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Abstract 

Despite the known heterogeneity of type 2 diabetes, and variable response to glucose 

lowering medications, current evidence on optimal treatment is predominantly based on 

average effects in clinical trials rather than individual-level characteristics. A precision 

medicine approach based on treatment response would aim to improve on this by identifying 

predictors of differential drug response for people based on their characteristics, and then 

using this information to select optimal treatment. Recent research has demonstrated robust 

and clinically relevant differential drug response with all non-insulin treatments after 

metformin (sulfonylureas, thiazolidinediones, DPP4 inhibitors, GLP-1 receptor agonists and 

SGLT2 inhibitors) using routinely available clinical features. This Perspective reviews this 

current evidence, and discusses how differences in drug response could inform selection of 

optimal type 2 diabetes treatment in the near future. It presents a novel framework for 

developing and testing precision medicine based strategies to optimise treatment, harnessing 

existing routine clinical and trial data sources. This framework was recently applied to 

demonstrate that ‘subtype’ approaches, in which people are classified into subgroups based 

on features reflecting underlying pathophysiology, are likely to have less clinical utility 

compared to approaches that combine the same features as continuous measures in 

probabilistic ‘individualised prediction’ models.  
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Introduction 

Type 2 diabetes is a complex disease, characterised by hyperglycaemia associated with 

varying degrees of insulin resistance and impaired insulin secretion, and influenced by non-

genetic and genetic factors. Despite this, glucose-lowering treatment is similar for most 

people. Current type 2 diabetes guidelines recommend the choice between glucose-lowering 

treatment options is based on clinical characteristics,(1) an approach in-line with the central 

goal of precision medicine, the tailoring of medical treatment to an individual. After initial 

metformin, the most recent guidelines recommend glucagon-like peptide-1 receptor agonists 

(GLP-1 RA) or sodium-glucose cotransporter-2 inhibitors (SGLT2i) in people with 

established atherosclerotic cardiovascular disease, heart failure, or chronic kidney disease, 

but this stratification only applies to up to 15-20% of people with type 2 diabetes.(2, 3) For 

the remaining majority, evidence of benefit beyond glucose-lowering with these drug classes 

has not been robustly demonstrated, and the optimal treatment pathway is not clear.(1) 

Evidence on the key considerations, notably glucose-lowering efficacy, tolerability, and side-

effects is mainly derived from average treatment effects from clinical trials. This means there 

is little information available on whether a specific person in the clinic is more or less likely 

than the average trial participant to respond well to a particular treatment, or develop side-

effects. Given this knowledge gap, there is currently great interest in developing approaches 

that can characterise people beyond the standard type 2 diabetes phenotype, and use this 

heterogeneity to optimise the selection of glucose-lowering treatment.  

Any successful implementation of precision medicine in type 2 diabetes is likely to be very 

different from the most successful examples of precision medicine to-date. These have been 

in cancer and single gene diseases such as monogenic diabetes, where expensive genetic 

testing defines the aetiology, and the specific aetiology helps to determine treatment.(4, 5) In 

type 2 diabetes, unlike cancer, tissue is not available, and unlike rare forms of diabetes, 
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current genetic testing does not allow clear definition of the underlying pathophysiology.(6) 

This makes identification of discrete, non-overlapping subtypes of type 2 diabetes much less 

likely.(7)  

In this perspective, I focus on a fundamental aim of precision medicine, the selection of 

optimal type 2 diabetes treatment based on likely differences in drug effect (henceforth, 

heterogeneity of treatment effect [HTE]). I provide an overview of the evidence from recent 

studies of HTE in type 2 diabetes and present a framework for using existing routine clinical 

and trial data sources to develop and test precision medicine based strategies to optimise 

treatment. The focus is on glycaemic response as nearly all current evidence of HTE for 

diabetes drugs is for differences in HbA1c. However, the framework outlined can easily be 

extended to evaluate HTE for non-glycaemic endpoints, including microvascular and 

macrovascular complications. Type 2 diabetes is a highly prevalent condition with relatively 

inexpensive treatment, meaning precision medicine approaches based on inexpensive markers 

have greatest potential to translate into clinical practice in the near future. As a result this 

article concentrates on the use of routinely available clinical features to select optimal 

treatment, although the principles discussed equally apply to the use of genomic or non-

routine biomarkers.(6) Recent reviews of the pharmacogenomics of type 2 diabetes drug 

response are available elsewhere.(8, 9)  
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Why type 2 diabetes glucose-lowering treatment is an excellent candidate for a precision 

medicine approach 

Type 2 diabetes treatment is an excellent candidate for a precision medicine approach for the 

following reasons: 1) There are many different drug classes available after metformin with 

different mechanisms of action but the same principal aim: to lower blood glucose; 2) At the 

individual-level, glucose-lowering response to each drug appears to vary greatly (Figure 1); 

