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Abstract
1.	 Social network methods have become a key tool for describing, modelling and 

testing hypotheses about the social structures of animals. However, due to the non- 
independence of network data and the presence of confounds, specialised statistical 
techniques are often needed to test hypotheses in these networks. Datastream per-
mutations, originally developed to test the null hypothesis of random social structure, 
have become a popular tool for testing a wide array of null hypotheses in animal social 
networks. In particular, they have been used to test whether exogenous factors are re-
lated to network structure by interfacing these permutations with regression models.

2.	 Here, we show that these datastream permutations typically do not represent the 
null hypothesis of interest to researchers interfacing animal social network analy-
sis with regression modelling, and use simulations to demonstrate the potential 
pitfalls of using this methodology.

3.	 Our simulations show that, if used to indicate whether a relationship exists between 
network structure and a covariate, datastream permutations can result in extremely 
high type I error rates, in some cases approaching 50%. In the same set of simulations, 
traditional node-label permutations produced appropriate type I error rates (~5%).

4.	 Our analysis shows that datastream permutations do not represent the appro-
priate null hypothesis for these analyses. We suggest that potential alternatives 
to this procedure may be found in regarding the problems of non-independence 
of network data and unreliability of observations separately. If biases introduced 
during data collection can be corrected, either prior to model fitting or within the 
model itself, node-label permutations then serve as a useful test for interfacing 
animal social network analysis with regression modelling.
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1  | INTRODUC TION

Social structure, defined as the patterning of repeated interactions 
between individuals (Hinde, 1976), represents a fundamental charac-
teristic of many animal populations with far-reaching consequences 
for ecology and evolution, including for gene-flow, social evolu-
tion, pathogen transmission and the emergence of culture (Kurvers 
et al., 2014). The last two decades have seen widespread adoption of 
social network methods in animal behaviour research to quantify so-
cial structure (Webber & vander Wal, 2019). The network framework 
is appealing because it explicitly represents the relationships between 
social entities from which social structure emerges (Hinde, 1976), and 
thus allows tests of hypotheses about social structure at a variety 
of scales (individual, dyadic, group, population). Social networks can 
be based on direct observations of interactions, or inferred from 
other data types, such as groupings of identified individuals (Franks 
et al., 2010), GPS tracks (Spiegel et al., 2016), proximity loggers (Ryder 
et al., 2012) or time series of detections (Psorakis et al., 2012).

The analysis of animal social network data presents a statistical 
challenge. Specifically, two separate issues must be addressed. First, 
network data are inherently non-independent, thus violating the as-
sumptions of independent observations inherent to many commonly 
used statistical tests. Second, factors outside of social structure, 
such as data structure and observation bias, may influence the struc-
ture of observed animal social networks, potentially leading to both 
type I and type II errors in statistical tests (Croft et al., 2011).

To address the problem of non-independence, a wide array of 
statistical tools have been developed, primarily in the social sci-
ences. These methods include permutation techniques that allow for 
hypothesis testing in the presence of non-independence. These per-
mutations normally test relationships between exogenous variables 
and network properties, such as the presence and strength of social 
ties, or the centrality of nodes in the network. These methods typi-
cally build empirical null distributions by randomly assigning the lo-
cation of nodes in the network, while holding the network structure 
constant (‘node-label permutations’), therefore representing the 
null hypothesis that the network measure serving as the response 
is unrelated to the predictor, while controlling for network structure 
and non-independence. The resulting null distribution maintains the 
non-independence inherent to the network while breaking any rela-
tionship that exists between network structure and potential covari-
ates (Dekker et al., 2007).

While these methods are useful for dealing with the issue of 
non-independence, they do not address the second issue, from 
which studies of animal social systems in particular often suffer. 
Because the methods developed in the social sciences only permute 
the final constructed network, they do not inherently account for 
common biases in the collection of the raw observational data used 
to construct the final network. These biases may be introduced by 
the method of data collection (e.g. group-based observations), indi-
vidual differences in identifiability or demographic processes (James 
et  al.,  2009). For example, consider a situation where researchers 
are interested in differences in social position between sexes, but 

females are more cryptic and thus observed with a lower probability. 
This would lead to incorrect inferences due to biases in the observed 
network structure that are unrelated to the true social processes of 
interest (Farine, 2017). To deal with these problems, a suite of al-
ternative permutation procedures has been developed. Rather than 
permuting the final network, these methods permute the raw data 
used to construct the network. These methods are therefore some-
times referred to as ‘pre-network permutations’ or ‘datastream per-
mutations.’ The goal is to construct permuted datasets that maintain 
structures of the original data that may influence the observed net-
work structure (e.g. the number of times individuals were observed 
and the sizes of observed groups), while removing the social prefer-
ences that underpin the social network (Farine & Whitehead, 2015).

