PHYSICAL HYDRAULICS MODEL AND COMPUTATIONAL FLUID DYNAMICS OF SG. BELIBIS PUMP SUMP

MUHAMMAD KHAIRI BIN A. WAHAB

PHYSICAL HYDRAULICS MODEL AND COMPUTATIONAL FLUID DYNAMICS OF SG. BELIBIS PUMP SUMP

by

MUHAMMAD KHAIRI BIN A. WAHAB

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

February 2017

ACKNOWLEDGEMENTS

In The Name of ALLAH swt, The Most Beneficent, The Most Merciful... May ALLAH swt Guide Us All To Truth and Keep Us On The Straight Path... I wish to express my sincere appreciation and gratitude to my supervisor, Dr. Mohd Remy Rozainy bin Mohd Arif Zainol for his guidance since my final year project in undergraduate until now, master degree. I would also like to thank to my co-supervisor, Professor Dr. Ismail bin Abustan. I would like to gratitude NAHRIM especially to Hydraulic and Laboratory Instrumentation for giving me the opportunity to do my research there. Also, I would like to thanks the staff of Hydraulic Laboratory, Mrs. Nurul and other staff of the School of Civil Engineering for their co-operation during my research. In addition, not to forget my other co-laboratory-mates and friends, Zulhillmi, Firdaus, Rais, Azraie, Dr.Haitham and Dr. Neeraj in for the stimulating discussions, for helping me during my research and for all the fun we have had. Finally I must express my very profound gratitude to my dearest parents, Mr. A.Wahab bin Yaakob and Mrs. Sarida binti Ismail and my dear siblings for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them. May ALLAH swt blessed and grant/guide us to Jannatul Firdous !

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS ii
TABLE OF CONTENTS iii
LIST OF TABLES ix
LIST OF FIGURES x
LIST OF SYMBOLS xx
LIST OF ABBREVIATIONS xxii
ABSTRAK xxiv
ABSTRACT xxvi
CHAPTER ONE: INTRODUCTION
1.1 Background of the study 1
1.2 Problem statement 2
1.3 Objectives of the Study 4
1.4 Scope of the Research 5
1.5 Advantages of the Research 6
1.6 Thesis structure 7
CHAPTER TWO: LITERATURE REVIEW
2.1 Introduction 8
2.2 Pump intake structure 8
2.3 Froude number 13
2.4 Reynold's number 14
2.5 Model similitude 15
2.6 Problems encountered in pump intake 16
2.6.1 Free surface vortices 17
2.6.2 Subsurface vortex 19
2.6.3 Cavitation 21
2.7 Modified design of sump intake 22
2.7.1 Floating raft and submerged raft 23
2.7.2 Fillets and splitters 24
2.7.3 Curtain wall 26
2.7.4 Inlet piers. 26
2.7.5 Flow deflector beam 27
2.7.6 Conical vortex breaker 27
2.7.7 Formed suction inlet (FSI) 28
2.7.8 Three symmetrically thin vertical cylinders 29
2.8 Computational fluid dynamics (CFD) 30
2.8.1 Application of CFD in model of pump sump 31
2.9 Validation numerical analysis and experimental measurement 33
2.10 Gap of knowledge 34
CHAPTER THREE: EXPERIMENTAL SETUP
3.1 Introduction 36
3.2 Physical model test 38
3.2.1 Model Description 38
3.3 Pump sump design 39
3.4 Dimensionless Parameters 43
3.4.1 Reynolds number 43
3.4.2 Froude number 44
3.5 Modification proposed to eliminate undesired flow in pump sump 45
3.5.1 Buffer block wall 46
3.5.2 Positioning of buffer wall, fillet wall and floor splitter 48
3.6 Data collection 50
3.6.1 Flow rate measurement 50
3.6.2 Velocity measurement 51
3.6.3 Swirl meter rotation 55
3.6.4 Dye tracer 56
3.7 Summary 57
CHAPTER FOUR: COMPUTATIONAL FLUID DYNAMICS
4.1 Introduction 58
4.2 Description of the CFD model 58
4.3 Process of simulation 58
4.4 Pre-Processing 60
4.4.1 Geometry of computational model. 61
4.4.2 Geometry and grid generation 61
4.5 Numerical simulation 63
4.5.1 \quad The FLUENT ${ }^{\text {TM }}$ model 63
4.5.2 Governing equations 63
4.5.3 Solution control 65
4.6 Post-Processing 68
4.7 Planes for CFD analysis 68
4.8 Summary 69

