ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/334680734
Multi Label Ranking Based on Positive Pairwise Correlations Among Labels

Article in International Arab Journal of Information Technology - July 2019

DOI: 10.34028/iajit/17/4/2

CITATION READS
1 118

3 authors, including:

Raed Alazaidah \%  Farzana Kabir Ahmad
Universiti Utara Malaysia Universiti Utara Malaysia
11 PUBLICATIONS 38 CITATIONS 48 PUBLICATIONS 142 CITATIONS

SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

roject  robotic systems and trust phenomenon towards in short term HRI View project

roject  CAKNA: Robot-enabled Platform for Anxiety Management System View project

All content following this page was uploaded by Raed Alazaidah on 23 December 2019.

The user has requested enhancement of the downloaded file.



https://core.ac.uk/display/333873798?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.researchgate.net/publication/334680734_Multi_Label_Ranking_Based_on_Positive_Pairwise_Correlations_Among_Labels?enrichId=rgreq-ff18dcecff46486b42ef9f1b113c72d1-XXX&enrichSource=Y292ZXJQYWdlOzMzNDY4MDczNDtBUzo4Mzk0MTEwMDA0Mzg3ODRAMTU3NzE0MjU4Njk5NA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/334680734_Multi_Label_Ranking_Based_on_Positive_Pairwise_Correlations_Among_Labels?enrichId=rgreq-ff18dcecff46486b42ef9f1b113c72d1-XXX&enrichSource=Y292ZXJQYWdlOzMzNDY4MDczNDtBUzo4Mzk0MTEwMDA0Mzg3ODRAMTU3NzE0MjU4Njk5NA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/robotic-systems-and-trust-phenomenon-towards-in-short-term-HRI?enrichId=rgreq-ff18dcecff46486b42ef9f1b113c72d1-XXX&enrichSource=Y292ZXJQYWdlOzMzNDY4MDczNDtBUzo4Mzk0MTEwMDA0Mzg3ODRAMTU3NzE0MjU4Njk5NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/CAKNA-Robot-enabled-Platform-for-Anxiety-Management-System?enrichId=rgreq-ff18dcecff46486b42ef9f1b113c72d1-XXX&enrichSource=Y292ZXJQYWdlOzMzNDY4MDczNDtBUzo4Mzk0MTEwMDA0Mzg3ODRAMTU3NzE0MjU4Njk5NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-ff18dcecff46486b42ef9f1b113c72d1-XXX&enrichSource=Y292ZXJQYWdlOzMzNDY4MDczNDtBUzo4Mzk0MTEwMDA0Mzg3ODRAMTU3NzE0MjU4Njk5NA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Raed_Alazaidah?enrichId=rgreq-ff18dcecff46486b42ef9f1b113c72d1-XXX&enrichSource=Y292ZXJQYWdlOzMzNDY4MDczNDtBUzo4Mzk0MTEwMDA0Mzg3ODRAMTU3NzE0MjU4Njk5NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Raed_Alazaidah?enrichId=rgreq-ff18dcecff46486b42ef9f1b113c72d1-XXX&enrichSource=Y292ZXJQYWdlOzMzNDY4MDczNDtBUzo4Mzk0MTEwMDA0Mzg3ODRAMTU3NzE0MjU4Njk5NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universiti_Utara_Malaysia?enrichId=rgreq-ff18dcecff46486b42ef9f1b113c72d1-XXX&enrichSource=Y292ZXJQYWdlOzMzNDY4MDczNDtBUzo4Mzk0MTEwMDA0Mzg3ODRAMTU3NzE0MjU4Njk5NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Raed_Alazaidah?enrichId=rgreq-ff18dcecff46486b42ef9f1b113c72d1-XXX&enrichSource=Y292ZXJQYWdlOzMzNDY4MDczNDtBUzo4Mzk0MTEwMDA0Mzg3ODRAMTU3NzE0MjU4Njk5NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Farzana_Kabir_Ahmad2?enrichId=rgreq-ff18dcecff46486b42ef9f1b113c72d1-XXX&enrichSource=Y292ZXJQYWdlOzMzNDY4MDczNDtBUzo4Mzk0MTEwMDA0Mzg3ODRAMTU3NzE0MjU4Njk5NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Farzana_Kabir_Ahmad2?enrichId=rgreq-ff18dcecff46486b42ef9f1b113c72d1-XXX&enrichSource=Y292ZXJQYWdlOzMzNDY4MDczNDtBUzo4Mzk0MTEwMDA0Mzg3ODRAMTU3NzE0MjU4Njk5NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universiti_Utara_Malaysia?enrichId=rgreq-ff18dcecff46486b42ef9f1b113c72d1-XXX&enrichSource=Y292ZXJQYWdlOzMzNDY4MDczNDtBUzo4Mzk0MTEwMDA0Mzg3ODRAMTU3NzE0MjU4Njk5NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Farzana_Kabir_Ahmad2?enrichId=rgreq-ff18dcecff46486b42ef9f1b113c72d1-XXX&enrichSource=Y292ZXJQYWdlOzMzNDY4MDczNDtBUzo4Mzk0MTEwMDA0Mzg3ODRAMTU3NzE0MjU4Njk5NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Raed_Alazaidah?enrichId=rgreq-ff18dcecff46486b42ef9f1b113c72d1-XXX&enrichSource=Y292ZXJQYWdlOzMzNDY4MDczNDtBUzo4Mzk0MTEwMDA0Mzg3ODRAMTU3NzE0MjU4Njk5NA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Multi Label Ranking Based on Positive Pairwise
Correlations Among Labels

Raed Alazaidah, Farzana Ahmad, and Mohamad Mohsin
School of Computing, Universiti Utara Malaysia, Malaysia

