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SUMMARY 14 

1. Consumer-resource interactions (i.e. the functional response) underpin decades of 15 

ecological advancements. However, selecting, fitting and comparing functional 16 

response models using appropriate methods remains a non-trivial endeavour. 17 

2. The R package FRAIR provides tools for selecting and differentiating various forms 18 

of consumer functional response models, a consistent interface for fitting and 19 

visualising response curves, and a selection of statistically robust methods for 20 

comparing fitted parameters.    21 

3. Using real data from crustacean predator-prey systems, we demonstrate the utility of 22 

FRAIR, highlighting best practice and common analytical mistakes. 23 

 24 
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INTRODUCTION 28 

Consumer-resource interactions are at the heart of ecology because all organisms must 29 

consume resources of some kind. Functional responses describe how the per capita feeding 30 

rates of consumers change systematically with resource availability as a result of the 31 

consumer’s search for, capture, and handling of resources (Holling 1959, 1966). The ubiquity 32 

and simplicity of principles underpinning the functional response continues to resonate with 33 

ecologists working at scales ranging from the behaviour of individuals (Toscano & Griffen 34 

2014) to entire food webs (Brose 2010). Across fields—from theoretical explorations of 35 

stability and coexistence (Williams & Martinez 2004) to applications in biocontrol, invasions 36 

and conservation —functional responses remain central to much ecological research.  37 

THE ANATOMY OF A FUNCTIONAL RESPONSE 38 

Despite decades of refinements (e.g. Real 1977; Hassell 1978; Arditi & Ginzburg 1989; 39 

Skalski & Gilliam 2001; Okuyama 2012), the essential components of search, capture and 40 

handling outlined by Holling (1959) have remained largely unchanged. A generalised version 41 

of the Holling disc equation is (Real 1977): 42 

𝑁𝑒 =
𝑎𝑇𝑁(𝑞+1)

1+𝑎ℎ𝑁(𝑞+1)          (1) 43 

where N is the resource density or number of prey; T is experimental time (typically hours or 44 

days); a is the instantaneous resource capture rate of the consumer, per unit area/volume per 45 

unit time; h in practice represents the time spent subjugating, ingesting and digesting each 46 

prey item, with the same units as T (Jeschke et al. 2002; Sentis et al. 2013); and q is a scaling 47 

exponent defining the extent to which the functional response changes from a decelerating 48 

hyperbola (Type II: q = 0 and Fig. 1a purple) to a sigmoidal form (Type III: q > 0 and Fig. 1a 49 

green).  50 
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When q is 0, capture rates are constant with resource density, whereas where q > 0, capture 51 

rates follow a power-law relationship with resource density, often implying that consumers 52 

learn as they forage (Real 1977). Type I (linear rather than saturating sensu Holling; Fig. 1a 53 

orange) functional responses can be described where q = 0 and h = 0. Since handling time 54 

determines the maximum consumption rate (1/h), doubling h suppresses the asymptote for 55 

consumers with identical capture rates (Fig. 1c: dashed versus solid blue curve). In contrast, 56 

for consumers with identical handling times, doubling capture rates (a) increases 57 

consumption at low resource densities (Fig. 1c: dashed versus solid purple curves).  58 

An important assumption of equation 1 is that local resource density does not decline. 59 

However, in many experiments, consumers deplete resources, rendering models in the 60 

equation 1 family inappropriate (e.g. Bollache et al. 2008). The family of models introduced 61 

by Royama (1971) and popularised by Rogers (1972) provide a solution to this problem by 62 

integrating instantaneous consumption over time. The modification of equation 1 assuming 63 

depletion is: 64 

𝑁𝑒 =  𝑁0(1 –  𝑒𝑥𝑝 (𝑎𝑁0
𝑞(ℎ𝑁𝑒 –  𝑇)))        (2) 65 

where N0 is the initial prey density, and other parameters are as in equation 1. Although the 66 

number of prey eaten (Ne) appears on both sides of equation 2, it can often be solved using 67 

the Lambert-W function (W). The derivation and definition of W is beyond the scope of this 68 

manuscript but it is described in detail in Corless et al. (1996) and with respect to ecological 69 

applications in Lehtonen (2016). 70 

APPLICATIONS OF FUNCTIONAL RESPONSES 71 

Ecologists often seek objective comparisons between one or more groups; with functional 72 

responses this usually necessitates comparisons of fitted model parameters, though the 73 
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particular methods employed remain a subject of confusion and debate (Houck & Strauss 74 