3) There is not a clear ‘best’ overall treatment outside a small proportion of individuals with 

specific complications. For the remainder, current treatment guidelines do not provide 

information on which drug class is best for lowering blood glucose, for which people(1); 4) 

There is great heterogeneity in the clinical phenotype of type 2 diabetes, making it plausible 

people with different underlying pathophysiology will vary in response to the different drug 

classes, depending on the mechanism of action of the drug.  

 

Defining the treatment selection approach in type 2 diabetes  

Despite the large biological noise in HbA1c, the majority of people appear to respond when 

initiated on a glucose-lowering drug (Figure 1), and it is unlikely many who appear not to 

responds are true ‘non responders.’(10) Therefore the aim of precision medicine in type 2 

diabetes is not to identify people who will and will not respond (which can only be achieved 

through repeated crossover trial designs(11, 12)), but instead to identify people who are likely 

to have a greater relative benefit on one drug class over another. This means that the 

necessary first step is to identify whether there are markers robustly predictive of greater or 

lesser response to each drug class to a clinically significant degree. In the absence of single 

markers with huge effect sizes, which have not been found to date, the second step is to 

optimally use multiple markers in combination to select treatment for individuals.  
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Identifying robust predictors of type 2 diabetes treatment response using routine and 

trial data 

A focus on identifying routine clinical markers means HTE can be evaluated using existing 

observational and trial datasets that capture information on the drug response of people 

initiating type 2 diabetes treatment. The conventional approach is to examine HTE in clinical 

trials using “one-at-a-time” subgroup analysis in which participants are subcategorised based 

on a set of single characteristics in turn, such as sex and age (old vs. young). This approach 

does not provide credible evidence of differences in response due to low statistical power, 

lack of multivariable adjustment, and the risk of false-negative and false-positive 

findings.(13) This means very few ‘discovered’ positive subgroups are subsequently 

replicated.(14, 15)  

While subgroup analysis of trials is limited, a combination of large observational routine 

clinical datasets and trial data (increasingly available(16, 17)) provides a powerful starting 

point to robustly evaluate HTE. Large anonymized routine clinical electronic health record 

databases, such as the UK’s Clinical Practice Research Datalink,(18) provide a rich source of 

‘real-world’ information on demographics, clinical features, diagnoses, laboratory tests, and 

prescriptions. One two-step approach to ‘triangulate’ routine and trial data sources is shown 

in Figure 2, on the basis that the best evidence for robust HTE is replication of effect in 

multiple independent datasets with differing strengths and weaknesses. In Step 1, due to the 

large sample size and availability of head-to-head data for all drug classes, routine clinical 

data are used for ‘discovery’ analysis, with assessment of drug-by-marker interactions to 

identify candidate features associated with differential response across drug classes. As in 

these observational data drug selection is not random and there are likely to be large 
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differences in baseline clinical features between treatment groups, careful identification of 

confounders and statistical adjustment is required. To further reduce bias, the use of causal 

inference methods such as inverse probability of treatment weighting,(19) or target trial 

approaches where studies are set up to emulate the design of an ‘ideal’ randomised trial, 

should be considered.(20) Nonetheless, unmeasured confounding may still bias findings, 

meaning a second step of external validation is required confirm findings. In Step 2, specific 

markers associated with potentially clinically relevant differences in drug response can be 

tested for reproducibility as pre-specified hypotheses in clinical trial datasets where treatment 

allocation is randomised and blinded, and there is systematic baseline assessment and follow-

up, meaning the risk of confounding is much lower.(21) This two-step approach takes 

advantage of the larger, more heterogeneous, population in routine care datasets for feature 

discovery, whilst minimising the risk of data-mining in the smaller, richer, trial datasets. 

 

What clinical features alter type 2 diabetes treatment response? 

Recent studies have demonstrated clinically relevant differences in response by clinical 

features for all non-insulin glucose-lowering drug classes commonly used after metformin. 

