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Abstract 34 

Apex predator reintroductions are commonly motivated by the imperative to restore 35 
populations and wider ecosystem function by precipitating trophic cascades that release basal 36 

species. Yet evidence for the existence of such cascades is often equivocal, particularly where 37 
consumptive interactions between apex and intermediate predators are weak or absent. Here, 38 
using a tri-trophic skate-crab-bivalve study-system, we find that non-consumptive 39 
interactions between apex skate and intermediate crabs cascade down to consumptive 40 
interactions between crabs and basal bivalves, significantly reducing bivalve mortality. 41 

However, skate only functioned as keystones where crabs foraged for bivalves in the absence 42 
of mature bivalve reef: where reef was present, bivalve mortality was not significantly 43 
different. By facilitating the establishment of basal species which, in turn, diminish apex-44 
intermediate interactions, the skate’s keystone function is subject to negative regulation. 45 

Thus, we propose that keystone functionality can be transient with respect to environmental 46 
context. Our findings have two central implications for apex predator reintroductions and 47 
basic ecology: (i) species hitherto not considered as keystone may have the capacity to act as 48 

such transiently, and; (ii) keystones are known to regulate ecosystems, but transience implies 49 
that ecosystems can regulate keystone function. 50 

1. Introduction  51 

The keystone species concept is one of the most influential in all of contemporary ecology 52 
(Davic, 2003; Mills et al., 1993; Power et al., 1996). As planet Earth undergoes a so-called 53 
trophic downgrading (Estes et al., 2011) there are urgent societal, fundamental and applied 54 

motivations to better understand keystone-ecosystem interactions. Widespread declines in 55 

keystone apex predator populations have been implicated in the release of mesopredators, 56 
associated declines in basal species populations, and reductions in biodiversity (Stier et al., 57 
2016). Yet, despite decades of research, keystone species can be difficult to define—as can 58 

the trophic cascades that result from their presence or absence (Polis et al., 2000; Ripple et 59 
al., 2016). Moreover, apparently incontrovertible examples of apex predator-mediated 60 

cascades are often disputed because it is difficult to establish the strength or existence of 61 
consumptive interactions between apex and intermediate predators (Grubbs et al., 2016).  62 

Apex-mediated cascades that were once thought to be primarily driven by consumptive 63 
effects often turn out to have strong non-consumptive or behavioural elements (Peckarsky et 64 
al., 2008). Moreover, fear of apex predators alone is sufficient to initiate and maintain 65 

cascades (Suraci et al., 2016). The recognition that non-consumptive effects are central 66 
mediators of cascades (Peckarsky et al., 2008; Werner and Peacor, 2003) is particularly 67 

relevant to understanding the functional role of elasmobranchs, because evidence for 68 
consumptive mediation or apex function is often equivocal or disputed (Grubbs et al., 2016; 69 
Roff et al., 2016). Further, because behavioural effects can be instantaneous and decoupled 70 
from demographic factors, they are liable to change abruptly between contexts, for example, 71 
where intermediate predators forage for basal species in risky or refuge habitats (Trussell et 72 

al., 2006). In addition, many basal species—kelp, seagrass, biogenic reefs—are directly 73 
responsible for driving changes in context through the provision of spatial structure (Barrios-74 
O’Neill et al., 2016, 2015). Yet little consideration is given to the notion that apex-basal 75 
feedbacks might regulate cascades and/or the position of apex predators as keystones, despite 76 
the recognition that wider food web complexity can buffer cascades (Brose et al., 2005).   77 

Here, we are motivated to investigate the potential for keystone apex-basal feedbacks because 78 

of relatively recent extirpations of large elasmobranchs (including the critically-endangered 79 
Flapper Skate, Dipturus intermedia) and population collapse of a priority reef-forming 80 
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species (the Horse Mussel, Modiolus modiolus) in Strangford Lough, Ireland (refer to 81 
Supporting Information for details). Given the local extirpation of the species in question, we 82 
resort to experimental manipulations involving a proxy higher predator (the Painted Skate, 83 
Raja microocellata) with a comparable feeding ecology (Supporting Information), a 84 
representative intermediate crab (Carcinus maenas) and a reef forming basal bivalve (Mytilus 85 

edulis). Structural complexity is known to mediate interactions across foraging contexts 86 
(Barrios-O’Neill et al., 2016); thus, we hypothesised that any capacity of the apex predator to 87 
provide keystone function would be modulated by the presence of bivalves established in a 88 
size refuge, i.e. providing structural complexity whilst being invulnerable to predation. Our 89 
goals here are twofold: (i) to experimentally elucidate if and how potential cascading effects 90 

might be regulated via feedbacks in the tri-trophic system, and; (ii) to use this data to inform 91 
new hypotheses about the potential demographic effects of such feedbacks.   92 