1985; Juliano 2001). Renewed interest in consumer functional response models has driven 75 

several innovative analytical solutions, at least two of which have been widely adopted. The 76 

first involves explicitly modelling the difference fitted parameters between two (or more) 77 

groups. This approach – described in Juliano (2001) – whilst computationally simple, 78 

requires reparameterisation of the underlying model. It provides a coefficient (the difference 79 

between groups of interest) that can be interpreted within a regression-modelling framework, 80 

and with proper formulation and sufficient data, can be extended to moderately complex 81 

hypotheses (e.g. Paterson et al. 2015). A second approach involves bootstrapping (resampling 82 

with replacement) of either raw data (e.g. Bovy et al. 2015) or modelled residuals (e.g. 83 

Médoc et al. 2015). This computationally intensive approach explores the likely range of 84 

fitted coefficients, and allows for direct comparison of the range of these values (e.g. via 85 

confidence intervals).    86 

Not all analytical approaches in the recent literature are as well advised. For example, some 87 

have applied null-hypothesis significance tests to bootstrapped parameter estimates from 88 

functional response models (e.g. Dodd et al. 2014; Bunke et al. 2015) – an approach that is 89 

clearly flawed (White et al. 2014). We suspect that the lack of a common toolset for non-90 

specialists to fit and examine consumer functional response models has contributed to the 91 

propagation of these methods. With research output increasing, it is critical that ecologists 92 

working on functional responses can make robust analyses: we anticipate that FRAIR can 93 

meet this need. 94 

THE FRAIR PACKAGE 95 

FRAIR is a package in the R statistical environment for selection, fitting and comparisons 96 

among common functional response models and constituent parameters. FRAIR is available 97 
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on CRAN and development is undertaken openly on GitHub 98 

(http://github.com/dpritchard/frair).  99 

This tutorial is based on FRAIR version 0.5 (the most recent version available on CRAN) and 100 

outlines key functionalities whilst providing a general introduction to these analyses. The 101 

tutorial is based on two experimentally derived datasets included with the package: 102 

gammarus, a subset of data from Paterson et al. (2015) and bythotrephes, a previously 103 

unpublished dataset. 104 

The gammarus dataset describes consumption of dipteran larvae (Simulium spp.) by two 105 

amphipod species (Gammarus duebeni celticus and Gammarus pulex). The bythotrephes 106 

dataset describes consumption of three size classes of the cladoceran Polyphemus pediculus 107 

by the cladoceran Bythotrephes longimanus. Both datasets concern experimental designs 108 

incorporating prey depletion. For further examples, readers are directed to other published 109 

studies utilising FRAIR (https://github.com/dpritchard/frair/wiki/FRAIR-in-use). 110 

# Gammarus 111 
data("gammarus") 112 
str(gammarus) 113 

## 'data.frame':    224 obs. of  4 variables: 114 
##  $ density: int  2 2 2 2 2 2 2 2 2 2 ... 115 
##  $ eaten  : int  0 2 2 2 2 2 2 2 2 2 ... 116 
##  $ alive  : int  2 0 0 0 0 0 0 0 0 0 ... 117 
##  $ spp    : Factor w/ 2 levels 118 

levels(gammarus$spp) 119 

## [1] "G.d.celticus" "G.pulex" 120 

 121 
# Bythotrephes 122 
data("bythotrephes") 123 
str(bythotrephes) 124 

## 'data.frame':    72 obs. of  4 variables: 125 
##  $ density: int  1 1 1 3 3 3 2 2 2 4 ... 126 
##  $ eaten  : int  1 1 0 3 2 3 2 2 2 4 ... 127 
##  $ alive  : int  0 0 1 0 1 0 0 0 0 0 ... 128 
##  $ size   : Factor w/ 3 levels 129 

http://github.com/dpritchard/frair
https://github.com/dpritchard/frair/wiki/FRAIR-in-use)
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levels(bythotrephes$size) 130 

