

PHYSICAL HYDRAULICS MODEL AND COMPUTATIONAL FLUID DYNAMICS OF SG. BELIBIS PUMP SUMP

MUHAMMAD KHAIRI BIN A. WAHAB

UNIVERSITI SAINS MALAYSIA

2017

PHYSICAL HYDRAULICS MODEL AND COMPUTATIONAL FLUID

DYNAMICS OF SG. BELIBIS PUMP SUMP

by

MUHAMMAD KHAIRI BIN A. WAHAB

Thesis submitted in fulfillment of the

requirements for the degree of

Master of Science

February 2017

ACKNOWLEDGEMENTS

In The Name of ALLAH swt, The Most Beneficent, The Most Merciful...

May ALLAH swt Guide Us All To Truth and Keep Us On The Straight Path...

I wish to express my sincere appreciation and gratitude to my supervisor, Dr. Mohd Remy Rozainy bin Mohd Arif Zainol for his guidance since my final year project in undergraduate until now, master degree. I would also like to thank to my co-supervisor, Professor Dr. Ismail bin Abustan. I would like to gratitude NAHRIM especially to Hydraulic and Laboratory Instrumentation for giving me the opportunity to do my research there. Also, I would like to thanks the staff of Hydraulic Laboratory, Mrs. Nurul and other staff of the School of Civil Engineering for their co-operation during my research. In addition, not to forget my other co-laboratory-mates and friends, Zulhillmi, Firdaus, Rais, Azraie, Dr.Haitham and Dr. Neeraj in for the stimulating discussions, for helping me during my research and for all the fun we have had. Finally I must express my very profound gratitude to my dearest parents, Mr. A.Wahab bin Yaakob and Mrs. Sarida binti Ismail and my dear siblings for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them. May ALLAH swt blessed and grant/guide us to Jannatul Firdous !

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	111
LIST OF TABLES	ix
LIST OF FIGURES	Х
LIST OF SYMBOLS	XX
LIST OF ABBREVIATIONS	xxii
ABSTRAK	xxiv
ABSTRACT	xxvi

CHAPTER ONE: INTRODUCTION

1.1	Background of the study	1
1.2	Problem statement	2
1.3	Objectives of the Study	4
1.4	Scope of the Research	5
1.5	Advantages of the Research	6
1.6	Thesis structure	7

CHAPTER TWO: LITERATURE REVIEW

2.1	Introduction	8
2.2	Pump intake structure	8
2.3	Froude number	13
2.4	Reynold's number	14
2.5	Model similitude	15

2.6	Probler	ns encountered in pump intake	16
	2.6.1	Free surface vortices	17
	2.6.2	Subsurface vortex	19
	2.6.3	Cavitation	21
2.7	Modifie	ed design of sump intake	22
	2.7.1	Floating raft and submerged raft	23
	2.7.2	Fillets and splitters	24
	2.7.3	Curtain wall	26
	2.7.4	Inlet piers.	26
	2.7.5	Flow deflector beam	27
	2.7.6	Conical vortex breaker	27
	2.7.7	Formed suction inlet (FSI)	28
	2.7.8	Three symmetrically thin vertical cylinders	29
2.8	Compu	tational fluid dynamics (CFD)	30
	2.8.1	Application of CFD in model of pump sump	31
2.9	Validat	ion numerical analysis and experimental measurement	33
2.10	Gap of knowledge 34		

CHAPTER THREE: EXPERIMENTAL SETUP

3.1	Introduction		36	
3.2	Physical model test			38
	3.2.1	Model Description		38
3.3	Pump s	sump design		39
3.4	Dimen	sionless Parameters		43
	3.4.1	Reynolds number		43

	3.4.2	Froude number	44
3.5	Modific	ation proposed to eliminate undesired flow in pump sump	45
	3.5.1	Buffer block wall	46
	3.5.2	Positioning of buffer wall, fillet wall and floor splitter	48
3.6	.6 Data collection		50
	3.6.1	Flow rate measurement	50
	3.6.2	Velocity measurement	51
	3.6.3	Swirl meter rotation	55
	3.6.4	Dye tracer	56
3.7	Summa	ry	57