The original datastream permutation technique for animal social 
data was proposed by Bejder et al. (1998), based on the procedure 
outlined by Manly (1997) for ecological presence–absence data. 
Bejder et al.’s procedure was designed to test whether a set of ob-
served groupings of identified animals showed signs of non-random 
social preferences. This procedure permutes a group-by-individual 
matrix, where rows are groups and columns are individuals, with 1 
representing presence and 0 indicating absence. The algorithm finds 
2 by 2 ‘checkerboard’ submatrices, with 0s on one diagonal and 1s on 
the other, that can be ‘flipped’ (0s replaced with 1s and vice versa). 
These flips maintain row and column totals (the group size and ob-
servations per individual, respectively), but permute group mem-
bership. In biological terms, matrices generated with this procedure 
represent the null hypothesis that individuals associated completely 
at random, given the observed distribution of group sizes and the 
number of sightings per individual.

Refinements of this method were later developed that constrained 
swaps within time periods, classes of individual or locations (Whitehead 
et al., 2005). One alteration also controls for gregariousness, and al-
lows for permutation of data not constructed using group membership 
(Whitehead, 1999). Controlling for gregariousness and sighting history 
is possible when each sampling period is represented as a square ma-
trix, where 1 indicates that individuals associated in that period and 0 
indicates no association. In this format, the data can be permuted in 
a way that maintains the number of associates each individual had in 
each sampling period (Whitehead, 1999).

In recent years, datastream permutation methods have been 
developed that can handle more complex data structures, such as 
GPS tracks (Spiegel et al., 2016), time series of detections (Psorakis 
et al., 2015) and focal follow data (Farine, 2017). All of these meth-
ods have in common that they essentially randomise raw observa-
tions of social association (or interactions) data and thus remove 
social structure while maintaining most other features of the data, 
including features potentially causing biased measurements of so-
cial structure. They thus provide a robust null distribution to test 
for non-random social structure in a dataset, which is a key step in 
understanding the behavioural ecology of wild populations.

Many empirical studies and methodological guides have sug-
gested interfacing these null models with other statistical tech-
niques, particularly regression models (including ordinary least 
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squares, generalised linear models and mixed-effects models), to 
test hypotheses about network structure. The logic of this recom-
mendation is that permutation-based null models allow researchers 
to account for sampling issues when testing hypotheses using these 
common statistical models. However, it is important to recognise 
the limitations of this approach, and to think carefully about the 
null hypothesis that these methods specify. In common datastream 
permutation null models, the null hypothesis specified is that the 
population's social structure is random, once we control for the 
structure of the data and other confounds. For a particular quan-
tity of interest, such as edge weights or node centralities, this null 
hypothesis can be equivalently stated as proposing that all variance 
in a given network metric is due to data structure, confounds and 
residual variance. In network terminology, this null hypothesis is a 
random graph, within a set of constraints. This is precisely the null 
hypothesis that these permutations were designed to test, as they 
were originally intended as a tool for detecting non-random social 
structure. However, we feel there has been a lack of consideration 
about whether this null hypothesis is appropriate in other contexts, 
such as regression modelling.

1.1 | Regression models in the context of social 
network analysis

Most regression applications in social network analysis can be broadly 
considered in two broad categories: nodal regression and dyadic re-
gression. In the case of dyadic regression, researchers are interested 
in determining if the strength or presence of social relationships them-
selves are predicted by some dyadic variable, such as kinship or simi-
larity in some trait. Nodal regression, on the other hand, represents 
hypotheses linking individual level traits, such as age, sex or personal-
ity, with the position of nodes within the network, as summarised by 
any number of centrality measures. Here, we will investigate whether 
datastream permutations specify the appropriate null hypothesis for 
the typical inferences in these two regression contexts.