## [1] "small" "medium" "large" 131 

 132 

The FRAIR workflow involves a three-step process: (1) model selection; (2) model fitting 133 

and; (3) comparison of fits and coefficients. An essential step in this process is to visually 134 

inspect the raw plotted data (Fig. 2). 135 

MODEL SELECTION 136 

FRAIR offers a range of commonly used functional response models that can be viewed using 137 

frair_responses(). Basic models assume constant resource density throughout 138 

experimental trials (resources are replaced). For experiments where resources are depleted 139 

(so-called non-replacement experiments), models are provided (suffixed with nr) with 140 

Rogers (1972) modifications and solved using the ‘lambertW’ function (Bolker 2008). 141 

Although equations 1 and 2 imply consumer functional responses can be described on a 142 

linear (Type I) to sigmoidal (Type III) continuum, the original categorical descriptions of 143 

Holling remain prominent (e.g. Denny 2014). This is likely because deviations from Type II 144 

towards Type III functional responses can stabilise otherwise chaotic consumer-resource 145 

dynamics (Williams & Martinez 2004; Barrios-O’Neill et al. 2016).  146 

Juliano (2001) advocates fitting polynomial logistic functions to proportional consumption 147 

data to determine functional response Type. Type II is characterised by a negative first-order 148 

term (declining proportional consumption with increasing resource density; Fig. 1b), in 149 

contrast to a positive first-order term of Type III (initial increase and subsequent decrease in 150 

proportional consumption; Fig. 1b). Using this logic, the frair_test function uses forward 151 

selection based on the sign and significance of first-order (density) and second-order 152 

(density^2) terms in logistic regressions. 153 
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# Gammarus 154 
frair_test(formula = eaten~density, data = gammarus) 155 

## FUNCTIONAL RESPONSE TEST 156 
##  157 
## Evidence for type-II response:   Yes 158 
## Evidence for type-III response:  - 159 
##  160 
## Type-II logistic regression output: 161 
##           Estimate Std. Error z value  Pr(>|z|)     162 
## density -0.0792704  0.0044298 -17.895 < 2.2e-16 *** 163 
## --- 164 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 165 

 166 
# Bythotrephes 167 
frair_test(formula = eaten~density, data = bythotrephes) 168 

## FUNCTIONAL RESPONSE TEST 169 
##  170 
## Evidence for type-II response:   No 171 
## Evidence for type-III response:  Yes 172 
##  173 
## Type-III logistic regression output: 174 
##                Estimate Std. Error z value  Pr(>|z|)     175 
## density       0.3646093  0.1009794  3.6107 0.0003053 *** 176 
## I(density^2) -0.0206557  0.0051263 -4.0293 5.593e-05 *** 177 
## --- 178 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 179 

 180 

Although this approach provides a statistical test to distinguish between Type II and Type III, 181 

it is considered phenomenological in that describes only the general shape of the response, 182 

without determining whether a particular mechanistic model is appropriate. An alternative 183 

approach involves fitting a generalised form of the functional response model with a scaling 184 

exponent (q) parameterised such that q = 0 represents a Type II response (equation 1 or 2), 185 

thus exposing a useful null-hypothesis test (i.e. q ≠ 0) via a regression output and allowing 186 

for comparison of models using information criteria (e.g. AIC, BIC, AICc). For example, 187 

with the bythotrephes dataset: 188 

# Bythotrephes 189 
# Fit a model where q can vary: 190 
b_flex <- frair_fit(eaten~density, data=bythotrephes,  191 
                    response='flexpnr',  192 
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                    start=list(b = 1, q = 0, h = 0.08),  193 
                    fixed=list(T = 12/24)) 194 
# Fit a model where q is fixed to zero: 195 
b_II <- frair_fit(eaten~density, data=bythotrephes,  196 
                  response='flexpnr',  197 
                  start=list(b = 1, h = 0.08),  198 
                  fixed=list(T = 12/24, q = 0)) 199 
summary(b_flex$fit) # q != 0 : Type III preferred 200 
AIC(b_flex$fit, b_II$fit) # The model including q is preferred 201 

 202 

The usefulness of these tests depends on the quality of data at low resource densities 203 