Studies that do not adjust for baseline HbA1c are not reported here, given the demonstrated 

risk of false associations in such analysis.(22) 

Sulfonylurea (SU) and thiazolidinedione (TZD) treatment: The first robust demonstration 

of HTE for type 2 diabetes therapy using the routine and trial data framework previous 

described. Observational data from United Kingdom (UK) primary care data was used as a 

discovery dataset, in which it was demonstrated that males without obesity (BMI <30) have 

on average a greater glucose lowering response with SU compared to TZD treatment, while, 

conversely, females with obesity (BMI ≥30) have a greater response to TZD than SU 
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treatment.(21)  Differences in response in these subgroups were then validated, and 

confirmed to hold for long-term response, in randomised trial replication data, with 

differences in effect size within these subgroups equivalent to the addition of another 

glucose-lowering treatment (Figure 3).  

Dipeptidyl peptidase 4 inhibitors (DPP4i) and GLP-1 receptor agonists: With DPP4i, the 

prospective PRIBA study demonstrated that markers of higher insulin resistance are 

consistently associated with lesser glucose-lowering response in the non-insulin treated.(23) 

Differences were clinically relevant; a subgroup defined by obesity (BMI≥30) and high 

triglycerides (≥2.3mmol/L) [31% of participants] had a response less than half that of a non-

obese, low triglyceride (<2.3mmol/L) subgroup [22% of participants] (6 month response -5.3 

mmol/mol [-0.5%] and -11.3 mmol/mol [-1.0%], respectively). Conversely, there was no 

evidence of an association between markers of insulin resistance and glucose-lowering 

response for non-insulin treated people initiating GLP-1 RA (Figure 4). Results were 

replicated in UK primary care data. Interestingly, in insulin-treated people but not non-insulin 

treated people, the same study found that with GLP-1 RA clinical markers of low beta cell 

function such as lower C-peptide and longer duration of diabetes were associated with 

reduced glucose-lowering efficacy.(24) With DPP4i, several other studies support the 

association between lower BMI, lower insulin resistance and greater response, and also 

suggest a benefit in glucose-lowering for people of Asian ethnicity.(25, 26) 

SGLT2 inhibitors: Analysis of trial data have reported markedly greater relative benefit with 

SGLT2i at higher baseline HbA1c levels, compared to DPP4i or SU treatment.(27, 28) 

Differences in response with SGLT2i have also been observed by baseline renal function. 

Whilst the reduced efficacy of SGLT2i at eGFR’s less than 60 is well-established,(29) pooled 

trial analysis has demonstrated this likely extends across the normal range, meaning that 

people with baseline eGFR >90 have a greater response compared to those with eGFR 60-
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90.(30) In contrast, with DPP4i response is likely maintained in people at lower eGFRs.(31) 

Early work by our group suggests that these differential treatment effects for SGLT2i and 

DPP4i are replicated in UK primary care data (Figure 5). 

 

Factors altering treatment response may relate to the underlying mechanism of action 

of different drug classes 

The identified clinical features associated with HTE in many cases relate to the known 

mechanisms of action of the different drug classes. Such ‘plausibility of effect modification’ 

greatly strengthens the credibility of HTE analysis.(13) For TZD, as well as the increased 

insulin resistance with higher BMI, variation in response by sex and obesity is likely to 

reflect associated differences in adipocyte distribution and function as these drugs primarily 

act on adipose tissue.(32, 33) For SU and DPP4i, which stimulate insulin secretion by the β-

call, the association between reduced insulin sensitivity and higher BMI possibly explains 

greater response in non-obese people. However, this does not explain the lack of association 

between insulin resistance and glucose lowering for the other incretin based drug class, 

GLP1-RA; it is possible this difference could relate to the added weight loss effects of this 

medication class, or that GLP-1RA response was studied in an almost entirely obese (and 

therefore insulin resistant) population.(23) The lack of GLP-1RA glycaemic benefit in insulin 

treated participants with very severe endogenous insulin deficiency is also consistent with the 

known role of potentiation of endogenous insulin secretion in their action. Effects on urinary 

glucose excretion provides a likely explanation for the variation in glucose-lowering efficacy 

of SGLT2i with baseline HbA1c and eGFR.(30, 31) 

 