Abstract: Multi-Label Classification (MLC) is a general type of classification that has attracted many researchers in the last
few years. Two common approaches are being used to solve the problem of MLC: Problem Transformation Methods (PTMs)
and Algorithm Adaptation Methods (AAMSs). This Paper is more interested in the first approach; since it is mére gpneral and
applicable to any domain. In specific, this paper aims to meet two objectives. The first objective is to proposé awew multi-label
ranking algorithm based on the positive pairwise correlations among labels, while the second objectiva,aims.to propose new
simple PTMs that are based on labels correlations, and not based on labels frequency as in conventiénal"RTMs. Experiments
showed that the proposed algorithm overcomes the existing methods and algorithms on all evaluatinn rwetrics that have been
used in the experiments. Also, the proposed PTMs show a superior performance when compared=witly thie existing PTMs.
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1. Introduction

Classification is one of the most interested task in data
mining that has attracted many researchers and
scholars in the last few decades [5]. In general,
classification could be categorized into two main
types: Single Label Classification (SLC) and Multi
Label Classification (MLC). In SLC, each ingtamge s
associated with only one class label from [a set'of
disjoint class labels. If the total number of classes’in
the data set equals two, then the problcq is called
binary classification, otherwise, the preblam™is called
multi class classification. On tlte ¢ther<hiand, MLC
allows instances in the data sét to we aSsociated with
one or more class labels at the Sgime time [2, 3].

Two main differences betwee’SLC and MLC. In
SLC, labels are mutuai exglusive, while they are not in
MLC, and they do -haye cori€lations and dependencies
among them. The“%acond main difference is that the
problem seargh spacg in SLC is quite limited when
comparing with M. For example, if the total number
of labels I\SLE. is 20, then, the problem search space
consists of ‘wrly 20 possible labels. While if the
problem is a MLC, and the total number of labels
equals 20, then, the problem search space consists of
2% possible labels combinations, which is more than
one million possible combinations. Thus, the problem
of MLC is very complicated when compared to the
problem of SLC; due to the existing dependencies and
correlations among labels, which cause a huge problem
search space [3].

According to Gibaja and Ventura [7], Multi-Label
Learning (MLL) includes two different tasks: MLC
and Label Ranking (LR). While the goal in MLC is to
divide labels into two groups (relevant labels,

irrelevanilaoels), based on a specific function for any
test instancey the goal of LR is to order all labels,
accofchng to the relevance of the labels to a given test
insence.  Multi-Label Ranking (MLR) is a
generalization of both tasks of learning, which outputs
ayalpartition and a ranking at the same time.

Two main common approaches are being used to
solve the problem of MLC. The first approach called
Problem Transformation Methods (PTMs), while the
second approach called Algorithm Adaptation Methods
(AAMs). The former transforms the problem of MLC
into one or several SLC problems, and then, trains a
single label classifier or more on the transformed
datasets. The predictions of these single label
classifiers are merged to form a multi-label predictions.
AAMs adapts a single label classification algorithm to
handle multi-label data. According to Read,
Pfahringer, Holmes, and Frank [12], PTMs are
preferable over AAMs; since they are more simpler,
more general, and not a domain specific like AAMs.

Recently, there is a strong belief among many
researchers regarding the importance of capturing the
correlations and dependencies among labels, in order
to reduce the huge search space of the MLC problem,
as well as to improve the predictive performance of a
MLC classifier [1, 4]. Hence, this paper is much more
interested in capturing positive pairwise correlations
among labels, as well as maximizing the exploitation
of these discovered correlations. Thus, the discovered
correlations will be exploited in several different steps
of the proposed algorithm such as the transformation
step, multi-label classifier construction step and the
ranking of the relevant labels step.

In this paper, the researchers are more interested in
the approach of PTMs to handle MLC; because we



have a firm belief that this approach is more simpler,
more general and applicable to any domain, and the
AAMs approach in its essence, explicitly or implicitly
performs a transformation step [12]. Hence, the outputs
of this research will be applicable and generalized to
both approaches.

Since the transformation step is one of the main
steps in many PTMs as well as AAMs, it is very
important to think out of the box regarding this step. In
Fact, most methods and algorithms utilize this step in
only one task, which is the transformation of the multi-
label dataset into single label dataset. Nevertheless, we
believe this step should be considered with more
attention. Thus, we are proposing to use new PTMs
based on the positive pairwise correlations among
labels, and not based on labels frequency as in the
conventional PTMs. Transforming multi-label dataset
into a single label dataset using the correlations among
labels as a transformation criterion will facilitate the
utilization and exploitation of the significant
correlations among labels greatly, and consequently
improve the final predictive performance of the multi-
label classifier.

Generally speaking, capturing the correlations
among labels may increase the complexity of any
proposed multi-label algorithm, as well as the running
time. Thus, this task should be considered wisely and
must be justified correctly. Hence, the proposed multi
label ranking algorithm captures significant positive
pairwise correlations among labels, and exploits itain
three different main step (transformation steg, maltr:
label classifier construction step and the rankiag step).
We believe, the cost paid for capturing and expiditing
the correlations among labels will be justiiied by the
fair enhancement of the final multi» i@oe! classifier
predictive performance.

This paper is organized4as )follgwing. The next
section briefly surveys the litercture review. Section 3
introduces the proposez®®TMs and the proposed MLR
algorithm. Section &4 " corigludes and describes few
research works.

2. Related \Wwexk

Many algcsithrps have been proposed to solve the
problem of »MLC. These algorithms could be
categorized based on the degree of correlations among
labels, that has been considered in the learning step,
into three approaches [16]. The first approach is known
as a first order approach, and tackles the problem of
MLC by considering labels to be mutual exclusive, and
never considers the correlations among labels.