CHAPTER FOUR: COMPUTATIONAL FLUID DYNAMICS

4.1	Introduction		58
4.2	Description of the CFD model		
4.3	Process	of simulation	58
4.4	Pre-Pro	cessing	60
	4.4.1	Geometry of computational model.	61
	4.4.2	Geometry and grid generation	61
4.5	Numerical simulation		63
	4.5.1	The FLUENT [™] model	63
	4.5.2	Governing equations	63
	4.5.3	Solution control	65
4.6	Post-Pro	ocessing	68
4.7	Planes for CFD analysis		68
4.8	Summary		

CHAPTER FIVE: RESULTS AND DISCUSSION

5.1	Introdu	ction		70
5.2	Physical experiment results and discussions			
	5.2.1	Velocity distribution		
		5.2.1.1	Velocity contour at water level of 0.3 m with 25	
			L/s (Case 3)	71
		5.2.1.2	Velocity contour at water level of 0.2 m with 25	
			L/s (Case 6)	73
		5.2.1.3	Velocity contour at water level of 0.18 m with 25	
			L/s (Case 9).	75
		5.2.1.4	Velocity contour at water Level of 0.18 m with 25	
			L/s (Buffer Block Wall) (Case 10)	77
		5.2.1.5	Velocity contour at water level of 0.18 m with 25	
			L/s (Wall fillet and floor splitter) (Case 11)	78
		5.2.1.6	Velocity Contour at Water Level of 0.18 m with 25	
			L/s (Combination of buffer block wall and wall	
			fillet and floor splitter) (Case 11)	80
	5.2.2	Swirl Mete	er Measurements	81
	5.2.3	Visual Obs	servations	83
5.3	Numeri	cal simulation	on results and discussions	92
	5.3.1	Grid sensitivity analysis		
	5.3.2	Velocity ve	ector (Flow visualization)	96
		5.3.2.1	Velocity vector (Flow visualization) at water level	
			of 0.3 m with 25 L/s (Case 3)	96

	5.3.2.2	Velocity vector (Flow visualization) at water level	
		of 0.2 m with 25 L/s (Case 6)	102
	5.3.2.3	Velocity vector (Flow visualization) at water Level	
		of 0.18 m with 25 L/s (Case 9)	108
	5.3.2.4	Velocity vector (Flow visualization) at water Level	
		of 0.18 m with 25 L/s (Buffer block wall) (Case	
		10)	114
	5.3.2.5	Velocity vector (Flow visualization) at Water	
		Level of 0.18 m with 25 L/s (Wall fillet and floor	
		splitter) (Case 11)	119
	5.3.2.6	Velocity vector (Flow visualization) at water level	
		of 0.18 m with 25 L/s (Combination of buffer	
		block wall and wall fillet and floor splitter) (Case	
		12)	124
5.3.3	Velocity a	nd pressure contour result	129
	5.3.3.1	Velocity contour result	130
	5.3.3.2	Pressure contour result	137
Compar	rison betwee	en Experimental and Simulation Results in Velocity	
Profile			144
Compar	rison of visu	alization between experimental and simulation	147
Simulat	ion at high f	low rate	150
5.6.1	Water leve	l of 0.18m with flow rate of 40L/s (Buffer block	
	wall).		150

5.4

5.5

5.6

CHAPTER SIX: Conclusions

6.1	Conclusions	156
6.2	Experimental	156
6.3	Computational fluid dynamic (CFD) modelling	157
6.4	Recommendations for the future works	158

REFERENCES

160

APPENDICES

APPENDIX A (Display Input of FLUENT[™]) APPENDIX B (Results CFD for Water Level of 0.18m with Flow Rate of 40 L/s (Buffer Block Wall))

LIST OF PUBLICATIONS

LIST OF AWARDS

LIST OF TABLES

		Page
Table 2.1	Recommended dimensions for Figures 2.1 and 2.2	11
	(American National Standard for Pump Intake Design,	
	ANSI/HI 9.8-1998)	
Table 2.2	Recommended Dimensions of Pump Sump	12
Table 2.3	Accuracy based on relative error	33
Table 2.4	Comparison the advantages of each modification	35
Table 3.1	The operational of pump	37
Table 3.2	The Reynolds number at different water levels	38
Table 3.3	The Reynolds number at different water levels and flow	39
	rates	
Table 3.4	The parameter values for modification test	49
Table 4.1	Cases of study, turbulence kinetic energy, k and turbulence	65
	dissipation rate, ɛ	
Table 4.2	Properties of water	65
Table 5.1	Result of swirl angle	82
Table 5.2	Visual observation in the pump sump	84
Table 5.3	Meshing details for 3, 5 and 7 cases with three different	94
	flow rates	
Table 5.4	Comparison of visualization between experimental and	149
	simulation	