(Barrios-O’Neill et al. 2015) and some authors recommend that proportional relationships are 204 

visually inspected with locally weighted regression (Juliano 2001).  205 

The experimental designs of our datasets indicate that depletion models are required as prey 206 

are not replaced during the experiment. Plots of the raw data and these analyses suggest that 207 

for the gammarus dataset, a Type II model is sufficient, however a Type III—or flexible 208 

model—may be most appropriate for the bythotrephes data. 209 

MODEL FITTING 210 

Essential to the optimisation of non-linear models is the provision of reasonable starting 211 

values for free parameters. There are some rules of thumb, for example, for Type II models, h 212 

can be approximated as the inverse of the maximum number eaten where T is set to 1 (Bolker 213 

2008). An equally reliable method is a visual assessment of the data, plotting of putative 214 

starting values and trial and error (Fig. 2).  215 

# Gammarus 216 
with(gammarus, plot(density, eaten, xlab="Prey Density",  217 
                    ylab="No. Prey Eaten")) 218 
x <- with(gammarus, seq(from = min(density), to = max(density),  219 
                        by = 0.1)) 220 
lines(x, rogersII(X = x, a = 1.2, h = 0.08, T = 40/24),  221 
      col='grey50', lty=2) 222 
lines(x, rogersII(X = x, a = 0.6, h = 0.16, T = 40/24),  223 
      col='grey50', lty=2) 224 
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 225 
# Bythotrephes 226 
with(bythotrephes, plot(density, eaten, xlab="Prey Density",  227 
                        ylab="No. Prey Eaten")) 228 
x <- with(bythotrephes, seq(from =  min(density), to = max(density),  229 
                            by = 0.1)) 230 
lines(x, flexpnr(X = x, b = 1, h = 0.04, q = 1, T = 12/24),  231 
      col='grey50', lty=2) 232 
lines(x, flexpnr(X = x, b = 2.4, h = 0.04, q = 0, T = 12/24),  233 
      col='grey50', lty=2) 234 

 235 

Note that all FRAIR functional response models take at least one fixed parameter (T), which 236 

is experimental time. Although not optimised, this value will change the units of the fitted 237 

coefficients. For example, with the gammarus dataset: 238 

# The role of T in modifying fitted coefficients. 239 
g_T1 <- frair_fit(formula = eaten~density, data = gammarus,  240 
                  response = "rogersII",  241 
                  start = list(a = 2, h = 0.1), fixed = list(T = 1)) 242 
g_Td <- frair_fit(formula = eaten~density, data = gammarus,  243 
                  response = "rogersII",  244 
                  start = list(a = 1, h = 0.1), fixed = list(T = 40/24)) 245 
g_Th <- frair_fit(formula = eaten~density, data = gammarus,  246 
                  response = "rogersII",  247 
                  start = list(a = 0.05, h = 4), fixed = list(T = 40)) 248 
diff_t <- round(rbind(coef(g_T1), coef(g_Td), coef(g_Th)), 2) 249 
row.names(diff_t) <- c("g_T1 (Time)", "g_Td (Days)", "g_Th (Hours)") 250 
print(diff_t) 251 

##                 a    h     T 252 
## g_T1 (Time)  2.37 0.11  1.00 253 
## g_Td (Days)  1.42 0.18  1.67 254 
## g_Th (Hours) 0.06 4.33 40.00 255 

 256 

Many authors implicitly accept units of experimental time” by setting T = 1. Unless the raw 257 

data is made available this limits the use of parameter estimates in subsequent studies (e.g. 258 

meta-analyses, food-web models). Therefore, we recommend users adopt units of either hour 259 

or day and have adopted units of day in this manuscript.  Once starting estimates and fixed 260 

values are provided, the model is optimised using maximum likelihood estimation (MLE). 261 
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This robust approach to fitting non-linear models (Bolker 2008) allows for optimisation on 262 

the basis of arbitrary probability distributions. Internally, all FRAIR models use a binomial 263 

likelihood function, which imposes an upper (all prey eaten) and lower (no prey eaten) limit 264 

on the response. A practical limitation of this likelihood specification is that FRAIR can only 265 

fit curves when the density (x-axis) is specified as whole integer values (the most common 266 

situation for individual prey items). 267 

In FRAIR, optimisation by MLE is provided by frair_fit and is implemented using 268 