One of the most popular algorithms that follows the
approach of first order is the Binary Relevance (BR)
algorithm. This algorithm assumes labels in a multi-
label dataset to be independent, and ignores any
possible correlations and dependencies among them. It
is similar to the concept of One-versus-All (OVA) that

has been extensively used in multi class classification
[4]. BR divides the original multi-label dataset into (k)
single label datasets, where each dataset is specific to
one label only. Instances in this dataset are either
labelled as "True", if the original instance is associated
with this label, or labelled as "False" otherwise. A
binary classifier then is trained to predict the relevance
of a test instance to each label.

BR has several advantages over other methods such
as: its simplicity in handling the problem of MLC, the
ability to rum the algorithm in parallel, and therefore,
speedup the process of constructing a multi-label
classifier, the low possibility of overfitting, aad finally,
BR has a low computational cempigxity when
compared with other methods [1Z],

Although BR is a simple met:¥od that inspired many
researchers, but it has beefihcrivicized for several
drawbacks like assuming lawel&.to be independent, and
not taking labels corrglatians into account. Another
drawback is the hugeMossyof information regarding to
ignoring labels’Cairentivns and dependencies. A third
drawback appedss when there are many labels in the
dataset, wiivighhcomplicated the training phase of BR
[14].

The simpyicity of BR has inspired many scholars to
design” new methods that try to overcome the
disagvaiitages of BR. One of the first method that was
ingniied and designed based on BR is the Classifier
Chains (CC) algorithm [12]. Similar to BR, CC
algorithm divides a multi-label dataset into (k)
different single label datasets, then it trains a binary
classifier for each label. A chain of classifiers then is
build, where binary attributes are added to each
classifier for all of the predictions of the previous
classifiers.

Considering the prediction of the previous
classifiers in the chain is the CC's way to overcome BR
drawback of not taking labels correlations into account.
In average (k/2) binary attributes are added to every
instance, but this addition has a small impact on the
computational complexity of CC, which is almost close
to BR computational complexity [7]. Execution of CC
could be done in parallel like BR in the training phase,
while it has to be serialized in the testing phase. The
main drawback of CC is in determining the optimal
order of the chains, where it has been proved, and
stated by its author himself that different orders of the
chains give different predictions, and therefore, will
affect the accuracy of the final result [12].

To solve the problem of different orders give
different predictions, a new version of CC was
presented by the same author, using an Ensemble of
Classifier Chains (ECC) which used a random ordering
of the chains, in addition to random training subsets
[12].

In Goncalves, Plastino, and Freitas [8], an attempt to
optimize and determine the best order of the chains
was presented. The authors proposed to use the



capability of the Genetic Algorithm (GA) in order to
determine the optimal chains' order. The proposed
algorithm Genetic Algorithm for optimizing the label
ordering in multi-label Classifier Chain (GACC) needs
to be evaluated on more datasets using several
evaluation measures that are more related to MLC.

Another algorithm that follows the approach of the
first order is the Multi Label K Nearest Neighbour
(ML-KNN) [17]. ML-KNN is one of the first
algorithm that adopted lazy learning to handle MLC.
ML-KNN is based on the popular algorithm KNN. The
first step in ML-KNN is to determine the (k) nearest
neighbours for each new instance in the training test.
The Maximum A Posteriori (MAP) is utilized to
determine the label set of the test instance. MAP is
utilized based on the statistical information of the label
sets of the neighbouring instances.

The second approach is known as a second order
approach, and takes into consideration only pairwise
correlations among labels. Two main popular methods
that follow the second order approach. The first
method is called Ranking by Pairwise Comparisons
(RPC) [6]. RPC is similar to BR in dividing a dataset
with (k) labels into (k (k-1)/2) binary datasets. A
binary dataset for each pair of labels (L1, L2), where
the instances of the dataset are those instances that are
associated with L1 or L2 , but not the both labels [12].
To classify a new instance, all the binary models arg
invoked, and a ranking is obtained by counting the
votes for each label. RPC suffers from several
limitations such as the high quadratic compleXity $hat
makes it a very bad choice when dealing with large
number of labels. Another limitation is that "RPC
consumes a large space of the main. faemory to
construct (k (k-1) / 2) datasets. The, fast“njnitation of
RPC is that it does not havesa goligpoint between
relevant and irrelevant labels{7].

To overcome the last drawback of RPC, the
Calibrated Label Rankifa (CLR) was proposed. CLR
is another pairwisedmethad that enhanced RPC by
introducing a caliiratiqa label. This virtual label (LO)
works as a split point ‘oetween relevant labels, and
irrelevant labie, [6]¢' As in RPC, the CLR method
suffers filom gpace complexity, and computational
complexity also!

Back propagation for Multilabel Learning (BP-
MLL) algorithm [17] is an adaptation of the traditional
multi layer, feed-forward neural network to multi-label
data. The net was trained with gradient descendent, and
error back propagation with an error function closely
related to the ranking loss, that took into account the
multi-label data. Experimental results showed a
competitive performance in genomics and text
categorization domains, with a computational cost
derived according to neural networks methods.