CHAPTER FIVE: RESULTS AND DISCUSSION

5.1 Introduction 70
5.2 Physical experiment results and discussions 70
5.2.1 Velocity distribution 70
5.2.1.1 Velocity contour at water level of 0.3 m with 25 L/s (Case 3) 71
5.2.1.2 Velocity contour at water level of 0.2 m with 25 L/s (Case 6) 73
5.2.1.3 Velocity contour at water level of 0.18 m with 25 L/s (Case 9). 75
5.2.1.4 Velocity contour at water Level of 0.18 m with 25 L/s (Buffer Block Wall) (Case 10) 77
5.2.1.5 Velocity contour at water level of 0.18 m with 25 L/s (Wall fillet and floor splitter) (Case 11) 78
5.2.1.6 Velocity Contour at Water Level of 0.18 m with 25 L/s (Combination of buffer block wall and wall fillet and floor splitter) (Case 11) 80
5.2.2 Swirl Meter Measurements 81
5.2.3 Visual Observations 83
5.3 Numerical simulation results and discussions 92
5.3.1 Grid sensitivity analysis 92
5.3.2 Velocity vector (Flow visualization) 96
5.3.2.1 Velocity vector (Flow visualization) at water level of 0.3 m with $25 \mathrm{~L} / \mathrm{s}$ (Case 3) 96
5.3.2.2 Velocity vector (Flow visualization) at water level of 0.2 m with $25 \mathrm{~L} / \mathrm{s}$ (Case 6) 102
5.3.2.3 Velocity vector (Flow visualization) at water Level of 0.18 m with $25 \mathrm{~L} / \mathrm{s}$ (Case 9) 108
5.3.2.4 Velocity vector (Flow visualization) at water Level of 0.18 m with $25 \mathrm{~L} / \mathrm{s}$ (Buffer block wall) (Case 10) 114
5.3.2.5 Velocity vector (Flow visualization) at Water Level of 0.18 m with $25 \mathrm{~L} / \mathrm{s}$ (Wall fillet and floor splitter) (Case 11) 119
5.3.2.6 Velocity vector (Flow visualization) at water level of 0.18 m with $25 \mathrm{~L} / \mathrm{s}$ (Combination of bufferblock wall and wall fillet and floor splitter) (Case
12) 124
5.3.3 Velocity and pressure contour result 129
5.3.3.1 Velocity contour result 130
5.3.3.2 Pressure contour result 137
5.4 Comparison between Experimental and Simulation Results in Velocity
Profile 144
5.5 Comparison of visualization between experimental and simulation 147
5.6 Simulation at high flow rate 150
5.6.1 Water level of 0.18 m with flow rate of $40 \mathrm{~L} / \mathrm{s}$ (Buffer blockwall).150

CHAPTER SIX: Conclusions

6.1 Conclusions 156
6.2 Experimental 156
6.3 Computational fluid dynamic (CFD) modelling 157
6.4 Recommendations for the future works 158
REFERENCES 160

APPENDICES

APPENDIX A (Display Input of FLUENT ${ }^{\text {TM }}$)
APPENDIX B (Results CFD for Water Level of 0.18 m with Flow Rate of 40 L/s (Buffer Block Wall))

LIST OF PUBLICATIONS

LIST OF AWARDS

LIST OF TABLES

Page
Table 2.1 Recommended dimensions for Figures 2.1 and 2.2 11(American National Standard for Pump Intake Design,ANSI/HI 9.8-1998)
Table 2.2 Recommended Dimensions of Pump Sump 12
Table 2.3 Accuracy based on relative error 33
Table 2.4 Comparison the advantages of each modification 35
Table 3.1 The operational of pump 37
Table 3.2 The Reynolds number at different water levels 38
Table 3.3 The Reynolds number at different water levels and flow 39 rates
Table 3.4 The parameter values for modification test 49
Table 4.1 Cases of study, turbulence kinetic energy, k and turbulence 65 dissipation rate, ε
Table 4.2 Properties of water 65
Table 5.1 Result of swirl angle 82
Table 5.2 Visual observation in the pump sump 84
Table 5.3 Meshing details for 3, 5 and 7 cases with three different 94 flow rates
Table 5.4 Comparison of visualization between experimental and 149simulation