bbmle::mle2 (Bolker 2008). The resulting output (of class frair_fit) provides information 269 

on the fit and the maximum likelihood estimators (fitted coefficients) and a lines method to 270 

plot the fitted curve (Fig. 2). frair_fit also returns the raw output from the maximum 271 

likelihood optimisation, which provides typical regression output including asymptotic 272 

standard errors, z-statistics and p-values. 273 

# A fit to the entire gammarus dataset 274 
g_fit <- frair_fit(formula = eaten~density, data = gammarus,  275 
                   response = "rogersII", 276 
                   start = list(a = 1, h = 0.1),  277 
                   fixed = list(T = 40/24)) 278 
with(gammarus, plot(density, eaten, xlab="Prey Density",  279 
                    ylab="No. Prey Eaten")) 280 
lines(g_fit, lty = 1, col = "grey25") 281 
print(g_fit) 282 

## FUNCTIONAL RESPONSE FIT 283 
##  284 
## Response:            rogersII 285 
## Description:         Roger's type II decreasing prey function 286 
## Optimised variables: a, h 287 
## Fixed variables:     T 288 
##  289 
## Coefficients: 290 
##     a     h     T  291 
## 1.423 0.180 1.667 292 
##  293 
## NOTE: It is recommended you inspect the raw fit too (see: ?frair_fit) 294 

summary(g_fit$fit) 295 

## Coefficients: 296 
##    Estimate Std. Error z value     Pr(z)     297 
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## a 1.4228013  0.1314562  10.823 < 2.2e-16  298 
## h 0.1802657  0.0098583  18.286 < 2.2e-16  299 
##  300 
## -2 log L: 1129.631 301 

 302 
# A fit to the entire bythotrephes dataset 303 
b_fit <- frair_fit(formula = eaten~density, data = bythotrephes,  304 
                   response = "flexpnr",  305 
                   start = list(b = 1.5, h = 0.04, q = 1),  306 
                   fixed = list(T = 12/24)) 307 
with(bythotrephes, plot(density, eaten, xlab="Prey Density",  308 
                        ylab="No. Prey Eaten")) 309 
lines(b_fit, lty = 1, col = "grey25") 310 
print(b_fit) 311 

## FUNCTIONAL RESPONSE FIT 312 
##  313 
## Response:            flexpnr 314 
## Description:         Flexible exponent, not assuming replacement 315 
## Optimised variables: b, h, q 316 
## Fixed variables:     T 317 
##  318 
## Coefficients: 319 
##     b     q     h     T  320 
## 0.652 1.215 0.053 0.500 321 
##  322 
## NOTE: It is recommended you inspect the raw fit too (see: ?frair_fit) 323 

summary(b_fit$fit) 324 

## Coefficients: 325 
##   Estimate Std. Error z value     Pr(z)     326 
## b 0.651730   0.258996  2.5164   0.01186 327 
## q 1.215357   0.296077  4.1049 4.045e-05 328 
## h 0.052912   0.005112 10.3509 < 2.2e-16  329 
##  330 
## -2 log L: 241.1805 331 

 332 

MODEL COMPARISON 333 

The third step in the FRAIR workflow includes comparisons of fitted coefficients. The two 334 

approaches currently implemented are the delta or difference method of Juliano (2001), 335 

provided by frair_compare and non-parametric bootstrapping of the raw data, provided by 336 

frair_boot. Both functions operating on objects produced by frair_fit (i.e. class frfit). 337 
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Comparisons between constituent parameters require that those parameters are equivalent. 338 

Comparisons of handling times, h, and maximum feeding rates (1/hT) are possible between 339 

all models in FRAIR (assuming consumers are handling limited), but comparisons of capture 340 

rates are often problematic. For example, there is no equivalence between capture rates as 341 

defined in hassIIInr and rogersII, which respectively describe Type III and Type II 342 

responses (e.g. Alexander et al. 2012). Indeed, a Type II model assumes a prey density-343 

independent capture rate, whilst for a Type III model capture rates typically follow a power 344 

law with prey density. Where comparing Type II and Type III models it is common to resort 345 

to comparisons of maximal capture rates, usually the steepest part of the curve (Englund et al. 346 