LIST OF FIGURES

Figure 2.1	Recommended intake structure layout (American National	10
	Standard for Pump Intake Design, ANSI/HI 9.8-1998))	
Figure 2.2	Filler wall details for proper bay width (American	10
	National Standard for Pump Intake Design, ANSI/HI 9.8-	
	1998)	
Figure 2.3	Free surface vortex form at pump suction bell entrance	18
	(Hirata et al., 2011)	
Figure 2.4	The formation of free surface vortices (Source : Ibrahim,	19
	2011)	
Figure 2.5	Classification of vortices (Source : Shabayek, 2010)	20
Figure 2.6	Shows the classification of boundary-attached subsurface	21
	vortex (Source : Rishel, 2002)	
Figure 2.7	Cavitation damage on the impeller blades at the discharge	22
	(Binama et al., 2016)	
Figure 2.8	(a) floating (b) submerged raft (Novák, 2004)	24
Figure 2.9	Modified Pump Cell Design : (a) Plan; (b) Profile (Source	25
	: BHRA, 1997)	
Figure 2.10	Methods to reduce subsurface vortices : (a) wall splitter	25
	plate (b) floor splitter plate (c) floor cane (Source : The	
	New Hydraulic Institute Pump Intake Design Standard,	
	1999)	

Figure 2.11A curtain wall in the pump sump26

Figure 2.12	A flow straightening piers at the entrance to the pump bay.	27
	(Source : The New Hydraulic Institute Pump Intake Design	
	Standard, 1999)	
Figure 2.13	A conical vortex breaker under suction intake (Source :	28
	Ahmad et al, 2011)	
Figure 2.14	FSI model (Source : Zheng and Werth, 2008)	29
Figure 2.15	Three symmetrically thin vertical cylinders placed under	30
	suction intake (Source : Ciocanea, 2013)	
Figure 2.16	Two-dimensional velocity contour in pump sump (source :	32
	Kim, 2014)	
Figure 2.17	Three-dimensional flow pattern in pump intake (source :	33
	Khan, 2012)	
Figure 3.1	Flow Chart of the overall study	37
Figure 3.2	Location plan of NAHRIM (source: NAHRIM)	38
Figure 3.3	Self-contained circulation system of pump sump	39
Figure 3.4	(a) Plan view (b) Side view A-A (c) Front view B-B (d)	42
	Three dimensional view of model	
Figure 3.5	(a) Suction of intake in Bay 1 and 2 (b) Suction of intake in	42
	Bay 3 and 4 (in cm)	
Figure 3.6	(a) Details of buffer block wall (b) Perspex of buffer block	47
	wall	
Figure 3.7	(a) Plan view the location of buffer block wall (b) Side view	48
	the location buffer block wall	
Figure 3.8	The dimension of the modified model (a) front view (b)	49
	side view (c) plan view	

Figure 3.9	Flow rate measurement equipment for pump sump model	51
Figure 3.10	ADV measurement probe	52
Figure 3.11	The example of readings taken by Vectrino Software	53
Figure 3.12	Probe retrieve the data in model	53
Figure 3.13	Nixon Streamflo measurement probe	54
Figure 3.14	(a) (b) The location of the measurement points	55
Figure 3.15	Swirl meters installed in physical models	56
Figure 3.16	Illustrates Dye tracer technique in physical model	57
Figure 4.1	Boundary condition for the model	59
Figure 4.2	CFD Modelling Overview	60
Figure 4.3	The computer model generated by using pre-processor	62
Figure 4.4	Grid location in the sump (Upper- plan view plane, lower –	69
	vertical plane)	
Figure 5.1	Contour of velocity distribution for Bay 2 at water level of	72
	0.3 m with 25 L/s (Case 3) (a) level 1 (b) level 2 (c) level 3	
Figure 5.2	Contour of velocity distribution for Bay 3 at water level of	73
	0.3 m with 25 L/s (Case 3) (a) level 1 (b) level 2 (c) level 3	
Figure 5.3	Contour of velocity distribution for Bay 2 at water level of	74
	0.2 m with 25 L/s (Case 6) (a) level 1 (b) level 2 (c) level 3	
Figure 5.4	Contour of velocity distribution for Bay 3 at water level of	75
	0.2 m with 25 L/s (Case 6) (a) level 1 (b) level 2 (c) level 3	
Figure 5.5	Contour of velocity distribution for Bay 2 at water level of	76
	0.18 m with 25 L/s (Case 9) (a) level 1 (b) level 2 (c) level	
	3	