LIST OF FIGURES

Page
Figure 2.1 Recommended intake structure layout (American National 10Standard for Pump Intake Design,ANSI/HI 9.8-1998))
Figure 2.2 Filler wall details for proper bay width (American 10National Standard for Pump Intake Design,ANSI/HI 9.8-1998)
Figure 2.3 Free surface vortex form at pump suction bell entrance 18(Hirata et al., 2011)
Figure 2.4 The formation of free surface vortices (Source : Ibrahim, 19
2011)
Figure 2.5 Classification of vortices (Source : Shabayek, 2010) 20
Figure 2.6 Shows the classification of boundary-attached subsurface 21vortex (Source : Rishel, 2002)
Figure 2.7 Cavitation damage on the impeller blades at the discharge 22(Binama et al., 2016)
Figure 2.8 (a) floating (b) submerged raft (Novák, 2004) 24
Figure 2.9 Modified Pump Cell Design : (a) Plan; (b) Profile (Source 25: BHRA, 1997)
Figure 2.10 Methods to reduce subsurface vortices : (a) wall splitter 25plate (b) floor splitter plate (c) floor cane (Source : TheNew Hydraulic Institute Pump Intake Design Standard,1999)
Figure 2.11 A curtain wall in the pump sump 26

Figure 2.12 A flow straightening piers at the entrance to the pump bay.
(Source: The New Hydraulic Institute Pump Intake Design Standard,1999)

Figure 2.13 A conical vortex breaker under suction intake (Source: 28 Ahmad et al, 2011)

Figure 2.14 FSI model (Source : Zheng and Werth, 2008) 29
Figure 2.15 Three symmetrically thin vertical cylinders placed under 30 suction intake (Source : Ciocanea, 2013)

Figure 2.16 Two-dimensional velocity contour in pump sump (source: 32 Kim, 2014)

Figure 2.17 Three-dimensional flow pattern in pump intake (source : 33 Khan, 2012)

Figure 3.1 Flow Chart of the overall study 37
Figure 3.2 Location plan of NAHRIM (source: NAHRIM) 38
Figure 3.3 Self-contained circulation system of pump sump 39
Figure 3.4 (a) Plan view (b) Side view A-A (c) Front view B-B (d) 42 Three dimensional view of model

Figure 3.5 (a) Suction of intake in Bay 1 and 2 (b) Suction of intake in 42 Bay 3 and 4 (in cm)

Figure 3.6 (a) Details of buffer block wall (b) Perspex of buffer block 47 wall

Figure 3.7 (a) Plan view the location of buffer block wall (b) Side view 48 the location buffer block wall

Figure 3.8 The dimension of the modified model (a) front view (b) 49 side view (c) plan view

Figure 3.9 Flow rate measurement equipment for pump sump model
Figure 3.10 ADV measurement probe 52
Figure 3.11 The example of readings taken by Vectrino Software 53
Figure 3.12 Probe retrieve the data in model 53
Figure 3.13 Nixon Streamflo measurement probe 54
Figure 3.14 (a) (b) The location of the measurement points 55
Figure 3.15 Swirl meters installed in physical models 56
Figure 3.16 Illustrates Dye tracer technique in physical model 57
Figure $4.1 \quad$ Boundary condition for the model 59
Figure 4.2 CFD Modelling Overview 60
Figure 4.3 The computer model generated by using pre-processor 62
Figure $4.4 \quad$ Grid location in the sump (Upper- plan view plane, lower - 69 vertical plane)

Figure 5.1 Contour of velocity distribution for Bay 2 at water level of72
0.3 m with $25 \mathrm{~L} / \mathrm{s}$ (Case 3) (a) level 1 (b) level 2 (c) level 3

Figure 5.2 Contour of velocity distribution for Bay 3 at water level of 0.3 m with $25 \mathrm{~L} / \mathrm{s}$ (Case 3) (a) level 1 (b) level 2 (c) level 3

Figure 5.3 Contour of velocity distribution for Bay 2 at water level of 0.2 m with $25 \mathrm{~L} / \mathrm{s}$ (Case 6) (a) level 1 (b) level 2 (c) level 3