2011). Often, however, responses in a dataset are of the same categorical form, making 347 

comparisons straightforward. 348 

# Compare two species in the gammarus dataset 349 
pulex <- gammarus[gammarus$spp=='G.pulex', ] 350 
celt <-  gammarus[gammarus$spp=='G.d.celticus', ] 351 
st <- list(a = 1, h = 0.1) 352 
fx <- list(T = 40/24) 353 
p_fit <- frair_fit(eaten~density, data = pulex, response = 'rogersII',  354 
                   start = st, fixed = fx) 355 
c_fit <- frair_fit(eaten~density, data=celt, response='rogersII',  356 
                   start = st, fixed = fx) 357 
frair_compare(p_fit, c_fit) 358 

## FUNCTIONAL RESPONSE COEFFICIENT TEST 359 
##  360 
## Response:            rogersII 361 
## Optimised variables: a,h 362 
## Fixed variables:     T 363 
##  364 
## Original coefficients:  365 
##             a       h 366 
## p_fit 1.47748 0.14268 367 
## c_fit 1.41745 0.23381 368 
##  369 
## Test: p_fit - c_fit 370 
##  371 
##    Estimate Std. Error z value  Pr(z)  372 
## Da  0.05961    0.27132  0.2197 0.8261  373 
## Dh -0.09115    0.02087 -4.3681  1e-05  374 

 375 
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frair_compare implements a difference test with the null hypothesis that fitted parameters 376 

do not differ. The fitted parameters Da and Dh estimate the differences between the capture 377 

rates and handling times of the two predators respectively. Here, we have evidence that 378 

capture rates do not differ (Da = 0.06, z = 0.22, p = 0.826), but that the handling time of 379 

G. pulex is shorter than that of G. d. celticus (Dh = -0.02, z = -4.36, p < 0.001). 380 

Unfortunately the difference method does not allow for direct comparisons between predicted 381 

consumption a across the range of resource densities and because consumers can switch 382 

between Type II and Type III responses (Barrios-O’Neill et al. 2016) objective comparisons 383 

using this approach are often impossible. Therefore, FRAIR also provides frair_boot, 384 

which implements non-parametric bootstrapping and leverages boot::boot (Canty & Ripley 385 

2016). This method generates multiple estimates of curves and constituent parameters (based 386 

on a default minimum of 999 samples; Dixon 2001) and reports 95% confidence intervals 387 

(CIs) by default. We recommend using bias corrected and accelerated intervals – BCa – to 388 

account for bias, skew and bounded parameters (a and h > 0). It is expected that the 389 

underlying maximum likelihood estimation will sometimes fail, even with reasonable starting 390 

values, therefore frair_boot warns if > 10% of all bootstrapped fits fail and returns an error 391 

if >50% of the fits fail. Because bootstrapping generates population metrics, the equivalent of 392 

a null hypothesis test is simply a lack of overlap between the CIs of model parameters. 393 

# Bootstrap the Gammarus pulex fit 394 
p_fitb <- frair_boot(p_fit) 395 
confint(p_fitb, citypes = 'bca') 396 

## Coefficient  CI Type        Lower   Upper    397 
## a            BCa            0.998   2.295    398 
## h            BCa            0.102   0.203 399 

 400 
# Bootstrap the Gammarus duebeni celticus fit 401 
c_fitb <- frair_boot(c_fit) 402 
confint(c_fitb, citypes = 'bca') 403 
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## Coefficient  CI Type        Lower   Upper    404 
## a            BCa            0.94    2.133    405 
## h            BCa            0.183   0.286 406 

 407 

Bootstrapping outputs for the gammarus dataset concur with the difference method for 408 

capture rates: the 95% CIs clearly overlap. In contrast to the difference method frair_boot 409 

suggests no difference between consumer handling times (95% CIs for h fractionally 410 

overlap). While both methods are sensitive to underlying data quality and quantity, the 411 

difference method makes assumptions about the error structure of the fitted parameters, 412 

whilst bootstrapping reflects the likely range of values given the data provided, whilst 413 

accounting for the bounded (e.g. non-negative) nature of handling times.  414 

Based on the output from bootstrapped fits, FRAIR provides visual comparisons of entire 415 

functional response curves using drawpoly (Fig. 3). This function plots empirical 416 

approximations of the confidence intervals using the desired quantile predictions (0.025 and 417 