Consider the basic linear model:

where Y is a response variable, X is a matrix of predictor variables, ε is 
the error term and β is a vector of estimated coefficients. The structure 
of Y, X and ε differ between dyadic and nodal regression contexts. In 
dyadic regression, Y is the N × N adjacency matrix (where N is the num-
ber of individuals in the network), X is a p × N × N array of predictors 
(where p is the number of predictors) and � is a square matrix. In nodal 
regression, Y is instead a vector of centrality measures of length N, X is 
a p × N matrix and � is a vector of length N.

We are typically interested in testing the null hypothesis β = 0, 
representing no relationship between the response Y and the pre-
dictor(s) X. In permutation-based hypothesis testing procedures, this 
null hypothesis is tested by calculating a test statistic (such as the co-
efficient β or the t statistic) in the observed data, and then repeatedly 

shuffling either X or Y to build a null distribution of this statistic. These 
permutations maintain the distribution of both X and Y, but break 
the covariance between them (Anderson & Robinson, 2001). This is 
the logic behind traditional permutation tests for regression in social 
networks, such as node-label permutations and multiple regression 
quadratic assignment procedures (MRQAP; Croft et al., 2011).

Datastream permutations, however, do something very different, 
which is inappropriate for testing the null hypothesis of no relationship 
between the response Y and the predictor(s) X. By permuting the data 
underlying network measures and then re-calculating the response 
variable, these procedures change the distribution of Y, instead of 
breaking relationships between the variables (Figure 1). If the network 
has non-random social structure, even structure entirely unrelated to 
X, then we will typically see a reduction in the variance of Y as we per-
mute the raw data. When Y has a larger variance in the observed data 
than in the permutations, more extreme values of β are more likely to 
occur in the observed data, even if the null hypothesis is true. This pro-
cedure is therefore likely to result in much higher rates of false positive 
(type I) error than is acceptable (Figure 1).

The problem here extends beyond the technical issue of reduced 
variance in the permuted datasets. There is a fundamental problem 
with this approach when it comes to testing hypotheses using re-
gression models. When researchers fit regression models to predict 
network properties from exogenous variables, the null hypothesis 
they will typically be testing against can be stated as ‘the variation 
in network structure is not related to the exogenous variable.’ This, 
however, is not the null hypothesis tested by the commonly used 
datastream permutation methods. Rather, the null hypothesis that is 
proposed by these datastream permutations could be stated as ‘the 
degree of variation in network structure and its relationship to the 
exogenous variable are both due to random interactions of individ-
uals within constraints.’ The researcher cannot disentangle the null 
hypothesis of no relationship between the network and the predictor 
from the null hypothesis of random social structure. In other words, 
a significant result from this procedure could be due to a relationship 
between the predictor and the network, or because individuals do 
not interact at random, whether or not the true social structure is re-
lated to the predictor. This fundamental mismatch between the null 
hypothesis of interest and that tested by the datastream permuta-
tion algorithm makes tests of regression models using this procedure 
nearly uninterpretable.

To further illustrate the problems that occur when combining 
datastream permutations of animal social network data with re-
gression we provide two simulated scenarios. In these scenarios, we 
generate datasets with simple, but non-random social structure. We 
then introduce a random exogenous variable that has no relation-
ship to social structure, and test for a relationship between network 
structure and this variable with linear models, using datastream per-
mutations to determine statistical significance. We show that even 
in the absence of any true relationship between exogenous variables 
and social structure, datastream permutations are highly prone to 
producing significant p-values when social structure is non-random. 
We caution against using these datastream permutations to test the 

(1)Y=�X+�,
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F I G U R E  1   Example of the mechanism by which datastream permutations may lead to false positives in linear regression. In the original 
network, there is variation in strength among individuals driven by differences in gregariousness (represented by node size in the social 
networks). Individuals are assigned a trait value (represented by colour in the social network) unrelated to their network position. By chance, 
there is a slight negative relationship between network strength and trait value in the observed network. After several permutations, there 
is a reduction in the variance in the strength of individuals in the permuted network, and thus the magnitude of the relationship is reduced. 
The bottom histogram shows the distribution of null coefficients after 10,000 permutations (black), and the coefficient from the original 
linear model (red)
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coefficients of regression models, and we discuss possible solutions 
and alternative methods for regression analysis in social networks.

2  | MATERIAL S AND METHODS

2.1 | General framework

We carried out simulations across two different scenarios, reflecting 
common research questions in animal social network analysis. The 
first scenario simulates a case in which researchers are interested in 
whether dyadic covariates (e.g. kinship or phenotypic similarity) in-
fluences the strength of social bonds, which we will refer to as a case 
of ‘dyadic regression’. The second scenario simulates a case when 
researchers are interested in how a quantitative individual trait (e.g. 
age or personality) influences individual network position, which we 
refer to as ‘nodal regression’.