How can differences in treatment response inform selection of optimal treatment? 
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Whilst evidence of robust differences in type 2 diabetes treatment response is growing, there 

is current debate and considerable uncertainty about how to translate this to inform decision 

making in clinical practice. Recent literature has focused on two approaches (Figure 6): 

1) A ‘subtypes’ approach, in which people with type 2 diabetes are subclassified based on 

their underlying pathophysiology (whether clinical, genetic, phenotypic or biomarker traits), 

on the assumption that once subtypes are defined they will have utility to stratify therapeutic 

decisions and other outcomes such as progression to complications. This was recently and 

notably proposed by Ahlqvist et al. in a sex-stratified data-driven cluster analysis of people 

close to diabetes diagnosis that grouped individuals with similar underlying pathophysiology 

using 5 clinical features (age at diagnosis, BMI, HbA1c, and HOMA-measured insulin 

resistance and insulin sensitivity) in Scandinavian registry data.(34) Importantly, similar 

looking subgroups were identified when the analysis was repeated in multiple international 

population-based cohorts.(35, 36) Subgroups showed differences in outcomes in 

observational follow-up, although differential treatment response was not assessed. Several 

other data-driven classifications have recent been proposed with substantial variation in the 

features used for classification and the numbers of subgroups identified,(37-39) including 

genetically defined clusters(40, 41), but their utility to stratify treatment response has 

similarly not been assessed.  

2) To use a person’s specific clinical information in a probabilistic ‘individualised prediction’ 

approach. In this approach markers reflecting underlying pathophysiology are used as 

continuous traits to directly predict an individual’s treatment response for each drug.  An 

individuals’ specific information can then be used to predict their likely best drug in terms of 

glucose-lowering response (or alternatively to identify the absence of clinically relevant 

differences in response across treatments), and these predictions can guide selection of 

optimal treatment. The model developed is specific to the outcome of treatment response, and 
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can be deployed based on a person’s current information at the point a decision to escalate 

treatment is made. Although subtypes could then in theory be specified based on the 

prediction of differential response or optimal therapy, this would make little sense as the 

subtypes would be based on clinical parameters that vary over time and are affected by 

treatment, meaning for an individual subtype assignment is unlikely to be stable. This 

proposed approach is consistent with the ideas underlying the recently proposed ‘palette 

model’ of diabetes,(7) which, at a specific point in time, positions an individual with diabetes 

on a spectrum of phenotypic variation and using this position to predict likely outcome.  

Whilst the advantages and disadvantages of each approach in the context of selecting optimal 

treatment are shown in Figure 6, the fundamental difference between the two approaches is 

that the subtypes approach assumes homogeneity of differential treatment response for all 

individuals within a subtype, whereas the individualised prediction approach allows for 

estimation of differential treatment effects at the individual level. The use of individual level 

data means that the individualised prediction approach will almost certainly provide more 

precise estimates of treatment response, and thus more accurately guide optimal treatment 

selection, than approaches that lose information by classifying individual into subgroups.(42) 

The same principles will apply to prediction of any other outcome, for example predicting 

disease progression or development of microvascular and macrovascular complications. 

 

Evaluating performance of strategies for selecting optimal treatment 

Our group has recently applied a novel framework to evaluate treatment selection models in 

type 2 diabetes. Novel approaches are required as conventional measures of prediction model 

performance are of limited utility when evaluating treatment selection models,(13) as the 

focus is not the overall ability of a model to predict response, but rather accurate 
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identification of differences in response between treatments. At the individual level these 

differences are unobservable,(13) as at one point in time the response of a person to multiple 

different therapies cannot simultaneously be evaluated.  

Our framework was applied to test head-to-head the Ahlqvist clusters strategy against an 

individualised prediction strategy for selecting optimal treatment, in post-hoc analysis of 

individual level data from two large clinical trials (ADOPT & RECORD, n=8,798).(43-45) 

This was important as a key discussion point raised in the Ahlqvist et al. study was that the 

clusters identified could be used to ‘guide therapy.’(34) In both trials, participants were 

randomised to either SU, TZD, or metformin treatment. The same 5 subtypes proposed using 

the Scandinavian data were reproduced in ADOPT using the same data-driven cluster 

analysis approach.(34, 46) Then, within each subtype, average glycaemic response for each 

of the three treatments was estimated, and the treatment associated with the greatest average 

glycaemic response was allocated as the optimal treatment for all people assigned to that 

subtype. The utility of the subtypes was compared to an individualised prediction strategy 

that assigned optimal treatment on an individual rather than subtype level, using a model that 

estimated response for each drug for each participant based on their specific features. 