xii

- Figure 5.6 Contour of velocity distribution for Bay 3 at water level of 77 0.18 m with 25 L/s (Case 9) (a) level 1 (b) level 2 (c) level 3
- Figure 5.7 Contour of velocity distribution for Bay 4 at water level of 78
 0.18 m with 25 L/s (Buffer Block Wall) (Case 10) (a) level
 1 (b) level 2 (c) level 3
- Figure 5.8 Contour of velocity distribution for Bay 4 at water level of 79
 0.18 m with 25 L/s (Wall Fillet and Floor Splitter) (Case
 11) (a) level 1 (b) level 2 (c) level 3
- Figure 5.9 Contour of velocity distribution for Bay 4 at water level of 81
 0.18 m with 25 L/s (Combination of Buffer Block Wall and
 Wall Fillet and Floor Splitter) (Case 12) (a) level 1 (b) level
 2 (c) level 3
- Figure 5.10 Formation of surface vortex Type 5 at the back wall (Case 85 6
- Figure 5.11 Formation of surface vortex Type 5 at the back wall (Case 86 8)
- Figure 5.12 (a) Formation of surface vortex Type 5 at the back wall 87
 (b) Formation of subsurface vortex Type 2 under the suction intake (Case 9)
- Figure 5.13 Flow distribution from the entrance bay to suction intake 87 (Case 9)
- Figure 5.14 Formation of surface vortex Type 2 at the back wall (Case 89 10)

Figure 5.15	Flow distribution from the entrance bay to suction intake	90
	(Case 10)	
Figure 5.16	Formation of surface vortex Type 2 at the back wall (Case	90
	11)	
Figure 5.17	Formation of surface vortex Type 1 at the back wall (Case	91
	12)	
Figure 5.18	Flow distribution from the entrance bay to suction intake	91
	(Case 12)	
Figure 5.19	Enlarged views of grid : (a) Coarser grid (b) Medium grid	93
	(c) Finer grid	
Figure 5.20	0.18 WL with 15 L/s flow rate	95
Figure 5.21	0.2 WL with 20 L/s flow rate	95
Figure 5.22	0.3 WL with 25 L/s flow rate	96
Figure 5.23	No vortex at the upper level of the sump intake at water	98
	level of the 0.3 m for Bay 2 and 3	
Figure 5.24	(a) No vortex at the middle level of the water (0.15m) of	99
	Bay 2 and Bay 3 (b) vertical plane at the elevation of 0.15	
	m	
Figure 5.25	(a) Surface at the elevation of 0.05 m at water level 0.3 m	99
	of Bay 2 and Bay 3 (b) vertical plane at the elevation of	
	0.05 m (under suction intake)	
Figure 5.26	Surface at the elevation of 0 m at water level 0.3 m of Bay	100
	2 and of Bay 3	
Figure 5.27	No vortex at the back wall at water level of 0.3 m (back	101
	view)	

- Figure 5.28 Velocity vector magnitude at the wall of sump intake at 101 water level of 0.3 m (side view)
- Figure 5.29 Case 3(a) surface dimple (b) no subsurface vortex 102
- Figure 5.30 Subsurface vortex at the upper level of the sump intake at 103 water level of the 0.3 m for Bay 2 and 3
- Figure 5.31 (a) Surface vortex at the middle level of the water (0.10 104 m) of Bay 2 and Bay 3 (b) vertical plane at the elevation of 0.10 m
- Figure 5.32 (a) Surface at the elevation of 0.05 m at water level 0.2 m 105 of Bay 2 and Bay 3 (b) vertical plane at the elevation of 0.05 m (under suction intake))
- Figure 5.33 Surface at the elevation of 0 m at water level 0.2 m of Bay 106 2 and of Bay 3
- Figure 5.34 Subsurface vortex at the back wall at water level of 0.2 m 107 (back view)
- Figure 5.35 Velocity vector magnitude at the wall of sump intake at 107 water level of 0.2 m (side view)
- Figure 5.36 Case 6 (a) no surface vortex (b) no subsurface vortex 108
- Figure 5.37 Subsurface vortex at the upper level of the sump intake at 109 water level of the 0.18 m for Bay 2 and 3
- Figure 5.38 (a) Surface vortex at the middle level of the water (0.09 110 m) of Bay 2 and Bay 3 (b) vertical plane at the elevation of 0.09 m