While the methods of network generation differ slightly for each 
scenario, the general steps are the same:

1.	 Generate observations of a network in which the quantity of 
interest (edge weight or node centrality) has inherent variation.

2.	 Generate values for a trait that are unrelated to this variation.
3.	 Fit a linear model with the network property as the response vari-

able and the trait as the predictor.
4.	 Create permuted versions of the observed network via a common 

datastream permutation.
5.	 Compare the original model's test statistics to those from the per-

muted data sets to calculate a p-value.

For each simulation, we perform 200 runs, with varying pa-
rameter values (Table 1). For each run of both simulations, we pro-
duce six outputs. The first two outputs are the p-values from the 
datastream permutation test when using either the coefficient or t-
value as the test statistic. We additionally calculate the p-values for 
the same two test statistics using node-label permutations, although 
further analysis showed that the t statistic and coefficient always 
produced identical results in these cases. The final two outputs give 

information about the characteristics of the dataset not given by the 
initial inputs. The first is the standard deviation of the response vari-
able (either the edge weights or strengths), indicating the degree of 
non-randomness in the social structure, and the second is the aver-
age number of sightings per individual, a common measure of sam-
pling effort in social network studies.

All simulations and subsequent analyses were performed in R 
(R Core Team,  2020), using the packages asnipe (Farine,  2019), lhs 
(Carnell, 2019) and truncnorm (Mersmann et al., 2018).

2.2 | Dyadic regression: Does similarity in a trait 
predict the strength of social relationships?

In our first simulation, we investigate the case in which the re-
searcher is interested in the influence of a dyadic predictor (such 
as similarity in phenotype or kinship) on the rates at which dyads 
associate or interact. Our simulation framework is heavily inspired 
by those of Whitehead and James (2015) and Farine and Whitehead 
(2015). We simulate a population of N individuals, and assign each 
dyad an association probability pij from a beta distribution with mean 
μ and precision ϕ (α  =  μϕ, β  =  (1  −  μ) ϕ). By assigning association 
probabilities in this way, we create non-random social preferences 
in the network, and thus larger variance in edge weights than would 
be expected given the random association (Whitehead et al., 2005).

We then simulate τ sampling periods. For simplicity, individuals 
are sighted in each sampling period with a constant probability o, 
and associations between dyads where both individuals are sighted 
occur with probability pij. We then build the observed association 
network by calculating dyadic simple ratio indices (SRI):

where Xij is the total number of sampling periods in which i and j were 
observed associating, and Dij is the total number of periods in which ei-
ther i or j was observed (including periods where they were observed, 
but did not associate with any individuals).

(2)SRIij=
Xij

Dij

,

Parameter Meaning Dyadic Nodal Range

N Number of individuals in 
population

✓ ✓ 20–100

μ Mean association probability ✓ 0.01–0.5

t Number of sampling periods ✓ 20–200

ϕ Precision of beta distribution  
for association probabilities

✓ 1–10

o Observation probability per 
sampling period

✓ 0.1–1

G Number of observed groupings ✓ 20–500

M Maximum grouping size ✓ 5–10

σ Standard deviation of group size 
preference

✓ 0.1–2.0

TA B L E  1   Ranges for varied parameters 
used in simulations
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We then assign each individual a trait value from a uniform distri-
bution (0, 1). We do not need to specify what this trait represents for 
our simulation, but it could represent any quantitative trait used as a 
predictor in social network studies (age, personality, cognitive abil-
ity, dominance rank, parasite load, etc.). Note that the trait value is 
generated after the observations of association and has no influence 
on any network property.

