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TINDAK BALAS HIDROLOGI CERUN TANAH BAKI GRANIT TAK TEPU 

DISEBABKAN OLEH PERBEZAAN JUMLAH HUJAN DAN SUDUT 

CERUN. 

 

ABSTRAK 

 

Tujuan kajian ini adalah untuk mengkaji tindak balas hidrologi cerun tanah residu 

granit tak tepu berdasarkan kepada kesan keamatan hujan dan sudut cerun yang 

berbeza. Kajian ini melibatkan ciri-ciri tanah residu granit dan eksperimen model 

cerun fizikal 2D. Pencirian tanah dijalankan ke atas pasir sungai (SW) dan tanah 

residu granit (SC) yang diperolehi dari Kampus USM Utama, Pulau Pinang 

menggunakan kaedah ujian tanah di lapangan dan makmal. Eksperimen model cerun 

fizikal 2D dijalankan bersama sistem simulator hujan, Time Domain Reflectometry 

(TDR) dan sistem tensiometer-transduser untuk menganalisis kepentingan sifat tanah 

dari segi tindak balas hidrologi seperti sedutan matrik tanah dan kandungan 

kelembapan tanah. Jumlah penyerapan air hujan dan air larian di permukaan juga 

diukur di penghujung eksperimen. Jumlah hujan yang diserap ke dalam tanah dan 

yang menjadi air larian di permukaan dengan intensiti hujan dan sudut cerun yang 

berbeza boleh dianggarkan. Dengan menjalankan model cerun fizikal 2D, didapati 

bahawa peratusan penyerapan air hujan dan kandungan kelembapan tanah 

mempunyai perbezaan yang sedikit tetapi perbezaan yang besar di antara pasir sungai 

(SW) dan tanah residu granit (SC) dari segi air larian di permukaan apabila 

kecerunan tanah meningkat. Dua nilai kadar hujan yang berbeza digunakan dalam 

kajian ini adalah berdasarkan kepada data dari intensiti hujan yang direkodkan oleh 

stesen hujan di Air Itam, Pulau Pinang. Data hujan ditukar dengan menggunakan 

persamaan kadar aliran, Q (butiran terperinci boleh dirujuk di bahagian 3.4.7.1). 



xviii 

Ketika keamatan hujan 9.78×10
-9

m/s dan 1.66×10
-9

m/s, nilai minimum air larian di 

permukaan untuk pasir sungai (SW) direkodkan ialah 15.7% dan 9.2% manakala 

nilai maksimum masing-masing adalah 28.9% dan 25.9%. Bagi tanah baki granit 

(SC), nilai minimum air larian di permukaan dicatatkan adalah 30% dan 30.19% 

manakala nilai maksimum adalah 54% dan 50.06% masing-masing untuk kadar 

curahan hujan gunaan bagi 9.78×10
-9

m/s dan 1.66×10
-9

m/s. Berdasarkan keputusan 

untuk kedua-dua pasir sungai (SW) dan tanah baki granit (SC), persamaan berkaitan 

dengan penyerapan air, air larian di permukaan dan kandungan kelembapan tanah 

dibentuk. Bagi pasir sungai (SW), persamaan penyerapan air hujan, air larian di 

permukaan dan kandungan kelembapan tanah adalah y=43.78x
-0.408

, y=16.47x
0.4389

 

dan y=37.737x
-0.712

 semasa kadar curahan hujan gunaan ialah 9.78×10
-9

m/s manakala 

pada 1.66×10
-9

m/s persamaan tersebut direkodkan adalah seperti y=45.218x
-0.316

, 

y=9.9649x
0.7318

 dan y=23.091x
-0.382

. Bagi tanah baki granit (SC), semasa kadar 

curahan hujan gunaan 9.78×10
-9

m/s persamaan bagi penyerapan air hujan, air larian 

di permukaan dan kandungan kelembapan tanah adalah y=42.582x
-0.493

, 

y=28.254x
0.4409

 dan y=34.945x
-0.314

 manakala y=40.633x
-0.386

, y=29.754x
0.3589 

dan  

y=35.62x
-0.384 

semasa 1.66×10
-9

m/s kadar curahan hujan gunaan. Dengan mengambil 

kira jumlah hujan yang menyerap masuk ke dalam tanah dan menjadi air larian di 

permukaan, kedua-duanya didapati mengalami penurunan dalam penyerapan air 

hujan dan kandungan kelembapan tanah tetapi meningkat bagi air larian di 

permukaan apabila kecerunan sudut tanah meningkat. Ini membuktikan bahawa, 

peningkatan kecerunan sudut tanah juga meningkatkan kandungan air hujan yang 

menjadi air larian di permukaan daripada diserap ke dalam tanah. 
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HYDROLOGICAL RESPONSE OF UNSATURATED GRANITIC 