- Figure 5.39 (a) Surface at the elevation of 0.05 m at water level 0.18 111 m of Bay 2 and Bay 3 (b) vertical plane at the elevation of 0.05 m (under suction intake)
- Figure 5.40 Surface at the elevation of 0 m at water level 0.18 m of 112 Bay 2 and of Bay 3
- Figure 5.41 Subsurface vortex at the back wall at water level of 0.18 113 m (back view)
- Figure 5.42 Velocity vector magnitude at the wall of sump intake at 113 water level of 0.2 m (side view)
- Figure 5.43 Case 9 (a) surface vortex Type 4 and 5 (b) no subsurface 114 vortex
- Figure 5.44 Subsurface vortex at the upper level of the sump intake at 115 water level of the 0.18 m for Bay 4
- Figure 5.45 (a) Surface vortex at the middle level of the water (0.09 116 m) of Bay 2 and Bay 3 (b) vertical plane at the elevation of 0.09 m
- Figure 5.46 (a) Surface at the elevation of 0.05 m at water level 0.18 m 117 of Bay 2 and Bay 3 (b) vertical plane at the elevation of 0.05 m (under suction intake)
- Figure 5.47 Surface at the elevation of 0 m at water level 0.18 m of 117 Bay 4
- Figure 5.48 Subsurface vortex at the back wall at water level of 0.18 m 119 (back view)
- Figure 5.49 Velocity vector magnitude at the wall of sump intake at 119 water level of 0.18 m (side view)

- Figure 5.50 Case 10 (a) surface vortex Type 2 (b) no subsurface vortex 119
- Figure 5.51 Subsurface vortex at the upper level of the sump intake at 121 water level of the 0.18 m for Bay 2 and 3
- Figure 5.52 (a) Surface vortex at the middle level of the water (0.09 121 m) of Bay 2 and Bay 3 (b) vertical plane at the elevation of 0.09 m
- Figure 5.53 (a) Surface at the elevation of 0.05 m at water level 0.18 m 122 of Bay 2 and Bay 3 (b) vertical plane at the elevation of 0.05 m (under suction intake)
- Figure 5.54 Surface at the elevation of 0 m at water level 0.18 m of 122 Bay 2 and of Bay 3
- Figure 5.55 Subsurface vortex at the back wall at water level of 0.18 m 123 (back view)
- Figure 5.56 Velocity vector magnitude at the wall of sump intake at 124 water level of 0.18 m (side view)
- Figure 5.57 Case 11 (a) surface vortex Type 2 (b) no subsurface vortex 124
- Figure 5.58 Subsurface vortex at the upper level of the sump intake at 126 water level of the 0.18 m for Bay 4
- Figure 5.59 (a) Surface vortex at the middle level of the water (0.09 126 m) of Bay 4 (b) vertical plane at the elevation of 0.09 m
- Figure 5.60 (a) Surface at the elevation of 0.05 m at water level 0.18 m 127 of Bay 4 (b) vertical plane at the elevation of 0.05 m (under suction intake)
- Figure 5.61 Surface at the elevation of 0 m at water level 0.18 m of 127 Bay 2 and of Bay 3

Figure 5.62	Subsurface vortex at the back wall at water level of 0.18 m	128
	(back view)	
Figure 5.63	Velocity vector magnitude at the wall of sump intake at	129
	water level of 0.18 m (side view)	
Figure 5.64	Case 12 (a) surface vortex Type 2 (b) no subsurface vortex	129
Figure 5.65	Plane location in the sump (plan view plane)	130
Figure 5.66	Case 3 (a) Plane A for velocity vector (b) Plane B for	132
	velocity vector	
Figure 5.67	Case 6 (a) Plane A for velocity vector (b) Plane B for	133
	velocity vector	
Figure 5.68	Case 9 (a) Plane A for velocity vector (b) Plane B for	134
	velocity vector	
Figure 5.69	Case 10 (a) Plane A for velocity vector (b) Plane B for	135
	velocity vector	
Figure 5.70	Case 11 (a) Plane A for velocity vector (b) Plane B for	136
	velocity vector	
Figure 5.71	Case 12 (a) Plane A for velocity vector (b) Plane B for	137
	velocity vector	
Figure 5.72	Case 3 (a) Plane A for velocity vector (b) Plane B for	139
	velocity vector	
Figure 5.73	Case 6 (a) Plane A for velocity vector (b) Plane B for	140
	velocity vector	
Figure 5.74	Case 9 (a) Plane A for velocity vector (b) Plane B for	141
	velocity vector	