The third approach that is known as a high order
approach considers a high order of correlations among
all labels in the labels set, or among a subset of labels

[16]. One of the high order approach algorithm that
captures and exploits high order correlations among
labels is the Label Powerset (LP) algorithm. LP
considers each unique set of labels combinations in the
training set as a new class label, in a multi class
classification problem. LP handles the problem of
MLC by transforming it into a multi class classification
problem [3]. LP has the ability to exploit the
correlations among labels in a simple and effective
way, but it suffers from several limitations. Firstly, LP
is able to predict only those classes (labels
combinations) that exist in the training set, and cannot
predict new label sets that appear only i tae test set.
This is a major limitation, since it~=wiliylead to an
overfitting problem. Secondly, there 1s,a big possibility
to suffer from the problemiofimbalance class
distribution when using L#Fn and the possibility
increases as the number @i®lakels and the number of
distinct label sets jpaciease [15]. Thirdly, the
computational complexitypof LP is exponential with
respect to the thwunoyr Uf labels, and the number of
distinct label sets, We-complexity is upper bounded by
min (m, 2% 0t uSually it is less than that. LP works
well witiy/small datasets, but quickly fails with
moderate any-large datasets.

A5/1n, BR, LP has inspired many researchers to
déstan™iiew methods that consider labels correlations
intg, account. The first method that was based on LP,
and tried to enhanced LP by overcoming the problem
of imbalance class distribution was the Pruned Set (PS)
method [11]. PS prunes all the label sets that have a
frequency less than a specific user defined threshold.
This strategy may solve the problem of high
computational complexity of LP, and the problem of
imbalance class distribution, but at the same time it
imposes a new problem, which is the information loss
due to the pruned labels combinations. The author
proposed to use small subsets of the pruned
combinations, that are frequent in the dataset in the
final prediction of the classifier.

The Ensemble of Pruned Set (EPS) method
constructs a number of pruned sets through sampling
the training set, and builds the final prediction using
voting schema, and a user predefined threshold, in
order to form new combinations of labels [3].

Tsoumakas and Vlahavas [13] proposed their
famous algorithm RAndom k labEL set (RAKEL)
based on LP method. RAKEL constructs an ensemble
of LP classifiers, where each classifier is trained using
a smaller random subset that consists of (k) labels. To
classify a new instance. The outputs of all classifiers
are averaged per label with respect to a predefined
threshold. RAKEL is a problem transformation method
that is algorithm independent, thus any single label
classifier could be used with it. The authors of RAKEL
recommended to use either C4.5 [10] or Support
Vector Machine (SVM) [9] as a base classifier for
RAKEL. This recommendation was based on an



intensive experiment conducted by the authors
themselves to determine the best base classifier for
their algorithm.

RAKEL manages to consider labels correlations into
account, and at the same time avoids the computational
complexity of LP, by considering smaller subsets of
labels combinations. RAKEL has the ability to predict
label sets that did not appear in the training phase,
which LP failed to do. RAKEL is less possible to suffer
from the overfitting or imbalance class distribution,
due to minimizing the size of the label sets [1].

Regardless of the great advantages and
enhancements of RAKEL over LP, but it still suffers
from several limitations such as: the huge loss of
information that is ignored to solve the problem of
high computational complexity, and the imbalance
class distribution. Another limitation is in determining
the optimal value of (k). The authors suggested the best
value of (k) to be 3, but they never showed why and
how they reached to this value [15]. The authors never
discussed the ability to determine the value of (k)
automatically, and what is the relation between labels
cardinality and the value of (k), and whether RAKEL
has the ability to handle multi-label datasets with large
label cardinality [2].

To summarize, the first approach may have the
advantage of being simple and easy to implement, but
suffers from a major limitation of not taking labelg
correlations into account. Hence, ignoring the basic
principle of MLC problem, that is, the existence,0t
dependencies and correlations among labels [2].

Although, the second order approach majages)to
enhance the predictive performance on\some Tiiulti-
label datasets, but it has a limitation of adasessing the
correlations among labels into a@eC&win extent.
Therefore, it seems to be relatively gftestive, especially
in datasets with large numberfof tabeis, where it needs
to perform () pairwise comparisgns [4].

For the high order zpproach, it can be clearly seen
that, it makes a betar enfigncement in the predictive
performance, espegialijs in moderate and large size
datasets. Neverthelesy, this approach has significant
limitations i, “ampiexity, and tends to be more
computatignally demanding and time consuming [4].

3. Multi Label Ranking based on Positive
Pairwise Correlations among Labels
(MLR-PPC)

According to Read et al. [12], the first step in most
PTMs is the transformation step that aims to fit the
data into any single label classifier. All existing PTMs
depend on label's frequency as a transformation
criterion. Thus, any multi-label dataset is transformed
to be associated with the Most Frequent Label (MFL)
that is associated with it or the Least Frequent Label
(LFL). The ignore transformation method discards any

multi-label instance, and considers only instances that
are associated with one label only.

The previous PTMs share several limitations such as
the huge loss of information; due to the transformation
step, imbalance class distribution especially when
choosing the MFL as a transformation method, and not
facilitating the step of capturing and exploiting the
correlations among labels.

Thus, in this paper, we claim that the transformation
step should be considered wisely. The transformation
step should not only utilized to transform the multi-
label dataset into a single label dataset, but also should
facilitate capturing the correlations aincag labels.
Hence, the proposed PTMs consiges, the positive
pairwise correlations among labels, aad riot the label's
frequency as in the existing PTNIS.

To transform a multi-label Uatasét into single label
dataset using correlaticiis famong labels as a
transformation criteriop, “ae/ need to capture these
correlations first. Thug, tye label space of the multi-
label dataset is"wxtragted firstly, and then an adapted
version of Prédiciéive Apriori is applied on the
extractedAaienspace, to discover the positive pairwise
correlations” only, in the form of (IF L1=1 THEN
L2=1). Aftep-discovering all the positive correlations
for €ach)label in the label set, the labels are ordered
accuraing to their highest positive pairwise correlations
or\their highest Standard Deviation between the
arscovered positive correlations for each label, or
according to the summation of the highest accurate
positive correlations accuracy and the Standard
Deviation of the that label. The three proposed PTMs
are described next.

a. Highest Accurate Positive Correlations First
(HAPCF)

1. Discover all positive pairwise association rules in
the label space of the dataset, using the adapted
version of Predictive Apriori.

