, defined as focal firm’s stock return for 

the last 12 months excluding the most recent month. 
RET (-1) Lagged monthly raw return, or short-term return reversal variable, defined as focal 

firm’s stock return in month t-1. 

SUE Standardized unexpected earnings (SUE) is defined as the difference between the 
actual quarterly earnings per share (EPS) and analyst consensus forecast of 

quarterly EPS scaled by stock prices in the month 
before quarterly earnings announcement.  

FRP (FRB) 

 
IO  
 

CANALYST 
 
SPREAD 

 
ILLIQUIDITY 

 
IDVOL 

One-month-ahead revision in consensus annual EPS forecast on the focal firm 

scaled by lagged stock price (book value of equity per share).  
The percentage of institutional ownership at the end of the previous fiscal-year end.  
Average number of analysts covering the focal firm and geography-linked peers at 

the previous year-end.  
Bid-ask spread is calculated based on daily high and low prices following Corwin 
and Schultz (2012).  

Following Amihud (2002), Illiquidity is defined as the average daily ratio of 
absolute stock return to the dollar trading volume within a  month. 

Idiosyncratic volatility is defined as the standard deviation of the residuals from a 
regression of daily excess stock returns on Fama and French (1993) three factors 
within a month (at least ten daily returns required) following Ang, Hodrick, Xing, 

and Zhang (2006).  
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Appendix Table A2 Long-horizon lags 

This table reports Fama-MacBeth return forecasting regressions. The sample period is from 1990 to 
2013. The dependent variable is the focal firm’s monthly return (in percentage) RET. The key 

explanatory variables of interest are lagged geography-linked firms’ return over past 6 months in 

column 1 (GEORET (t-6, t-1)), over past 12 months in column 2 (GEORET(t-12, t-1)), and over past 

24 months in column 3 (GEORET(t-24,t-1)). Other variables are defined in Appendix Table A1. The 

sample excludes financial firms (Fama-French 48 industry code between 44 and 47) and stocks with a 
price less than $1 at portfolio formation. Cross-sectional regressions are run every calendar month, and 
the standard errors are Newey-West adjusted (up to 12 lags) for heteroskedasticity and autocorrelation. Fama-

MacBeth t-statistics are reported below the coefficient estimates. Coefficients marked with ∗, ∗∗, and ∗∗∗ are 

significant at 10%, 5%, and 1%, respectively.  

 

 

  (1) (2) (3) 

GEORET (t-6, t-1) 1.678**     

 (2.25)   

GEORET (t-12, t-1)  0.918**  

  (2.40)  

GEORET (t-24, t-1)   0.381 

   (1.28) 

INDRET 12.02*** 11.48*** 10.73*** 

 (5.43) (5.33) (5.02) 

HQRET 6.249*** 6.114*** 5.901*** 

 (5.17) (5.33) (4.94) 

RET(t-1) -3.213*** -3.200*** -3.313*** 

 (-6.20) (-6.10) (-6.19) 

SIZE -0.0446 -0.0593 -0.0556 

 (-0.83) (-1.09) (-1.01) 

BM 0.469*** 0.461*** 0.430** 

 (2.86) (2.77) (2.49) 

GP 0.616*** 0.606*** 0.532** 

 (2.70) (2.61) (2.18) 

AG -0.435*** -0.431*** -0.558*** 

 (-6.20) (-5.90) (-6.30) 

MOM 0.412 0.365 0.266 

 (1.23) (1.07) (0.78) 

CONSTANT 0.727 0.945 1.001 

 (0.79) (0.99) (0.98) 

Average R-sq 0.0398 0.0397 0.0399 

N 658799 647766 588004 
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Appendix Table A3 Robustness Tests. 

This table reports various robustness tests for Fama-MacBeth return forecasting regressions. The sample period is from 1990 to 2013. The dependent variable 
is the focal firm’s monthly return (in percentage) RET and the key explanatory variable of interest is lagged geography-linked firms’ return (GEORET). In 

Column 1 and 2, we exclude stocks with price less than $5 or market capitalization below the 10th NYSE percentile, respectively. In column 3, we restrict our 

sample to focal firms with establishments in at least two counties. Columns 4 and 5 report the results for two subperiods: 1990-2001 and 2002–2013. Columns 

6-8 shows the results by using GEORET constructed using geographic linkage measures lagged by 1, 3 and 5 years, respectively. In column 9, we construct the 

GEORET using the top 50 geo-peers of the focal firm. In Column 10, we construct geographic linkage measure using number of employees at firm 
establishments. Other variables are defined in Appendix Table A1. The sample excludes financial firms (Fama-French 48 industry code between 44 and 47) 

and stocks with a price less than $1 at portfolio formation. Cross-sectional regressions are run every calendar month, and the standard errors are Newey-West 
adjusted (up to 12 lags) for heteroskedasticity and autocorrelation. Fama-MacBeth t-statistics are reported below the coefficient estimates. Coefficients marked with ∗, ∗∗, and 

∗∗∗ are significant at 10%, 5%, and 1%, respectively.  
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Stock price 
greater than 

$5  

Mktcap 

above 10th 
NYSE 

percentile 

Establishments 

in >=2 counties 

1990-2001 2002-2013 

GEO lagged 

by 1 year 

GEO lagged 

by 3 year 

GEO lagged 

by 5 years 

Top 50 geo-

peer firms 

Construct GEO 

using employment       

GEORET 3.741*** 4.989*** 6.574*** 6.406*** 5.426*** 5.870*** 4.706*** 4.638*** 2.721*** 6.112*** 

 (2.78) (2.98) (3.85) (2.75) (3.24) (3.91) (3.59) (3.97) (3.86) (4.13) 