Figure 5.75	Case 10 (a) Plane A for velocity vector (b) Plane B for	142
	velocity vector	
Figure 5.76	Case 11 (a) Plane A for velocity vector (b) Plane B for	143
	velocity vector	
Figure 5.77	Case 12 (a) Plane A for velocity vector (b) Plane B for	144
	velocity vector	
Figure 5.78	Water level of 0.3m with flow rate of 25L/s (Case 3)	146
Figure 5.79	Water level of 0.2m with flow rate of 25L/s (Case 6)	146
Figure 5.80	Water level of 0.18m with flow rate of 25L/s (Case 9	147
Figure 5.81	Subsurface vortex at the upper level of the sump intake at	151
	water level of the 0.18 m for Bay 4	
Figure 5.82	(a) Surface vortex at the middle level of the water (0.09	152
	m) of Bay 2 and Bay 3 (b) vertical plane at the elevation	
	of 0.09 m	
Figure 5.83	(a) Surface at the elevation of 0.05 m at water level 0.18 m	152
	of Bay 4 (b) vertical plane at the elevation of 0.05 m	
	(under suction intake)	
Figure 5.84	Surface at the elevation of 0 m at water level 0.18 m of	153
	Bay 4	
Figure 5.85	Subsurface vortex at the back wall at water level of 0.18 m	154
	(back view)	
Figure 5.86	Velocity vector magnitude at the wall of sump intake at	154
	water level of 0.18 m (side view)	
Figure 5.87	Case 10 with 40 L/s (a) surface vortex Type 2 (b) no	155
	subsurface vortex	

LIST OF SYMBOLS

μ	Dynamic viscosity
	Inner product, $a.b = a1b1 + a2b2 + a3b3$
<i>Cμ</i>	k-ε model parameter (0.09)
D	Suction intake diameter
DA	Suction intake diameter (bell mouth) for Bay 1 & 2
DB	Suction intake diameter (bell mouth) for Bay 3 & 4
$\mathbf{D}_{\mathbf{p}}$	Internal diameter of the pump suction pipe (m)
Fr	Froude number
Fm	Froude model
F _p	Froude prototype
Fr	Froude ratio
g	Gravity
k	Turbulence kinetic energy
L	Length characteristic depending on water level
∇	Nabla operator
Nrpm	Number of rotations per minute
p	Pressure
Q	Flow rate
Q_r	Reynold's number
S	Submergence depth
t	Time
τ	Shear stress
TI	Turbulence

- *t*r Time scales
- U Inlet velocity
- *u* Velocity
- *u'* Root-mean-square of the turbulence velocity

fluctuations

- *U*_r Velocity scales
- V Velocity
- ε Turbulence dissipation
- θ Swirl angle
- v Kinematic viscosity
- ρ Density

LIST OF ABBREVIATIONS

3D	Three Dimensional
ACIS	Andy, Charles & Ian's System
ADV	Acoustic Doppler Velocimeter
ANSI	American National Standard
ANSI/HI	American National Standard/Hydraulic Institude
BHRA	British Hydromechanics Research Association
CAD	Computer Aided Design
CFD	Computational Fluid Dynamic
FSI	Formed Suction Inlet
GUI	Graphical User Interface
h2O	Water-liquid
HI	The Hydraulic Institute
HWL	High Water Level
IGES	Initial Graphics Exchange Specification
JPS	Jabatan Pengairan dan Saliran
LCD	Liquid Crystal Display
MSMA	Urban Storm Water Management
NAHRIM	National Hydraulic Research Institute of Malaysia
NPSH	Net Positive Suction Head
PDE	Partial Differential Equations
PVC	Poly Vinyl Chloride
RANS	Reynols-average Navier Stokes
RKE	Realizable k-e

RNG	Renormalization Group
SIMPLE	Semi Implicit Method for Pressure Linked Equations
SKE	Standard k-e
SKW	Standard k-w
SSTKW	Shear Stress Transport k-ω
TSS	Total Suspended Solids