RESIDUAL SOIL SLOPE DUE TO DIFFERENT RAINFALL AMOUNTS 

AND SLOPE ANGLE. 

 

ABSTRACT 

 

The aim of this study is to investigate the effect of different applied rainfall rate and 

slope angle on the hydrological response of unsaturated soil slope. This study 

involved the granitic residual soil characterization and 2D physical slope model 

experiments. Soil characterizations included in this study are in-situ and laboratory 

soil tests which was conducted on the river sand (SW) and granitic residual soil (SC) 

obtained from the USM Main Campus, Penang Island. The 2D physical slope model 

experiment is conducted with the rainfall simulator system, Time Domain 

Reflectometry (TDR) and tensiometer-transducer system to analyze the significance 

of soil properties in terms of hydrological responses which are soil suction and water 

content. The amount of rainfall infiltration and surface runoff were also measured by 

the end of the experiment. The amount of rainfall infiltrated into the soil and became 

surface runoff with difference applied rainfall rate and slope angles can be estimated. 

By conducted 2D physical slope model, it was found that the percentage for water 

infiltration and soil moisture content were slightly different, but substantially 

different in surface runoff when the soil slope angle increased between river sand 

(SW) and granitic residual soil (SC). Two difference value of applied rainfall rate 

used in this study is based on the data from rainfall intensity recorded by the rainfall 

station in Air Itam, Penang. The rainfall data are converted by using the flow rate, Q 

equation (details can be referred in section 3.4.7.1). During the applied rainfall rate 

of 9.78×10
-9

m/s and 1.66×10
-9

m/s, the minimum surface runoff for river sand (SW) 



xx 

recorded are 15.7% and 9.2% whereas the maximum surface runoff are 28.9% and 

25.9% respectively. As for granitic residual soil (SC), the minimum surface runoff 

recorded are 30% and 30.19%, while the maximum surface runoff are 54% and 

50.06% of applied rainfall rate of 9.78×10
-9

m/s and 1.66×10
-9

m/s respectively. Based 

on the results of both river sand (SW) and granitic residual soil (SC), the equations 

related to water infiltration, surface runoff and soil water content are obtained. For 

river sand (SW), the equations of water infiltration, surface runoff and soil moisture 

content are recorded as y = 43.78x
-0.408

, y = 16.47x
0.4389

 and y = 37.737x
-0.712

 during 

the applied rainfall rate of 9.78×10
-9

m/s while during 1.66×10
-9

m/s the equations are 

recorded as y = 45.218x
-0.316

, y = 9.9649x
0.7318

 and y = 23.091x
-0.382

. For granitic 

residual soil (SC), the equations of water infiltration, surface runoff and soil moisture 

content during applied rainfall rate of 9.78×10
-9

m/s are recorded as y = 42.582x
-0.493

, 

y = 28.254x
0.4409

 and y = 34.945x
-0.314

 while y = 40.633x
-0.386

, y = 29.754x
0.3589 

and  y 

= 35.62x
-0.384 

during 1.66×10
-9

m/s applied rainfall rate. By measured the amount of 

the rainfall seeped into the soil and became surface runoff, it was found that both 

soils decrease water infiltration and soil moisture content but increase surface runoff 

when slope angle increased. These proved that, as the slope angle increased more 

rainfall became surface runoff than infiltrated into the soil. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Background 

The downslope movement of rock debris and soil in response to gravitational 

stresses or also referred to as mass wasting is the most encountered problems in 

Geotechnical engineering field (Keller, 2000). These slopes become unstable and 

cause severe geologic hazards due to the nature of topography, including slope angle, 

aspect, gradient and curvature, and the weather conditions. Globally, slope failure 

depends on the geological characteristics, hydrological condition and rainfall 

distribution (Chau et al., 2004; Dong et al., 2012). Significant numbers of slope 

failure in Malaysia are reported on man-made and residual soil slopes especially 

during high intensity rainfall. However, there are three common triggering factors for 

slope failure with respect to Malaysia which are rainfall intensity, groundwater level 

change and change of slope loading due to hydrological condition which gives 

unfavorable impact on the slope stability (Mizal-Azzmi, 2011). Therefore, it is 

important to consider the geological characteristics, local weather and soil 

characteristics to properly design the slope (Song et al., 2012). 