Figure 5.4 Contour of velocity distribution for Bay 3 at water level of 75 0.2 m with $25 \mathrm{~L} / \mathrm{s}$ (Case 6) (a) level 1 (b) level 2 (c) level 3

Figure 5.5 Contour of velocity distribution for Bay 2 at water level of 76 0.18 m with $25 \mathrm{~L} / \mathrm{s}$ (Case 9) (a) level 1 (b) level 2 (c) level 3

Figure 5.6 Contour of velocity distribution for Bay 3 at water level of 0.18 m with $25 \mathrm{~L} / \mathrm{s}$ (Case 9) (a) level 1 (b) level 2 (c) level 3

Figure 5.7 Contour of velocity distribution for Bay 4 at water level of
0.18 m with $25 \mathrm{~L} / \mathrm{s}$ (Buffer Block Wall) (Case 10) (a) level 1 (b) level 2 (c) level 3

Figure 5.8 Contour of velocity distribution for Bay 4 at water level of 0.18 m with $25 \mathrm{~L} / \mathrm{s}$ (Wall Fillet and Floor Splitter) (Case 11) (a) level 1 (b) level 2 (c) level 3

Figure 5.9 Contour of velocity distribution for Bay 4 at water level of 0.18 m with $25 \mathrm{~L} / \mathrm{s}$ (Combination of Buffer Block Wall and Wall Fillet and Floor Splitter) (Case 12) (a) level 1 (b) level 2 (c) level 3

Figure 5.10 Formation of surface vortex Type 5 at the back wall (Case 6

Figure 5.11 Formation of surface vortex Type 5 at the back wall (Case 8)

Figure 5.12 (a) Formation of surface vortex Type 5 at the back wall (b) Formation of subsurface vortex Type 2 under the suction intake (Case 9)

Figure 5.13 Flow distribution from the entrance bay to suction intake (Case 9)

Figure 5.14 Formation of surface vortex Type 2 at the back wall (Case 89 10)

Figure 5.15 Flow distribution from the entrance bay to suction intake 90 (Case 10)

Figure 5.16 Formation of surface vortex Type 2 at the back wall (Case 90 11)

Figure 5.17 Formation of surface vortex Type 1 at the back wall (Case

Figure 5.18 Flow distribution from the entrance bay to suction intake (Case 12)

Figure 5.19 Enlarged views of grid : (a) Coarser grid (b) Medium grid
(c) Finer grid

Figure 5.20 0.18 WL with $15 \mathrm{~L} / \mathrm{s}$ flow rate 95
Figure 5.21 0.2 WL with $20 \mathrm{~L} / \mathrm{s}$ flow rate 95
Figure 5.22 0.3 WL with $25 \mathrm{~L} / \mathrm{s}$ flow rate 96
Figure 5.23 No vortex at the upper level of the sump intake at water 98 level of the 0.3 m for Bay 2 and 3

Figure 5.24 (a) No vortex at the middle level of the water $(0.15 \mathrm{~m})$ of 99 Bay 2 and Bay 3 (b) vertical plane at the elevation of 0.15 m

Figure 5.25 (a) Surface at the elevation of 0.05 m at water level 0.3 m of Bay 2 and Bay 3 (b) vertical plane at the elevation of 0.05 m (under suction intake)

Figure 5.26 Surface at the elevation of 0 m at water level 0.3 m of Bay 100 2 and of Bay 3

Figure 5.27 No vortex at the back wall at water level of 0.3 m (back 101 view)

Figure 5.28 Velocity vector magnitude at the wall of sump intake at water level of 0.3 m (side view)

Figure 5.29 Case 3(a) surface dimple (b) no subsurface vortex

Figure 5.30 Subsurface vortex at the upper level of the sump intake at water level of the 0.3 m for Bay 2 and 3

Figure 5.31

Figure 5.32

Figure 5.33

Figure 5.34

Figure 5.35
Velocity vector magnitude at the wall of sump intake at water level of 0.2 m (side view)

Figure 5.36 Case 6 (a) no surface vortex (b) no subsurface vortex 108
Figure 5.37 Subsurface vortex at the upper level of the sump intake at water level of the 0.18 m for Bay 2 and 3