2. For every label in the label set, identify the
maximum accurate positive association rule with
other labels.

3. Order the labels according to the maximum accurate
positive association rule in a descending way.

4. Use the order discovered in the previous step to
transform the multi-label dataset into a single label
dataset.

b. Highest Standard Deviation First (HSDF)

. Discover all positive pairwise association rules in
the label space of the dataset, using the adapted
version of Predictive Apriori.

2. For every label in the label set, calculate the
Standard Deviation among all the discovered
positive association rules.

3. Order the labels according to the Standard Deviation
calculated in the previous step in a descending way.

=



4. Use the order discovered in the previous step to
transform the multi-label dataset into a single label
dataset.

c¢. Highest Accurate Positive Correlations and
Standard Deviation First (HAPCSDF)

1. Discover all positive pairwise association rules in
the label space of the dataset, using the adapted
version of Predictive Apriori.

2. For every label in the label set, compute the
summation of the maximum accurate positive
association rule and the Standard Deviation among
all the discovered positive rules for that label.

3. Order the labels according to the summation
computed in the previous step in a descending way.

4. Use the order discovered in the previous step to
transform the multi-label dataset into a single label
dataset.

The three proposed PTMs will be used as
transformation methods, and applied to four multi-
label datasets with another two existing PTMs (MFL,
LFL); to prove the effectiveness of the proposed
PTMs. The evaluation process will not only considered
the evaluation of the base classifier using the five
PTMs, but also will consider the final accuracy of the
proposed MLR-PPC, when applied using the proposed
and the existing transformation method, since the
proposed PTMs are expected to improve the predictive
performance of a multi-label classifier by facilitating
capturing of significant positive correlations amarig
labels. Hence, increase the accuracy of the findl miglti
label classifier.

In order to maximize the exploitation U7 the
discovered positive correlations among. wbels, and
justify the additional step of  eagtlhing these
correlations, the discovered. pno0sitive pairwise
correlations will be exploitedén anotier two important
steps. The first step is the,step ¢ constructing a multi-
label classifier, while t3e secona step is the ranking
step. Algorithm 1 depictsythe proposed Multi Label
ranking algorithin “hased” on Positive Pairwise
Correlations among wbeis (MLR-PPC).

MLR-PPCT#tarts with extracting the label space of
the input{multi-label dataset, and considers it as a
transactiona’,dakaset. The second step in MLR-PPC is
to apply an’adapted version of Predictive Apriori
algorithm, where an additional filtering step has been
added to Predictive Apriori algorithm to consider only
positive association rules in the form of (IF L1=1
THEN L2=1), where L1 and L2 are two disjoint labels.
The third step is the transformation step of the input
multi-label dataset into a single label dataset. After
transforming the input multi-label dataset into a single
label dataset, MLR-PPC uses any rule-based single
label classifier on the transformed data set to construct
a single label classifier. The fifth step in MLR-PPC
aims to convert the single label classifier constructed
earlier to a multi-label classifier. To achieve this goal,

MLR-PPC modifies the consequent of every rule's
consequent in the single label classifier, by amending
the best (n) pairwise correlations for the label that
exists in the consequent of the classification rule under
processing. The value of (n) equals to the Label
Cardinality (LC) -1, where LC refers to the average
number of labels per instance. The last step in MLR-
PPC is the evaluation step, where the new multi-label
classifier is tested against new data.

Algorithm 1: MLR-PPC Algorithm

Input: Multi-label dataset (D), minacc threshold
Output: Multi-label classifier

TD=Label Space (D)
For eachxin TD

Generate all Positive Pairwise Association Rules (PARS) in a
formof <<x  y=3, where yphaya lower transformation
order than x, using Pradictive Apwiori algorithm.

}
SLD= Transform (D, {HARCPYHSDF, HAPCSDF}) //SLD: the

transformed Single¥, albeh,Daoraset.
Classify (SLD) /I&ising PART Algorithm
For each rule (B,geiterated by PART

Modify thetzonsequent thus new consequent = consequent +
[Z], where [Z]= labels with the best positive pairwise
corfeiations with the label in the consequent of r.

}

U2 the new multi-label classifier to test the data

4. Evaluation of the Proposed PTMs and
the Proposed MLR-PPC Algorithm

In this section, a description of the evaluation step of
both the proposed PTMs, and the proposed MLR-PPC
algorithm is presented. Firstly, a description of the
proposed PTMs evaluation is introduced, then the
evaluation of the proposed MLR-PPC is presented. It is
very crucial to mention that the evaluation of the
proposed PTMs is based on the accuracy of the single
label classifier constructed using any of the proposed
PTMs, and the final accuracy of the multi-label
classifier when combined with any of the proposed
PTMs, as well as the existing transformation methods.

4.1. Evaluation of the Proposed PTMs

The evaluation of the proposed PTMs consists of two
phases. The first phase considers the accuracy of the
base classifier trained on a transformed dataset using
one of the existing (MFL, LFL) or the proposed PTMs
(HAPCF, HSDF, and HAPCSDF). This phase is not
significant as the second phase, since it considers only
one class labels, while the second phase of evaluating
the proposed PTMs is more significant, as it considers
predicting several class labels and not only one class
labels. The significance of the second phase becomes
more and more important as LC of the dataset gets
higher. In general, the final accuracy of any multi-label
classifier depends on the accuracy of two tasks. The



first task is the classification of the transformed
dataset, while the second task is the predicting of all
labels that have been discarded due to the
transformation step. The second task has more affect
on the final accuracy of the multi-label classifier as it
considers more labels than the first task. For example,
if the LC of a dataset is 4, then after transforming this
multi-label dataset into single label dataset, 3 labels
will be discarded in average per instance. Thus, it is
very crucial that the proposed PTMs facilitate the task
of predicting these discarded labels.