Notable, only the simple routine clinical features (sex, and BMI, HbA1c and age at diagnosis 

as continuous markers) were used for the individualised prediction model; two features used 

to inform the cluster analysis, HOMA-IR and HOMA-B (respectively, measures of insulin 

resistance and insulin secretion), were not included as they are not routinely available in 

clinical practice. 

Despite including only simple markers, the individualised prediction strategy markedly 

outperformed the subtypes strategy in the external validation trial dataset (RECORD trial, 

n=4,057) (Figure 7).(43) For each strategy, the approach used was to define two subgroups 

of participants: 1) a concordant subgroup whose randomised treatment was the same as their 
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predicted optimal treatment; 2) a discordant subgroup whose randomised treatment differed 

to their predicted optimal treatment.(47) The difference between the concordant versus 

discordant subgroups was then contrasted for each strategy, with a bigger difference 

indicating a more useful treatment selection strategy. Where external test datasets are 

available, this evaluative framework represents a novel and cost-effective means of 

evaluating the utility of treatment selection models, whether on their own or in head-to-head 

comparison, and can be applied for other outcomes as well as treatment response. 

 

Future directions: ‘omics’ and beyond HbA1c 

Whilst this perspective has focused only on glycaemic response to diabetes treatment, the 

approaches outlined can easily be extended to non-glycaemic endpoints including 

microvascular and macrovascular complications. The ideal precision medicine approach in 

type 2 diabetes will maximise therapeutic benefit while limiting risks,(48) which will also 

require evaluation of HTE for side-effects, glycaemic progression, and risk of microvascular 

or macrovascular complications. Particular subgroups at higher risk of common treatment-

specific side effects are already established for several drug classes, for example the risk of 

fracture with TZD is limited mainly to females.(49) Methods to overcome unmeasured 

confounding, such as the Prior Event Rate Ratio, may have particular utility for evaluating 

side-effect risk in observational routine care data where allocation to therapy is not 

randomised.(50, 51) A related but overlooked question for precision medicine, with great 

clinical relevance, is whether the benefits and risks of a treatment are positively associated. 

This is likely the case for TZD; the risk of oedema and likelihood of weight gain increase 

with greater glucose-lowering response,(21, 52) and this should be an important 

consideration when choosing treatment. A further extension of the current work would be 



14 
 

evaluation of effects of higher-order drug combinations. This will be possible in large routine 

clinical datasets where substantial numbers of patients are on specific combination therapies, 

although robust validation approaches will be required. 

A key question is where genetics can add. Proposed genetically defined type 2 diabetes 

subtypes reflect and help to understand underlying pathophysiology.(40, 41) The clear 

advantage of using genetics is stability, as subtypes defined solely by genetics will be 

constant throughout life. At the moment it is unknown whether the continuous polygenic 

scores underlying genetic subtypes add over routine clinical features and biomarkers when 

predicting outcome and optimising treatment. For treatment response, individual genetic 

markers have shown differences for specific treatments, and may be of clinical utility when 

genetic information is routinely available in the medical records.(53, 54) If clinically relevant 

benefit can be demonstrated for polygenic scores and implementation is cost-effective, such 

scores can similarly be integrated into models based on routine clinical features. 

A further exciting opportunity is the application of causal inference, data-driven machine 

learning and AI-based approaches to improve HTE prediction accuracy and generalisability 

of findings from large data sources such as electronic health records. Data-driven approaches 

may be of particular utility when databases start to incorporate high-dimensional genetic 

information.(55) One possibility is that individualised prediction models developed with 

standard statistical methods based on classical risk factors could be augmented with data-

driven classification approaches, if data-driven approaches are able to improve prediction by 

capturing higher order complex traits missed by the standard methods. 