We then fit the linear model:

and save the estimate of �1 and the associated t statistic. We com-
pare this coefficient and t statistic to a null model generated using 
the sampling period permutation method proposed by Whitehead 
(1999). There are several algorithms available to perform these 
swaps. We use the ‘trial swap’ procedure described by Miklós and 
Podani (2004) and suggested for social network studies by Krause 
et al. (2009). For each trial, this procedure chooses an arbitrary 2 by 
2 submatrix of the lower triangle within a random sampling period. If 
a swap is possible, it is performed (and symmetrised), otherwise the 
matrix stays at its current state. These steps when the matrix is not 
changed are referred to as ‘waiting steps’. This algorithm is ideal be-
cause it ensures that the Markov chain samples the possible matrices 
uniformly, while other algorithms that do not include waiting steps 
exhibit biases in their sampling of the possible matrices (Miklós & 
Podani, 2004). We generate 10,000 permuted datasets for each sim-
ulation, with 1,000 trial swaps between each permutation, and re-fit 
our linear model to each permuted dataset, recording the coefficient 
and t statistic. We then use these distributions to calculate p-values 
for the linear model's coefficient. Across the 200 runs, we vary the 
parameters of the simulation by drawing μ, ϕ, N, o and τ randomly 
using Latin hypercube sampling (Table 1).

2.3 | Nodal regression: Do individual traits influence 
network centrality?

We next investigate the same concept in the context of nodal re-
gression. This form of analysis tests whether some individual attrib-
ute is related to variation in network position. This is perhaps the 
most common use of datastream permutation null models for testing 
the significance of linear regression coefficients in animal social net-
works (e.g. Cowl et al., 2020; Poirier & Festa-Bianchet, 2018; Zeus 
et al., 2018). For simplicity, we focus on strength, which is simply the 
sum of an individual's edge weights.

In this simulation, we consider the case where networks are 
derived from patterns of shared group membership (‘gambit of the 
group’). This form of data collection is extremely common in animal 
social network studies, and was the basis for the original datastream 
null model developed by Bejder et al. (1998).

The framework for this simulation is based on that used by Firth 
et al. (2017). We simulate G observations of groupings in a popula-
tion of N individuals. Each group is assigned a group size S from a 

discrete uniform distribution on [1, M]. We assign each individual a 
preference for a particular group size P from a truncated normal dis-
tribution with mean (1 + M)/2, standard deviation σ, lower bound 0 
and upper bound M. Higher values of σ will therefore lead to higher 
variation in gregariousness in the population. For each group g, 
membership is determined by sampling Sg individuals without re-
placement, with individual sampling probability determined by the 
size of group g and each individual's group size preference:

This gives the simulation the property that individuals with higher as-
signed gregariousness scores tend to occur in larger groups, and vice 
versa. This leads to non-random differences in gregariousness (and 
thus strength centrality) between individuals. We then calculate the 
association network, again using the SRI:

where Xij is the number of groups in which the dyad was seen together, 
and Yi and Yj are the number of groups in which only i or only j were 
seen respectively. After calculating the network, we determine each in-
dividual's strength. We again generate a trait value for each individual 
at random from a uniform distribution on (0, 1) and fit the linear model

and again save the estimate of �1, along with the associated t statistic. 
We compare these statistics to those derived from networks generated 
using the group-based permutation procedure proposed by Bejder 
et al. (1998). This procedure again sequentially permuted the observed 
dataset, while maintaining the size of each group and the number of 
groups per individual. We again use the trial swap method to perform 
these permutations, generating 10,000 permuted datasets with 1,000 
trials per permutation, and derived p-values in the same way as above. 
We vary the parameters of this simulation by using Latin hypercube 
sampling to draw values of N, M, G and V (see Table 1 for ranges).

2.4 | Analysis

We use the outputs of the simulations primarily to derive overall type 
I error rates (calculated as the portion of runs in which a p < 0.05 was 
obtained) when using either regression coefficient or t-value as the 
test statistic. We further investigated the sensitivity of these results 
to non-random social structure, sampling effort and population size. 
Previous work suggests that the sensitivity of datastream permuta-
tion techniques is highly dependent on variation in social structure 
and sampling intensity (Whitehead,  2008). We use binomial gener-
alised linear models to summarise how population size, response 

(3)SRIij=�0+�1
|
|
|
traiti−traitj

|
|
|
+�ij, (4)P (i ing)∝

1
(

Sg−Pi
)2

.

(5)SRIij=
Xij

Xij+Yi+Yj
,

(6)
∑

j

SRIij=�0+�1traiti+�i.
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variance and sampling intensity influence the probability of false posi-
tives. We further analyse these relationships qualitatively using con-
ditional probability plots. We compare these results to those derived 
from node-label permutation tests on the same simulated datasets.