4.1.1. Evaluating the Proposed PTMs based on
the Accuracy of the Base Classifiers

Four data set have been used in this research
(Emotions, Flags, Yeast). Table 1 describes the main
characteristics of each data set.

Table 1. Data sets main characteristics.

Dataset Instances | Attributes | Labels LC Domain

Yeast 2417 103 14 4.327 Biology
Emotions 593 72 6 1.868 Media
Flags 194 19 7 3.392 Image
Scene 2712 294 6 1.074 Image

Each dataset has been transformed into a single
label dataset 5 times, where each time a transformation
method is used. The considered transformation
methods are: MFL, LFL, HAPCF, HSDF, and finally
HAPCSDF. Then, five different base classifiefs
(PART, ONER, Ridor, CR, JRIP) were trained oiythy
transformed versions of the datasets. Table 2 depijts
the accuracy of the five base classifiers Gnthe
transformed version of Emotions dataset.

Table 2. Evaluating the base classifiers oa theytransfeimed versions
of Emotions dataset.

PTMs | PART |ONER | Ridoi,/CR |"JRIP | Average
HAPCF | 96.03 | 5247 /%68.81 | 4)61 | 72.27 | 67.618
HSDF | 96.03 | 5247 \\68.81 | 4851 | 72.27 | 67.618
HAPCSDF | 96.03 | 2,47 | 6481 | 4851 | 72.27 | 67.618
LFL | 96.034, 5247 | 68.81 | 4851 | 72.27 | 67.618
MFL | 9653 | 0u85)] 84.15 | 62.37 | 82.67 | 78.114

Table (3 shaws™ the accuracy of the five base
classifiers “whelr applied to the Flags dataset after
transformatiolt.

Table 3. Evaluating the base classifiers on the transformed versions
of Flags dataset.

PTMS PART | ONER | Ridor | CR JRIP | Average
HAPCF 92.3 58.64 | 76.92 | 55.38 | 70.76 70.8
HSDF 89.23 64.61 | 66.15 | 56.92 60 67.382
HAPCSDF | 89.230 | 63.076 | 75.384 |50.7692| 72.3077 |70.15384
LFL 84.61 43.07 | 66.15 | 4153 | 46.15 56.302
MFL 89.23 7538 | 75.38 | 75.38 | 81.53 79.38

Table 4 shows the accuracy of the five base
classifiers when applied to the Yeast dataset after
transformation.

Table 4. Evaluating the base classifiers on the transformed versions
of Yeast dataset.

PTMs PART | ONER Ridor CR JRIP Average
HAPCF | 97.341 | 63.8796 | 61.8729 | 60.5351 | 70.5686 | 70.83944
HSDF 92.307 | 43.1438 | 70.5686 | 26.087 | 48.8294 56.1873
HAPCSDF | 93.624 | 61.4094 | 76.5101 | 57.3826 | 70.8054 | 71.94634
LFL 90.103 | 36.4548 | 63.5452 | 28.4281 | 45.4849 52.8032
MFL 95.65 74.247 74.247 74.247 80.936 79.86624

It can be clearly seen from the previous 3 tables that
the MFL has the best accuracy over the 5 base
classifiers on the three multi-label datasets. The
proposed PTMs overcome the LFL on the three
datasets using Accuracy as evaluation métric:

Table 5 to Table 7 summarize, the/evgluation of the
proposed PTMs using four Avaisation metrics
(Precision, Recall, F1-Measae, > and Receiver
Operating Characteristic (ROC)n.0n the three datasets,
averaged using the 5 hase Classiviers used previously.

Table 5. Evaluating the “propésed PTMs using four evaluation
metrics on Emotionydatemat.

PTM ‘ Plecision Recall | F1-Measure ROC
HAPZ™ 1 8,.0.6952 0.6762 0.6422 0.8072
| HSac )| 06452 | 06762 0.6422 0.8072
HAPCSDG.  0.6452 0.6452 0.6452 0.6452
LFL 0.6452 0.6452 0.6452 0.6452
Ky 0.7224 0.7814 0.7378 0.8224

Tao'le 6. Evaluating the proposed PTMs using four evaluation
riystrics on Flags dataset.

PTM Precision Recall F1-Measure ROC
HAPCF 0.6386 0.7078 0.663 0.7804
HSDF 0.6374 0.6738 0.6436 0.7614
HAPCSDF | 0.6204 0.7016 0.648 0.7606
LFL 0.4616 0.5632 0.4822 0.74
MFL 0.6722 0.7938 0.7162 0.61

Table 7. Evaluating the proposed PTMs using four evaluation
metrics on Yeast dataset.

PTM Precision Recall F1-Measure ROC
HAPCF 0.6132 0.703 0.6338 0.6804
HSDF 0.5346 0.5618 0.5148 0.7358
HAPCSDF 0.6266 0.7194 0.6554 0.7346
LFL 0.4746 0.5324 0.4762 0.7374
MFL 0.7236 0.7938 0.7384 0.7094

In general, and based on the evaluation metrics from
the three previous tables, it can be seen clearly that the
MFL transformation method overcomes all other
transformation methods on all the three datasets. Also,
the proposed PTMs overcome the LFL transformation
method in mostly all cases for the three datasets.