 

The occurrence of rainfall-induced slope failure in steep residual soil slopes is 

a problem encountered in many tropical and subtropical regions. This type of slope 

failures also occurs in temperate regions of the world when periods of extreme rain 

and rapid snowmelt take place. One of the most common triggering mechanisms for 

slope failures is rainfall and the consequent water infiltration (L'Heureux, 2005). 

Deep-seated rotational and shallow translational failures can often be spotted in 
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slopes after prolonged or heavy rainfall events. Deep-seated rotational failures are 

assumed directly caused by the water infiltration. The failures will be generated by a 

rise in the groundwater level and pore-water pressure subsequently lowering the 

effective stresses in the soil. Usually, this case occurs below the groundwater level. 

On the other hand, the occurrences of shallow translational failures are mainly 

triggered in the zone above the groundwater level. These happen once the rain water 

infiltrating the unsaturated zone of the soil, and then the negative pore-water pressure 

starts to decrease due to an increase in the water content (L'Heureux, 2005). It is 

reasonable to neglect the negative pore-water pressure effect when the failure is lying 

below the phreatic line. However, when deep groundwater level conditions and 

shallow failure is of concern, negative pore-water pressures should not be ignored 

(Fredlund & Rahardjo 1993). The magnitude of the negative pore-water pressure is 

influenced by the depth of the groundwater table. The deeper the groundwater table, 

the higher the possible negative pore-water pressure. Therefore, the effect of the 

groundwater table on the negative pore-water pressure becomes particularly 

significant near the ground surface (Blight, 1980). 

 

The rainfall-infiltration and runoff process (RIRP) is a significant part of the 

slope hydrologic process. There is an applicable technique to study RIRP by using 

2D physical slope model. RIRP is related to many factors, such as rainfall intensity, 

soil properties and terrain slope. Many researchers have further study related to these 

aspects. Then, it was found that the presence of soil surface seals or crusts can lead to 

decreasing of infiltration rates and lower air permeability values (Bissonnais, 1990), 

increasing surface runoff (Valentin & Bresson, 1992) and thus, accelerate sheet and 

rill erosion (Ries & Hirt, 2008). Soil crusts are thin layers indicated by greater 
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density, higher shear strength, finer pores, and lower saturated hydraulic conductivity 

than the underlying soil (Assouline, 2004; Lado et al., 2005). It is obtained from 

complex and dynamic processes where the soil particles are rearranged and then 

consolidated into a cohesive superficial structure. The thickness of the soil crust 

varies from 0.1 to 50 mm (Valentin & Bresson, 1992). 

 

According to (Weyman, 1973), the measurements at various field sites 

indicate that the saturation may be observed first on the slope either at the bottom of 

the slope in perched zones at midslope or above (Harr, 1977; Reid et al., 1988), or 

even simultaneously along the slope (Sidle, 1984). Based on the observations, the 

saturated zone is typically recedes first on the upper reaches of the slope (Anderson 

& Burt, 1977; Sidle, 1984). This is the substantial influence of the topography on the 

location of saturation (Anderson & Burt, 1977; Wilson & Dietrich, 1987; Tanaka et 

al., 1988). It has been observed that the hydraulic gradient in the saturated zone 

mainly contains a variety of orientations (Harr, 1977; Tanaka et al., 1988).  

 

This study is carried out to investigate the aspect of slope hydrology works 

thatinvolve the effect of different applied rainfall rate and slope angle on the 

response of unsaturated granitic residual soil slope. These are significant before any 

slope failure prevention or slope protection take place. This study will focus on the 

changes in soil behavior due to different slope angle and applied rainfall rate. Several 

parameters that are taken into account are matric suction, water content, applied 

rainfall rate, infiltration rate and rate of surface runoff. 
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