INDRET 10.26*** 8.992*** 10.88*** 17.24*** 5.987** 11.79*** 10.67*** 8.789*** 12.26*** 12.21*** 

 (4.95) (4.00) (4.67) (7.05) (2.11) (5.22) (5.26) (3.98) (5.53) (5.52) 

HQRET 4.033*** 3.558*** 5.625*** 6.585*** 4.978*** 6.043*** 5.587*** 5.450*** 6.418*** 5.758*** 

 (3.71) (2.93) (5.19) (4.72) (3.25) (5.88) (4.90) (4.33) (5.54) (5.69) 

RET(t-1) -2.364*** -2.393*** -3.680*** -4.408*** -1.714*** -3.136*** -3.055*** -2.567*** -3.167*** -3.181*** 

 (-4.74) (-4.07) (-6.83) (-6.68) (-2.84) (-6.10) (-5.92) (-4.96) (-6.15) (-6.21) 

SIZE -0.0101 -0.0410 -0.0985** -0.0282 -0.0521 -0.0444 -0.0145 -0.00686 -0.0396 -0.0376 

 (-0.26) (-0.78) (-2.14) (-0.37) (-0.77) (-0.86) (-0.29) (-0.14) (-0.76) (-0.72) 

BM 0.376* 0.502** 0.435*** 0.488** 0.393* 0.457*** 0.476*** 0.368** 0.442*** 0.447*** 

 (1.84) (2.29) (2.81) (2.06) (1.83) (2.82) (2.91) (2.30) (2.72) (2.76) 

GP 0.703*** 0.562** 0.686*** 0.912** 0.337 0.611*** 0.597*** 0.592** 0.647*** 0.639*** 

 (2.87) (2.02) (3.08) (2.45) (1.63) (2.71) (2.69) (2.54) (2.86) (2.81) 

AG -0.272*** -0.324*** -0.450*** -0.370*** -0.480*** -0.392*** -0.373*** -0.386*** -0.422*** -0.424*** 

 (-3.72) (-4.85) (-4.60) (-4.60) (-4.00) (-5.16) (-4.38) (-3.72) (-6.02) (-6.00) 

MOM 0.565* 0.479 0.222 1.175*** -0.385 0.399 0.308 0.255 0.461 0.457 

 (1.76) (1.34) (0.56) (7.04) (-0.64) (1.22) (0.95) (0.80) (1.38) (1.38) 

CONSTANT 0.339 0.870 1.550* 0.274 1.228 0.777 0.335 0.330 0.773 0.702 

 (0.43) (0.87) (1.82) (0.21) (0.86) (0.83) (0.36) (0.35) (0.81) (0.74) 

Average R-
sq 0.0476 0.0591 0.0431 0.0448 0.0322 0.0396 0.0418 0.0422 0.0386 0.039 

N 511251 397499 483354 374609 293508 668997 659754 630981 668117 669820 
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Appendix Table A4 Subsample tests for manufacturing and non-manufacturing firms 
This table reports the Fama-MacBeth regressions of returns on GEORET for the subsample of manufacturing and 
non-manufacturing firms. Firms with 2-digit NAICS code in the range of 31-33 are classified as manufacturing 

firms while others are classified as non-manufacturing firms. The sample period is from 1990 to 2013. The 
dependent variable is the focal firm’s monthly return (in percentage) RET. We also include focal firm’s lagged 
value-weighted industry return (INDRET) and the lagged value-weighted return of a portfolio of firms 

headquartered in the same state as the focal firm (HQRET), focal firm’s firm size (SIZE), book-to-market ratio 
(BM), gross profitability (GP), asset growth (AG), the firm’s own lagged monthly return (RET(t-1)), and medium-
term price momentum (MOM). All variables are described in Appendix Table A1. All variables are winsorized at 

1% and 99% in the cross-section. The sample excludes financial firms (Fama-French 48 industry code between 
44 and 47) and stocks with a price less than $1 at portfolio formation. Cross-sectional regressions are run every 

calendar month, and the standard errors are Newey-West adjusted (up to 12 lags) for heteroskedasticity and 

autocorrelation. T-statistics are in parentheses. Coefficients marked with ∗, ∗∗, and ∗∗∗ are significant at 10%, 
5%, and 1%, respectively.  
 

  Manufacturing Non-manufacturing 

 RET (%) RET (%) 

GEORET 5.385** 6.254*** 

 (2.57) (3.78) 

INDRET 9.546*** 15.48*** 

 (3.99) (4.97) 

HQRET 4.881*** 5.853*** 

 (3.33) (5.04) 

RET(t-1) -3.993*** -2.465*** 

 (-7.15) (-4.42) 

SIZE -0.0228 -0.0455 

 (-0.41) (-0.85) 

BM 0.625*** 0.315** 

 (3.21) (2.20) 

GP 0.588* 0.750*** 

 (1.78) (3.16) 

AG -0.427*** -0.390*** 

 (-4.93) (-4.29) 

MOM 0.368 0.538 

 (1.10) (1.56) 

CONSTANT 0.657 0.626 

 (0.65) (0.65) 

Average R-sq 0.0444 0.0438 

N 346086 322031 
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