3  | RESULTS

3.1 | Dyadic regression

The overall type I error rate for the dyadic regression case was 
high, with 41% (81/200) of runs giving false positives when using 
the coefficient as the test statistic, and 21% (42/200) when using 
the t-value. When using the regression coefficient as the test sta-
tistic, the false positive rate increased with greater sampling ef-
fort (β  =  0.012  ±  0.004, z  =  2.82, p  =  0.005) and variance in SRI 
values (β = 6.35 ± 3.04, z = 2.09, p = 0.03), but was not strongly 
influenced by the network size (β  =  −0.007  ±  0.006, z  =  −1.085, 
p  =  0.278). When the t-value was used as the test statistic, only 
the sampling effort significantly influenced the false positive rate 
(β  =  0.014  ±  0.004, z  =  3.00, p  =  0.003), while neither the num-
ber of individuals (β  =  0.0007  ±  0.008, z  =  0.091, p  =  0.927) or 
variance in edge weights (β = −0.59 ± 3.72, z = −0.177, p = 0.859) 
were significantly correlated with the false positive rate. In con-
trast, the node-label permutation method had a much lower false 
positive rate of 6% (12/200) and was unaffected by sampling ef-
fort (β  =  −0.004  ±  0.008, z  =  −0.443, p  =  0.658), network size 
(β = 0.001 ± 0.013, z = 0.086, p = 0.931) or edge weight variance 
(β = 3.574 ± 5.438, z = 0.657, p = 0.511) (Figure 2).

3.2 | Nodal regression

In the case of nodal regression, type I errors were once again high 
when using datastream permutations. When using the regression 
coefficient as the test statistic, our simulation resulted in a type I 
error rate of 43.5% (87/200), and when using the t-value the type 
I error rate was 28% (56/200). When using the regression coeffi-
cient as the test statistic, both sampling effort (β = 0.029 ± 0.012, 
z = 2.434, p = 0.015) and variance in centrality (β = 1.444 ± 0.479, 
z = 3.017, p = 0.003) were positively correlated with type I errors, 
while the number of individuals was not related to type I errors 
(β  =  −0.005  ±  0.007, z  =  −0.732, p  =  0.464). When using the  
t-statistic, sampling effort was still positively related to type I error 
rate (β = 0.042 ± 0.013, z = 3.265, p = 0.001), however the variance 
in centrality was not (β = −0.287 ± 0.498, z = −0.577, p = 0.564), 
and, interestingly, the size of the network appears to be posi-
tively correlated with type I error (β = 0.017 ± 0.009, z = 1.990, 
p  =  0.047). As in the case of dyadic regression, the node-label 
permutations produced an acceptable false positive rate of 7% 
(14/200), which was unaffected by sampling (β = 0.014 ± 0.021, 
z = 0.663, p = 0.507) network size (β = 0.008 ± 0.015, z = 0.579, 
p = 0.562) or variance in centrality (β = 0.194 ± 0.868, z = 0.224, 
p = 0.823) (Figure 3).

4  | DISCUSSION

These two simple simulated scenarios show that the commonly used 
datastream permutation procedures for animal social network data 

F I G U R E  2   Conditional probability plots from dyadic regression simulation. Lines indicate smoothed conditional probabilities of a type I 
error (a p < 0.05) for datastream permutations using the coefficient (red) or t-value (orange), and node-label permutations (blue) in relation to 
three covariates. Dotted line indicates target type I error rate of 0.05

F I G U R E  3   Conditional probability plots from nodal regression simulation. Lines indicate smoothed conditional probabilities of a type I 
error (a p < 0.05) for datastream permutations using the coefficient (red) or t-value (orange), and node-label permutations (blue) in relation to 
three covariates. Dotted line indicates target type I error rate of 0.05
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produce extremely high and thus unacceptable false positive rates 
when used as a test of regression models. This is because datastream 
permutations represent a null hypothesis that is different from the 
typical null hypothesis that researchers are interested in testing when 
fitting regression models (that the model coefficients are 0).

It is important here to stress that the permutation procedure is 
not doing anything ‘wrong’ in these examples. The permutations are 
in fact generating a distribution of statistics that is correct for the 
null hypothesis that the algorithm is designed to test, which is that 
the social structure is random. The ‘type I errors’ that we discuss here 
are introduced when the rejection of this null hypothesis is taken as 
evidence that a relationship exists between the non-random struc-
ture of the network and an exogenous variable, when in fact these 
rejections in our simulations are simply indicating that social struc-
ture is not in fact random. For this reason, we recommend against 
datastream permutations as a test for regression models with social 
network data. Datastream permutations, however, will continue to 
play an important role in animal social network analysis; the results 
of datastream permutations can tell us whether a given dataset 
shows signs of non-random social structure. This is key, not just for 
social analyses generally but for regression analyses in particular. If a 
dataset does not show signs of non-random social structure, it likely 
does not make sense to continue with regression analyses that at-
tempt to uncover the correlates of social network structure.