0.975 for 95% CIs). Even where estimates of 95% CIs for all fitted parameters overlap (as in 418 

this example), parameters can combine to yield differences in predicted consumption as a 419 

function of prey density (Fig. 3). Such differences cannot be addressed using the delta 420 

method, and drawpoly provides a means to identify where predicted consumption may differ 421 

along an axis of resource density. 422 

LIMITATIONS 423 

Fitting non-linear models to ecological data can be a challenging and frustrating process 424 

(Bolker et al. 2013), resulting from highly variable data, low replication, use of an overly 425 

complex model, a desire to test many hypotheses, or a combination of these. Although there 426 

have been computational improvements, the challenges are as real now as they were in 1988, 427 

when Trexler et al. noted that it may be impossible to fit a curve to data, even with 11 428 
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resource densities and 10 replicates per resource density – a quantity of data rarely attained in 429 

experimental functional response analyses (Trexler et al. 1988). Even after many days of 430 

laboratory work, it may be impossible to fit the desired functional response model, or 431 

distinguish between the subtleties of a Type II and Type III response. This may be an 432 

unavoidable problem that no software can solve, but accessible tools for analysis will 433 

improve understanding of the strengths and limitations of consumer functional responses. 434 

Nevertheless, even with these tools, it seems clear that there is nothing straightforward about 435 

application or interpretation.  436 

FRAIR has been designed with the non-specialist in mind. However, for those seeking 437 

advanced analyses, FRAIR has some practical limitations. For example, currently FRAIR 438 

does not provide ratio- or predator-dependent models (e.g. Hassell & Varley 1969; 439 

Beddington 1975) or body size-dependent models  (e.g. Kalinkat et al. 2013) and FRAIR 440 

does not include some convenience functions (e.g. to explore and avoid local optima) or the 441 

capacity specify user defined models (e.g. those with arbitrary probability distributions). We 442 

aim to add these features to FRAIR in the future and welcome third party participation in 443 

package development (https://github.com/dpritchard/frair). Those seeking to work outside the 444 

structure provided by FRAIR should consider the details provided by Bolker (2008) and can 445 

find some guidance in the FRAIR help manual (e.g. ?frair_fit).   446 

 447 

CONCLUSION 448 

We have presented the FRAIR package and demonstrated how it provides a reproducible 449 

framework for the selection, fitting and comparison of functional response models. We 450 

anticipate that FRAIR will help to consolidate functional response analysis methods for non-451 

specialists by ensuring that common mistakes are not perpetuated, and by exemplifying the 452 

https://github.com/dpritchard/frair)
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current best practice for non-linear curve fitting and comparison. Consumer-resource 453 

interactions are fundamental to many aspects of contemporary ecological research and thus, 454 

we anticipate that in providing an accessible open source package for functional response 455 

analysis, FRAIR will provide a useful tool for many ecologists.  456 
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 569 

Figure 1. Categorical forms of functional response curves (Holling 1959) describe 570 

relationships between prey density and prey consumption (a), differentiated by corresponding 571 

relationships between prey density and proportional consumption (b). For a Type II 572 

functional response (c, dashed curve), doubling capture rates (a in equation 1, purple curves) 573 

primarily increases consumption at lower prey densities, whilst doubling handling time (h 574 

equation 1, blue curves) reduces asymptotic consumption.   575 
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 576 

Figure 2. Visualisation of the datasets included with the FRAIR package. (a) Consumption of 577 

dipteran larvae (Simulium spp.) by native Gammarus duebeni celticus and invasive G. pulex 578 

and (b) The consumption of three size classes of Polyphemus pediculus by Bythotrephes 579 

longimanus. Dashed lines represent plausible starting values for MLE optimisation and solid 580 

lines represent optimised fits for Rogers (Type II, Gammarus) or Flexible Exponent 581 

(Bythotrephes) models.   582 
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 584 

Figure 3. Empirical approximations of 95% confidence intervals based on bootstrapped 585 

model fits for the number of prey eaten by native Gammarus duebeni celticus and invasive G. 586 

pulex (Gammarus dataset).   587 
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