Figure 5.38
(a) Surface vortex at the middle level of the water (0.09 110 m) of Bay 2 and Bay 3 (b) vertical plane at the elevation of 0.09 m

Figure 5.47 Surface at the elevation of 0 m at water level 0.18 m of

Figure 5.39

Figure 5.40 Figure 5.41

Figure 5.42

Figure 5.43

Figure 5.44

Figure 5.45

Figure 5.46

Figure 5.48

Figure 5.49
(a) Surface at the elevation of 0.05 m at water level 0.18 m of Bay 2 and Bay 3 (b) vertical plane at the elevation of 0.05 m (under suction intake)

Surface at the elevation of 0 m at water level 0.18 m of Bay 2 and of Bay 3

Subsurface vortex at the back wall at water level of 0.18 m (back view)

Velocity vector magnitude at the wall of sump intake at water level of 0.2 m (side view)

Case 9 (a) surface vortex Type 4 and 5 (b) no subsurface vortex

Subsurface vortex at the upper level of the sump intake at water level of the 0.18 m for Bay 4
(a) Surface vortex at the middle level of the water (0.09
m) of Bay 2 and Bay 3 (b) vertical plane at the elevation of 0.09 m
(a) Surface at the elevation of 0.05 m at water level 0.18 m of Bay 2 and Bay 3 (b) vertical plane at the elevation of 0.05 m (under suction intake) Bay 4

Subsurface vortex at the back wall at water level of 0.18 m (back view)

Velocity vector magnitude at the wall of sump intake at water level of 0.18 m (side view)

Figure 5.50 Case 10 (a) surface vortex Type 2 (b) no subsurface vortex 119
Figure 5.51 Subsurface vortex at the upper level of the sump intake at 121 water level of the 0.18 m for Bay 2 and 3

Figure 5.52 (a) Surface vortex at the middle level of the water (0.09 m) of Bay 2 and Bay 3 (b) vertical plane at the elevation of 0.09 m

Figure 5.53
(a) Surface at the elevation of 0.05 m at water level 0.18 m of Bay 2 and Bay 3 (b) vertical plane at the elevation of 0.05 m (under suction intake)

Figure 5.54 Surface at the elevation of 0 m at water level 0.18 m of 122 Bay 2 and of Bay 3

Figure 5.55 Subsurface vortex at the back wall at water level of 0.18 m (back view)

Figure 5.56 Velocity vector magnitude at the wall of sump intake at water level of 0.18 m (side view)

Figure 5.57 Case 11 (a) surface vortex Type 2 (b) no subsurface vortex
Figure 5.58 Subsurface vortex at the upper level of the sump intake at 126 water level of the 0.18 m for Bay 4

Figure 5.59 (a) Surface vortex at the middle level of the water (0.09
m) of Bay 4 (b) vertical plane at the elevation of 0.09 m

Figure 5.60 (a) Surface at the elevation of 0.05 m at water level 0.18 m
of Bay 4 (b) vertical plane at the elevation of 0.05 m (under suction intake)

Figure 5.61 Surface at the elevation of 0 m at water level 0.18 m of 127 Bay 2 and of Bay 3
Figure 5.62 Subsurface vortex at the back wall at water level of 0.18 m 128(back view)
Figure 5.63 Velocity vector magnitude at the wall of sump intake at 129 water level of 0.18 m (side view)
Figure 5.64 Case 12 (a) surface vortex Type 2 (b) no subsurface vortex 129
Figure 5.65 Plane location in the sump (plan view plane) 130
Figure 5.66 Case 3 (a) Plane A for velocity vector (b) Plane B for 132 velocity vector
Figure 5.67 Case 6 (a) Plane A for velocity vector (b) Plane B for 133velocity vector
Figure 5.68 Case 9 (a) Plane A for velocity vector (b) Plane B for 134 velocity vector
Figure 5.69 Case 10 (a) Plane A for velocity vector (b) Plane B for 135 velocity vector
Figure 5.70 Case 11 (a) Plane A for velocity vector (b) Plane B for 136 velocity vectorFigure 5.71Figure 5.72Figure 5.73
Figure 5.74Case 12 (a) Plane A for velocity vector (b) Plane B for137velocity vector
Case 3 (a) Plane A for velocity vector (b) Plane B for 139velocity vectorCase 6 (a) Plane A for velocity vector (b) Plane B forvelocity vector140
Case 9 (a) Plane A for velocity vector (b) Plane B for141velocity vector