To conclude, the evaluation process of the proposed
PTMs based on the accuracy of the base classifier
showed that the MFL is the best transformation
method, while the LFL is the worst choice. For the
proposed PTMs, it is clear that they showed an
accepted performance when considering the first step
of constructing the multi-label classifier. The following
subsection describes the evaluation of the proposed



PTMs based on the final accuracy of the constructed
multi-label classifier using MLR-PPC algorithm.

4.1.2. Evaluating the Proposed PTMs based on
Facilitating Correlations Capturing

To evaluate the proposed PTMs based on facilitating
the correlations capturing task, the proposed MLR-
PPC algorithm was applied on the three multi-label
datasets using the proposed PTMs (HAPCF, HSDF,
and HAPCSDF), as well as the existing PTMs (MFL,
LFL). PART algorithm have been used as a base
classifier for the proposed MLR-PPC algorithm. Table
8 to Table 10 show the final Accuracy of the MLR-
PPC algorithm, when applied using PART algorithm as
a base classifier, and one of the PTMs from both
existing (MFL, LFL) and proposed (HAPCF, HSDF,
and HAPCSDF) transformation methods.

Table 8. Evaluating MLR-PPC using Emotions dataset.

MLR-PPC + PTMs Accuracy
MLR-PPC-HAPCF 77.01
MLR-PPC-HSDF 77.01
MLR-PPC-HAPCSDF 77.01
MLR-PPC-LFL 76.53
MLR-PPC-MFL 61.29

Table 9. Evaluating MLR-PPC using Flags dataset.

Table 10. Evaluating MLR-PPC using Yeast dataset.

MLR-PPC + PTMs Accuracy
MLR-PPC-HAPCF 55.67
MLR-PPC-HSDF 57.41
MLR-PPC-HAPCSDF 53.22
MLR-PPC-LFL 53.16
MLR-PPC-MFL 42.56

The three previous Tables show clearly that the
evaluation of the proposed MLR-PPC algorithm using
the proposed PTMs overcomes the case when using the
existing PTMs.

4.2. Evaluation of the Proposed MLR*PC
Algorithm

Table 11 depicts a comparisoniaetween the proposed
MLR-PPC algorithm and otiiar wulti-label learning
algorithms using four Amulti;label datasets with
different characterjstics, \Lh2 compared algorithms
have been chosen 1y, represent the three types of
correlations capwuing, agproaches (first order, second
order, and higharder)

Also, the/Ciyosen aigorithms belong to both PTMs and
AAMs " ‘approaches. Three multi-label evaluation
metrics thatjare related to the classification task have
been(‘used to evaluate the proposed MLR-PPC

algéauin - (Accuracy (Acc), Exact Match, and
MLR-PPC + PTMs Accuracy .
MLR-PPC-HAPCF 67.93 Hagiming Loss (H.L)).
MLR-PPC-HSDF 61.83
MLR-PPC-HAPCSDF 60.32
MLR-PPP-LFL 60.78
MLR-PPC-MFL 50.32
Table 11. Evaluating thciproposed MLR-PPC with respect to the existing algorithms.
Flags ‘ Emotions Yeast Scene
Algorithm Acc »E);{ft LT Ace 5’;‘3 HL | Acc ﬁgfgﬁ HL | Acc 5’;’:‘;; H.L
MLR-PPC-HAPCF 67.9340,24:60 [)17.30 | 77.0L | 60.80 09.70 | 5567 | 1870 | 1452 | 0.908 | 0.863 | 0.0014
MLR-PPC-HSDF 6183 | 2200 | 18.90 | 77.01 | 60.80 09.70 | 5741 | 19.00 | 13.11 | 0.908 | 0.863 | 0.0014
MLR-PPC-HAPCSDF  |£0.32 | 24/60 | 19.50 | 77.01 | 60.80 09.70 | 53.22 | 18.00 | 1457 | 0.908 | 0.863 | 0.0014
MLR-PPC-LFL | 608 | 3070 | 17.50 | 7653 | 60.30 1030 | 53.16 | 1570 | 1458 | 0.881 | 0.858 | 0.0014
MLR-PPC-MFL.~ ) 503277 2000 | 2570 | 61.29 | 33.10 1470 | 4256 | 09.70 | 1893 | 0.885 | 0.859 | 0.0014
BR N | %63 | 07.69 | 27.47 | 5510 | 30.70 18.80 | 55.20 | 20.10 | 19.30 | 0.64 | 0.617 | 0.009
LR NG NG NG | 5840 | 35.10 19.80 | 52.30 | 26.00 | 20.60 |0.7350 | 0.6960 | 0.0900
RAKEL NG NG NG | 59.20 | 34.10 1860 | 49.30 | 16.30 | 20.70 |0.6940 | 0.6620 | 0.0950
cc 55.87 | 20.00 | 29.89 | 58.40 | 34.90 19.70 | 5210 | 2540 | 21.10 |0.7360 | 0.6690 | 0.1000
N 7 NG NG NG | 59.90 | 36.70 19.20 | 53.30 | 25.80 | 20.50 |0.7510| 0.7170 | 0.0840
ECC 56.00 | 19.10 | 28.80 | 28.20 |  00.07 49.40 | 29.90 | 2430 | 4620 |0.2700| 0.0070 | 0.4700
EPS NG NG NG | 59.90 | 36.60 19.30 | 53.70 | 2530 | 20.70 |0.7510| 0.7150 | 0.0850
ML-KNN 5550 | 09.80 | 28.40 | 36.60 | 14.30 26.20 | 5200 | 1890 | 19.30 | 0.69 | 0643 | 0.085
BP-MLL NG NG NG | 27.60 | 27.60 4330 | 1850 | 1850 | 3220 | 021 | 0212 | 0.057
Table 12 depicts a comparison between the MLR task. The first metric is called One Error

proposed MLR-PPC algorithm and other multi-label
learning algorithms on the four considered multi-label
datasets and using two metrics that are most related to

(1Error), and the second metric is called Coverage
(Cov.).