2. Methods 93 

Experimental stock (Raja microocellata, Carcinus maenas and Mytilus edulis) was obtained 94 

in the locality of Strangford Lough (54.48102° N, 5.58841° W). Each species was maintained 95 
separately in flow-through mesocosms at Queen’s Marine Laboratory prior to experimental 96 
trials (Supporting Information). Because of the primacy of size over personality in 97 
determining interaction strengths (Schröder et al., 2016) we subsampled narrow size-classes 98 

of mussels and crabs for trials: M. edulis (valve length x̅/SD = 19.8 mm/2.1) and C. maenas 99 
(carapace width x̅/SD = 43.4 mm/2.1). Given the locally endangered status of 100 

R. microocellata we selected two closely size-matched individuals for trials (lengths: 490 mm 101 
and 510 mm)—on account of this unavoidable pesudoreplication we refrained from analysing 102 
data on skate movement.  103 

Arenas (2200 L and 1800-by-1300 mm footprint) contained one marginally-positioned 104 
Perspex refuge (40 mm tall, 130-by-200 mm footprint) and one centrally-positioned Perspex 105 

reef patch (350-by-350 mm footprint) furnished with 40 previously settled mussel prey 106 
(hereafter ‘juveniles’, i.e. a size class vulnerable to predation). Reef patches were either 107 

‘complex’ (4 large silicone-filled Modiolus bivalves, 57-110 mm valve length) or ‘simple’ 108 
(lacking Modiolus). 16 h trials were initiated on the introduction of predator mixtures 109 
(presence/absence of 1 skate and presence/absence of 3 crabs) into arenas between 16:00-110 

18:00: surviving mussels were counted on termination. Trials were block-randomised with 111 
n = 10 (reflecting the maximum experimental turnover practical in 2 months) at each 112 
predator/complexity treatment combination, including predator-free controls. During the 113 

second hour of a random subset of trials (n = 6-8) we recorded behaviour using camcorders 114 

and quantified the following for skate and a randomly selected crab respectively: (i) time 115 

spent moving (i.e. moving across the arena floor); (ii) time spent on the reef patch, off the 116 
patch, or in the refuge. 117 

All analyses were performed in R (R Core Team 2016). Mussel survival was 100% in 118 
predator-free controls and skate-only mixtures, therefore we used a simple two-by-two 119 

analysis of variance (ANOVA, categorical predictors: skate presence/absence and 120 
simple/complex reef) and Tukey’s post hoc tests with respect to the focal crab-mussel 121 
interaction. Crab location constitutes a non-discrete compositional response—therefore, to 122 
satisfy model assumptions we applied an isometric planar transformation (van den Boogaart 123 
and Tolosana-Delgado, 2008) and assessed location with respect to the same categorical 124 

predictors using multivariate analysis of variance (MANOVA). Crab movement is also a 125 

compositional response, but with two options here we opt to treat proportion of time spent 126 

moving as the response in a standard two-way ANOVA.  Assumptions of heteroscedasticity 127 
were met for all fitted models (all Bartlett’s tests p >0.05).  128 
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3. Results 129 

The presence of skate reduced consumption of mussel juveniles by crabs only in the absence 130 
of mature reef (Fig. 1a: open half). Conversely, in the presence of reef, skate slightly 131 

enhanced consumption of mussel juveniles by crabs (Fig. 1a: shaded half), resulting in a 132 

significant main effect of skate (F1,36 = 4.45, p = 0.042, p
2 = 0.11) and a significant skate-133 

reef interaction (F1,36 = 9.36, p = 0.004, p
2 = 0.21). Reef presence did not significantly 134 

enhance consumption of mussels, but still had a comparable effect size to skate presence 135 

(F1,36 = 3.22, p = 0.081, p
2 = 0.08). Consumption of mussel juveniles by crabs was highest in 136 

the absence of skate and mature reef (Fig. 1a: open half) and was significantly higher here 137 
than in all other treatments (post hocs: skate/reef absent p = 0.004; skate/reef present 138 
p = 0.043; skate absent/reef present p = 0.008). Crabs did not change location in response to 139 

the presence of mature reef or skate (Fig. 1b. Skate presence/absence F1,23 = 0.82, NS; reef 140 
presence/absence F1,23 = 1.39, NS; skate-reef interaction F1,23 = 0.02, NS) but instead 141 

significantly reduced their movement where skate were present (Fig. 1c: shaded boxes. Main 142 

effect: F1,23 = 18.71, p <0.001, p
2 = 0.45; post hocs between all skate present treatments and 143 

all skate absent treatments significant at p <0.05). In contrast, skate tended to move less in the 144 
presence of mature reef, and did not appear to respond to the presence of crabs (Fig. 1d open 145 
versus shaded half).  146 