Figure 5.75

Figure 5.76

Figure 5.77

Figure 5.78 Water level of 0.3 m with flow rate of $25 \mathrm{~L} / \mathrm{s}$ (Case 3)
Figure 5.79 Water level of 0.2 m with flow rate of $25 \mathrm{~L} / \mathrm{s}$ (Case 6)
Figure $5.80 \quad$ Water level of 0.18 m with flow rate of $25 \mathrm{~L} / \mathrm{s}$ (Case 9
Figure 5.81 Subsurface vortex at the upper level of the sump intake at water level of the 0.18 m for Bay 4

Figure 5.82

Figure 5.83

Figure 5.84 Bay 4

Figure 5.85 Subsurface vortex at the back wall at water level of 0.18 m (back view)

Figure 5.86 Velocity vector magnitude at the wall of sump intake at water level of 0.18 m (side view)

Figure 5.87 Case 10 with $40 \mathrm{~L} / \mathrm{s}$ (a) surface vortex Type 2 (b) no155 subsurface vortex velocity vector

Case 12 (a) Plane A for velocity vector (b) Plane B for velocity vector (a) Surface vortex at the middle level of the water (0.09 m) of Bay 2 and Bay 3 (b) vertical plane at the elevation of 0.09 m
(a) Surface at the elevation of 0.05 m at water level $0.18 \mathrm{~m} \quad 152$ of Bay 4 (b) vertical plane at the elevation of 0.05 m (under suction intake) suber

LIST OF SYMBOLS

μ

D

Fr Froude number
$\mathrm{F}_{\mathrm{p}} \quad$ Froude prototype
$\mathrm{Fr}_{\mathrm{r}} \quad$ Froude ratio

Q
Q_{r}
$\mathrm{D}_{\mathrm{A}} \quad$ Suction intake diameter (bell mouth) for Bay $1 \& 2$
$D_{B} \quad$ Suction intake diameter (bell mouth) for Bay $3 \& 4$
$D_{p} \quad$ Internal diameter of the pump suction pipe (m)

L Length characteristic depending on water level
$\mathrm{N}_{\mathrm{rpm}} \quad$ Number of rotations per minute
Pressure
Dynamic viscosity
Inner product, $\mathrm{a} \cdot \mathrm{b}=\mathrm{a} 1 \mathrm{~b} 1+\mathrm{a} 2 \mathrm{~b} 2+\mathrm{a} 3 \mathrm{~b} 3$
k - ε model parameter (0.09)
Suction intake diameter

Froude model

Gravity
Turbulence kinetic energy

Nabla operator

Flow rate
Reynold's number
Submergence depth
Time
Shear stress
Turbulence
t_{r}

U Inlet velocity
u
u' Root-mean-square of the turbulence velocity
fluctuations
$U_{\mathrm{r}} \quad$ Velocity scales

V Velocity
ε
θ
v
$\rho \quad$ Density

LIST OF ABBREVIATIONS

3D	Three Dimensional
ACIS	Andy, Charles \& Ian's System
ADV	Acoustic Doppler Velocimeter
ANSI	American National Standard
ANSI/HI	American National Standard/Hydraulic Institude
BHRA	British Hydromechanics Research Association
CAD	Computer Aided Design
CFD	Computational Fluid Dynamic
FSI	Formed Suction Inlet
GUI	Graphical User Interface
h2O	Water-liquid
HI	The Hydraulic Institute
HWL	High Water Level
IGES	Initial Graphics Exchange Specification
JPS	Jabatan Pengairan dan Saliran
LCD	Liquid Crystal Display
MSMA	Urban Storm Water Management
NAHRIM	National Hydraulic Research Institute of Malaysia
NPSH	Net Positive Suction Head
PDE	Partial Differential Equations
PVC	Poly Vinyl Chloride
RANS	Reynols-average Navier Stokes
RKE	Realizable k- ε

RNG	Renormalization Group
SIMPLE	Semi Implicit Method for Pressure Linked Equations
SKE	Standard k- ε
SKW	Standard k- ω
SSTKW	Shear Stress Transport k- ω
TSS	Total Suspended Solids