Table 12. Evaluating the proposed MLR-PPC with respect to the existing algorithms.

Flags Emotions Yeast Scene
1Error Cov. 1Error Cov. 1Error Cov. | 1Error Cov.
MLR-PPC-HAPCF 0.0769 2.8923 0.0390 1.1930 0.0530 |[5.1725| 0.0550 | 0.13377
MLR-PPC-HSDF 0.1076 2.9384 0.0390 1.1930 0.0760 |4.5975| 0.0550 | 0.13377
MLR-PPC-HAPCSDF 0.1076 2.8307 0.0390 1.1930 0.0630 5.1075| 0.0550 | 0.13377
MLR-PPC-LFL 0.1538 3.0000 0.0390 1.3520 0.0760 4.2982 | 0.0610 | 0.15800
MLR-PPC-MFL 0.1076 3.7384 0.0340 1.5247 0.0430 |5.6500 | 0.0590 | 0.16200
BR NG NG 0.256 2.400 0.227 6.350 0.262 1.232
LP NG NG 0.3100 2.235 0.2670 8.065 | 0.2460 0.733
RAKEL NG NG 0.2600 1.986 0.2550 9.155 | 0.2370 0.593
cC NG NG 0.2830 1.756 0.2560 7.249 | 0.2680 0.619
PS NG NG 0.4270 2.331 0.3210 8.313 | 0.2870 0.845 :
ECC NG NG 0.8020 3.817 0.6850 |10.731| 0.7750 2.662%)
EPS NG NG 0.3000 2.138 0.2650 8.303 0.22504720 /
ML-KNN NG NG 0.263 2.320 0.228 6.300 0.219 ¢ 0'*67
BP-MLL NG NG 0.318 3.150 0.235 8.005 0.822 ‘ 7447
Table 13. Running time «for the proposed MLR-PPC algorithm

From Tables 1land 12, the following significant

points could be noted: with respect to PTM beifg usad.

Dataset N Algowithm Running Time (S)

¢ In general, and using any of the proposed or existing MY R-PIC-HAPCF 5.1
PTMs, MLR-PPC overcomes the existing o | ~WILIWPPC-HSDF 51
algorithms using the four datasets, and based on the S Y NGFEPPC-HAPCSDF 517
most commonly used evaluation metrics. | MLR-PPC-LFL >4

. MLR-PPC-MFL 6.33

e MLR-PPC _shows a superior perf_ormance over most e MLR-PPC-HAPCE 106
other existing multi-label algorithms, when using P MLR-PPC-HSDF 106
the HAPCF or HSDF as a transformation methods. ‘ '% MLR-PPC-HAPCSDF 1.06

e In general, MLR-PPC when applied using thec 5 MLR-PPC-LFL 1.07
proposed PTMs overcomes the case when applied MLR-PPC-MFL 1.06
using the existing PTMs, on the four datasets<4siig MLR-PPC-HAPCF 10
the five evaluation metrics. o MLR-PPC-HSDF L0

o The transformation step of a multi-label datéset irito T MR AT —
smgl_e _Iabel dataset plays an mpo_rtan. role in _the MLR-PPC-MEL )
predictive performance of any multi-iabal*classifier. MLR-PPC-HAPCF 352
Hence, this step should be considaed wisely. Also, » MLR-PPC-HSDF 341
the transformation step sheUid’ ¥achitate capturing g MLR-PPC-HAPCSDF 3.35
the most accurate correladiegns among labels, in > MLR-PPC-LFL 3.49
order to enhance theAinal acparacy of any multi- MLR-PPC-MFL 372

label classifier. ] . o
Figure 1 depicts the running time for the proposed

MLR-PPC algorithm with respect to the three proposed
PTMs (HAPCF, HSDF, and HAPCSDF) and the two
existing PTMs (LFL and MFL).

From Table 13 and Figure 1, the conclusion that
could be made is that the proposed PTMs showed
better results in the four considered datasets in term of
running time. Moreover, the HSDF showed the best
running time among the proposed and the existing
PTMs. The HAPCF and the HAPCSDF nearly showed
the same performance on the four datasets.

Table 13 shows tke raaning time (in seconds) for the
proposed algorithm®witi respect to the PTMs being
used.
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Figure 1. The MLR-PPC running time with respect to the PTM
being used

5. Conclusions and Future Work

In this paper, three new PTMs have been proposed.
These PTMs are based on pairwise positive
correlations among labels, and not based on labels
frequency as in conventional PTMs. Also, this paper
proposed a second order MLR algorithm. The
proposed algorithm showed a superior performanca
when compared to a wide variety of multiglacal
classification and ranking algorithms. Also, this paer
showed that the proposed PTMs are better Whan_the
existing PTMs; due to two main reasons, First, the
proposed PTMs do not suffer from( the®™common
problems in the traditional PTMs thet depend on the
frequency of labels as a tansiarmution criterion
(imbalance class distribution™ith the MFL and the
small number of instances associated with each label
when using the LFL3. "Sacond, the proposed PTMs
guarantees the explditing orjthe most accurate positive
correlations amongylabyls, and hence, improving the
predictive performaiice of the classification and
ranking tasks.

As a Wture, work, we intend to maximize the
exploitation %of the correlations among labels by
proposing new high order MLR algorithms. Also, we
intend to propose new PTMs that optimize the
accuracy of the base classifier on the transformed
dataset, as well as the accuracy of predicting the labels
that have been discarded due to the transformation
step.
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