In this study, we focused on the case where network measures 
are the response variable in a linear model. A different, but related 
scenario is when we try to predict individual attributes (such as 
measures of fitness or personality) using network measures as a 
predictor. The statistical problems presented by this scenario are 
slightly different than those of the network response case. Here, 
the non-independence of the network data are not a problem, as 
linear models do not make any assumptions about the distribution 
or covariance structure of the predictors (n.b. there can still be 
covariance in the attribute used as a response variable related to 
network position that, if present, would need accounting for in the 
statistical model). The issue of data unreliability, however, may still 
be present. As in the simulations used here, datastream permu-
tations alone would not serve as an adequate test. These models 
would test the null hypothesis that the relationship between the 
response and the network arose due to random social structure, 
when in fact the researcher is likely interested in whether the 
non-random social structure influences the individual attributes. A 
significant result from the datastream permutation method could 
simply indicate that the social structure is not random, rather than 
serving as an indicator that a relationship exists between the net-
work and the response.

The high false positive rate we describe here is the result of de-
creased variance in the response variable after permuting the raw 
data, as the variation due to social processes has been removed. A 
potential ‘quick fix’ that might be mooted is to simply standardise the 
response variable in the observed network so that all subsequent 
permutations to have a constant variance, for example by using  
Z-scores. This may reduce the type I error rate. However, we strongly 

recommend against this as a solution to the problem. Standardising 
the variance does not address the inconsistency at the heart of the 
problem. The null hypothesis being specified by the null model, that 
the social structure is random, is still not the same as the null hypoth-
esis of interest in the regression.

In the following sections, we highlight some potential ways 
forward for the application of regression in animal social network 
analyses, and give some general recommendations for researchers. 
We hope that this discussion will encourage further work that may 
provide an extended toolkit for ecologists interested in these kinds 
of problems.

4.1 | Carrying out regression in social networks by 
separating non-independence and bias

If datastream permutations alone cannot be used to test regression 
models in animal social network analyses, how should we conduct 
these analyses? While there are numerous potential solutions, and a 
full accounting of them is beyond the scope of this paper, we suggest 
that a general way forward is to recognise that the two issues of non-
independence and unreliability of the data are separate problems 
requiring distinct statistical solutions.

Not all animal network data will be subject to the issue of unreli-
ability (e.g. in cases where sampling is balanced across subjects and 
relevant contexts) and in some instances data may be complete and 
unbiased. In these cases, node permutations or other statistical net-
work models will be appropriate (Croft et al., 2011). When structure 
or bias in the observations need to be controlled for, we propose two 
general approaches that may be useful; other solutions are certainly 
possible, and we encourage further work on this matter.

The first method (Figure 4a) would first attempt to remove the 
bias from the network using generalised affliliation indices (GAIs; 
Whitehead & James,  2015) or similar corrections to account for 
confounding variables that may influence observed edge weights. 
GAIs fit the observed associations or interactions as the response 
in a binomial or Poisson generalised linear model, with confound-
ing factors such as space use, sightings frequency or joint gregar-
iousness as predictors. The residuals of this model are then used 
as measures of affiliation, as they reflect the difference between 
observed and expected association rates given the confound-
ing factors. While a flexible and appealing approach, GAIs re-
quire that potential confounds be properly specified in terms of 
dyadic covariates, and that the relationship between confounds 
and edge weights be linear. This second issue could be solved 
by deriving affiliations from generalised additive models (GAMs), 
where the relationship between covariates and the response can 
be represented by smooth functions. While GAIs represent the 
most well-developed method for correcting social network edge 
weights, other methods are certainly possible. Once corrections 
are made, researchers can use the corrected social network to de-
rive responses to use in the statistical model. A potential draw-
back of GAIs is that avoidance between individuals is represented 
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as negative edge weights. While this is not a problem for dyadic 
regression (in fact it better conforms to the assumptions of tra-
ditional linear models), this complicates the calculation of some 
centrality measures, requiring that negative edge weights be ig-
nored or set to zero (Whitehead & James, 2015). Inference would 
be carried out using post-network permutation methods, such as 
node-label permutations or MRQAP.