4. Discussion 147 

Across the biosphere, populations of apex predators are in widespread decline (Estes et al., 148 
2011). The resultant trophic downgrading of ecosystems is particularly concerning because of 149 
the role that apex predators often fulfil as keystone species regulating biodiversity, disease 150 

and other critical ecosystem functions (Stier et al., 2016). Despite decades of research, 151 

ambiguity over operational definitions of keystone species (Davic, 2003), trophic cascades 152 
(Polis et al., 2000) and a focus on consumptive effects (Peckarsky et al., 2008) have all 153 
hindered more nuanced understanding of keystone-ecosystem interactions and feedbacks. 154 

Here, we demonstrate that the presence of and apex predator drives an intermediate-basal 155 
consumptive interaction only where that basal species isn’t established, and lacking 156 

individuals that are large enough to avoid predation. In doing so we provide preliminary 157 
evidence for an apex-basal feedback which prompts us to posit the existence of a hitherto 158 
unrecognised aspect of keystone species ecology: transience (Fig. 2). Although we must 159 
stress that short term feeding trials prevent an explicit link to demographic effects in the field, 160 

in the following section a re-examination data rich examples of trophic cascades would 161 

suggest that transience is a viable concept.  162 

The behaviourally mediated wolf-elk cascade in Yellowstone (Fortin et al., 2005) can be 163 
viewed as a classic keystone cascade (our terminology: Fig. 2a) because it depends on a 164 
continuous apex-intermediate effect through time. In contrast, a consumptively mediated 165 
cascade initiated by orcas feeding on sea otters—cascading down to urchins and kelp—(Estes 166 

et al., 1998) is transient because the apex predator cannot be sustained in the locality and 167 
must move on once resources are locally depleted. We term this a positively regulated 168 
transient keystone cascade (Fig. 2c): if the intermediate predator (here, the otter) is locally 169 
extirpated then the alternate stable state (that of high urchin abundance) becomes independent 170 
of continued apex-intermediate effects through time. In the same system, where orcas are 171 

absent, otters regulate urchin abundance and release basal kelp but, given this release, kelp 172 
forms dense stands that, in turn, reduce urchin grazing (Konar and Estes, 2003). Thus, the 173 

function of the otter as keystone is reduced, but the cascade is maintained. We term this a 174 
negatively regulated transient keystone cascade (Fig. 2b). Our present study-system is a 175 
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potential example of this form of transience. What we outline here is not prescriptive—there 176 
are likely numerous permutations beyond (Fig. 2b-c)—but the unifying diagnostic of 177 
transience is a system that is pushed into an apex-independent alternate stable state, 178 
regardless of the continued presence of that apex. Transience is distinct from the notion that 179 
wider complexity in food webs can regulate cascades (Brose et al., 2005) because it concerns 180 

the focal tri-trophic motif, rather than the effects of peripheral species on that motif. We 181 
suggest that food web models making broad assumptions about predator-prey interaction 182 
strengths may systematically underestimate the importance of apex predators if they fail to 183 
represent: (i) how changing foraging context can dramatically and systematically modulate 184 
interactions (Barrios-O’Neill et al., 2016; Pawar et al., 2012) and; (ii) how apex predators 185 

themselves might drive changes in context.    186 

In Strangford Lough, elasmobranchs might function as transient keystones by facilitating the 187 

reestablishment of Modiolus reefs which, in turn, add structural complexity that can dampen 188 
interactions across the system (Barrios-O’Neill et al., 2016). Broadly, transience implies that 189 
species which don’t obviously function as keystones in one context may come to do so in 190 

others, and may act as a buffer, facilitating the maintenance of stable states. Transience is 191 
therefore a form of functional redundancy that highlights the importance of biodiversity. 192 
Beyond the potential considerations and applications in conservation and restoration ecology, 193 
however, our findings highlight a key point: that although a keystone species may be 194 

characterised by disproportionate top-down effects on the wider ecosystem, these effects may 195 
themselves be subject to strong regulatory feedbacks.  196 
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Figures 282 

 283 

 284 

Figure 1 (a) Crab predation on mussel juveniles at 16 h; (b) crab location in the 285 
absence/presence (open/shaded) of skate and the absence/presence (diamond/circle) of 286 
mature reef; (c) crab movement in the absence/presence of mature reef and skate; (d) skate 287 
movement (pesudoreplicated) in the absence/presence of mature reef and crabs. Stars equate 288 

to significant differences following post hocs. 289 
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 290 

Figure 2 Classic trophic cascades depend on the continued effects of apex keystone predators 291 

on intermediate predators through time (a) but trophic cascades can also be precipitated when 292 
apex predators transiently act as keystones by releasing basal populations which, in turn, alter 293 

the context in which interactions occur. Negative regulation of this process may result in 294 
intermediate predator recovery (b), but where the cascade enhances intermediate risk 295 

extinctions may occur (c). In both cases the basal populations achieve an apex-independent 296 
alternate stable state.   297 