Although existing data can be used to develop and test candidate type 2 diabetes precision 

medicine approaches, ultimately prospective trials, as done in cancer and monogenic 

diabetes,(4, 56, 57) will likely be needed to demonstrate clinical utility. TRIMASTER, an 
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ongoing 3-way crossover randomised trial due to report in May 2021, is one such study in 

type 2 diabetes (NCT02653209). TRIMASTER will directly test the hypotheses that simple 

subgroups defined by baseline BMI and eGFR alter response with DPP4i, SGLT2i and TZD 

treatment.(58) Not only will this provide the first prospective randomised evaluation of a 

precision medicine approach for glycaemic response, the 3-way crossover design will allow 

an “n of 1” analysis of patient preferences regarding the three treatments when they are tried 

in randomised order in blinded conditions. However, running prospective trials to test 

potential candidate factors one-at-a-time for personalisation is not a feasible, cost-effective, 

or efficient strategy. Future trials could instead test specific precision medicine algorithms 

based on multiple factors (potentially both clinical and genetic features), to test whether use 

of an algorithm results in improved outcomes for patients. One simple trial design for this 

would be to cluster randomise health centres (e.g. GP practices in the UK) to either receive or 

not receive an algorithm – comparing centres with and without the algorithm would enable 

evaluation of its effectiveness and efficacy. If two competing algorithms or strategies need to 

be tested this could be done using 3-way cluster randomisation. 

A final key challenge is implementation of algorithms, which to ensure patient benefit should 

be not only effective but transparent, reproducible and ethically sound,(59) and which should 

be equally and freely accessible to all health professionals and patients. A type 2 diabetes 

treatment selection model would likely be most appropriately positioned within clinical 

practice software systems, so that it can be automatically populated with relevant clinical 

information from the electronic health record and function as a decision aid at the point of 

care. Development of software infrastructure that can utilise routinely collected health 

records to support delivery of such probabilistic algorithms will be required before precision 

medicine can truly become a reality for common diseases such as type 2 diabetes. 

Conclusions 
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Recent demonstration of robust, clinically relevant differences in glycaemic response suggest 

a precision medicine approach to selecting optimal type 2 diabetes treatment will soon be 

possible. The most practical way to implement this in the near future will be to focus on 

routine clinical markers, and the most accurate approach will be integration of continuous 

features into individualised, probabilistic, prediction models that can be deployed at the point 

a decision to escalate treatment is made, rather than subtyping. Estimates of differences in 

treatment response can augment the limited existing stratification of people with type 2 

diabetes based on cardiovascular and renal comorbidity, and will be applicable to everyone 

requiring glucose-lowering treatment. For people for whom differences in response between 

treatments are modest, this information is still important as it can facilitate selection of 

treatment based on other criteria. A framework of discovery in routine data, followed by 

replication and testing in existing clinical trial datasets, offers a low-cost and principled way 

to evaluate the potential of precision medicine, applicable to other chronic diseases as well as 

type 2 diabetes.  
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Figure legends 

Figure 1:  The marked individual-level variation in change in HbA1c at 6 months (6 
month HbA1c minus baseline HbA1c) by drug in ADOPT trial for 3,707 participants 
with a valid measure of HbA1c at 6 months. A negative change is represented an 
improvement in HbA1c. Mean (standard deviation) improvement in HbA1c was greatest at 6 
months for sulfonylureas -9.4 (8.6) mmol/mol [0.9%], compared to metformin -7.5 (8.1) 
mmol/mol [0.7%] and thiazolidinedione treatment -6.4 (8.6) mmol/mol [0.6%]. 

 

Figure 2: A ‘triangulation’ approach using routine clinical and trial data to evaluate 

differences in drug response, and the strengths and weaknesses of each data source. 

 

Figure 3: Five-year glycaemic response (change from baseline in HbA1c) with 
thiazolidinedione (TZD) and sulfonylurea (SU) treatment in males without obesity 
(BMI<30) and females with obesity (BMI≥30) subgroups in 1,232 participants in the 
ADOPT clinical trial.(21) Data are presented as means ± standard errors at each study visit 
from mixed-effects models. A reduction (improvement) in HbA1c is represented as a 
negative value. For area-under-the-curve difference estimates (AUC), positive values favour 
SU, and negative values favour TZD. Adapted from Dennis et al.(21). 