A second, different approach (Figure 4b) would be to incorporate 
confounds in the inferential model itself. If researchers identify likely 
confounds and summarise them quantitatively at the same level as 
the hypothesis being tested (e.g. dyadic or nodal), these could be 
used directly in the statistical model. Where potential non-linearity  
between confounds and responses exist, data transformations, 
polynomials and smooth functions may present a possible solution. 
Again, post-network permutation methods would be employed for 
inference to correct for the non-independence of the data. Franks 
et al. (2020) explore this method in detail.

We feel that these approaches have the potential to address the 
current issue that we have identified and we strongly encourage new 
work to explore and validate these approaches. These suggestions 
are general, identifying the ways in which we might approach sepa-
rately address non-independence and bias. It is important to note that 
the methods we propose are only useful if the question of interest is 
about the structure of social affinity, rather than the empirical pattern 
of encounters between individuals. If, instead, researchers are inter-
ested in the actual rates of contact (as is the case in disease research 
and studies of social learning), this approach may not be appropriate. 
Extensions of recent work using hidden state modelling may be more 
appropriate for disentangling true association patterns when detec-
tions are potentially biased or imperfect (Gimenez et al., 2019).

4.2 | Building better null models

The problems we have identified here arise because the com-
monly used null models for animal societies do not generate 

datasets representing the null hypothesis of interest in a regres-
sion setting. These models were specifically designed to test the 
null hypothesis of random social structure, not the null hypoth-
esis that aspects of social structure are unrelated to exogenous 
factors. An obvious way forward would be the development of 
permutation procedures that generate datasets that correctly 
represent the relevant null hypothesis. In the case of dyadic re-
gression, these datasets would maintain the structure of the data 
(e.g. sightings per individual, associations per sampling period, 
spatial patterns of observations), randomise identities of asso-
ciated individuals and simultaneously preserve the variance in 
edge weights. In the case of nodal regression, permuted datasets 
would maintain the same (or at least a similar) distribution of in-
dividual centrality within the network, in addition to structural 
confounds such as the size of groups, sightings per individual and 
timing of sightings. The design of such procedures is far from triv-
ial, and is beyond the scope of this paper, but we suspect that the 
development of algorithms that simultaneously maintain aspects 
of data structure and features of the social system will be an im-
portant area of methodological research going forward. This area 
of research is still in its early days, although there has been some 
potentially applicable work in other sub-fields of network science 
(e.g. Chodrow, 2019).

5  | CONCLUSIONS

The development of permutation techniques that control for sam-
pling biases while maintaining temporal, spatial and structural as-
pects of the raw data is an important development in the study 
of animal social systems, and we suspect that these procedures 
will remain a key tool for hypothesis testing in ecology and evolu-
tion. These techniques are particularly crucial when it is not clear 
whether a dataset shows signs of non-random social structure. 
However, a lack of consideration regarding the matching up of the 
null hypothesis being tested with the null model being generated 

F I G U R E  4   Flowcharts of two 
approaches for regression analysis in 
animal social networks. In the first (a), a 
network is generated that attempts to 
adjust for confounding effects (through 
e.g. generalised affliliation indices) which 
is then used to derive the response. In 
the second (b), the original network is 
used to derive the response variable, with 
confounds instead being incorporated 
as covariates in the inferential model. 
In both methods, inference is based on 
post-network permutations (such as 
multiple regression quadratic assignment 
procedures or node-label permutations)
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using datastream permutations has led to unwarranted application 
of these techniques, particularly in the context of hypothesis test-
ing using regression models. Here, we have shown that significant 
p-values from applying datastream permutations to regression mod-
els cannot be used as evidence of a relationship between the social 
network and exogenous predictors.

We recommend that researchers think critically and carefully 
about the null hypothesis they wish to test using social network data, 
and ensure that the null model they specify does in fact represent 
that hypothesis (Table  2). We suspect that in most cases, the null 
hypothesis of random social structure will clearly not be appropriate 
in regression analysis, and therefore traditional datastream permu-
tations will not be a viable approach. We hope that our discussion 
of this issue and the results of our simulations will result in recon-
sideration of how researchers employ null models when analysing 
animal social networks, promote further research and discussion in 
this area and lead to the development of procedures that correctly 
specify null hypotheses and allow robust inference in animal social 
network studies.
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