A) Males without obesity subgroup      

B) Females with obesity subgroup 

 

Figure 4: Associations between markers of insulin resistance and HbA1c response with 
DPP4 inhibitor and GLP-1 receptor agonist treatment in the PRIBA study (n=593), in 
participants not on insulin co-treatment. Estimates denote the mean HbA1c change 
(mmol/mol) at 6 months (Baseline HbA1c – 6 month HbA1c) per 1-SD higher baseline value 
of each marker. Associations were tested in a series of independent linear regression models 
adjusted for baseline HbA1c and co-treatment change. Error bars denote 95% confidence 
intervals. Adapted from Dennis et al.(23) 

 

Figure 5: Associations between baseline HbA1c and baseline eGFR (CKD-EPI formula) 
and HbA1c response at 6 months (Baseline HbA1c – 6 month HbA1c) with SGLT2 
inhibitor and DPP4 inhibitor treatment in UK primary care data (Clinical Practice 
Research Datalink) [n=20,965]. Results are predicted values from a linear regression model 
including baseline HbA1c-by-drug and eGFR-by-drug interaction terms (with each modelled 
as a restricted cubic spline with 3 knots), with additional adjustment for number of diabetes 
treatments ever initiated, number of current diabetes treatments, age at treatment, duration of 
diabetes, sex and BMI. Grey shading represents 95% confidence intervals. 

A) Baseline HbA1c     B) Baseline eGFR 
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Figure 6: Individualised prediction compared to classification into subtypes – 
advantages and disadvantages of two strategies to apply a precision medicine approach 
in type 2 diabetes 

A) Classification into subtypes 

B) Individualised prediction 

 

Figure 7: Three-year glycaemic response (change from baseline in HbA1c) with 
concordant and discordant subgroups using the subtypes strategy and the 
individualised prediction strategy in the RECORD trial independent validation set 
(n=4,057). Each strategy was developed in the ADOPT trial (n=3,785). Data are presented as 
means ± 95% confidence intervals at each study visit from mixed-effects models. A reduction 
(improvement) in HbA1c is represented as a negative value. For AUC estimates, a more 
negative value represents a greater response. Adapted from Dennis et al. (43) 

A) Subtypes strategy (left panel)               

B) Individualised prediction strategy (right panel) 
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Routine clinical data Clinical trial data

Strengths Strengths

Large sample size meaning data on outcomes for 
thousands of people

Participants randomised and blinded to treatment 
received

Data on people initiating all available diabetes 
treatments for head-to-head comparison

Systematic baseline assessment of all participants

All people with type 2 diabetes can be included Systematic follow-up and assessment of outcome

Only factors routinely available in clinical care are 
evaluated, ensuring any outputs can be integrated 
into practice at low cost

Non-routine markers available, which may have 
particular utility for study of underlying mechanisms

Weaknesses Weaknesses

Treatment choice is not random and the reason 
underlying the treatment choice not available – high 
risk of bias

Smaller sample size typically means underpowered 
for subgroup analysis or evaluation of HTE 
(although individual data meta-analysis can be used 
to combine trial datasets52)

Missing baseline information for many people, and 
the missingness may be informative and bias
findings

Trial inclusion and exclusion criteria mean 
participants not representative of broader type 2 
diabetes population

Outcome information only available if person 
returns for a primary care consultation

Typically placebo controlled or one comparator 
treatment only

Discovery analysis in 
routine clinical data

Test for clinical markers 
associated with differential 

drug response

Replication analysis 
in clinical trial data

Test candidate markers as 
pre-specified hypotheses

Figure 2
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and clinical 
information

Type 2 diabetes

Assign into subtypes

Subtype A 

Subtype B 

Subtype C 

Average 
optimal treatment: 

Drug A

Average 
optimal treatment: 

Drug C

Average 
optimal treatment: 

Drug B/C

Select optimal treatment based on 
average response for subtype

Advantages Disadvantages

- Simple to communicate. - People within a subtype may be very different but are assumed to 
have the same outcome.

- Can assess risk of multiple outcomes based on subgroup 
assignment.

- Cannot be assumed to represent true pathophysiological subtypes -
highly dependent on features used to classify them. 

- Classification could take place at one time point only e.g. around 
diagnosis (important if non-routine testing is required). - Subtypes are not discrete, but overlap in phenotypic characteristics.

- May enhance understanding of the pathophysiological basis for 
type 2 diabetes

- Subtypes not stable – unless defined solely by genetics, a person 
can shift from one subgroup to another over time.
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Selection of optimal treatment based on 
individual-level response
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Optimal treatment:
Drug A

Advantages Disadvantages
- Optimal prediction of outcome, as predictions based on precise 
individual level characteristics.39

- Complexity – specific models required for different outcomes 
e.g. risk of complications.

- Predictions specific to a person’s characteristics at the point in 
time an optimal treatment strategy is being considered.

- Challenging to weigh up models for different outcomes and 
communicate these.
- Input data for prediction required at different time points.
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